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This article introduces a model-based approach for training feedback controllers for an autonomous agent
operating in a highly non-linear (albeit deterministic) environment. We desire the trained policy to ensure
that the agent satisfies specific task objectives and safety constraints, both expressed in Discrete-Time Signal
Temporal Logic (DT-STL). One advantage for reformulation of a task via formal frameworks, like DT-STL, is
that it permits quantitative satisfaction semantics. In other words, given a trajectory and a DT-STL formula,
we can compute the robustness, which can be interpreted as an approximate signed distance between the
trajectory and the set of trajectories satisfying the formula. We utilize feedback control, and we assume a feed
forward neural network for learning the feedback controller. We show how this learning problem is similar
to training recurrent neural networks (RNNs), where the number of recurrent units is proportional to the
temporal horizon of the agent’s task objectives. This poses a challenge: RNNs are susceptible to vanishing
and exploding gradients, and naive gradient descent-based strategies to solve long-horizon task objectives
thus suffer from the same problems. To address this challenge, we introduce a novel gradient approximation
algorithm based on the idea of dropout or gradient sampling. One of the main contributions is the notion of
controller network dropout, where we approximate the NN controller in several timesteps in the task horizon
by the control input obtained using the controller in a previous training step. We show that our control
synthesis methodology can be quite helpful for stochastic gradient descent to converge with less numerical
issues, enabling scalable back-propagation over longer time horizons and trajectories over higher-dimensional
state spaces. We demonstrate the efficacy of our approach on various motion planning applications requiring
complex spatio-temporal and sequential tasks ranging over thousands of timesteps.
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1 Introduction

The use of Neural Networks (NN) for feedback control enables data-driven control design for
highly non-linear environments. The literature about training NN-based controllers or neurocon-
trollers is plentiful, e.g., see [12, 15, 21, 23, 35, 45]. Techniques to synthesize neural controllers
(including deep RL methods) largely focus on optimizing cost functions that are constructed from
user-defined state-based rewards or costs. These rewards are often proxies for desirable long-range
behavior of the system and can be error-prone [6, 49, 62] and often require careful design [28, 63].

On the other hand, in most engineered safety-critical systems, the desired behavior can be
described by a set of spatio-temporal task-objectives, e.g., [11, 20]. For example, consider modeling
a mobile robot where the system must reach region R; before reaching region R,, while avoiding
an obstacle region. Such spatio-temporal task objectives can be expressed in the mathematically
precise and symbolic formalism of Discrete-Time Variant (DT-STL) [19] of Signal Temporal
Logic (STL) [48]. A key advantage of DT-STL is that for any DT-STL specification and a system
trajectory, we can efficiently compute the robustness degree, i.e., the approximate signed distance of
the trajectory from the set of trajectories satisfying/violating the specification [18, 19].

Control design with DT-STL specifications using the robustness degree as an objective function to
be optimized is an approach that brings together two separate threads: (1) smooth approximations
to the robustness degree of STL specifications [25, 50] enabling the use of STL robustness in
gradient-based learning of open-loop control policies, and (2) representation of the robustness as a
computation graph allowing its use in training neural controllers using back-propagation [33, 34,
42, 76]. While existing methods have demonstrated some success in training open-loop NN policies
[42, 43], and also closed-loop NN policies [33, 34, 76], several key limitations still remain. Consider
the problem of planning the trajectory of an Unmanned Aerial Vehicle in a complex, GPS-denied
urban environment; here, it is essential that the planned trajectory span several minutes while
avoiding obstacles and reaching several sequential goals [52, 68, 71]. However, none of the existing
methods to synthesize closed-loop (or even open-loop) policies scale to handle long-horizon tasks.

A key reason for this is the inherent computational challenge in dealing with long-horizon
specifications. Training open-loop policies treats the sequence of optimal control actions over the
trajectory horizon as decision variables to maximize the robustness of the given STL property.
Typical approaches use gradient-descent where in each iteration, the new control actions (i.e.,
the open-loop policy) are computed using the gradient of the DT-STL property w.r.t. the control
actions. If the temporal horizon of the DT-STL property is K, then, this in turn is computed using
back-propagation of the DT-STL robustness value through a computation graph representing the
composition of the DT-STL robustness computation graph and K copies of the system dynamics.
Similarly, if we seek to train closed-loop (neural) feedback control policies using gradient descent,
then we can treat the one-step environment dynamics and the neural controller as a recurrent
unit that is repeated as many times as the temporal horizon of the DT-STL property. Gradient
updates to the neural controller parameters are then done by computing the gradient of the STL
computation graph composed with this Recurrent Neural Network (RNN)-like structure. In both
cases, if the temporal horizon of ¢ is several hundred steps, then gradient computation requires
back-propagation through those many steps. These procedures are quite similar to the ones used for
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training an RNN with many recurrent units. It is well-known that back-propagation through RNNs
with many recurrent units faces problems of vanishing and exploding gradients [8, 26]. To address
these limitations, we propose a sampling-based approximation of the gradient of the objective
function (i.e., the STL property), that is particularly effective when dealing with behaviors over
larger time horizons. Our key idea is to approximate the gradient during back-propagation by an
approximation scheme similar to the idea of dropout layers used in deep NNs [64]. The main idea
of dropout layers is to probabilistically set the output of some neurons in the layer to 0 in order to
prevent over-fitting. We do a similar trick: In each training iteration we pick some recurrent units
to be “frozen,” i.e., we use older fixed values of the NN parameters for the frozen layers, effectively
approximating the gradient propagation through those layers. We show that this can improve
training of NN controllers by at least an order of magnitude. Specifically, we reduce training times
from hours to minutes, and can also train reactive planners for task objectives that have larger time
horizons.
To summarize, we make the following contributions:

