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ABSTRACT Inverter-based microgrids essentially constitute an extensive communication layer that makes
them vulnerable to cyber anomalies. The distributed cooperative controllers implemented at the secondary
control level of such systems exchange information among physical nodes using the cyber layer to meet the
control objectives. The cyber anomalies targeting the communication network may distort normal operation,
therefore, an effective cyber anomaly mitigation technique using an Artificial Neural Network (ANN) is
proposed in this paper. The intelligent anomaly mitigation control is modeled using a dynamic neural
network that employs a nonlinear autoregressive network with exogenous inputs. The effects of false data
injection on the distributed cooperative controller at the secondary control level are considered. The training
data for designing the neural network are generated by multiple simulations of the designed microgrid
under various operating conditions using MATLAB/Simulink. An explainable framework is employed to
interpret the output generated by the trained neural network-based controller after the neural network has
been trained offline and validated online in the simulated microgrid. The proposed technique is applied as
secondary voltage and frequency control of distributed cooperative control-based microgrid to regulate the
voltage under various operating conditions. The performance of the proposed control technique is verified by
injecting various types of false data injection-based cyber anomalies. The proposed ANN-based secondary
controller maintained the normal operation of the microgrid under various cyber anomalies as demonstrated
on a real-time digital simulator.

INDEX TERMS Artificial neural networks, cyber anomaly mitigation, distributed cooperative control,

explainable neural networks, false data injection attacks, microgrids.

. INTRODUCTION

ICROGRIDS have evolved into cyber-physical sys-
Mtems (CPS) that include multiple distributed gener-
ators (DGs), loads, and a communication network. Both
centralized and distributed control mechanisms have been
deployed in microgrids [1]-[3]. Distributed control for mi-
crogrids provides improved reliability and scalability when
compared to centralized control [4]. However, the challenges
in designing and deploying modern distributed microgrids
include uncertainties associated with loads, renewable energy
resources, and communication networks that are vulnerable
to cyber anomalies [5], [6]. Cyber anomalies occur when an
adversary targets the communication network by False Data
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Injection (FDI) attack or compromising information sharing
in the network [7]-[10]. These anomalies can result in sys-
tem instability issues such as loss of synchronization during
operation [11]. Therefore, an effective mitigation strategy is
required for the smooth operation of microgrids to cater to
those anomalies.

Most of the recent anomaly mitigation techniques in AC
microgrids are model-based approaches, requiring a de-
tailed accurate model and accurate architectural knowledge
of the system [12]-[18]. However, for large-scale micro-
grid systems whose mathematical models are hard to de-
rive, learning-based tools such as Artificial Neural Networks
(ANNSs) can be deployed for cyber anomalies mitigation, dis-
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tributed generation management, and resilient control design
in multi-DG microgrids [19]-[25]. In addition, ANNs can be
designed using historical voltage and current measurements
to act as an estimator and an observer layer for FDI attack
detection and mitigation in cooperative controlled DC mi-
crogrids [26]. In [27], ANN-based resilient control design
is proposed to withstand the FDI attacks that contain an
anomaly detection system based on the Luenberger observer
and ANN. An Extended Kalman filter is used to update
the ANN learning weights online such that the input to the
ANN is the difference between the actual system output and
the output from the Luenberger observer. This will allow
the ANN to detect an anomaly in the system and feedback
data from the anomaly detection system is then used in a
linear quadratic controller to compensate for the anomalies.
This proposed method involves iterative calculations that
pose scalability challenges as the power system becomes
larger and more complex with the integration of distributed
energy resources. In [28], an ANN-based reference tracking
algorithm is introduced to mitigate the effect of FDI attacks in
distributed consensus control-based DC microgrids. This is a
two-layer control design in which ANN is applied to mitigate
the discrepancies between a normal and compromised signal
being fed to a proportional-integral (PI) controller. The signal
latency or loss of communication between two such layers
may endanger the microgrid’s stable operation, which may
even lead to a loss of synchronism among DGs. In [29], a
model predictive control (MPC)-based ANN control strategy
is proposed for the dynamic damping of DC microgrids.
This proposed control approach attained the balance between
demand and supply under variable operating conditions, but
the robustness of the controller under cyber anomalies is not
discussed. In [30], ANN is used as an estimator to detect
the FDI attack by estimating the reference voltage for the
secondary control layer of a DC microgrid. This is similar to
a two-layer design using an estimated reference value from
ANN as an input to an MPC-based controller to calculate the
optimal values of the inputs to track the references by the
plant outputs. This method will function properly if ANN
can accurately estimate the actual voltage of the DC bus,
which may be challenging if the system consists of multiple
converters that experience unintended signal perturbation.

