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吀栀is article introduces a model-based approach for training feedback controllers for an autonomous agent
operating in a highly non-linear (albeit deterministic) environment. We desire the trained policy to ensure
that the agent satis昀椀es speci昀椀c task objectives and safety constraints, both expressed in Discrete-Time Signal
Temporal Logic (DT-STL). One advantage for reformulation of a task via formal frameworks, like DT-STL, is
that it permits quantitative satisfaction semantics. In other words, given a trajectory and a DT-STL formula,
we can compute the robustness, which can be interpreted as an approximate signed distance between the
trajectory and the set of trajectories satisfying the formula. We utilize feedback control, and we assume a feed
forward neural network for learning the feedback controller. We show how this learning problem is similar
to training recurrent neural networks (RNNs), where the number of recurrent units is proportional to the
temporal horizon of the agent’s task objectives. 吀栀is poses a challenge: RNNs are susceptible to vanishing
and exploding gradients, and naïve gradient descent-based strategies to solve long-horizon task objectives
thus su昀昀er from the same problems. To address this challenge, we introduce a novel gradient approximation
algorithm based on the idea of dropout or gradient sampling. One of the main contributions is the notion of
controller network dropout, where we approximate the NN controller in several timesteps in the task horizon
by the control input obtained using the controller in a previous training step. We show that our control
synthesis methodology can be quite helpful for stochastic gradient descent to converge with less numerical
issues, enabling scalable back-propagation over longer time horizons and trajectories over higher-dimensional
state spaces. We demonstrate the e昀케cacy of our approach on various motion planning applications requiring
complex spatio-temporal and sequential tasks ranging over thousands of timesteps.
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1 Introduction
吀栀e use of Neural Networks (NN) for feedback control enables data-driven control design for
highly non-linear environments. 吀栀e literature about training NN-based controllers or neurocon-
trollers is plentiful, e.g., see [12, 15, 21, 23, 35, 45]. Techniques to synthesize neural controllers
(including deep RL methods) largely focus on optimizing cost functions that are constructed from
user-de昀椀ned state-based rewards or costs. 吀栀ese rewards are o昀琀en proxies for desirable long-range
behavior of the system and can be error-prone [6, 49, 62] and o昀琀en require careful design [28, 63].
On the other hand, in most engineered safety-critical systems, the desired behavior can be

described by a set of spatio-temporal task-objectives, e.g., [11, 20]. For example, consider modeling
a mobile robot where the system must reach region '1 before reaching region '2, while avoiding
an obstacle region. Such spatio-temporal task objectives can be expressed in the mathematically
precise and symbolic formalism of Discrete-Time Variant (DT-STL) [19] of Signal Temporal
Logic (STL) [48]. A key advantage of DT-STL is that for any DT-STL speci昀椀cation and a system
trajectory, we can e昀케ciently compute the robustness degree, i.e., the approximate signed distance of
the trajectory from the set of trajectories satisfying/violating the speci昀椀cation [18, 19].

Control design with DT-STL speci昀椀cations using the robustness degree as an objective function to
be optimized is an approach that brings together two separate threads: (1) smooth approximations
to the robustness degree of STL speci昀椀cations [25, 50] enabling the use of STL robustness in
gradient-based learning of open-loop control policies, and (2) representation of the robustness as a
computation graph allowing its use in training neural controllers using back-propagation [33, 34,
42, 76]. While existing methods have demonstrated some success in training open-loop NN policies
[42, 43], and also closed-loop NN policies [33, 34, 76], several key limitations still remain. Consider
the problem of planning the trajectory of an Unmanned Aerial Vehicle in a complex, GPS-denied
urban environment; here, it is essential that the planned trajectory span several minutes while
avoiding obstacles and reaching several sequential goals [52, 68, 71]. However, none of the existing
methods to synthesize closed-loop (or even open-loop) policies scale to handle long-horizon tasks.
A key reason for this is the inherent computational challenge in dealing with long-horizon

speci昀椀cations. Training open-loop policies treats the sequence of optimal control actions over the
trajectory horizon as decision variables to maximize the robustness of the given STL property.
Typical approaches use gradient-descent where in each iteration, the new control actions (i.e.,
the open-loop policy) are computed using the gradient of the DT-STL property w.r.t. the control
actions. If the temporal horizon of the DT-STL property is  , then, this in turn is computed using
back-propagation of the DT-STL robustness value through a computation graph representing the
composition of the DT-STL robustness computation graph and  copies of the system dynamics.
Similarly, if we seek to train closed-loop (neural) feedback control policies using gradient descent,
then we can treat the one-step environment dynamics and the neural controller as a recurrent
unit that is repeated as many times as the temporal horizon of the DT-STL property. Gradient
updates to the neural controller parameters are then done by computing the gradient of the STL
computation graph composed with this Recurrent Neural Network (RNN)-like structure. In both
cases, if the temporal horizon of i is several hundred steps, then gradient computation requires
back-propagation through those many steps. 吀栀ese procedures are quite similar to the ones used for
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training an RNN with many recurrent units. It is well-known that back-propagation through RNNs
with many recurrent units faces problems of vanishing and exploding gradients [8, 26]. To address
these limitations, we propose a sampling-based approximation of the gradient of the objective
function (i.e., the STL property), that is particularly e昀昀ective when dealing with behaviors over
larger time horizons. Our key idea is to approximate the gradient during back-propagation by an
approximation scheme similar to the idea of dropout layers used in deep NNs [64]. 吀栀e main idea
of dropout layers is to probabilistically set the output of some neurons in the layer to 0 in order to
prevent over-昀椀琀琀ing. We do a similar trick: In each training iteration we pick some recurrent units
to be “frozen,” i.e., we use older 昀椀xed values of the NN parameters for the frozen layers, e昀昀ectively
approximating the gradient propagation through those layers. We show that this can improve
training of NN controllers by at least an order of magnitude. Speci昀椀cally, we reduce training times
from hours to minutes, and can also train reactive planners for task objectives that have larger time
horizons.
To summarize, we make the following contributions:

(1) We develop a sampling-based approach, inspired by dropout [64], to approximate the gradient
of DT-STL robustness w.r.t. the NN controller parameters. Emphasizing the timesteps that
contribute the most to the gradient, our method randomly samples time-points over the
trajectory. We utilize the structure of the STL formula and the current system trajectory to
decide which time-points represent critical information for the gradient.

(2) We develop a back-propagation method that uses a combination of the proposed sampling
approach and the smooth version of the robustness degree of a DT-STL speci昀椀cation to train
NN controllers.

(3) We demonstrate the e昀케cacy of our approach on higher-dimensional non-linear dynamical
systems involving longer-horizon and more complex temporal speci昀椀cations.

1.1 Organization and Notations
吀栀e rest of the article is organized as follows. In Section 2, we introduce the notation and the
problem de昀椀nition. We propose our learning-based control synthesis algorithms in Section 3,
present experimental evaluation in Section 5, and conclude in Section 6. We use bold le琀琀ers to
indicate vectors and vector-valued functions, and calligraphic le琀琀ers to denote sets. A feed forward
NN with ℓ hidden layers is denoted by the vector [=0, =1, · · ·=ℓ+1], where =0 denotes the number
of inputs, =ℓ+1 is the number of outputs and for all 8 ∈ 1, 2, · · · , ℓ , =8 denotes the width of ith
hidden layer. 吀栀e notation G D∼ X implies the random variable G is sampled uniformly from
the set X.

2 Preliminaries
NN Feedback Control Systems (NNFCS). Let s and a denote the state and action variables that
take values from compact sets S ⊆ R

= and C ⊆ R
< , respectively. We use s: (respectively, a: )

to denote the value of the state (respectively, action) at time : ∈ Z≥0. We de昀椀ne an NNFCS as a
recurrent di昀昀erence equation

s:+1 = f (s: , a: ), (1)

where a: = c\ (s: , :) is the control policy. We assume that the control policy is a parameterized
function c\ , where \ is a vector of parameters that takes values in Θ. Later in the article, we
instantiate the speci昀椀c parametric form using an NN for the controller. 吀栀at is, given a 昀椀xed vector
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Fig. 1. Shows an illustration of the recurrent structure for the control feedback system.

of parameters \ , the parametric control policy c\ returns an action a: as a function of the current
state s: ∈ S and time : , i.e., a: = c\ (s: , :).1

Closed-Loop Model Trajectory. For a discrete-time NNFCS as shown in Equation (1), and a set of
designated initial states I ⊆ S, under a pre-de昀椀ned feedback policy c\ , Equation (1) represents an
autonomous discrete-time dynamical system. For a given initial state s0 ∈ I, a system trajectory
f [s0 ;\ ] is a function mapping time instants : ∈ 0, 1, · · · ,  toS, where f [s0 ;\ ] (:) = s: , and for all
: ∈ 0, 1, · · · ,  − 1, s:+1 = f (s: , c\ (s: , :)). In case the dependence to \ is obvious from the context,
we utilize the notation s: to refer to f [s0 ;\ ] (:). Here,  is some integer called the trajectory
horizon, and the exact value of  depends on the DT-STL task objective that the closed-loop model
trajectories must satisfy. 吀栀e computation graph for this trajectory is a recurrent structure. Figure 1
shows an illustration of this structure and its similarity to an RNN.
Task Objectives and Safety Constraints. We assume that task objectives and safety constraints

are speci昀椀ed using the syntax of DT-STL [19] of STL [48]. We assume that DT-STL formulas are
speci昀椀ed in positive normal form, i.e., all negations are pushed to the signal predicates:2

i = ℎ(s) ⊲⊳ 0 | i1 ∧ i2 | i1 ∨ i2 | i1U�i2 | i1R�i2, (2)
where U� and R� are the timed until and release operators, ⊲⊳∈ {≤, <, >, ≥}, and ℎ is a function
from S to R. In this work, since we use discrete-time semantics for STL (referred to as DT-STL), the
time interval � is a bounded interval of integers, i.e., � = [0,1], 0 ≤ 1. 吀栀e timed eventually (F� ) and
always (G� ) operators can be syntactically de昀椀ned through until and release. 吀栀at is, F�i ≡ >U�i
and G�i ≡ ⊥R�i where > and ⊥ represent true and false. 吀栀e formal semantics of DT-STL over
discrete-time trajectories have been previously presented in [19]. We brie昀氀y recall them here.