(1) We develop a sampling-based approach, inspired by dropout [64], to approximate the gradient
of DT-STL robustness w.r.t. the NN controller parameters. Emphasizing the timesteps that
contribute the most to the gradient, our method randomly samples time-points over the
trajectory. We utilize the structure of the STL formula and the current system trajectory to
decide which time-points represent critical information for the gradient.

(2) We develop a back-propagation method that uses a combination of the proposed sampling
approach and the smooth version of the robustness degree of a DT-STL specification to train
NN controllers.

(3) We demonstrate the efficacy of our approach on higher-dimensional non-linear dynamical
systems involving longer-horizon and more complex temporal specifications.

1.1 Organization and Notations

The rest of the article is organized as follows. In Section 2, we introduce the notation and the
problem definition. We propose our learning-based control synthesis algorithms in Section 3,
present experimental evaluation in Section 5, and conclude in Section 6. We use bold letters to
indicate vectors and vector-valued functions, and calligraphic letters to denote sets. A feed forward
NN with ¢ hidden layers is denoted by the vector [ng, ny, - - - gy |, where ny denotes the number
of inputs, nsy; is the number of outputs and for all i € 1,2,---,¢, n; denotes the width of ith
hidden layer. The notation x ~ X implies the random variable x is sampled uniformly from
the set X.

2 Preliminaries

NN Feedback Control Systems (NNFCS). Let s and a denote the state and action variables that
take values from compact sets S € R" and C € R™, respectively. We use s (respectively, ay)
to denote the value of the state (respectively, action) at time k € Z>°. We define an NNFCS as a
recurrent difference equation

sk+1 = £(sk, ax), (1)
where a; = mg(sk, k) is the control policy. We assume that the control policy is a parameterized
function 7y, where 6 is a vector of parameters that takes values in ©. Later in the article, we

instantiate the specific parametric form using an NN for the controller. That is, given a fixed vector
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Fig. 1. Shows an illustration of the recurrent structure for the control feedback system.

of parameters 0, the parametric control policy 7y returns an action ay as a function of the current
state s € S and time k, i.e., a; = mp(sg, k).!

Closed-Loop Model Trajectory. For a discrete-time NNFCS as shown in Equation (1), and a set of
designated initial states 7 C S, under a pre-defined feedback policy y, Equation (1) represents an
autonomous discrete-time dynamical system. For a given initial state sy € 7, a system trajectory
o[so ; 0] is a function mapping time instants k € 0,1, -+ , K to S, where o[s ; 0] (k) = si, and for all
ke€0,1,--- ,K—1, sk = f(sk, mo(sk, k)). In case the dependence to 0 is obvious from the context,
we utilize the notation si to refer to o[sy ; 0](k). Here, K is some integer called the trajectory
horizon, and the exact value of K depends on the DT-STL task objective that the closed-loop model
trajectories must satisfy. The computation graph for this trajectory is a recurrent structure. Figure 1
shows an illustration of this structure and its similarity to an RNN.

Task Objectives and Safety Constraints. We assume that task objectives and safety constraints
are specified using the syntax of DT-STL [19] of STL [48]. We assume that DT-STL formulas are
specified in positive normal form, i.e., all negations are pushed to the signal predicates:*

@ = h(s)» 0|1 A2 | @1V o] eiUre: | o1R1s, 2

where U and Ry are the timed until and release operators, e {<, <, >, >}, and k is a function
from S to R. In this work, since we use discrete-time semantics for STL (referred to as DT-STL), the
time interval I is a bounded interval of integers, i.e., I = [a, b], a < b. The timed eventually (F;) and
always (Gj) operators can be syntactically defined through until and release. That is, F;¢ = TUj¢
and Gr¢ = LR;p where T and L represent true and false. The formal semantics of DT-STL over
discrete-time trajectories have been previously presented in [19]. We briefly recall them here.