A CPS is a sophisticated system that connects physi-
cal processes and objects to the network while integrating
sensing, computation, control, and networking [31]. Such
CPS, including microgrids, are vulnerable to cyber-attacks
due to dependence on interactions with the environment
and communication networks. In [32], [33], a fuzzy-model-
based approach is utilized to minimize the malicious effects
of denial-of-service attacks on control networks and a truck-
trailer system under cyber-attacks, respectively. The pro-
posed approach has the potential to be applied to a wide range
of networked control systems, especially those operating in
harsh environments where cyber-attacks are common. The
electric grid is changing from a relatively closed system to
a complex highly integrated environment and the security
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system should evolve as threats to the electric system are
inevitably diversified and multiplied. For critical infrastruc-
ture to be secure, the three most essential elements are hard-
ware, software, and communication network [34]. Cyber-
resiliency of such systems can be enhanced by incorporating
modern control techniques.

Artificial intelligence (Al)-based techniques provide sta-
ble, secure, and reliable methods to address challenges with
distributed control design and improve microgrid’s stability
[35]. However, the Al models are sometimes referred to
as the black box models due to the limited understanding
of their working behavior. Interpretability offers a set of
techniques to overcome this black-box nature of Al models
by revealing the impact of various features on the predictions
of trained Al models [36], [37]. An explainable framework
is needed to help users comprehend the outputs created by
Al-based models. Such an explainable AI framework gives
users the confidence in understanding and examining Al
models in a variety of contexts, including healthcare and
anomaly-based in-vehicle intrusion detection systems [38],
[39]. An explainable framework based on partial dependence
plots (PDP) for the neural network-based controller for power
electronics converter is given in [40]. In a trained Al model,
partial dependence relates to the interactions between pre-
dictor variables and predicted responses. Such explainable
techniques may also help to understand feature correlations,
the importance of the output of individual data points, and
the feature attributions of the model outputs [41].

The application of ANN-based control for microgrids is
not common as manifested from the usage of ANN as an
observer layer in an AC microgrid in [27] and in reference
tracking applications for DC microgrids in [28]. Also, the
explainability of Al-based methods and the resilience of con-
trol designs against noise in the signals are not provided. The
research motivation for this paper is based on the following
observations from the literature:

e The application of ANN-based control of microgrid
to take corrective actions to maintain stability under
anomalies is not ubiquitous.

o The explainability of Al-based methods in the context
of microgrids is not available.

 Resilience verification of the Al-based control design
under a noisy signal environment in the context of mi-
crogrids is needed.

To bridge this research gap, we proposed a novel nonlinear
autoregressive exogenous model (NARX ANN) as a resilient
secondary control layer in a multi-DG AC microgrid. Such
ANNSs are nonparametric models and provide improved per-
formance in forecasting applications based on time-series
data in microgrids as evidenced in [42]. In order to evaluate
the impact of different inputs on the model’s performance,
this paper also provides an explainable framework for the
proposed ANN-based controller utilizing the partial depen-
dence function, which displays the marginal effect of input
features on the predicted output of the ANN model. There
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FIGURE 1: Illustration of the control mechanisms for the proposed controller in a typical microgrid setup. Cyber anomalies
were injected into the communication network’s voltages and frequency signals.

are several advantages of using such intelligent anomaly mit-
igation controls such as early detection of anomalies before
they can cause significant damage or disruption to the system,
less manual intervention, and enhanced understanding of
the system to identify areas for improvement. The proposed
control technique utilizes an advanced Al-based tool tailored
to mitigate the data-driven cyber anomalies targeting the
communication network of the microgrid. Also, it is scalable
and depicted improved performance under complex real-time
test scenarios. The main contributions of this research are
summarized as follows:

o A resilient ANN-based secondary control technique is
proposed to mitigate cyber anomalies. Such anomalies
are introduced through the communication links to ver-
ify that the proposed control technique maintained the
desired operation of the system.

« The proposed control technique does not depend on an
estimator or an observer layer for cyber anomaly detec-
tion.

o The resilience of the proposed ANN-based control tech-
nique is tested under a noisy environment by adding
white Gaussian noise to the voltage and frequency in-
puts of ANN.

o The proposed method can be expandable for a large-
scale microgrid. This is accomplished by designing
ANN-based control using a connection matrix allowing
the integration of multiple DGs without compromising
the microgrid’s operation.

o An explainable framework is provided using PDP to
identify the most critical node in the microgrid by eval-
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uating the control decisions under extreme scenarios.

Performance comparisons of the proposed ANN-based con-
trol strategy with the existing PI-based distributed secondary
control method are also presented in this paper. The control
performance is also validated in real-time by simulating an
AC microgrid, on the real-time digital simulator OPAL-RT.
The results obtained in various case studies have verified
the effectiveness of the proposed ANN-based secondary con-
trol for AC microgrids. The mean absolute percentage error
(MAPE) and the voltage and frequency regulation are used
as a benchmark to evaluate the performance of the trained
ANNS.

The rest of the paper is organized as follows. Section
IT describes the AC microgrid used in this work with the
types of cyber anomalies. The structure of ANN is given in
section III. In section IV, the design of ANN-based secondary
voltage and frequency control is presented. The explainable
framework for ANN is discussed in section V. In section VI,
the results obtained from real-time simulations performed
on the test microgrid are discussed. Finally, this paper is
concluded in section VII.