Boolean Semantics and Formula Horizon. We denote the formulai being true at time: in trajectory
f [s0 ;\ ] byf [s0 ;\ ], : |= i . We say thatf [s0 ;\ ], : |= ℎ(s) ⊲⊳ 0 i昀昀ℎ(f [s0 ;\ ] (:)) ⊲⊳ 0.吀栀e semantics
of the Boolean operations (∧, ∨) follow standard logical semantics of conjunctions and disjunctions,
respectively. For temporal operators, we say f [s0 ;\ ], : |= i1U�i2 is true if there is a time : ′, s.t.
: ′ − : ∈ � where i2 is true and for all times : ′′ ∈ [:, : ′), i1 is true. Similarly, f [s0 ;\ ], : |= i1R�i2
is true if for all times : ′ with : ′ − : ∈ � , i2 is true, or there exists some time : ′′ ∈ [:, : ′) such that
i1 was true. 吀栀e temporal scope or horizon of a DT-STL formula de昀椀nes the last timestep required
to evaluate the formula, f [s0 ;\ ], 0 |= i (see [48]). For example, the temporal scope of the formula
F[0,3] (G > 0) is 3, and that of the formula F[0,3]G[0,9] (G > 0) is 3 + 9 = 12. We also set the horizon
of trajectory equivalent to the horizon of formula, as we plan to monitor the satisfaction of the
formula by the trajectory.

儀甀antitative Semantics (Robustness Value) of DT-STL. 儀甀antitative semantics of DT-STL roughly
de昀椀ne a signed distance of a given trajectory from the set of trajectories satisfying or violating
1Our proposed feedback policy explicitly uses time as an input. 吀栀is approach is motivated by the need to satisfy temporal
tasks, which requires time awareness for be琀琀er decision-making.
2Any formula in DT-STL can be converted to a formula in positive normal form using DeMorgan’s laws and the duality
between the Until and Release operators.
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Table 1. 儀甀antitative Semantics of STL

i d (i, :) i d (i, :)
ℎ(s: ) ≥ 0 ℎ(s: ) F[0,1 ]k max

: ′∈[:+0,:+1 ]
d (k, :′)

i1 ∧ i2 min(d (i1, :), d (i2, :)) i1U[0,1 ]i2 max
: ′∈[:+0,:+1 ]

(
min

(
d (i2, :′), min

: ′′∈[:,: ′ )
d (i1, :′′)

))

i1 ∨ i2 max(d (i1, :), d (i2, :)) i1R[0,1 ]i2 min
: ′∈[:+0,:+1 ]

(
max

(
d (i2, :′), max

: ′′∈[:,: ′ )
d (i1, :′′)

))

G[0,1 ]k min
: ′∈[:+0,:+1 ]

d (k, :′)

the given DT-STL formula. 吀栀ere are many alternative semantics proposed in the literature [2,
18, 19, 58]; in this article, we focus on the semantics from [18] that are shown in Table 1. 吀栀e
robustness value d (i, f [s0 ;\ ], :) of a DT-STL formula i over a trajectory f [s0 ;\ ] at time : is
de昀椀ned recursively as reported in Table 1.3 We note that if d (i, :) > 0 the DT-STL formula i is
satis昀椀ed at time : , and we say that the formula i is satis昀椀ed by a trajectory if d (i, 0) > 0.
Prior Smooth儀甀antitative Semantics for DT-STL. To address non-di昀昀erentiability of the robust

semantics of STL, there have been a few alternate de昀椀nitions of smooth approximations of the
robustness in the literature. 吀栀e initial proposal for this improvement is provided by [50]. Later
the authors in [25] proposed another smooth semantics which in addition is a guaranteed lower
bound for the robustness value that can be even more advantageous computationally. We denote
the smooth robustness of trajectory f [s0 ;\ ] for temporal speci昀椀cation i , with d̃ (i, f [s0 ;\ ], 0).
Neurosymbolic Smooth Semantics. 吀栀e prior smooth semantics for gradient computation over

DT-STL [25, 42, 50] perform backward computation on a computation graph that is generated
based on dynamic programming. Although these computation graphs are e昀케cient for forward
computation, they may face computational di昀케culty for backward computation over the robustness
when the speci昀椀cation is highly complex or its task horizon is noticeably long. Unlike the previous
computation graphs that are based on dynamic programming, the neurosymbolic computation graph
STL2NN [33], directly utilizes the STL tree [18] to generate a feed forward ReLU NN, whose depth
grows logarithmically with the complexity of speci昀椀cation. 吀栀is makes back-propagation more
feasible for complex speci昀椀cations. Speci昀椀cally, the way it formulates the robustness (feed forward
NN) facilitates the back and forward propagation process, by enabling vectorized computation.
However, since STL2NN is exactly identical to the non-smooth robustness introduced in Table 1,
we proposed in [32] a smooth under-approximation for STL2NN replacing the ReLU activation
function with swish() and softplus(), and introduced this as LB4TL, and here we utilize this smooth
semantics.
Problem De昀椀nition. In this article, we provide model-based algorithms to learn a policy c\★

that maximizes the degree to which certain task objectives and safety constraints are satis昀椀ed.
In particular, we wish to learn an NN control policy c\ (or equivalently the parameter values \ ),
s.t. for any initial state s0 ∈ I, using the control policy c\ , the trajectory obtained, i.e., f [s0 ;\ ]
satis昀椀es a given DT-STL formula i . In other words, our ultimate goal is to solve the optimization
problem shown in Equation (3). For brevity, we use � (s: , : ;\ ) to denote f (s: , c\ (s: , :)):

\ ∗ = argmax
\

(
min
s0∈I
[d (i, f [s0 ;\ ], 0)]

)
, s.t. ∀(: ∈ Z ∧ 1 ≤ : <  ) : s:+1 = � (s: , : ;\ ). (3)

However, ensuring that the robustness value is positive for all s0 ∈ I is computationally chal-
lenging. 吀栀erefore, we relax the problem to maximizing the min value of the robustness only over
3For brevity, we omit the trajectory from the notation, as it is obvious from the context.
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Fig. 2. This figure shows the symbolic trajectory generated by NN feedback controller, and the computation
graph for DT-STL robustness. The DT-STL robustness is presented as a neurosymbolic computation graph
[33] via ReLU and linear activation functions.

a set of states Î sampled from the initial states I, i.e., \ ∗ ≈ argmax\

(
min

s0∈Î [d (i, f [s0 ;\ ], 0)]
)
.

We solve this problem using algorithms based on stochastic gradient descent followed by statistical
veri昀椀cation to obtain high-con昀椀dence control policies.

3 Training NN Control Policies
Our solution strategy is to treat each timestep of the given dynamical equation in Equation (1) as a
recurrent unit. We then sequentially compose or unroll as many units as required by the horizon of
the DT-STL speci昀椀cation.

Example 1. Assume a one-step dynamics with scalar state, x ∈ R and scalar feedback control
policy a: = c\ (x: ) as, x:+1 = f (x: , c\ (x: )). If the speci昀椀cation is F[0,3] (x > 0), then, we use three
instances of f (x: , c\ (x: )) by se琀琀ing the output of the kth unit to be the input of the (: + 1)th
unit. 吀栀is unrolled structure implicitly contains the system trajectory, f [x0, ;\ ] starting from
some initial state x0 of the system. 吀栀e unrolled structure essentially represents the symbolic
trajectory, where each recurrent unit shares the NN parameters of the controller (see Figure 2 for
more detail). By composing this structure with the robustness semantics representing the given
DT-STL speci昀椀cation i , we have a computation graph that maps the initial state of the system in
Equation (1) to the robustness degree of i . 吀栀us, training the parameters of this resulting structure
to guarantee that its output is positive (for all initial states) guarantees that each system trajectory
satis昀椀es i .

However, we face a challenge in training the NN controller that is embodied in this structure.
Challenge: Since our computation graph resembles a recurrent structure with repeated units

proportional to the formula’s horizon, naïve gradient-based training algorithms struggle with
gradient computation when using back-propagation through the unrolled system dynamics. In
other word, the gradient computation faces the same issues of vanishing and exploding gradients
when dealing with long trajectories.

Controller Synthesis as an Optimization Problem. In order to train the controller, we solve the
following problem:

\ ∗ = argmax\

(
min
s0∈Î
[d (i, f [s0 ;\ ], 0)]

)
, s.t. f [s0;\ ] (: + 1) = � (s: , : ;\ ). (4)
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We thus wish to maximize the expected value of the robustness for trajectories starting in states
uniformly sampled from the set of initial states. An approximate solution for this optimization
problem is to train the NN controller using a vanilla back-propagation algorithm to compute the
gradient of the objective function for a subset of randomly sampled initial states Î ⊂ I, and
updates the parameters of the NN controller using this gradient.

Remark 3.1. A training-based solution to the optimization problem does not guarantee that the
speci昀椀cation is satis昀椀ed for all initial states s0 ∈ I. To tackle this, we can use a methodology like
[33] that uses reachability analysis to verify the synthesized controller. However, given the long
time horizon, this method may face computational challenges. An alternative approach is to eschew
deterministic guarantees, and instead obtain probabilistic guarantees (see Section 5.6).

4 Extension to Long Horizon Temporal Tasks and Higher Dimensional Systems
In this section, we introduce an approach to alleviate the problem of exploding/vanishing gradients
outlined in the previous section. Our solution approach is inspired by the idea of using dropout
layers [64] in training deep NNs. In our approach, we propose a sampling-based technique, where
we only select certain time-points in the trajectory for gradient computation, while using a 昀椀xed
older control policy at the non-selected points. Our approach to gradient sampling can be also
viewed through the lens of stochastic depth, as suggested by [36], which involves sampling layers
followed by identity transformations provided in ResNet. However, our methodology di昀昀ers as we
employ a distinct approach that is be琀琀er suited for control synthesis within the STL framework.
Before starting our main discussion on this topic, we 昀椀rst provide an overview of this section:

— In Section 4.1, we introduce the notion of gradient approximation through sampling the trace,
and justify why it is a suitable replacement for the original gradient, in case the original
gradient is not accessible (e.g., long-horizon tasks).