Boolean Semantics and Formula Horizon. We denote the formula ¢ being true at time k in trajectory
o[so; 0] byo[sy; 0],k E ¢. Wesay that o[sg; 0],k = h(s) >< 0iff h(a[sg; 0] (k)) >< 0. The semantics
of the Boolean operations (A, V) follow standard logical semantics of conjunctions and disjunctions,
respectively. For temporal operators, we say o[s¢ ; 0], k = ¢1Ujg; is true if there is a time k’, s.t.
k' — k € I where ¢, is true and for all times k" € [k, k"), ¢ is true. Similarly, o[s ; 0], k |E ¢1R1¢2
is true if for all times k" with k” — k € I, ¢, is true, or there exists some time k”’ € [k, k”) such that
@1 was true. The temporal scope or horizon of a DT-STL formula defines the last timestep required
to evaluate the formula, o[sg ;0],0 | ¢ (see [48]). For example, the temporal scope of the formula
F[o3](x > 0) is 3, and that of the formula F[3;G[o9](x > 0) is 3 + 9 = 12. We also set the horizon
of trajectory equivalent to the horizon of formula, as we plan to monitor the satisfaction of the
formula by the trajectory.

Quantitative Semantics (Robustness Value) of DT-STL. Quantitative semantics of DT-STL roughly
define a signed distance of a given trajectory from the set of trajectories satisfying or violating

10ur proposed feedback policy explicitly uses time as an input. This approach is motivated by the need to satisfy temporal
tasks, which requires time awareness for better decision-making.

2 Any formula in DT-STL can be converted to a formula in positive normal form using DeMorgan’s laws and the duality
between the Until and Release operators.
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Table 1. Quantitative Semantics of STL

@ pe. k) ® p(w, k)

A(si) = 0 h(si) Flao)V e, P

A i Lk), k U N ,
prAgz  min(p(e1,k), p(2. k) | 01U[4p)02 kle[gﬁfkw](mm(p(wz ), min i plo1,k )))

v k), plo2,k R i K, N
@1Ve2  max(p(e1,k), p(92,k)) | @1R[gp102 e (maX(P(¢2 ) k,/ren[a;fk/)p(m )))
Glap¥ p(. k")

ke [k+ k+b]

the given DT-STL formula. There are many alternative semantics proposed in the literature [2,
18, 19, 58]; in this article, we focus on the semantics from [18] that are shown in Table 1. The
robustness value p(¢, o[so ; 0], k) of a DT-STL formula ¢ over a trajectory o|s, ;0] at time k is
defined recursively as reported in Table 1.> We note that if p(¢, k) > 0 the DT-STL formula ¢ is
satisfied at time k, and we say that the formula ¢ is satisfied by a trajectory if p(¢, 0) > 0.

Prior Smooth Quantitative Semantics for DT-STL. To address non-differentiability of the robust
semantics of STL, there have been a few alternate definitions of smooth approximations of the
robustness in the literature. The initial proposal for this improvement is provided by [50]. Later
the authors in [25] proposed another smooth semantics which in addition is a guaranteed lower
bound for the robustness value that can be even more advantageous computationally. We denote
the smooth robustness of trajectory o|sg ; 0] for temporal specification ¢, with (¢, o[sy ; 0], 0).

Neurosymbolic Smooth Semantics. The prior smooth semantics for gradient computation over
DT-STL [25, 42, 50] perform backward computation on a computation graph that is generated
based on dynamic programming. Although these computation graphs are efficient for forward
computation, they may face computational difficulty for backward computation over the robustness
when the specification is highly complex or its task horizon is noticeably long. Unlike the previous
computation graphs that are based on dynamic programming, the neurosymbolic computation graph
STL2NN [33], directly utilizes the STL tree [18] to generate a feed forward ReLU NN, whose depth
grows logarithmically with the complexity of specification. This makes back-propagation more
feasible for complex specifications. Specifically, the way it formulates the robustness (feed forward
NN) facilitates the back and forward propagation process, by enabling vectorized computation.
However, since STL2NN is exactly identical to the non-smooth robustness introduced in Table 1,
we proposed in [32] a smooth under-approximation for STL2NN replacing the ReLU activation
function with swish() and softplus(), and introduced this as LB4TL, and here we utilize this smooth
semantics.

Problem Definition. In this article, we provide model-based algorithms to learn a policy g+
that maximizes the degree to which certain task objectives and safety constraints are satisfied.
In particular, we wish to learn an NN control policy 7y (or equivalently the parameter values 0),
s.t. for any initial state sy € J, using the control policy g, the trajectory obtained, i.e., o[s ;0]
satisfies a given DT-STL formula ¢. In other words, our ultimate goal is to solve the optimization
problem shown in Equation (3). For brevity, we use F(s, k ; 0) to denote f (sk, g (sk, k)):

0 = arg max mi? [p(p,0[s80;01,0)]], st.V(keZA1<k<K):sg=F(si,k;0). (3)
So€

However, ensuring that the robustness value is positive for all sy € 7 is computationally chal-
lenging. Therefore, we relax the problem to maximizing the min value of the robustness only over

3For brevity, we omit the trajectory from the notation, as it is obvious from the context.
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Fig. 2. This figure shows the symbolic trajectory generated by NN feedback controller, and the computation
graph for DT-STL robustness. The DT-STL robustness is presented as a neurosymbolic computation graph
[33] via ReLU and linear activation functions.

a set of states 7 sampled from the initial states 7, i.e., 0* ~ arg maxy (mins[]ef [p(p,o[so;0], 0)]).