Il. SYSTEM DESCRIPTION

The AC microgrid used in this study consists of a physical
layer and a cyber layer. The physical layer is composed
of multiple DGs with various loads. The cyber layer con-
tains the communication protocols for voltage and frequency
information exchange in a distributed cooperative control
architecture as illustrated in Fig. 1. The primary controller is
implemented locally at each of the DG using a conventional
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droop control technique that provides a relationship between
the frequency w;, the reactive power @);, the active power
P;, and the voltages v,. The voltage and frequency droop
characteristics are given by:

{Uov*nQiQi7 (1)

_ *
w; = w* —mp, P,

where v*, w* are the primary voltage and frequency reference
values, and mp,, nq, are the active and reactive power droop
coefficients, respectively. At the secondary level, distributed
cooperative control is utilized to reduce voltage and fre-
quency deviations from nominal values generated by primary
control. As demonstrated in Fig. 1, the relevant control
protocols are implemented over a distributed communication
network. The secondary control sets a reference for primary
control such that the voltage and frequency of each DG are
synchronized with their respective reference values (v* and
w™*):
. * || —
{hmt_mo [lvo —v*|| =0, @)

limy o0 ||w; — w*|| = 0.

For a given DG, the distributed cooperative secondary volt-
age and frequency management requires its own information
as well as that of the neighboring DGs to collaboratively
achieve the control objectives. The power controller im-
plements the droop techniques and ultimately voltage and
current controllers generate the reference for inverters. The
communication network of a multiagent cooperative system
can be modeled by a directed graph (digraph) with nodes
and edges representing DGs and communication links in the
microgrid, respectively. Based on the digraph communication
protocol, the n* DG, in the microgrid may need to share
their voltage information over the communication network.
Assuming that only one DG has access to the reference v*,
by a weight factor known as pinning gain b;, the cooperative
control objective in terms of local neighborhood tracking
error (vey, ) is as follows:

Ven = Z aj(vi — vj) + bi(vi —v"), 3)

JESn

where S,, represents the set of neighboring DGs of the n'"
DG, a;; represents the elements of the adjacency matrix, and
only one DG has nonzero b;. Similarly, for distributed sec-
ondary cooperative frequency control, the auxiliary control
input u; is as follows:

U; = —Cg( Z aij(wi — wj) + bz(wz — OJ*)
JESn 4)
+ Z aij(mpiPi — ijPj)7
JESn

where ¢, is the coupling gain. In [4], more information about
distributed cooperative control architecture is provided. De-
scription of the cyber anomalies investigated in this paper is
given in the next subsection.

4

A. CYBER ANOMALIES

Cyber anomalies target the microgrid’s communication layer
by injecting false data or compromising the network’s in-
formation exchange. FDI attack targets the voltage and fre-
quency information of neighboring DGs on the communi-
cation graph. A distributed secondary controller’s feedback
signal can be characterized as:

z(un(t)) = un(t) + ¥n(t), (%)

where z(u,(t)) is the feedback signal after the attacker
injects false data 1, (t) into the controller’s n'" normal
feedback signal [28]. Following are the five types of FDI
attacks based on various 1y, (t):

Type 1 - Stationary attack: A stationary attack is non-
periodic in nature and it is launched by injecting a
constant multiple v of the desired signal u,(t) into
z(u,(t)) at a certain time t, throughout the system’s
operation, as follows:

B un (t), whent < t,,
wlun(t)) = {un(t) T+ ug(t), whent > b, ©

Type 2 - Reinforcement attack: During a reinforcement
attack, the system is compelled to follow the incorrect
set of reference points by fully replacing the desired
reference value with false data. The attacker replaces
the intended signal w,(t) entirely with its multiple,
resulting in:

B Un(t)a when t < t,,
x(un(t)) - {ry * u,,n(t)7 when t > t,. @

Type 3 - Time-varying attack: The periodic time-varying
attack is initiated by injecting a periodic sinusoidal
signal with time period (wt) and amplitude £ into the
normal signal u,,, as follows:

0, whent < t,,
valt) = {ﬁsin(wt) *un(t), whent > t,. ®

Type 4 - Manifold attack: A manifold attack is composed
of both stationary and time-varying attacks. This attack
is initiated with the injection of false information, both
periodic and non-periodic, as follows:

() = 0, whent < t,,
ATy ok un (B) + Esin(wt) * un(t), whent > t,.
C))
Type 5 - Coordinated attack: In a coordinated attack
scenario, the adversary injects false data into all of the
DGs in the system to launch a large-scale attack, such
that:

2 (un(0))x1 = {[

[tn (t)]ax1, whent < t,,
Un(t)]ax1 + X, whent >t,,
(10)
where y is the false data being injected to all the four
DGs of the microgrid system when ¢ > ¢,.
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FIGURE 2: The architecture of a NARX ANN with 1 input
layer with 13 nodes, 1 hidden layer with 10 nodes, and an
output layer with 4 nodes is shown.
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FIGURE 3: The NARX ANN configurations are shown. (a)
Parallel configuration. (b) Series parallel configuration.