— In Section 4.2, we put forward the notion of critical time which states that the robustness
of DT-STL is only related to a speci昀椀c timestep. We then propose the idea of including this
timestep into our gradient approximation technique.

— In Section 4.3, we bring up the point that gradient approximation using the critical time may,
in some cases, result in failure for training. In these cases, we suggest approximating the
DT-STL robustness as a function of all the trace, that is the smooth version of the robustness
semantics.

— In Section 4.4, we explain how to approximate the gradient for both of the scenarios we
proposed above (e.g., critical time and smooth semantics). We also introduce Algorithm 1
which concludes Section 4.

4.1 Sampling-based Gradient Approximation Technique
We propose to sample random timesteps in the recurrent structure shown in Figure 1 and at
the selected timestep, we do an operation that is similar to dropping the entire neural controller.
However, approximating the gradient by dropping out the controller at several timesteps may result
in inaccurate approximation. We compensate for this by repeating our modi昀椀ed dropout process
and computing cumulative gradients. Restriction of dropout to sample timesteps results in less
number of self-multiplication of weights and therefore alleviates the problem of vanishing/exploding
gradient. To ensure that the trajectory is well-de昀椀ned, when we drop out the controller unit at a
selected timestep, we replace it with a constant function that returns the evaluation of the controller
unit (at that speci昀椀c timestep) in the forward pass. We formalize this using the notion of a sampled
trajectory in De昀椀nition 4.1.

ACM Transactions on Cyber-Physical Systems, Vol. 8, No. 4, Article 42. Publication date: November 2024.



42:8 N. Hashemi et al.

De昀椀nition 4.1 (Sub-trajectory and Sampled trajectory). Consider the set of # di昀昀erent sampled
timesteps T = {C0 = 0, C1, C2, · · · , C# } sampled from the horizon K = {0, 1, 2, · · · ,  }, and also
the initial state s0, and the control parameters \ ( 9 ) in the gradient step 9 . 吀栀e sub-trajectory,
sub

(
f [s0 ;\ ( 9 ) ],T

)
= s0, sC1 , sC2 , · · · , sC# is simply a selection of # states from f [s0 ;\ ( 9 ) ] with

timesteps C8 ∈ T . In other words, for all 8 ∈ {0, 1, · · · , # }: sub
(
f [s0 ;\ ( 9 ) ],T

)
(8) = f [s0 ;\ ( 9 ) ] (C8 ).

Now, consider the sub-trajectory sub
(
f [s0 ;\ ( 9 ) ],T

)
, and a sequence of actions a0, a1, · · · , a −1

resulting from s0 and \ ( 9 ) . For any C8 ∈ T , we drop out the NN controllers on timesteps C8 + 1, C8 +
2, · · · , C8+1 − 1 and replace them with the actions a1+C8 , a2+C8 , · · · aC8+1−1. 吀栀is provides a variant of
sub-trajectory called sampled trajectory, and we denote it by smpl

(
f [s0 ;\ ( 9 ) ],T

)
. In other words,

for any timestep C8 ∈ T , assuming the function f8+1 : S×Θ→ S (for brevity, henceforth, we denote
f8+1 (s ;\ ( 9 ) ) by f

( 9 )
8+1 (s)):

f
( 9 )
8+1 (s) = f (f (· · · f ( � (s, C8 ;\ ( 9 ) ), a1+C8 ), a2+C8 ), · · · ), aC8+1−2), aC8+1−1),

we have smpl
(
f [s0 ;\ ( 9 ) ],T

)
(0) = s0, and for all 8 ∈ {0, 1, · · · , # − 1}, we have,

smpl
(
f [s0 ;\ ( 9 ) ],T

)
(8 + 1) = f

( 9 )
8+1

(
smpl

(
f [s0 ;\ ( 9 ) ],T

)
(8)

)
.

Remark 4.2. 吀栀e sub-trajectory sub
(
f [s0 ;\ ( 9 ) ],T

)
with parameters \ ( 9 ) can also be recursively

de昀椀ned as
sub

(
f [s0 ;\ ( 9 ) ],T

)
(8 + 1)

= �
(
· · ·

(
�

(
�

(
sub

(
f [s0 ;\ ( 9 ) ],T

)
(8), C8 \ ( 9 )

)
, C8 + 1 ;\ ( 9 )

)
· · ·

)
, C8+1 − 1 ;\ ( 9 )

)
.

Notice that the parameters \ ( 9 ) are referenced multiple times while in smpl
(
f [s0 ;\ ( 9 ) ],T

)
only

once.

Figure 5 presents De昀椀nition 4.1 through visualization. 吀栀is de昀椀nition replaces the set of selected
nodes—on a randomly selected timestep—with its pre-computed evaluation. 吀栀is set of nodes are
indeed a controller unit on the timesteps sampled to apply dropout.4 Excluding the timesteps with
昀椀xed actions, we then name the set of states on the remaining timesteps—as the sampled trajectory,
and we denote it as smpl

(
f [s0 ;\ ( 9 ) ],T

)
.

Example 2. Let the state and action at the time : be x: ∈ R and a: ∈ R, respectively. 吀栀e
feedback controller is a: = c\ (x: , :), \ ∈ R

3 and the dynamics is also x:+1 = f (x: , a: ), x0 =

1.15. Let’s also assume a trajectory of horizon 9 over time-domain (i.e., K = {8 | 0 ≤ 8 ≤
9}) with a trajectory f [x0 ;\ ] = x0, x1, x2, x3, x4, x5, x6, x7, x8, x9. Suppose, we are in the gradi-
ent step 9 = 42, and in this iteration, we want to generate a sampled trajectory with # = 3

timesteps, where, T = {0, C1 = 1, C2 = 3, C3 = 6}. 吀栀e control parameters at this gradient step are also
\ (42) = [1.2, 2.31,−0.92] that results in the control sequence a = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8.
Given this information, we de昀椀ne the sampled trajectory as the sequence smpl

(
f [x0 ;\ (42) ],T

)
=

x0, x̃1, x̃3, x̃6, where,

4吀栀e set of sampled timesteps for dropout is in fact the set-di昀昀erence between K and T, where T is the set of sampled
times steps that is generated to de昀椀ne the sampled trajectory.
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Algorithm 1: Gradient Sampling and Training the Controller for Long Horizon Tasks
1 Input: n, ", #, #1, #2, \

(0) , i, d̄, Î, 9 = 0

2 while di (f [s0 ;\ ( 9 ) ] ) ≤ d̄ do
3 s0 ← Sample from Î use_smooth← False 9 ← 9 + 1
4 if use_smooth = False then
5 \1, \2 ← \ ( 9 )

// \1&\2 are candidates for parameter update via critical predicate and waypoint.

// The following loop updates \1 and \2 via cumulation of N1 sampled gradients

6 for 8 ← 1, · · · , #1 do
7 f [s0 ;\1 ], f [s0 ;\2 ] ← Simulate the trajectory via \1, \2, and s0

8 :∗, ℎ∗ (s:∗ ) ← obtain the critical time and the critical predicate

9 T1, smpl
(
f [s0 ;\1 ], T1

)
←

sample set of time steps T1
= {0, C1, .., C# = :∗} and its sampled trajectory

10 T2, smpl
(
f [s0 ;\2 ], T2

)
←

sample set of time steps T2
= {0, C1, .., C# } and its sampled trajectory

11 J ← ℎ∗
(
smpl

(
f [s0 ;\1 ], T1

)
(# )

)
31 ← [mJ/m\ ]sampled \1 ← \1 + Adam(31/#1 )

12 J ← Jwp (
smpl

(
f [s0 ;\2 ], T2

) )
32 ← [mJ/m\ ]sampled \2 ← \2 + Adam(32/#1 )

// Update the control parameter with \2 if it increases the robustness value

// Otherwise update the control parameter with \1 if it increases the robustness value

// Otherwise, check for non − differentiable local maximum

13 if di (f [s0 ;\2 ] ) ≥ di (f [s0 ;\ ( 9 ) ] ) then \ ( 9+1) ← \2

14 else if di (f [s0 ;\1 ] ) ≥ di (f [s0 ;\ ( 9 ) ] ) then \ ( 9+1) ← \1

15 else
16 ℓ ← 1 update← True

17 while update & (use_smooth=False) do
18 ℓ ← ℓ/2 \̂ ← \ ( 9 ) + ℓ (\1 − \ ( 9 ) )

// Keep the gradient direction & reduce the learning rate

// Update the control parameter with \̂ if it increases the robustness value

19 if d (i, f [s0 ; \̂ ], 0) ≥ di (f [s0 ;\ ( 9 ) ] ) then
[
\ ( 9+1) ← \̂ update← False

]

20 else if ℓ < n then
21 use_smooth← True // swap the objective with d̃ if ℓ < n

22 if use_smooth = True then
23 \3 ← \ ( 9 ) // \3 is the candidate for parameter update via smooth semantic d̃

// The following loop updates \3 via cumulation of N2 sampled gradients

24 for 8 ← 1, · · · , #2 do
25 T@, smpl(f [s0 ;\3 ], T@ ) , @ ∈ 1, · · · , " ←

Make " sets of sampled time steps from Equation (5) & their sampled trajectories

26 J ← d̃ 33 ← [mJ/m\ ]sampled \3 ← \3 + Adam(33/#2 )
27 \ ( 9+1) ← \3

where the constants 0.2, 0.4, 0.5 are the 3rd, 5th, and 6th elements in the pre-evaluated control
sequence a, respectively.

4.2 Including the Critical Predicate in Time Sampling
While it is possible to select random time-points to use in the gradient computation, in our prelimi-
nary results, exploiting the structure of the given DT-STL formula—speci昀椀cally identifying and
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using critical predicates [1]—gives be琀琀er results. Proposition 3.1 in [1] introduces the notion of
critical predicate. Here, we also provide this de昀椀nition as follows:

De昀椀nition 4.3 (Critical Predicate). As the robustness degree of DT-STL is an expression consisting
of min and max of robustness values of predicates at di昀昀erent times, the robustness degree is
consistently equivalent to the robustness of one of the predicates ℎ(·) at a speci昀椀c time. 吀栀is speci昀椀c
predicate ℎ∗ > 0 is called the critical predicate, and this speci昀椀c time :∗ is called the critical time.