We solve this problem using algorithms based on stochastic gradient descent followed by statistical
verification to obtain high-confidence control policies.

3 Training NN Control Policies

Our solution strategy is to treat each timestep of the given dynamical equation in Equation (1) as a
recurrent unit. We then sequentially compose or unroll as many units as required by the horizon of
the DT-STL specification.

Example 1. Assume a one-step dynamics with scalar state, x € R and scalar feedback control
policy ag = mg(xx) as, Xx1 = f(Xx, mo(xx)). If the specification is F[g3)(x > 0), then, we use three
instances of f(x, mg(xx)) by setting the output of the kth unit to be the input of the (k + 1)th
unit. This unrolled structure implicitly contains the system trajectory, o[xo, ;0] starting from
some initial state x; of the system. The unrolled structure essentially represents the symbolic
trajectory, where each recurrent unit shares the NN parameters of the controller (see Figure 2 for
more detail). By composing this structure with the robustness semantics representing the given
DT-STL specification ¢, we have a computation graph that maps the initial state of the system in
Equation (1) to the robustness degree of ¢. Thus, training the parameters of this resulting structure
to guarantee that its output is positive (for all initial states) guarantees that each system trajectory
satisfies ¢.

However, we face a challenge in training the NN controller that is embodied in this structure.

Challenge: Since our computation graph resembles a recurrent structure with repeated units
proportional to the formula’s horizon, naive gradient-based training algorithms struggle with
gradient computation when using back-propagation through the unrolled system dynamics. In
other word, the gradient computation faces the same issues of vanishing and exploding gradients
when dealing with long trajectories.

Controller Synthesis as an Optimization Problem. In order to train the controller, we solve the
following problem:

0" = argmax, | min [p(¢, sy ;6],0)] ], s.t. o[sg;0](k+1)=F(sg, k;0). (4)

soel
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We thus wish to maximize the expected value of the robustness for trajectories starting in states
uniformly sampled from the set of initial states. An approximate solution for this optimization
problem is to train the NN controller using a vanilla back-propagation algorithm to compute the
gradient of the objective function for a subset of randomly sampled initial states 7 c I, and
updates the parameters of the NN controller using this gradient.

Remark 3.1. A training-based solution to the optimization problem does not guarantee that the
specification is satisfied for all initial states s, € 7. To tackle this, we can use a methodology like
[33] that uses reachability analysis to verify the synthesized controller. However, given the long
time horizon, this method may face computational challenges. An alternative approach is to eschew
deterministic guarantees, and instead obtain probabilistic guarantees (see Section 5.6).

4 Extension to Long Horizon Temporal Tasks and Higher Dimensional Systems

In this section, we introduce an approach to alleviate the problem of exploding/vanishing gradients
outlined in the previous section. Our solution approach is inspired by the idea of using dropout
layers [64] in training deep NNs. In our approach, we propose a sampling-based technique, where
we only select certain time-points in the trajectory for gradient computation, while using a fixed
older control policy at the non-selected points. Our approach to gradient sampling can be also
viewed through the lens of stochastic depth, as suggested by [36], which involves sampling layers
followed by identity transformations provided in ResNet. However, our methodology differs as we
employ a distinct approach that is better suited for control synthesis within the STL framework.
Before starting our main discussion on this topic, we first provide an overview of this section:

—In Section 4.1, we introduce the notion of gradient approximation through sampling the trace,
and justify why it is a suitable replacement for the original gradient, in case the original
gradient is not accessible (e.g., long-horizon tasks).

—In Section 4.2, we put forward the notion of critical time which states that the robustness
of DT-STL is only related to a specific timestep. We then propose the idea of including this
timestep into our gradient approximation technique.

—In Section 4.3, we bring up the point that gradient approximation using the critical time may,
in some cases, result in failure for training. In these cases, we suggest approximating the
DT-STL robustness as a function of all the trace, that is the smooth version of the robustness
semantics.

—In Section 4.4, we explain how to approximate the gradient for both of the scenarios we
proposed above (e.g., critical time and smooth semantics). We also introduce Algorithm 1
which concludes Section 4.

4.1 Sampling-based Gradient Approximation Technique

We propose to sample random timesteps in the recurrent structure shown in Figure 1 and at
the selected timestep, we do an operation that is similar to dropping the entire neural controller.
However, approximating the gradient by dropping out the controller at several timesteps may result
in inaccurate approximation. We compensate for this by repeating our modified dropout process
and computing cumulative gradients. Restriction of dropout to sample timesteps results in less
number of self-multiplication of weights and therefore alleviates the problem of vanishing/exploding
gradient. To ensure that the trajectory is well-defined, when we drop out the controller unit at a
selected timestep, we replace it with a constant function that returns the evaluation of the controller
unit (at that specific timestep) in the forward pass. We formalize this using the notion of a sampled
trajectory in Definition 4.1.
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Definition 4.1 (Sub-trajectory and Sampled trajectory). Consider the set of N different sampled
timesteps 7 = {ty = 0,t1,t,-- -, ty} sampled from the horizon K = {0,1,2,---,K}, and also
the initial state sy, and the control parameters /) in the gradient step j. The sub-trajectory,
sub(o[so AR T) = S0.5t,,5¢,, "+ » Sty is simply a selection of N states from o[sy ;0] with
timesteps t; € 7. In other words, for all i € {0,1,---, N}: sub(c[so ;09)],T) (i) = o[so ;0 ](t;).
Now, consider the sub-trajectory sub(c)'[so ;HU)], T), and a sequence of actions ag,a, -+ ,ag_1
resulting from s, and 8). For any t; € 7, we drop out the NN controllers on timesteps t; + 1, t; +
2,-++,tiy1 — 1 and replace them with the actions a4, az4s,, - - - a4,,,—1. This provides a variant of
sub-trajectory called sampled trajectory, and we denote it by smpl(c s ; 00, 7). In other words,
for any timestep t; € 7, assuming the function f;; : SX© — S (for brevity, henceforth, we denote
fie1 (s ;6)) by £7) (s)):