Ill. NONLINEAR AUTO-REGRESSIVE EXOGENOUS
ARTIFICIAL NEURAL NETWORKS

NARX ANN (used as ANN for brevity in manuscript) is a
special class of recurrent neural networks best suited for time
series data prediction, input-output modeling of nonlinear
dynamical systems, and cyber attack detection in microgrids
[26], [42]. In this paper, we have deployed a single-layer
ANN to generate the reference for the primary controllers.
The embedded memory in ANN will help improve gradient
descent, converge faster, and can be deployed for nonlinear
systems. This ANN can model dynamic systems with ar-
bitrary accuracy making them very suitable for time-series
applications [43]. The trained ANN-based controller replaces
the state-of-the-art PI-based controller in the secondary layer
of distributed cooperative control as shown in Fig. 1. The
input layer has 13 nodes for voltage and frequency informa-
tion, and the output has 4 nodes for corresponding reference
output at each DG. There are 10 nodes in the hidden layer.
This structure is optimized after multiple trainings and found
best suited for this work. The preceding batch of output and
input, y(k—14) and z(k — i), respectively, establish the ANN’s
output y(k) that constructs an autoregressive model to predict
the current value of the dynamical system. These delayed
output values act as pseudo-states to extract system dynamics
from time series data. This characteristic makes NARX ANN
a promising choice for nonlinear dynamical system modeling
in applications like intelligent control [44]. The mathematical
model of ANN is given as follows:

ylk+1) = flz(k —n),...,z(k —dy —n+1),y(k), ...,
y(k—dy + 1)}, (D
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where y(k) is the model output, z(k) is the model input at
discrete time interval k, d; is input memory order, and d,, is
output memory order. Assuming delay term k = 0, the model
takes the form as follows:

y(k+1) = flz(k), ..., x(k—ds+1),y(k), ...,y (k—d,+1)],
12)
which can be expressed in vector form as follows:

y(k +1) = f[Y(k); X(K)], (13)

where the boldface letters represent vectors, such that, Y (k)
and X (k) represent the output and input, respectively. The
nonlinear mapping f(.) can be approximated by a standard
multilayer perceptron network. The architecture of a single-
layer ANN is shown in Fig. 2. Its training can be carried out
in the following two configurations:

1) Parallel Configuration: The parallel configuration is
shown in Fig. 3a such that the estimated output of the
network is fed back into the ANN input as follows:

Gk +1) = flz(k), ..., x(k — dy + 1), 5(k), ...,

gk —dy +1)],

2) Series Parallel Configuration: This configuration is
depicted in Fig. 3b, wherein, actual output values are

used without feedback. The estimated output ¢ is given
by:

Gk +1) = flzk), ..., x(k —dy + 1), y(k), ...,
y(k —dy, +1)].

4

5)

Since the real output is accessible from microgrid operation,
the series-parallel configuration is used for the training and
operation of ANN. The design of the proposed ANN-based
secondary control layer is discussed in the next section.

IV. ANN-BASED DISTRIBUTED SECONDARY CONTROL
DESIGN

The training of ANN models is crucial to their optimal per-
formance. The reference for the primary control level at each
inverter is generated by the secondary distributed cooperative
control [4]. As a result, each DG is constructed with ANN-
based resilient secondary voltage control to generate the
reference for the primary controller. The control objective
is to maintain the output voltage and current in predefined
bounds. The proposed control structure is explained as under:

A. ANN-BASED SECONDARY VOLTAGE CONTROL
Offline simulations of the test microgrid are performed to col-
lect data for ANN training. The step load change is included
in generating the training data set. The data is generated for
normal operating conditions with three set reference voltages
in order to complete the learning of ANNS.

B. DATA GENERATION
For data generation, the following scenarios are considered:

5
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1) Based on the communication graph in Fig. 6, each DG
shares voltage information with the two neighboring
DGs.

2) The following data is collected under normal operat-
ing conditions: a. DG’s own voltage information v,
where n € (1,2, 3,4), b. The voltage information from
neighbors of DGI1 vy; and DG3 vs;, where i € (2,4),
c. The voltage information from neighbors of DG2 vy
and DG4 v4; where j € (1, 3), d. The secondary control
reference voltage v* and the primary control reference
voltage output generated by each DG v;;.

3) The test microgrid is simulated with 5 load step changes
and 3 different sets of reference voltages. This results
in a total of 15 distinct microgrid events, each with a
simulation run time of 2 s. Having a sampling rate of
1 ms for data collection results in 15,000 data points
for training the ANN model. The data sampling and
simulation run times are selected such that the microgrid
achieves steady-state following a load change.

Let P be the training data input for ANN. P is obtained
through multiple simulations of the test microgrid, where,
P = ['Unnv V1i, Ui, V25, V4j, ’1)*]13><1. The target for the train-
ing of ANNs is 7, where T = [v}]4x1. To optimize the
weights for offline training, both P and 7" are generated by
executing various scenarios of simulations. The attack vector
for the DGs aimed at secondary voltage control information
sharing is as follows:

Vii = Vijocrwar T Xattack Vij (16)

such that V;; is the compromised information input to the
secondary voltage controller of DG, Vyj, ..., is the vector
of real measurements, and X ,¢zqck represents the attack cases
from section II-A. Because of the compromised information
exchange, the control objectives may be disrupted, resulting
in synchronization loss or divergence from the required ref-
erence voltage value.