Example 3. We again consider Example 1 to clarify the notion of critical predicate. In this
example, we have four predicates of a unique type, e.g., ℎ(x: ) = x: > 0. 吀栀us, the robustness
values of the predicate ℎ(x) > 0 at time-points 0, 1, 2, 3 are, respectively, x0, x1, x2, x3. Assume the
trajectory is f [x0 ;\ ] = [x0 = 1, x1 = 2, x2 = 3, x3 = 1.5]. Since the robustness function is de昀椀ned
as d (i, 0) = max (ℎ(x0), ℎ(x1), ℎ(x2), ℎ(x3)), the robustness value is equivalent to ℎ(x2). 吀栀us,
we can conclude, the critical predicate is ℎ∗ = ℎ(x2) > 0 and the critical time is :∗ = 2.

吀栀e critical predicate and critical time of a DT-STL formula can be computed using the same
algorithm used to compute the robustness value for a given DT-STL formula. 吀栀is algorithm is
implemented in the S-Taliro tool [7].

4.3 Safe Re-Smoothing
A di昀케culty in using critical predicates is that a change in controller parameter values may change
the system trajectory, which may in turn change the predicate that is critical in the robustness
computation. Speci昀椀cally, if the critical predicate in one gradient step is di昀昀erent from the critical
predicate in the subsequent gradient step, our gradient ascent strategy may fail to improve the
robustness value, as the generated gradient in this gradient step is local.

Example 4. To clarify this with an example, we present a speci昀椀c scenario in Figure 3. 吀栀is 昀椀gure
shows the robustness value as a non-di昀昀erentiable function of control parameters, that is a piece-
wise di昀昀erentiable relationwhere every di昀昀erentiable segment represents a speci昀椀c critical predicate.
吀栀e system dynamics is x:+1 = 0.8x1.2

:
− e−4D: sin(D: )2 , where the system starts from x0 = 1.15 and

the controller is D: = tanh(\x: ). 吀栀e robustness is plo琀琀ed based on control parameter −1 ≤ \ ≤ 1

and is corresponding to the formula Φ = F[0,45]
(
G[0,5] (x > 0)

)
∧ G[0,50] (1 − 10x > 0). Assume

the training process is in the 15th gradient step of back-propagation with \ = \ (15) = 0.49698

where the critical predicate for this control parameter is denoted by ?1 := (x1 > 0). 吀栀e gradient
generated from the critical predicate ?1 suggests increasing the value of \ , which should result in
\ = \ (16) = 0.50672. However, applying the gradient would move the parameter value to a region
of parameter space where the critical predicate is ?2 := (1 − 10x45 > 0). In this case, the gradient
generated from the critical predicate ?1 is local to this gradient step, as the critical predicate shi昀琀s
from ?1 to ?2. Our approach in this scenario is to 昀椀rst reduce the learning rate. If this does not
lead to an increase in the robustness value, we then transition to smooth semantics, which takes
all predicates into account. 吀栀e scenario proposed in this 昀椀gure shows this local gradient may
result in a drastic drop in the robustness value from 8.09 to −6.15. 吀栀erefore, the gradient of critical
predicate is useful, only if the gradient step preserves the critical predicate.

Given a prede昀椀ned speci昀椀cation i , a 昀椀xed initial state, di昀昀erentiable controller with parameter
\ , and a di昀昀erentiable model, the robustness value is a piece-wise di昀昀erentiable function of control
parameter, where each di昀昀erentiable segment represents a unique critical predicate (see Figure 4).
However, the Adam algorithm5 assumes a di昀昀erentiable objective function. 吀栀erefore, we utilize
5 In this article, we utilize MATLAB’s adamupdate( ) library, https://www.mathworks.com/help/deeplearning/ref/
adamupdate.html
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Fig. 3. This figure shows a common challenge in using critical predicate for control synthesis. This figure
presents the robustness as a piece-wise di昀昀erentiable function of control parameter \ (with resolution, 0.00001),
where each di昀昀erentiable segment represents a distinct critical predicate.

Fig. 4. This figure shows an example for the relation between control parameters and the resulting robustness
as a piece-wise di昀昀erentiable function. Assuming a fixed initial state, every control parameter is corresponding
to a simulated trajectory, and that trajectory represents a robustness value. This robustness value is equal
to the quantitative semantics for the critical predicate. Within each di昀昀erentiable segment in this plot, the
control parameters yield trajectories associated with a unique critical predicate.

the critical predicate as the objective function when we are in the di昀昀erentiable segments, and
we replace it with the smooth semantics of DT-STL robustness, d̃ , at the non-di昀昀erentiable local
maxima where the critical predicate is updated. We refer to this shi昀琀 between critical predicate
and smooth semantics as safe re-smoothing. However, it is practically impossible to accurately
detect the non-di昀昀erentiable local maxima; thus we take a more conservative approach and we
instead, utilize d̃ at every gradient step when the critical predicate technique is unable to improve
the robustness.

4.4 Computing the Sampled Gradient
We now explain how we compute an approximation of the gradient of original trajectory (that
we call the original gradient). We call the approximate gradient from our sampling technique
as the sampled gradient. In the back-propagation algorithm—at a given gradient step 9 and with
control parameter \ ( 9 )—we wish to compute the sampled gradient [mJ/m\ ( 9 ) ]sampled. 吀栀e objective
function J in our training algorithm can be either the robustness for critical predicate or the
smooth semantics for the robustness of trajectory, d̃ . 吀栀e former is de昀椀ned over a single trajectory
state (i.e., at critical time) while the la琀琀er is de昀椀ned over the entire trajectory. In response, we
propose two di昀昀erent approaches for trajectory sampling for each objective function:
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Fig. 5. This figure depicts the sampling-based gradient computation. In our approach, we freeze the controller
at some time-points, while at others we assume the controller to be a function of its parameters that can vary
in this iteration of back-propagation process. The actions that are fixed are highlighted in red, whereas the
dependent actions are denoted in black. The red circles represent the timesteps where the controller is frozen.

(1) In case the objective function J is the robustness for critical predicate, it is only a function
of the trajectory state s:∗ . 吀栀us, we sample the timesteps as, T = {0, C1, C2, · · · , C# } , C# = :∗

to generate a sampled trajectory smpl
(
f [s0 ;\ ( 9 ) ],T

)
that ends in critical time. We utilize

this sampled trajectory to compute the sampled gradient. 吀栀e original gradient regarding
the critical predicate can be formulated as mJ/m\ = (mJ/ms:∗ ) (ms:∗/m\ ), where s:∗ =

sub
(
f [s0 ;\ ( 9 ) ],T

)
(# ). However, we de昀椀ne J on our sampled trajectory and propose the

sampled gradient as
[
mJ
m\

]

sampled
=

(
mJ

msmpl
(
f [s0 ;\ ( 9 ) ],T

)
(# )

) (
msmpl

(
f [s0 ;\ ( 9 ) ],T

)
(# )

m\

)
.

(2) In case the objective function is the smooth semantics for the robustness d̃ , it is a function of
all the trajectory states. In this case, we consequently segment the trajectory into" subsets,
by random time sampling as T@ =

{
0, C

@
1 , C

@
2 , · · · , C

@

#

}
⊆ K, @ ∈ {1, · · · , "} (see Example 5),

where

(∀@, @′ ∈ {1, · · · , "} : T@ ∩ T@′ = {0}) ∧ (K =

⋃

@∈{1,· · · ," }
T@). (5)

Let’s assume the sub-trajectories sub
(
f [s0 ;\ ( 9 ) ],T@

)
= s0, sC@1

, · · · , sC@
#
and their corre-

sponding sampled trajectories as smpl
(
f [s0 ;\ ( 9 ) ],T@

)
. As the sampled timesteps T@, @ ∈

{1, · · · , "} have no timestep in common other than 0 and their union covers the horizon K ,
we can reformulate the original gradient (mJ/m\ =

∑ 
:=1 (mJ/ms: ) (ms:/m\ )) as

mJ
m\

=

"∑

@=1

(
mJ

msub
(
f [s0;\ ( 9 ) ],T@

)
) (
msub

(
f [s0 ;\ ( 9 ) ],T@

)

m\

)
.

However, in our training process to compute the sampled gradient, we relax the sub-
trajectories sub

(
f [s0 ;\ ( 9 ) ],T@

)
, @ ∈ {1, · · · , "} with their corresponding sampled tra-

jectories smpl
(
f [s0 ;\ ( 9 ) ],T@

)
. In other words,

[
mJ
m\

]

sampled
=

"∑

@=1

(
mJ

msmpl
(
f [s0 ;\ ( 9 ) ],T@

)
) (
msmpl

(
f [s0;\ ( 9 ) ],T@

)

m\

)
.
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Remark 4.4. Unlike ms:∗/m\ and msub
(
f [s0 ;\ ( 9 ) ],T@

)
/m\, @ ∈ {1, · · · , "} that are prone to

vanish/explode problem, the alternatives, msmpl(f [s0 ;\ ],T) (# )/m\ , and msmpl(f [s0 ;\ ],T@)/m\,
@ ∈ {1, · · · , "}, can be computed e昀케ciently.6

Example 5. Here, we propose an example to show our methodology to generate sampled
trajectories when J = d̃ . We again consider Example 2, but we sample the trajectory with" = 3

sets of sampled timestepsT 1
= {0, 2, 4, 9} , T 2

= {0, 5, 7, 8}, andT 3
= {0, 1, 3, 6}. Here, the timesteps

are sampled such that their intersection is {0} and their union isK . 吀栀e resulting sampled trajectory
for T 1 is smpl

(
f [x0 ;\ (42) ],T 1

)
= x0, x̃2, x̃4, x̃9, where

and the resulting sampled trajectory for T 2 is smpl
(
f [x0 ;\ (42) ],T 2

)
= x0, x̃5, x̃7, x̃8, where

and 昀椀nally, the resulting sampled trajectory for T 3 is smpl
(
f [x0 ;\ (42) ],T 3

)
= x0, x̃1, x̃3, x̃6 that

has been previously explained in Example 2. We emphasize that the introduced sampled trajectories
are exclusively generated for gradient step 9 = 42 and we perform a new random sampling for the
next iteration.