£7)(5) = £(F(C- £ F(s.1::07), arer, ).azer). ). 2gy—2)s A1),
we have smpl(c sy AR 7)) (0) = so, and forall i € {0,1,---, N — 1}, we have,

smpl(oTso ;01,7 ) i+ 1) = £ (smpl(oTs0 : 01,7 ) (1))
Remark 4.2. The sub-trajectory sub(o/[so ;0U)],7") with parameters 6/) can also be recursively
defined as

sub(a[so ;90)],7) (i+1)
=F(---( F(F(sub(a[so;Q(j)],T) (). t; G(j)),ti+1;G(j))---),ti+1—1;0(j)).

Notice that the parameters 6 () are referenced multiple times while in smpl(o([so ; 6], T) only
once.

Figure 5 presents Definition 4.1 through visualization. This definition replaces the set of selected
nodes—on a randomly selected timestep—with its pre-computed evaluation. This set of nodes are
indeed a controller unit on the timesteps sampled to apply dropout.* Excluding the timesteps with
fixed actions, we then name the set of states on the remaining timesteps—as the sampled trajectory,
and we denote it as smpl(o[so 00U, 7).

Example 2. Let the state and action at the time k be x; € R and a; € R, respectively. The
feedback controller is ar = 7p(xx, k), 0 € R? and the dynamics is also xxy; = f(Xg, ax), Xo =
1.15. Let’s also assume a trajectory of horizon 9 over time-domain (i.e., K = {i | 0 < i <
9}) with a trajectory o[xq ;0] = xo, X1, X2, X3, X4, X5, X6, X7, X3, X9. SUppose, we are in the gradi-
ent step j = 42, and in this iteration, we want to generate a sampled trajectory with N = 3
timesteps, where, 7 = {0,#; = 1, ¢, = 3, t3 = 6}. The control parameters at this gradient step are also
642 = [1.2,2.31, —0.92] that results in the control sequence a = 0,0.1,0.2,0.3,0.4, 0.5, 0.6, 0.7, 0.8.
Given this information, we define the sampled trajectory as the sequence smpl(c[xo 042, T)=
X, X1, X3, X¢, Where,

%3 = f(F(%1,1;642),02)

% = f1(42)(xo) = F(x0,0;012), —1
%5 = £ (1) = £ F(31,1:0), 0.2) = ;
4 \
% = f3(42) (%3) = £(£( F(%s,3 ;9(42))’ 0.4), 0.5). )':E.’-'(xn,l);f?“”) %6 = £ £( F(%3,3:699),04),055)

0 1 2 3 4 5 6 7 8 9

4The set of sampled timesteps for dropout is in fact the set-difference between K and 7, where 7 is the set of sampled
times steps that is generated to define the sampled trajectory.
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Algorithm 1: Gradient Sampling and Training the Controller for Long Horizon Tasks

1 Input: €, M, N, N;, Ny, 9(0), o, p, f j=0
2 while p?(c[sy;0U)]) < 5 do

3 sp < Sample from 1 use_smooth « False j« j+1
4 if use_smooth = False then
5 01, 6 — 0

// 6,&0; are candidates for parameter update via critical predicate and waypoint.
// The following loop updates 0; and 6, via cumulation of N; sampled gradients
6 fori—1,--- ,N;do

7 o[sg;601], o[so;62] « Simulate the trajectory via 04, 0, and s
8 k*, h*(sgx) < obtain the critical time and the critical predicate
9 T, smpl(o[so;01], T!) «
sample set of time steps 7! ={0,#,..,ty = k*} and its sampled trajectory
10 72, smpl(c[so ;02], T2) —
sample set of time steps T2 = {0,#1,..,tN} and its sampled trajectory
n T h* (smpl(olso s 011, 7' (N))  dy = [0.7/00]ampiea 01 — 01 + Adam(dy/Ny)
12 L NIV A (smpl(a[so 5021, TZ)) dy — [aj/ae]sampled 0y « 02 + Adam(dz2/N1)

// Update the control parameter with €, if it increases the robustness value
// Otherwise update the control parameter with 64 if it increases the robustness value
// Otherwise, check for non — differentiable local maximum