Remark 1: The FDI attack is initiated at time ¢, and the
output voltage follows the reference values before the attack
at (¢t — t,) but the output deviates from the desired reference
after the attack at (¢ + t,). The difference between ¢ and
v is |0n, — vk | = wy, where, 0y, is the output voltage of the
n*" DG under attack and v} is the reference output voltage
for each DG unit. ANN-based secondary voltage control at-
tempts to decrease this error as follows:

lim p, = 0. 17)

t—o00
Remark 2:ANN learns the system’s dynamics through of-
fline training. The trained ANN model operates for the sys-
tem having the same control mechanism used in the training
phase for the online implementation [28]. Therefore, the
trained ANN can now act as a distributed secondary control
layer for the microgrid under investigation.

C. TRAINING OF ANN-BASED SECONDARY VOLTAGE
CONTROL

The architecture of the ANN model selected for the sec-
ondary voltage controller is based on the following relation-
ship:

[0 1 1 0 1 . . ay] Z Ed

0o 1 1 1 0 az; U; vh

1 0 1 11 5| | e V3

0 1 0 1 1 Qy4j v = ’UZ s

_ail A;2 Q33 Q44 . . aij_ ’U'n _U;;_
A — B

(18)
where A is the microgrid’s connection matrix and a;; €
(0,1), where 1 or 0 depicts if a connection among adjacent
DGs exists or not, respectively. X is the voltage information
for all DGs at the secondary control level, and B is the
reference voltages generated by each DG fed to the primary
level controller at each DG. For this case study with a 4 DGs
microgrid, the dimensions in (18) are A4x5 X X5x1 = Bax1.
However, the structure of A can have a higher dimension if
the number of DGs increases.

As shown in Fig. 4, the following are the stages involved
in training the ANN model:

1) To optimize the weights of the ANN during the offline
training process, the feature vector for training and
testing of the ANN model is taken from past data.

2) To train an ANN model efficiently, choosing the
best feature vector is crucial. The supervised learning
method is chosen for ANN model training in order to
maximize training to accomplish the control objective
with known inputs P and output 7.

3) The generated data is divided into training, testing, and
validation with 70 %, 15 %, and 15 %, respectively.

4) The Levenberg-Marquardt training algorithm is used for
training that terminates when maximum generalization
is achieved, as indicated by the lowest mean square error
(MSE) of the validation data. The maximum number of
epochs is set to 1000 and the lowest MSE of 2.32 x 103
for validation data was obtained after 374 iterations.

5) After numerous training sessions, the design of the
ANN, including hidden layers and the number of neu-
rons, is determined to be optimal. This architecture has
one input layer, one output layer, and one hidden layer
with ten neurons, and it was found suitable for this
application. The hidden layer’s activation function is
tansig, while the output layer’s activation function is
purelin. This architecture has been employed in time-
series data prediction applications for microgrids [28].

6) During the offline training of ANN, the bias vector b and
the weight matrix w are optimized. This trained model
is then tested against an unknown test data set to ensure
that it performs as expected by measuring the output
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voltages and currents of the microgrid.

D. ANN-BASED SECONDARY FREQUENCY CONTROL
DESIGN

A distributed secondary frequency control layer is included
in the test microgrid for the coordinated operation of multiple
DGs under different operational conditions, as shown in Fig.
1. The operation of the microgrid is extremely sensitive to
changes in frequency information, and any FDI attack aimed
against the frequency information links between DGs may
destabilize the microgrid [5]. As a result, the ANN model
is applied at the microgrid’s secondary frequency control
layer to mitigate the impact of an FDI attack. For the test
microgrid, DG1 and DG3 are chosen as the leading nodes,
with DG2 and DG4 as the following nodes, to implement
the cooperative control objectives given in (4). Therefore, an
ANN-based secondary frequency controller is implemented
for DG2 and DG4. Following a similar process, as given
in sections IV-A and IV-C, the training data of the ANN-
based secondary frequency controller are generated such
that the training input is P = [wpy,Ws;, wajlex1, Where
Jj € (1,3) such that, wy, is the frequency information of
DG2 and DG4, wqj,ws; are frequency information from
the neighbors of DG2 and DG4, respectively. The training
target is T = [wX]ax1,where n € (2,4) and w? represents
the the primary level reference frequency generated by DG2
and DG4. Various scenarios are implemented to measure the
performance of the trained ANN model, as follows.

E. TRAINING AND TEST SCENARIOS
The following scenarios are included in the time series simu-
lations of the microgrid shown in Fig. 5:

Scenario 1: Step load change: Ly, where k € {4, ..,8} kW

Scenario 2: Target of FDI attack: In the cyber layer for all
DGs, the voltage and frequency information exchange
channels are targeted for inserting false data to cause
cyber anomalies.