Remark 4.5. At the start of the training process, we can envision a desired path for the model
to track. Tracking this path may not be su昀케cient to satisfy the temporal speci昀椀cation, but its
availability is still valuable information, which its inclusion to the training process can expedite
it. 吀栀erefore, we also utilize a desired path to generate a convex and e昀케cient waypoint function
(denoted by Jwp (f [s0 ;\ ])) for our training process. However, Algorithm 1 performs e昀昀ectively
even without the waypoint function. Section 5.3.1 explores this aspect using a numerical example.
Nonetheless, integrating a waypoint function enhances the e昀케ciency of the training process.

We 昀椀nally present our overall training procedure in Algorithm 1. Here, we use di (f [s0 ;\ ]) as
shorthand for the non-smooth robustness degree of f [s0 ;\ ] w.r.t. i at time 0, i.e., d (i, f [s0 ;\ ], 0).
We terminate the algorithm in line 2 if the robustness is greater than a pre-speci昀椀ed threshold
d̄ > 0. We also evaluate the performance of the algorithm through challenging case studies. During
each iteration of this algorithm, we compute the robustness value for an initial state s0 selected
from the pre-sampled set of initial states Î in line 3. 吀栀is selection can be either random, or the
initial state with the lowest robustness value in the set Î. 吀栀e Boolean parameter use_smooth

is provided to toggle the objective between robustness of the critical predicate and the smooth
robustness for the DT-STL formula. We initialize this parameter use_smooth in line 3 to be False

6吀栀e e昀케ciency results from the control parameters \ repeating in fewer timesteps over the trajectory, as most of them are
昀椀xed.
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Table 2. Results on Di昀昀erent Case Studies

Case Study Temporal System Time NN Controller Number of Runtime Optimization Se琀琀ing
Task Dimension Horizon Structure Iterations (seconds) [", #, #1, #2, n, 1]

12-D儀甀ad-rotor i3 12 45 steps [13,20,20,10,4] 1,120 6,413.3 [9, 5, 30, 40, 10−5, 5]
Multi-agent i4 20 60 steps [21,40,20] 2,532 6,298.2 [12, 5, 30, 1, 10−5, 15]

6-D 儀甀ad-rotor and Frame i5 7 1,500 steps [8,20,20,10,4] 84 443.45 [100, 15, 30, 3, 10−5, 15]
Dubins car i6 2 1,000 steps [3,20,2] 829 3,728 [200, 5, 60, 3, 10−5, 15]

Here, 1 is the hyper-parameter we utilized to generate LB4TL in [32].

and further update it to True in line 21, in case the gradient from critical predicate is unable to
increase the robustness. 吀栀e lines 18, 19, and 21 aim to improve the detection of non-di昀昀erentiable
local maxima by employing a more accurate approach. 吀栀is involves maintaining the direction
of the gradient generated with the critical predicate, and exponentially reducing the learning
rate until a small threshold n is reached. If, even with an in昀椀nitesimal learning rate, this gradient
fails to increase the robustness, it suggests a high likelihood of being in a non-di昀昀erentiable local
maximum.

5 Experimental Evaluation
In this section, we evaluate the performance of our proposed methodology. We executed all
experiments for training with Algorithm 1 using our MATLAB toolbox.7 吀栀ese experiments were
carried out on a laptop PC equipped with a Core i9 CPU. In all experiments performed using
Algorithm 1, we utilize LB4TL as the smooth semantics.We also present an experiment in Section 5.5
to empirically demonstrate that NN feedback controllers provide robustness to noise compared to
open-loop alternatives. Finally, we conclude this section with statistical veri昀椀cation of controllers.8
First, we provide a brief summary of results on evaluation of Algorithm 1. Following this, we

elaborate on the speci昀椀cs of our experimental con昀椀guration later in this section.
Evaluation Metric. We evaluate the e昀昀ectiveness of our methodology outlined in Algorithm 1

through four case studies, each presenting unique challenges. First, we present two case studies
involving tasks with long time horizons:

—6-dimensional quad-rotor combined with a moving platform with task horizon  = 1,500
timesteps.

—2-dimensional Dubins car with task horizon  = 1,000 timesteps.

Subsequently, we present two additional case studies characterized by high-dimensional state
spaces:

—20-dimensional multi-agent system of 10 connected Dubins cars with task horizon  = 60

timesteps.
—12-dimensional quad-rotor with task horizon  = 45 timesteps.

Table 2 highlights the versatility of Algorithm 1 in handling above case studies. We use a diverse
set of temporal tasks which include nested temporal operators and two independently moving
objects (quad-rotor andmoving platform case study).吀栀e detail of the experiments are also discussed
as follows.

7吀栀e source code for the experiments is publicly available from https://github.com/Navidhashemicodes/STL_dropout
8Our results show that integrating a waypoint function in Algorithm 1 enhances the e昀케ciency of the training process to a
small extent.
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Fig. 6. This figure shows the simulation of trained control parameters to satisfy the specified temporal task
in companion with the simulation result for initial guess for control parameters.

5.1 12-Dimensional儀甀ad-Rotor (Nested 3-Future Formula)
We assume a 12-dimensional model for the quad-rotor of mass,< = 1.4 kg. 吀栀e distance of rotors
from the quad-rotor’s center is also ℓ = 0.3273 m and the inertia of vehicle is �G = �~ = 0.054 and
�I = 0.104 (see [10] for the detail of quad-rotor’s dynamics). 吀栀e controller sends bounded signals
XA , X; , X1, 0 ≤ X 5 ≤ 1 to the right, le昀琀, back, and front rotors, respectively, to drive the vehicle. Each
rotor is designed such that given the control signal X it generates the propeller force of :1X and also
exerts the yawing torque :2X into the body of the quad-rotor. We set :1 = 0.75 mg such that, the net
force from all the rotors cannot exceed 3 times of its weight (6 = 9.81). We also set :2 = 1.5ℓ:1 to
make it certain that the maximum angular velocity in the yaw axis is approximately equivalent to
the maximum angular velocity in the pitch and roll axis. We use the sampling time XC = 0.1 seconds

in our control process. 吀栀e dynamics for this vehicle is proposed in Equation (6), where �, gq , g\ , gk
are the net propeller force, pitch torque, roll torque, and yaw torque, respectively. We plan to train
an NN controller with tanh() activation function and structure [13, 20, 20, 10, 4] for this problem
that maps the vector, [s>

:
, :]> to the unbounded control inputs [01,: , 02,: , 03,: , 04,: ]>. In addition to

this, the trained controller should be valid for all initial states,

I =

{
s0 |

[
−0.1,−0.1,−0.1, ®09×1

]> ≤ s0 ≤
[
0.1, 0.1, 0.1, ®09×1

]>}




¤G1 = cos(G8 ) cos(G9 )G4 + (sin(G7 ) sin(G8 ) cos(G9 ) − cos(G7 ) sin(G9 ) )G5
+(cos(G7 ) sin(G8 ) cos(G9 ) + sin(G7 ) sin(G9 ) )G6
¤G2 = cos(G8 ) sin(G9 )G4 + (sin(G7 ) sin(G8 ) sin(G9 ) + cos(G7 ) cos(G9 ) )G5
+(cos(G7 ) sin(G8 ) sin(G9 ) − sin(G7 ) cos(G9 ) )G6
¤G3 = sin(G8 )G4 − sin(G7 ) cos(G8 )G5 − cos(G7 ) cos(G8 )G6
¤G4 = G12G5 − G11G6 − 9.81 sin(G8 )
¤G5 = G10G6 − G12G4 + 9.81 cos(G8 ) sin(G7 )
¤G6 = G11G4 − G10G5 + 9.81 cos(G8 ) cos(G7 ) − �/<
¤G7 = G10 + (sin(G7 ) (sin(G8 )/cos(G8 ) ) )G11 + (cos(G7 ) (sin(G8 )/cos(G8 ) ) )G12
¤G8 = cos(G7 )G11 − sin(G7 )G12
¤G9 = (sin(G7 )/cos(G8 ) )G11 + (cos(G7 )/cos(G8 ) )G12
¤G10 = −( ( �~ − �I )/�G )G11G12 + (1/�G )gq
¤G11 = ( ( �I − �G )/�~ )G10G12 + (1/�~ ) )g\
¤G12 = (1/�I )gk



�
gq
g\
gk


=



:1 :1 :1 :1
0 −ℓ:1 0 ℓ:1
ℓ:1 0 −ℓ:1 0
−:2 :2 −:2 :2





X5
XA
X1
X;



X5 = 0.5(tanh(0.5 01 ) + 1),
XA = 0.5(tanh(0.5 02 ) + 1),
X1 = 0.5(tanh(0.5 03 ) + 1),
X; = 0.5(tanh(0.5 04 ) + 1),
01, 02, 03, 04 ∈ R.

(6)

Figure 6 shows the simulation of quad-rotor’s trajectories with our trained controller parameters.
吀栀e quad-rotor is planned to pass through the green hoop, between the 10th and 15th timestep.
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Once it passed the green hoop it should pass the blue hoop in the future 10th to 15th timesteps and
again once it has passed the blue hoop it should pass the red hoop again in the future next 10 to 15
timesteps. 吀栀is is called a nested future formula, in which we design the controller such that the
quad-rotor satis昀椀es this speci昀椀cation. Assuming ? as the position of quad-rotor, this temporal task
can be formalized in DT-STL framework as follows:

i3 = F[10,15]
(
? ∈ green_hoop ∧ F[10,15]

(
? ∈ blue_hoop ∧ F[10,15] ( ? ∈ red_hoop )

) )
. (7)

Figure 6 shows the simulation of trajectories, generated by the trained controller. 吀栀e black
trajectories are also the simulation of the initial guess for the controller, which are generated
completely at random and are violating the speci昀椀cation. We sampled I with nine points, that are
the corners of I including its center. 吀栀e se琀琀ing for gradient sampling is" = 9, # = 5. We trained
the controller with d̄ = 0, in Algorithm 1 with optimization se琀琀ing (#1 = 30, #2 = 40, n = 10−5)
over 1,120 gradient steps (runtime of 6,413.3 seconds). 吀栀e runtime to generate LB4TL is also
0.495 seconds and we set 1 = 5 for it. Algorithm 1 utilizes gradients from waypoint function, critical
predicate, and LB4TL, 515, 544, and 61 times, respectively.