13 if p? (c[s0;62]) > p?(c[s0;0)]) then V) — g,

14 else if p? (c[so;61]) > p?®(c[so;60Y)]) then U+ — g,
15 else

16 t—1 update « True

17 while update & (use_smooth=False) do

18 t—t/2 0—0D e, -0U)

// Keep the gradient direction & reduce the learning rate

// Update the control parameter with § if it increases the robustness value

19 if p(¢,0[s0:01,0) > p?(c[se;0U)]) then |0U+D) —§ update « False
20 else if £ < € then
21 L use_smooth « True // swap the objective with p if f<e
22 if use_smooth = True then
23 03 — o) // 03 is the candidate for parameter update via smooth semantic p
// The following loop updates 603 via cumulation of N, sampled gradients
24 fori«—1,---,N>do
25 T4, smpl(o(sy;0s],7T9),q€l,--- M«
Make M sets of sampled time steps from Equation (5) & their sampled trajectories
26 J<p ds — [aj/ae]sampled 03 «— 05 + Adam(ds/Nz)
27 oU) — g,

where the constants 0.2,0.4,0.5 are the 3rd, 5th, and 6th elements in the pre-evaluated control
sequence a, respectively.

4.2 Including the Critical Predicate in Time Sampling

While it is possible to select random time-points to use in the gradient computation, in our prelimi-
nary results, exploiting the structure of the given DT-STL formula—specifically identifying and
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using critical predicates [1]—gives better results. Proposition 3.1 in [1] introduces the notion of
critical predicate. Here, we also provide this definition as follows:

Definition 4.3 (Critical Predicate). As the robustness degree of DT-STL is an expression consisting
of min and max of robustness values of predicates at different times, the robustness degree is
consistently equivalent to the robustness of one of the predicates h(-) at a specific time. This specific
predicate h* > 0 is called the critical predicate, and this specific time k* is called the critical time.

Example 3. We again consider Example 1 to clarify the notion of critical predicate. In this
example, we have four predicates of a unique type, e.g., h(xx) = x; > 0. Thus, the robustness
values of the predicate h(x) > 0 at time-points 0, 1, 2, 3 are, respectively, X, X1, X5, X3. Assume the
trajectory is o[x¢ ; 0] = [xo = 1, X1 = 2, X, = 3, x3 = 1.5]. Since the robustness function is defined
as p(¢,0) = max (h(x9), h(x1), h(x2), h(x3)), the robustness value is equivalent to h(x;). Thus,
we can conclude, the critical predicate is h* = h(x;) > 0 and the critical time is k* = 2.

The critical predicate and critical time of a DT-STL formula can be computed using the same
algorithm used to compute the robustness value for a given DT-STL formula. This algorithm is
implemented in the S-Taliro tool [7].

4.3 Safe Re-Smoothing

A difficulty in using critical predicates is that a change in controller parameter values may change
the system trajectory, which may in turn change the predicate that is critical in the robustness
computation. Specifically, if the critical predicate in one gradient step is different from the critical
predicate in the subsequent gradient step, our gradient ascent strategy may fail to improve the
robustness value, as the generated gradient in this gradient step is local.

Example 4. To clarify this with an example, we present a specific scenario in Figure 3. This figure
shows the robustness value as a non-differentiable function of control parameters, that is a piece-
wise differentiable relation where every differentiable segment represents a specific critical predicate.
The system dynamics is X1 = 0.8x,% — e~ ** sin(ue)’ where the system starts from xo = 1.15 and
the controller is u; = tanh(6xy). The robustness is plotted based on control parameter -1 < 6 < 1
and is corresponding to the formula ® = Fg45) (G[O,s] (x > 0)) A Gjgs0] (1 — 10x > 0). Assume
the training process is in the 15th gradient step of back-propagation with § = 8115 = 0.49698
where the critical predicate for this control parameter is denoted by p; := (x; > 0). The gradient
generated from the critical predicate p; suggests increasing the value of 8, which should result in
6 = 0119 = 0.50672. However, applying the gradient would move the parameter value to a region
of parameter space where the critical predicate is p, := (1 — 10x45 > 0). In this case, the gradient
generated from the critical predicate p; is local to this gradient step, as the critical predicate shifts
from p; to p,. Our approach in this scenario is to first reduce the learning rate. If this does not
lead to an increase in the robustness value, we then transition to smooth semantics, which takes
all predicates into account. The scenario proposed in this figure shows this local gradient may
result in a drastic drop in the robustness value from 8.09 to —6.15. Therefore, the gradient of critical
predicate is useful, only if the gradient step preserves the critical predicate.