Scenario 3: Type of FDI attack: Various types of FDI at-
tacks are applied as described in section II-A.

Scenario 4: Reference voltage: Three different values are
used for secondary level reference set voltage, i.e.,
[300, 325, 350] V.

The performance of the trained ANN model is evaluated

using the mean absolute percentage error (MAPE), given as:

MAPE = * > loo =3l 100, (19)
M= Y

where, m represents total number of cases, y is the actual
output, and y, is the predicted output. The trained ANN
model is also evaluated by adding white Gaussian noise into
the measurements. To achieve the signal-to-noise ratio (SNR)
with three distinct noise levels: 1) 30 dB, ii) 35 dB, and iii)
40 dB, the white Gaussian noise is added into the test data
input [45]. The results of this case study are given in Table
1. As observed from the data, adding noise to the input has
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TABLE 1: The MAPE performance of the trained ANN
model with distorted input data is presented.

SNR MAPE (%)

(dB) DGl DG2 DG3 DG4
0 0.05 011 0.01 040
30 0.06 0.12 0.02 041
35 006 0.12 0.02 041
40 006 0.12 0.02 0.39

a negligible effect on performance. In each case (30 dB, 35
dB, and 40 dB) the MAPE value is compared to the one at
0 dB, as shown in Table 1. This signifies that the proposed
technique is resilient under distorted measurements.

V. EXPLAINABLE ANN MODEL

Partial dependence plots (PDP) are one of the methods for
global interpretability of ANN models that helps understand
the model’s response over a complete data set [46]. PDPs are
plotted for the trained ANN model, proposed in this paper, to
see the impacts on various DGs in the microgrid during cyber
anomalies. The predictive response’s partial dependence is
computed on a subset of predictor features by marginalizing
the other features. Based on (18), consider a subset v,,5 such
that v15 = [v11, v12,v13] and n € (1,2, 3,4) represents the
four DGs in the test microgrid. Let v,,. be the complementary
set of vy, such that v,. = {v;; € Vi, : v;; & vps}, Where
v;; represents the voltage information from neighboring DGs
and V,, is the set containing voltage information of all four
DGs in the microgrid. The predicted output v of trained
ANN model f(.) depends on all the features in V,,, given
as:

f(Vn) = f(vn57 Unc)~ (20)

The predicted output v}, is the primary reference voltage gen-
erated by each DG in the microgrid and its partial dependence
on v, is given by the expectation of the predicted output
with respect to v,,c, as follows:

fs (Uns) = E[f(vnsa vnc)] = /f(vnsa 'Unc)pnc(vnc)d(Urw%
(21
where py.(Vne) is the marginal probability of vy, given as:

pnc(vnc) = /f(vnsavnc)d(vns)- (22)

Assuming that the correlation between v,,s and v, is not
strong the partial dependence is estimated using the observed
model’s responses as follows:

13
fs (vns) == E Z f(U'ILS7 anj)a (23)

m

where j is the number of trained model’s responses and
Une, = (Uns;Vne) is the 4" response. The performance
of the proposed ANN-based secondary control is validated
by executing real-time scenarios on the real-time digital
simulator OPAL-RT under cyber anomalies after training the
ANN, and the results are reported in the following section.
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FIGURE 4: The flow chart with the steps involved in the training of the ANN model is shown.

Relay 1
DG 1 Load 1 DG 4
Line 23 DG 3
DG 2 —
CB3
CcB2 Load 2
Relay 2

FIGURE 5: Four DGs based microgrid system.

B l€------»

FIGURE 6: Communication graph for the four DGs.

VI. SIMULATION RESULTS

The performance of the proposed ANN-based secondary con-
trol is evaluated using the test microgrid system by perform-
ing real-time simulations as illustrated in Fig. 5. The four
DG voltage source inverters are coupled through RL lines to
provide AC power to two-three phase RL loads, denoted by
load; and loads in Fig. 5. The four DGs of the test micro-
grid share their voltage and frequency information over the
communication network as shown in Fig. 6. For our use case,
the microgrid is designed in OPAL-RT’s software simulation
tool, i.e., RT-LAB. Then using MATLAB/Simulink coder,
the trained ANN is implemented in RT-LAB to generate
output for the designed microgrid. The trained ANN-based
controller applies lessons acquired from multiple simulations
to interpret anomalies and respond in real-time. Table 2, lists
the parameters of the test microgrid system and the real-time
simulator setup is shown in Fig. 14. Real-time digital simula-
tor OPAL-RT facilitates the integration of real hardware into
the simulation environment and consists of a communication
interface, an FPGA-based input/output (I/O) subsystem, and

8

a real-time simulation engine. OP5600 Series is a complete
simulation system, that contains a powerful target computer,
a reconfigurable FPGA, and signal conditioning for up to 256
I/Os. The front of the chassis provides access to the target
computer’s standard connectors, and monitoring interfaces
and connectors, while the back of the chassis provides access
to the I/O connectors, power cable, and main power switch.
The lower part of the chassis contains a powerful target
computer that is used to run simulations built with OPAL-
RT’s RT-LAB software simulation platform. The upper sec-
tion contains the high-speed FPGA Xilinx Artix 7 FPGA
200T, that’s programmable from the target computer. The
FPGA is used to execute models designed with RT-LAB and
manage the I/O lines. It can exchange data with the real-time
simulations being executed on the target computer [47] .
The cyber anomalies are introduced in the test microgrid
system after the model is built upon a real-time target, as
explained in the following sections.