5.2 Multi-Agent: Network of Dubins Cars (Nested Formula)
In this example, we assume a network of 10 di昀昀erent Dubins cars that are all under the control of
an NN controller. 吀栀e dynamics of this multi-agent system is

[
¤G8
¤~8
]
=

[
E8 cos(\ 8 )
E8 sin(\ 8 )

]
,

E8 ← tanh(0.5081) + 1, 081 ∈ R
\ 8 ← 082 ∈ R

, 8 ∈ 1, · · · , 10, (8)

that is, a 20-dimensional multi-agent system with 20 controllers, 0 ≤ E8 ≤ 1\ 8 ∈ R, 8 ∈ 1, · · · , 10.
Figure 7(a) shows the initial position of each Dubins car inR2 in companionwith their corresponding
goal sets. 吀栀e cars should be driven to their goal sets, and they should also keep a minimum distance
of 3 = 0.5 m from each other while they are moving toward their goal sets. We assume a sampling
time of XC = 0.26 seconds for this model, and we plan to train an NN controller with tanh()
activation function and structure [21, 40, 20] via Algorithm 1. For this problem, the controller maps
the vector, [s>

:
, :]> to the unbounded control inputs

{
08
1,:
, 08

2,:

}10
8=1

. Note that s8
:
= (G8

:
, ~8
:
). 吀栀is

temporal task can be formalized in DT-STL framework as follows:

i4 :=

10∧

8=1

(
F[20,48]G[0,12]

(
s
8 ∈ Goal8

) ) ∧ ∧

8≠9
8,9 ∈{1,· · · ,10}

G[0,60]
(
‖s8 − s9 ‖∞ > 3

)
.

Figure 7(c) shows the simulation of the trajectories for the trained controller, and Figure 7(b)
presents the simulation of trajectories for the initial guess for control parameters. We observe
that our controller manages the agents to 昀椀nish the task in di昀昀erent times. 吀栀us, we present the
timestamps with asterisk markers to enhance the clarity of the presentation regarding satisfaction
of the speci昀椀cation in Figure 7(c). Although the task is not a long horizon task, due to the high
dimension and complexity of the task, we were unable to solve this problem without time sampling.
However, we successfully solved this problem with Algorithm 1 within 6,298 seconds and 2,532
gradient steps.

We also set the optimization se琀琀ing as" = 12, # = 5, #1 = 30, #2 = 1, n = 10−5. 吀栀e runtime to
generate LB4TL is also 6.2 seconds and we set 1 = 15 for it. Over the course of the training process
we utilized 187, 1,647, and 698 gradients from waypoint function, critical predicate, and LB4TL,
respectively.
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Fig. 7. These figures show a multi-agent system of 10 connected Dubins cars. (a) shows the start (blue dots)
and goal points (green squares) for agents. (b) and (c) show simulated system trajectories with both the initial
untrained controller and the centralized NN controller trained with Algorithm 1. The controller coordinates
all cars to reach their respective goals between 20 and 48 seconds, and then stay in their goal location for at
least 12 seconds. It also keeps the cars at a minimum distance from each other. We remark that the agents
finish their tasks (the first component of i4) at di昀昀erent times.

5.3 6-Dimensional儀甀ad-Rotor and Moving Platform: Landing a儀甀ad-Rotor
We use a 6-dimensional model for quad-rotor dynamics as follows:

[
¤G ¤~ ¤I ¤EG ¤E~ ¤EI

]
=

[
EG E~ EI g tan(D1) −g tan(D2) g − D3

]
, where,

D1 ← 0.1 tanh(0.101), D2 ← 0.1 tanh(0.102), D3 ← g − 2 tanh(0.103), 01, 02, 03 ∈ R. (9)

Let x = (G,~, I) denote the quad-rotor’s position and v = (EG , E~, EI) denote its velocity along
the three coordinate axes. 吀栀e control inputs D1, D2, D3 represent the pitch, roll, and thrust inputs,
respectively. We assume that the inputs are bounded as follows: −0.1 ≤ D1, D2 ≤ 0.1, 7.81 ≤ D3 ≤
11.81.

吀栀e horizon of the temporal task is 1,500 timesteps with XC = 0.05B . 吀栀e quad-rotor launches at
a helipad located at (G0, ~0, I0) = (−40, 0, 0). We accept a deviation of 0.1 for G0 and ~0 and train
the controller to be valid for all the states sampled from this region. 吀栀e helipad is also 40 m far
from a building located at (0, 0, 0). 吀栀e building is 30 m high, where the building’s footprint is
10 m ×10 m. We have also a moving platform with dimension 2 m × 2 m × 0.1 m that is starting
to move from (10, 0, 0) with a variable velocity, modeled as, ¤G 5 = D4. We accept a deviation of 0.1
for G 50 , and our trained controller is robust with respect to this deviation. We de昀椀ne Î with nine
samples located at the corners of I and the center of I. 吀栀e frame is required to keep a minimum
distance of 4.5 m from the building. We train the NN controller to control both the quad-rotor and
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Fig. 8. This figure shows the simulated trajectory for trained controller in comparison to the trajectories for
naive initial random guess. The frame is moving with a velocity determined with the controller that also
controls the quad-rotor.

the platform to ensure that the quad-rotor will land on the platform with relative velocity of at
most 1 m/s in G,~, and I directions, and its relative distance is at most 1 m in G,~ direction and
0.4 m in I direction. Let ? = (G,~, I) be the position of the quad-rotor, this temporal task can be
formulated as a reach-avoid formula in DT-STL framework as follows:

i5 = G[0,1500] (? ∉ obstacle) ∧ F[1100,1500] (? ∈ Goal) ∧ G[0,1500] (G 5: > 9.5), (10)

where the goal set is introduced in Equation (11). We plot the simulated trajectory for the center
of set of initial states I, in Figure 8. 吀栀e NN controller’s structure is speci昀椀ed as [8, 20, 20, 10, 4]
and uses tanh() activation function. We initialize it with a random guess for its parameters. 吀栀e
simulated trajectory for initial guess of parameters is also depicted in black. 吀栀e se琀琀ing for gradient
sampling is" = 100, # = 15. We trained the controller with d̄ = 0, over 84 gradient steps (runtime
of 443 seconds). 吀栀e runtime to generate LB4TL is also 7.74 seconds and we set 1 = 15, for it. In
total, Algorithm 1 utilizes gradients from waypoint function, critical predicate, and LB4TL, 5, 71,
and 8 times, respectively.

Goal =






G:
~:
I:
EG,:
E~,:
EI,:

G
5

:



|



−1
−1
0.11

0

−1
−1



≤



G: − G 5:
~:
I:
EG,:
E~,:
EI,:



≤



1

1

0.6

2

1

1






(11)

5.3.1 Influence of Waypoint Function, Critical Predicate, and Time Sampling on Algorithm 1. Here,
we consider the case study of landing a quad-rotor, and perform an ablation study over the impact
of including (1) critical predicate, (2) waypoint function, and (3) time sampling, in the training
process via Algorithm 1. To that end, we compare the results once these modules are excluded from
the algorithm. In the 昀椀rst step, we remove the waypoint function and show the performance of
the algorithm. In the next step, we also disregard the presence of critical time in time sampling
and train the controller with completely at random time sampling, and 昀椀nally we examine the
impact of time sampling on the mentioned results. Table 3 shows the e昀케ciency of training process
in each case, and Figure 9 compares the learning curves. Our experimental result shows the control
synthesis for quad-rotor (landing mission) faces a small reduction in e昀케ciency when the waypoint

ACM Transactions on Cyber-Physical Systems, Vol. 8, No. 4, Article 42. Publication date: November 2024.



Scaling Learning-based Policy Optimization for Temporal Logic Tasks 42:19

Table 3. Ablation Studies for Picking Di昀昀erent Options for the Optimization
Process

Learning Curve’s Waypoint Critical Time Number of Runtime
Color in Figure 9 Function Predicate Sampling Iterations

Ø Ø Ø 84 443 seconds
× Ø Ø 107 607 seconds
Ø × Ø DNF[−0.74] 6971 seconds
× × Ø DNF[−1.32] 4822 seconds
Ø Ø × DNF[−4.52] 1505 seconds
× Ø × DNF[−11.89] 1308 seconds

吀栀is table shows the results of the training algorithm in case study 5.3.1. We indicate that
the training does not result in positive robustness within 300 gradient steps by DNF (did
not 昀椀nish) with the value of robustness in iteration 300 in brackets. 吀栀e table represents
an ablation study, where we disable the various heuristic optimizations in Algorithm 1
in di昀昀erent combinations and report the extent of reduction in e昀케ciency. We use Ø, × to
respectively indicate a heuristic being included or excluded. 吀栀e time sampling technique is
utilized in all the experiments.

Fig. 9. This figure shows the learning curve for training processes. Note, the figure has been truncated and
the initial robustness for all the experiments at iteration 0 is −47.8. This figure shows that Algorithm 1 in the
presence of the waypoint function concludes successfully in 84 iterations while when the waypoint function is
not included, it terminates in 107 iterations. The algorithm also fails if the critical predicate is not considered
in time sampling.

function is disregarded and fails when the critical predicate is also removed from time sampling.
吀栀is also shows that control synthesis fails when time sampling is removed.