Given a predefined specification ¢, a fixed initial state, differentiable controller with parameter
0, and a differentiable model, the robustness value is a piece-wise differentiable function of control
parameter, where each differentiable segment represents a unique critical predicate (see Figure 4).
However, the Adam algorithm® assumes a differentiable objective function. Therefore, we utilize

5 In this article, we utilize MATLAB’s adamupdate() library, https://www.mathworks.com/help/deeplearning/ref/
adamupdate.html
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Fig. 3. This figure shows a common challenge in using critical predicate for control synthesis. This figure
presents the robustness as a piece-wise differentiable function of control parameter 6 (with resolution, 0.00001),
where each differentiable segment represents a distinct critical predicate.

non-differentiable local maxima
‘/V \

Fig. 4. This figure shows an example for the relation between control parameters and the resulting robustness
as a piece-wise differentiable function. Assuming a fixed initial state, every control parameter is corresponding
to a simulated trajectory, and that trajectory represents a robustness value. This robustness value is equal
to the quantitative semantics for the critical predicate. Within each differentiable segment in this plot, the
control parameters yield trajectories associated with a unique critical predicate.

p(60; model, task)

the critical predicate as the objective function when we are in the differentiable segments, and
we replace it with the smooth semantics of DT-STL robustness, g, at the non-differentiable local
maxima where the critical predicate is updated. We refer to this shift between critical predicate
and smooth semantics as safe re-smoothing. However, it is practically impossible to accurately
detect the non-differentiable local maxima; thus we take a more conservative approach and we
instead, utilize p at every gradient step when the critical predicate technique is unable to improve
the robustness.

4.4 Computing the Sampled Gradient

We now explain how we compute an approximation of the gradient of original trajectory (that
we call the original gradient). We call the approximate gradient from our sampling technique
as the sampled gradient. In the back-propagation algorithm—at a given gradient step j and with
control parameter §/) —we wish to compute the sampled gradient [9.7 /20" )]sampled- The objective
function J in our training algorithm can be either the robustness for critical predicate or the
smooth semantics for the robustness of trajectory, p. The former is defined over a single trajectory
state (i.e., at critical time) while the latter is defined over the entire trajectory. In response, we
propose two different approaches for trajectory sampling for each objective function:
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Fig. 5.
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This figure depicts the sampling-based gradient computation. In our approach, we freeze the controller

at some time-points, while at others we assume the controller to be a function of its parameters that can vary
in this iteration of back-propagation process. The actions that are fixed are highlighted in red, whereas the
dependent actions are denoted in black. The red circles represent the timesteps where the controller is frozen.

(1)

In case the objective function J is the robustness for critical predicate, it is only a function
of the trajectory state sy~. Thus, we sample the timesteps as, 7 = {0, t1, 5, -+ , N}, IN = k*
to generate a sampled trajectory smpl(c[so ; 01)], 7) that ends in critical time. We utilize
this sampled trajectory to compute the sampled gradient. The original gradient regarding
the critical predicate can be formulated as 0.7/96 = (0. /9sk+) (Is+/30), where s =
sub(o[so ; 0], 7)) (N). However, we define J on our sampled trajectory and propose the
sampled gradient as

I
a0 sampled_ 8smpl(o[so;9(j)],7') (N)

09 osmpl(a sy ;0] T) (N)

30 ’
In case the objective function is the smooth semantics for the robustness p, it is a function of
all the trajectory states. In this case, we consequently segment the trajectory into M subsets,
by random time sampling as 79 = {0, tf, tzq, ‘e ,tzj} CcK, qe{1,---,M} (see Example 5),
where

(Vg.q € {1,--- M} TInTT =oha(K= ] 79 )
ge{1, - .M}

Let’s assume the sub-trajectories sub(a[so ;O(j)],Tq) = 80,89, 84 and their corre-
sponding sampled trajectories as smpl(o/[so ;007 779). As the sampled timesteps 79, q €
{1,---, M} have no timestep in common other than 0 and their union covers the horizon %,
we can reformulate the original gradient (9. /96 = ZIk(:l (09 |0si)(0sy/90)) as

0T < ( 0T ) dsub(c[se ;09)],779)

90— £ \asub(ose; 0], 779) 0 '

However, in our training process to compute the sampled gradient, we relax the sub-
trajectories sub(o([so ;G(j)],Tq),q € {1,---, M} with their corresponding sampled tra-
jectories smpl(o[so :00)], 7°9). In other words,

[aj] B M T asmpl(a[sp; 0], 779)
a0 sampled - Z (85mp|(0’[80 ;g(j)],Tq)) a0 .

q=1
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Remark 4.4. Unlike dsy- /90 and dsub(c[so;0Y)],79)/30,q € {1,---,M} that are prone to
vanish/explode problem, the alternatives, asmpl(a[s¢ ; 0], 7) (N) /30, and asmpl(a[s¢ ; 0], T7) /30,
g € {1,---, M}, can be computed efficiently.®

Example 5. Here, we propose an example to show our methodology to generate sampled
trajectories when J = p. We again consider Example 2, but we sample the trajectory with M = 3
sets of sampled timesteps 7! = {0, 2, 4,9}, 72={0,578},and 7> = {0, 1,3, 6}. Here, the timesteps
are sampled such that their intersection is {0} and their union is K. The resulting sampled trajectory
for 71 is smpl(o[x ; 0142 ], T1) = x0, X2, X4, X9, Where

%y = 1( F(%2,2;092),03)