A. TYPE 1 - STATIONARY ATTACK

Based on (6), an adversary injects false data into the voltage
communication links of DGs. In this case, the target is DG1
link v11 such as at ¢t = 2 s with v = 1.5, an FDI attack
is initiated. The microgrid operates under normal conditions
for t < 2 s. After the FDI attack, the performance of the
proposed ANN-based secondary voltage control is compared
to the existing PI-based control and results are shown in Fig.
7. As illustrated in Fig. 7a and Fig. 7b, the proposed ANN-
based secondary voltage control showed improved reference
tracking capability in comparison to PI-based control which
was not able to maintain the desired reference value after the
FDI attack. Similarly, it can be seen that the ANN-based volt-
age controller maintained the desired output voltage at the
output of DGI. In contrast, the PI-based controller suffered
distortions in the output voltage after the FDI attack as shown
in Fig. 7c.

B. TYPE 2 - REINFORCEMENT ATTACK

This FDI attack is based on (7), in which false data is being
injected into DGs voltage communication links. Such as for
DG2’s communication link vso, the FDI attack is initiated at
t = 2 s with v = 0.5. After the FDI attack, the proposed
ANN-based secondary voltage control is compared to the
PI-based control, with the results displayed in Fig. 8. The
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FIGURE 7: Type 1: The performance comparison in terms of reference tracking and the output voltage at DG1.
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FIGURE 8: Type 2: The performance comparison in terms of reference tracking and the output voltage at DG2.

v N ANN Pl = FDI Initiated ANN al
FDI Initiated g7 T Y 4

= jo))

>376F  FDllniiated g

o o

a5 =

. 1.5 2 2.5 3 1.98 2 202 204 206 208 2.1
Time (s) Time (s) Time (s)
(a) Reference voltage (b) Reference frequency (c) Output voltage

FIGURE 9: Type 3: The performance comparison in terms of reference tracking and the output voltage at DG3.
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FIGURE 10: Type 4: The performance comparison in terms of reference tracking and the output voltage at DG4.

proposed ANN-based secondary voltage control, as shown based voltage controller maintained the specified output volt-
in Fig. 8a and Fig. 8b, has demonstrated improved reference age at the output of DG3 as depicted in Fig. 9c.

tracking capabilities compared to the PI-based control. As
illustrated in Fig. 8c, the ANN-based voltage controller main-
tained the required output voltage at the output of DG2 after
the FDI attack.

D. TYPE 4 - MANIFOLD ATTACK

This FDI attack is initiated by injecting false data into the
voltage communication connection, v44, of DG4 with v =
0.5, £ = 0.5, and w = 2760 rad/sec at ¢ = 2 s, based on (9).
The microgrid operates normally until t = 2 s. After the FDI
attack, the proposed ANN-based secondary voltage control
is compared to PI-based control, with the results shown in
Fig. 10. The proposed ANN-based secondary voltage control,

C. TYPE 3 - TIME-VARYING ATTACK

This FDI attack, based on (8), targets the voltage communica-
tion of DGs. In this case, false data is injected into the DG3
voltage communication link, vz, at ¢ = 2 s with £ = 0.5

and w = 2760 rad/sec. The m?crogrid continues to operate as illustrated in Fig. 10a and Fig. 10b, showed improved
normally for ¢ < 2 s. The designed ANN-based secondary  performance in terms of reference tracking compared to the
voltage control is compared to the PI-based control after the Pl-based control. Also, the ANN-based voltage controller

FDI attack is initiated, with the results shown in Fig. 9. The kept the stated output voltage at the output of DG4 after
proposed ANN-based secondary voltage control, performed initiating the FDI attack, as shown in Fig. 10c.
better in reference tracking than the PI-based control as

shown in Fig. 9a and Fig. 9b. After the FDI attack, the ANN-
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FIGURE 11: Type 5: The performance comparison in terms
of output voltage and current at load; of test microgrid
system.
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FIGURE 12: The performance comparison in terms of refer-
ence frequency under FDI attack is shown.

E. TYPE 5 - COORDINATED ATTACK

Under a coordinated attack, the adversary targets all the
DGs present in the microgrid as given in (10). At ¢t = 2
s, the voltage communication links of all four DGs are
compromised by injecting false data. This is a severe type
of cyber anomaly due to its widespread nature. The results
of the proposed ANN-based secondary voltage control are
compared to PI-based control after an FDI attack in terms
of output voltage and current at load; of test microgrid
as shown in Fig. 11. The designed ANN-based controller
maintained the power quality by keeping the desired phase
and amplitude of three phase currents, whereas the PI-based
controller did not withstand the FDI attack as shown in
Fig. 11a. Similarly, the desired three phase voltages were
maintained after the FDI attack in the case of the proposed
ANN-based control compared to the PI-based control that
showed large deviations from the desired output voltage as
depicted in Fig. 11b.