5.4 Dubins Car: Growing Task Horizon for Dubins Car (Ablation Study on Time
Sampling)

In this experiment, we consider Dubins car with dynamics,
[
¤G
¤~

]
=

[
E cos(\ )
E sin(\ )

]
, E ← tanh(0.501) + 1, 01 ∈ R, \ ← 02 ∈ R,

and present an ablation study on the in昀氀uence of gradient sampling on control synthesis. Given a
scale factor 0 > 0, a time horizon  , and a pre-de昀椀ned initial guess for control parameters \ (0) , we
plan to train a tanh() NN controller with structure [3, 20, 2], to drive a Dubins car, to satisfy the
temporal task, i6 := F[0.9 , ] (? ∈ Goal) ∧ G[0, ] (? ∉ Obstacle), where ? = (G,~) is the position
of Dubins car. 吀栀e Dubins car starts from (G0, ~0) = (0, 0). 吀栀e obstacle is also a square centered on
(0/2, 0/2) with the side length 20/5. 吀栀e goal region is again a square centered on (90/10, 90/10)
with the side length 0/20. We solve this problem for  = 10, 50, 100, 500, 1,000 and we also utilize
0 =  /10 for each case study. We apply standard gradient ascent (see Algorithm 2) to solve each
case study, both with and without gradient sampling.
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Algorithm 2: Standard Gradient Ascent Backpropagation via Smooth Semantics
1 Initialize variables

2 while

(
min
s0∈Î

(
d (i, f [s0 ;\ ( 9 ) ], 0)

)
< d̄

)
do

3 s0 ← Sample from Î
4 f [s0 ;\ ( 9 ) ] ← Simulate using policy c\ ( 9 )

5 3 ← ∇\ d̃ (f [s0 \ ( 9 ) ]) using f [s0 ;\ ( 9 ) ]
6 \ ( 9+1) ← \ ( 9 ) + Adam(3)
7 9 ← 9 + 1

Table 4. Ablation Study

Standard Gradient Ascent Standard Gradient Ascent Algorithm 1(No Waypoint) Algorithm 1(with Waypoint)
Horizon (No Time Sampling) (With Time Sampling) (With Time Sampling) (With Time Sampling)

Num. of Runtime Num. Runtime Num. of Runtime Num. of Runtime
Iterations (seconds) Iterations (seconds) Iterations (seconds) Iterations (seconds)

10 34 2.39 11 1.39 6 0.9152 4 5.61
50 73 2.46 53 14.01 20 2.7063 25 6.09
100 152 8.65 105 112.6 204 79.33 157 90.55
500 DNF[−1.59] 4,986 3,237 8,566 2,569 2,674 624 890.24
1,000 DNF[−11.49] 8,008 DNF[−88.42] 28,825 812 1,804 829 3,728

We mark the experiment with DNF[.] if it is unable to provide a positive robustness within 8,000 iterations, and the value
inside brackets is the maximum value of robustness it 昀椀nds. We magnify the environment proportional to the horizon. All
experiments for  = 10, 50, 100 use a unique guess for initial parameter values, and all the experiments for  = 500, 1, 000

use another unique initial guess. Here, we utilized critical predicate module in both cases of Algorithm 1 (columns 3 and 4).

Furthermore, in addition to standard gradient ascent, we also utilize Algorithm 1 to solve them.
Consider we set the initial guess and the controller’s structure similar, for all the training processes,
and we also manually stop the process once the number of iterations exceeds 8,000 gradient steps.
We also assume a singleton as the set of initial states {(0, 0)} to present a clearer comparison. 吀栀e
runtime and the number of iterations for each training process is presented in Table 4. Figure 10
displays the simulation of trajectories trained using Algorithm 1 for  = 1,000 timesteps (via
gradient sampling), alongside the simulations for the initial guess of controller parameters.

Table 4 shows our approximation technique outperforms the original gradient when the compu-
tation for original gradient faces numerical issues (such as longer time horizons  = 500, 1,000).
However, in case the computation for original gradient does not face any numerical issues, then
the original gradient outperforms the sampled gradient which is expected. 吀栀is table also shows
that the standard gradient ascent (with time sampling) is still unable to solve for the case  = 1,000
while Algorithm 1 solves for this case e昀케ciently. 吀栀is implies the combination of time sampling,
critical predicate, and safe-resmoothing provides signi昀椀cant improvement in terms of scalability.
吀栀e experiment  = 500 in this table also shows that inclusion of waypoint in Algorithm 1 is
sometimes noticeably helpful.

5.5 Robustness of NN Feedback Controllers over Open-loop Alternatives
In this section, we empirically demonstrate that feedback NN controllers are more robust to noise
and uncertainties compared to open-loop controllers, even when the feedback controller is not
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Fig. 10. This figure shows the simulation of the results for Dubins car in the ablation study proposed in
Section 5.4. In this experiment, the task horizon is 1,000 timesteps.

trained in the presence of noise. We then show that if we train the feedback controller a昀琀er
introducing a stochastic noise in the original system dynamics, the performance vastly outperforms
open-loop control trained in the presence of noise. To illustrate, we use the example proposed in
[42] but add a stochastic noise and also include some uncertainty on the choice of initial condition.
吀栀e modi昀椀ed system dynamics are shown in Equation (12), where the sampling time dC = 0.1:

s:+1 = s: + D:dC + 21E: , s0 = [−1, −1]> + 22[. (12)

Here, for : ∈ 1, · · · ,  and E: and [ are both i.i.d. random variables with standard distribution, e.g.,
[, E: ∼ N(02×1, �2×2), where �2×2 is the identity matrix. In this example, the desired objective for
the system is

i8 = F[0,44]
(
G[0,5] (s ∈ Goal1)

) ∧
F[0,44]

(
G[0,5] (s ∈ Goal2)

) ∧
G[0,49]¬ (s ∈ Unsafe), (13)

where the regions Goal1,Goal2, and Unsafe are illustrated in Figure 11.9
In the 昀椀rst step of the experiment, we train the feedback and open-loop controllers in the absence

of the noise (21 = 22 = 0) and deploy the controllers on the noisy environment (21 = 0.0314, 22 =

0.0005) and compare their success rate.10 In the second step of the experiment, we train both the
feedback and open-loop controllers on the noisy environment (21 = 0.0314, 22 = 0.0005), and also
deploy them in the noisy environment (21 = 0.0314, 22 = 0.0005) to compare their success rate. If
we train the open-loop and NN feedback controllers in the absence of noise, then the controllers
will, respectively, satisfy the speci昀椀cation in 3.7% and 65.4% of trials when deployed in a noisy
environment. However, we can substantially improve performance of feedback controllers by
training in the presence of noise; here, the controllers satisfy the speci昀椀cation 5.4% and 94.4% of
trials, respectively, showing that the NN feedback controller has be琀琀er overall performance in the
presence of noise, which open-loop control lacks.

9We also add the following updates to the original problem presented in [42]:
—We omit the requirement s = [1, 1]> from both control problems for simplicity.
—We increase the saturation bound of the controller toD: ≤ 4

√
2. We also apply this condition to the open-loop controller

proposed in [42].
10To report the success rate, we deploy the controllers 1,000 di昀昀erent times and compute the percentage of the trajectories
that satisfy the speci昀椀cation.
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Fig. 11. This figure shows the simulation of trajectories when the trained controller is deployed on the
noisy deployment environment, both controllers are trained in the presence of noise. The trajectories of NN
feedback controller that satisfy (a) and violate (b) the specification and those of the open-loop controller that
satisfy (c) and violate (d) the specification are shown.

We utilized STLCG PyTorch toolbox [42] to solve for the open-loop controller. We also utilized
the standard gradient ascent proposed in Algorithm 2 (via LB4TL as smooth semantics d̃) for
training the feedback controllers. We let the training process in Algorithm 2 and STLCG to run for
5,000 iterations, and then terminated the training process. Figure 11 shows the simulation of trained
controllers when they are deployed to the noisy environment. Here, we generate 100 random
trajectories via trained controllers and plot them in green and red when they satisfy or violate the
speci昀椀cation, respectively. However, all trained feedback controllers in this article exhibit the same
level of robustness to noise.

5.6 Statistical Verification of Synthesized Controllers
In [33], we showed that if the trained NN controller, the plant dynamics, and the NN representing
the STL quantitative semantics all useReLU activation functions, then we can use tools such as NNV
[66] that compute the forward image of a polyhedral input set through an NN to verify whether a
given DT-STL property holds for all initial states of the system. However, there are few challenges in
applying such deterministic methods here: we usemore general activation functions, the depth of the
overall NN can be signi昀椀cant for long-horizon tasks, and the dimensionality of the state-space can
also become a bo琀琀leneck. In this article, we thus eschew the use of deterministic techniques, instead
reasoning about the correctness of our NN feedback control scheme using a statistical veri昀椀cation
approach. In other words, given the coverage level X1 ∈ (0, 1) and con昀椀dence level X2 ∈ (0, 1) we
are interested in a probabilistic guarantee of the form, Pr[ Pr[f [s0 ;\ ] |= i] ≥ X1 ] ≥ X2.

吀栀emain inspiration for our veri昀椀cation is drawn from the theoretical developments in conformal
prediction [70]. Of particular signi昀椀cance to us is the following lemma:

Lemma 5.1 (From [16]). Consider< independent and identically distributed (i.i.d.), real-valued
data points drawn from some distribution D. A昀琀er they are drawn, suppose we sort them in ascending
order and denote the ith smallest number by '8 ,(i.e., we have '1 < '2 < . . . < '<). Let Beta(U, V)
denote the Beta distribution.11 吀栀en, for an arbitrary '<+1 drawn from the same distribution D, the
following holds:

Pr ['<+1 < 'ℓ ] ∼ Beta(ℓ,< + 1 − ℓ), 1 ≤ ℓ ≤ <. (14)

11吀栀e Beta distribution is a family of continuous probability distributions de昀椀ned on the interval 0 ≤ G ≤ 1 with shape
parameters U and V , and with probability density function 5 (G ;U, V ) = GU−1 (1−G )V−1

� (U,V ) , where the constant � (U, V ) =
Γ (U )Γ (V )
Γ (U+V ) and Γ (I ) =

∫ ∞
0
CI−14−CdC is the Gamma function.
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吀栀e original < i.i.d. data points are called a calibration set. 吀栀e above lemma says that the
probability for a previously unseen data point '<+1 drawn from the same distribution D being less
than the lth smallest number in the calibration set is itself a random variable that has a speci昀椀c
Beta distribution. We next show how we can exploit this lemma to obtain probabilistic correctness
guarantees for our trained controllers.
We assume that there is some user-speci昀椀ed distribution over the set of initial states in I, and

that we can sample< initial states s0,1, . . . , s0,< from this distribution. For a sampled initial state
s0,8 , 8 ∈ 1, · · · ,<, we can obtain the corresponding negative robust satisfaction value, and set:
'8 = −d (i, f [s08 ;\ ], 0), 8 ∈ 1, · · · ,<.

From Lemma 5.1, we know that for a previously unseen initial state s0,<+1, the corresponding
(negative value of) robustness '<+1 satis昀椀es the relation in Equation (14). Now, almost all sampled
trajectories generated by a trained controller are expected to have positive robustness value, so we
expect the quantities '1, . . . , '< to be all negative. In the pessimistic case, we expect at least the
昀椀rst ℓ of these quantities to be negative. If so, the guarantee in Equation (14) essentially quanti昀椀es
the probability of the robustness of a trajectory for a previously unseen initial state to be positive.
Note that

('<+1 < 'ℓ ) ∧ ('ℓ < 0) =⇒ ('<+1 < 0) =⇒ (f [s0,<+1 ;\ ] |= i) (15)
∴ Pr(f [s0,<+1 ;\ ] |= i) ≥ Pr('<+1 < 'ℓ ) ∼ Beta(ℓ,< + 1 − ℓ) (16)

In addition, from [16] we know that the mean and variance of the Beta distribution are given as
follows:

E
[
Pr['<+1 < 'ℓ ]

]
=

ℓ

< + 1 Var
[
Pr['<+1 < 'ℓ ]

]
=

ℓ (< + 1 − ℓ)
(< + 1)2 (< + 2) . (17)

As the Beta distribution has small variance and is noticeably sharp, the desired coverage level
for a probabilistic guarantee can be obtained in the vicinity of its mean value. From the closed
form formula in Equation (17), we observe that in case we wish to have a coverage level close to
(1 − 10−4) or 99.99%, then we can set ℓ = d(< + 1) (1 − 10−4)e. Here we also set< to 105, giving
the value of ℓ = 99,991. Let’s denote Pr['<+1 < 'ℓ ] as X . Since X is a random variable sampled from
Beta(ℓ,< + 1 − ℓ) where ((ℓ = 99,991,< = 105),12 we can utilize the cumulative density function of
Beta distribution (i.e., regularized incomplete Beta function) and for a given X1 ∈ (0, 1) propose the
following guarantee,

Pr[X ≥ X1] = 1 − �X1 (ℓ,< + 1 − ℓ), where �G ( . , . ) is the regularized incomplete Beta
function at point G .

Here X1 is the desired con昀椀dence level that we consider for the probabilistic guarantee. However, if
we set X1 = 0.9999 then Pr[X ≥ 0.9999] = 0.54 which indicates that the con昀椀dence in the 99.99%
guarantee is low. If we instead set X = 0.9998, this results in Pr[X ≥ 0.9998] = 0.995, which indicates
a much higher level of con昀椀dence. Finally, based on Equation (16), we can consider the provided
guarantee also for the trajectories and conclude,

Pr[ Pr[f [s0 ;\ ] |= i] ≥ 99.98% ] ≥ 99.5%. (18)

To summarize, in each of our case studies, we sample< = 105 i.i.d. trajectories, compute their sorted
negative robustness values '1, . . . , '< , and check that 'ℓ for ℓ = 99,991 is indeed negative. 吀栀is
gives us the probabilistic guarantee provided in Equation (18) that from unseen initial conditions
the system will not violate the DT-STL speci昀椀cation.

12We can compute for its mean and variance via Equation (17) as ` = E[X ] = 0.9999 and var[X ] = 9.9987 × 10−10.
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6 Related Work and Conclusion
Related Work. In the broad area of formal methods, robotics, and cyber-physical systems, there
has been substantial research in synthesizing controllers from temporal logic speci昀椀cations. 吀栀is
research involves di昀昀erent considerations. First, the plant dynamics may be speci昀椀ed as either a
di昀昀erential/di昀昀erence equation-based model [22, 25, 27, 46, 51, 55, 56], or as a Markov decision
process [29, 37, 59] that models stochastic uncertainty, or may not be explicitly provided (but is
implicitly available through a simulator that samples model behaviors). 吀栀e second consideration
is the expressivity of the speci昀椀cation language, i.e., if the speci昀椀cations are directly on the real-
valued system behaviors or on Boolean-valued propositions over system states, and if the behaviors
are over a discrete set of timesteps or over dense time. Speci昀椀cation languages such as Linear
Temporal Logic (LTL) [53],Metric Temporal Logic (MTL) [39], andMetric Interval Temporal
Logic (MITL) [3] are over Boolean signals, while STL [48] and DT-STL considered in this article are
over real-valued behaviors. MTL, MITL, and STL are typically de昀椀ned over dense time signals while
LTL and DT-STL are over discrete timesteps. 吀栀e third consideration is the kind of controller being
synthesized. Given the plant dynamics, some techniques 昀椀nd the entire sequence of control actions
from an initial state to generate a desired optimal trajectory (open-loop control) [46, 50, 55, 75],
while some focus on obtaining a feedback controller that guarantees satisfaction of temporal logic
objectives in the presence of uncertainty [76] (in the initial states or during system execution). We
now describe some important sub-groups of techniques in this space that may span the categories
outlined above.

Reactive Synthesis. A reactive synthesis approach models the system interaction with its environ-
ment as a turn-based game played by the system and the environment over a directed graph [13].
吀栀e main idea is to convert temporal logic speci昀椀cations (such as LTL) into winning conditions
and identify system policies that deterministically guarantee satisfaction of the given speci昀椀cation
[40]. As reactive synthesis is a computationally challenging problem, there are many sub-classes
and heuristics that have been explored for e昀케ciency; for instance, in [73] a receding horizon
framework is used; in [67], the authors focus on piece-wise a昀케ne non-deterministic systems, while
[56] investigates reactive synthesis for STL.
Reinforcement and Deep Reinforcement Learning (RL). RL algorithms learn control policies

that maximize cumulative rewards over long-term horizons. Recently, RL temporal has been used
to infer reward functions that can guarantee satisfaction of an LTL speci昀椀cation [14, 24, 31, 60]. 吀栀e
work in [9, 30, 38, 54, 69] generates reward functions from STL speci昀椀cations. While the ultimate
objective of these methods is similar to our problem se琀琀ing, we adopt a model-based approach to
control synthesis where we assume access to a di昀昀erentiable model of the system and use gradient
ascent to train the controller in contrast to RL algorithms that may rely on adequate exploration of
the state space to obtain near-optimal policies (that may guarantee satisfaction of speci昀椀cations).
Model Predictive Control (MPC) andMixed Integer Linear Programming (MILP). A clever

encoding of LTL as mixed integer linear constraints was presented in [72] for the purpose of
reactive synthesis. 吀栀is idea was then extended in [55] to show that model predictive control of
linear/piece-wise a昀케ne systems w.r.t. STL objectives (with linear predicates) can be solved using
MILP solvers. MILP is an NP-hard problem, and various optimization improvements to the original
problem [25, 41, 50, 65] and extensions to stochastic systems [22, 61] have been proposed. In
contrast to a model-predictive controller, we obtain an NN feedback controller that does not require
online optimization required in MPC.
Barrier Function-based Approaches. A Control Barrier Function (CBF) can be thought of as a

safety envelope for a controlled dynamical system. As long as the CBF satis昀椀es validity conditions
(typically over its Lie derivative), the CBF guarantees the existence of a control policy that keeps
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the overall system safe [74]. CBFs can be used to enforce safety constraints and also to enforce
temporal speci昀椀cations such as STL [4, 5, 17, 46]. 吀栀e design of barrier functions is generally a hard
problem, though recent research studies compute for the CBFs through learning [57, 69], and using
quantitative semantics of STL [34].

Gradient-based Optimization Methods. 吀栀is class of methods investigates learning NN controllers
by computing the gradient of the robustness function of STL through back-propagation STL. For
instance, training feedback NN controllers is studied in [34, 35, 47, 75, 76] and for open-loop
controllers is investigated in [44]. 吀栀e main contributions in this article over previous work are to
scale gradient descent to long time horizons using the novel idea of dropout, and a more e昀케cient
(and smooth) computation graph for STL quantitative semantics.

Prior Work on NN Controllers for STL. 吀栀e overall approach of this article is the closest to the work
in [33, 34, 42, 43, 76], where STL robustness is used in conjunction with back-propagation to train
controllers. 吀栀e work in this article makes signi昀椀cant strides in extending previous approaches to
handle very long horizon temporal tasks, crucially enabled by a novel sampling-based gradient
approximation. Due to the structure of our NN-controlled system, we can seamlessly handle time-
varying dynamics and complex temporal dependencies. We also note that while some previous
approaches focus on obtaining open-loop control policies, we focus on synthesizing closed-loop,
feedback NN-controllers which can be robust to minor perturbations in the system dynamics.
In addition, we cover a general DT-STL formula for synthesis, and we utilize LB4TL [32] for
backward computation that has shown signi昀椀cant improvement for e昀케ciency of training over
complex DT-STL formulas.
Limitations. Some of the key limitations of our approach include the following: (1) we do not

address in昀椀nite time horizon speci昀椀cations; (2) we only consider a DT-STL; (3) our approach would
fail if the chosen NN architecture for the controller has too few parameters (making it di昀케cult
to control highly non-linear environment dynamics) or if it has too many parameters (making
it a di昀케cult optimization problem); (4) we assume full system observability and do not consider
stochastic dynamics.

Conclusion. Using NN feedback controllers for control synthesis o昀昀ers robustness against noise
and uncertainties, making them preferable over open-loop controllers. However, training these
controllers can be challenging due to issues like vanishing or exploding gradients, especially in long
time horizons or high-dimensional systems. To address this challenge, we introduced a gradient
sampling technique inspired by dropout [64] and stochastic depth [36]. Additionally, we proposed
incorporating critical predicates into this technique to enhance training e昀케ciency, and we tested
our approach on various challenging control synthesis problems.
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