<
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(a) Output current at load;
600

S 400

% 200
g o
< 200

2 205 21 215 22 225
Time (s)

(b) Output voltage at load

FIGURE 13: The performance comparison of controllers
under a step load change and FDI attack is given.

F. FDI ATTACK TARGETING THE FREQUENCY
COMMUNICATION LINKS

The ANN-based frequency controller is implemented for
DG2 and DG4 at the secondary control level of the test mi-
crogrid. Type 3, FDI attack is applied to target the frequency
communication links of DG2 w9 and DG4 w44 with & = 0.5
and w = 2760 rad/sec based on (8). The proposed ANN-
based frequency control maintained the desired frequency
value after the FDI attack compared to the PI-based control,
as shown in Fig. 12. The FDI attack is initiated at t = 2 s
at DG2 and DG4 and it is evident from Fig. 12a and Fig.
12b that the designed ANN-based frequency control kept the
system in normal operating condition with a little deviation
after the FDI attack than PI-based control that showed large
deviations from the reference value.

G. VARIABLE OPERATING SETTINGS

To validate the performance of the proposed ANN-based
voltage control under varying operating conditions, a step
load change is applied and results are given in Fig. 13. A
step-down load change is applied at ¢ = 2 s and a Type 2 FDI
attack with v = 0.5 is initiated at ¢ = 2 s. It can be observed
in Fig. 13a, that the designed ANN-based controller follows
the expected response as Pl-based control with a decrease
in current magnitude but after the FDI attack, the PI-based
control deviates from the desired current value. Similarly, the
designed ANN-based controller sustained the desired voltage
level after both a step-down load change and FDI attack,
whereas PI-based control could not sustain the effect of the
FDI attack and showed distortion in output voltage as evident
from Fig. 13b. This demonstrates the robust performance of
the proposed ANN-based control under changing operating
conditions of the test microgrid.
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TABLE 2: OPAL-RT real-time digital simulator and microgrid system parameters are given.

OPAL-RT Microgrid
Name Parameter Name  Parameter Name Parameter
Version OP5600 : 4 Cores, 3.0 GHz L2 (0.23+j318u) 2 Vier 300V
Software ~ RT-Lab v 2019.2.3 Los (0.35+j1847u) Q@ | Lyjiter 1.35mh
FPGA Xilinz® Artiz®-7 FPGA, 200T | L34 (0.23+j3181) @ | Critger SO pF

FIGURE 14: Real-time setup to evaluate the proposed re-
silient ANN-based control design is shown.

H. PARTIAL DEPENDENCE PLOTS

The partial dependence plots (PDP) for each DG are esti-
mated with the objective of finding the impact of a cyber
anomaly on each DG. For this purpose, an FDI attack is
initiated and each DG’s output voltage is selected individ-
ually as shown in Fig. 15. It is evident that DG3 suffers
the largest impact by showing maximum deviations after the
FDI attack. This finding is in line with (3) and as illustrated
in Fig. 6, such that DG3 is the leading node based on the
communication graph. Next, the impact on predicted sec-
ondary control reference voltage v, where, n € (1,2, 3,4)
after spoofing all the communication links of DG3 is shown
in Fig. 15b. It can be seen that the predicted voltages (in
blue color) show large deviations from the actual voltages (in
red color) of the system. These large deviations in predicted
reference voltages lead to reduced power quality and loss of
synchronism in the microgrid operation.

VIl. CONCLUSION

An intelligent secondary cooperative control technique is
proposed to mitigate the effects of cyber anomalies in dis-
tributed cooperative-controlled microgrids. This technique
employs recurrent-type neural networks in the distributed
secondary voltage and frequency control layer of inverter-
based microgrid having multiple DGs. The training data
for ANNs was generated through time-series simulation of
microgrid under various operating conditions. The scalability
and resilience of the proposed ANN-based secondary co-
operative control are shown by constructing a connection
matrix and injecting noise to the input data. The structure
of the trained ANN model is explained by plotting partial
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FIGURE 15: The results obtained from an explainable frame-
work of ANN are shown. (a) Partial dependence plots of all
the DGs. (b) The secondary reference voltage generated by
all the DGs.
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dependence plots. Various types of FDI attacks are consid-
ered to verify the effectiveness of the designed ANN-based
secondary control. The results are validated by comparing
it’s performance with the traditional distributed secondary
control technique and interpreted using an explainable frame-
work. The proposed controller outperformed PI-based sec-
ondary voltage regulation by maintaining the normal op-
eration of the microgrid under cyber anomalies. Real-time
cyber-attack scenarios are simulated in real-time digital sim-
ulator OPAL-RT to validate the proposed resilient control
strategy.
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