%o = £ (xo) = £( F(x0,0;6*)), 0.1),

R4 = £%) (%2) = £( F(R0,25042)), 0.3), -

K9 = £1* (k) = £(£(£(£( F(ka,450?)), 0.5), 0.6), 0.7), 0.8),

%o = f(f( F(f( F(%4,4;0%2),05),06),0.7),0.8)
o 1 2 3 4 5 6 7 8 9

and the resulting sampled trajectory for 772 is smpl (o[xg ; 0“?], 72) = xq, ks, X7, X5, where

%7 =f( F(%5,5:6¢?),06)

&5 = £1*%) (x0) = f( £(£( £( F(x0,0:0“?)), 0.1), 0.2), 0.3), 0.4),

i = 1'% (k) = £ F(35,5;042), 0.6), =

%5 = £ (%7) = F(%7,7;012),

g = F(%7,7;:0%)

0 1 2 3 4 5 6 7 8 9

and finally, the resulting sampled trajectory for 77 is smpl (¢[xo ; 0“4 ], 772) = xo, %y, X3, %6 that
has been previously explained in Example 2. We emphasize that the introduced sampled trajectories
are exclusively generated for gradient step j = 42 and we perform a new random sampling for the
next iteration.

Remark 4.5. At the start of the training process, we can envision a desired path for the model
to track. Tracking this path may not be sufficient to satisfy the temporal specification, but its
availability is still valuable information, which its inclusion to the training process can expedite
it. Therefore, we also utilize a desired path to generate a convex and efficient waypoint function
(denoted by TP (o [so ;8])) for our training process. However, Algorithm 1 performs effectively
even without the waypoint function. Section 5.3.1 explores this aspect using a numerical example.
Nonetheless, integrating a waypoint function enhances the efficiency of the training process.

We finally present our overall training procedure in Algorithm 1. Here, we use p?(c[so ;0]) as
shorthand for the non-smooth robustness degree of o [sg ; 0] w.r.t. ¢ at time 0, i.e., p(¢@, o[so ; 0], 0).
We terminate the algorithm in line 2 if the robustness is greater than a pre-specified threshold
p > 0. We also evaluate the performance of the algorithm through challenging case studies. During
each iteration of this algorithm, we compute the robustness value for an initial state s, selected
from the pre-sampled set of initial states 7 in line 3. This selection can be either random, or the
initial state with the lowest robustness value in the set 7. The Boolean parameter use_smooth
is provided to toggle the objective between robustness of the critical predicate and the smooth
robustness for the DT-STL formula. We initialize this parameter use_smooth in line 3 to be False

The efficiency results from the control parameters @ repeating in fewer timesteps over the trajectory, as most of them are
fixed.
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Table 2. Results on Different Case Studies

Case Study Temporal  System Time NN Controller Number of Runtime  Optimization Setting
Task Dimension  Horizon Structure Iterations  (seconds) [M,N, Ny, Ny, €,b]
12-D Quad-rotor @3 12 45 steps [13,20,20,10,4] 1,120 6,413.3 [9, 5, 30, 40, 1072, 5]
Multi-agent 0 20 60 steps [21,40,20] 2,532 62982  [12,5,30, 1,107, 15]
6-D Quad-rotor and Frame @5 7 1,500 steps  [8,20,20,10,4] 84 443.45 [100, 15, 30, 3, 1072, 15]
Dubins car %6 2 1,000 steps [3,20,2] 829 3,728 [200, 5, 60,3, 1075, 15]

Here, b is the hyper-parameter we utilized to generate LB4TL in [32].

and further update it to True in line 21, in case the gradient from critical predicate is unable to
increase the robustness. The lines 18, 19, and 21 aim to improve the detection of non-differentiable
local maxima by employing a more accurate approach. This involves maintaining the direction
of the gradient generated with the critical predicate, and exponentially reducing the learning
rate until a small threshold € is reached. If, even with an infinitesimal learning rate, this gradient
fails to increase the robustness, it suggests a high likelihood of being in a non-differentiable local
maximum.

5 Experimental Evaluation

In this section, we evaluate the performance of our proposed methodology. We executed all
experiments for training with Algorithm 1 using our MATLAB toolbox.” These experiments were
carried out on a laptop PC equipped with a Core i9 CPU. In all experiments performed using
Algorithm 1, we utilize LB4TL as the smooth semantics. We also present an experiment in Section 5.5
to empirically demonstrate that NN feedback controllers provide robustness to noise compared to
open-loop alternatives. Finally, we conclude this section with statistical verification of controllers.?

First, we provide a brief summary of results on evaluation of Algorithm 1. Following this, we
elaborate on the specifics of our experimental configuration later in this section.

Evaluation Metric. We evaluate the effectiveness of our methodology outlined in Algorithm 1
through four case studies, each presenting unique challenges. First, we present two case studies
involving tasks with long time horizons:

—6-dimensional quad-rotor combined with a moving platform with task horizon K = 1,500
timesteps.
—2-dimensional Dubins car with task horizon K = 1,000 timesteps.

Subsequently, we present two additional case studies characterized by high-dimensional state
spaces:

—20-dimensional multi-agent system of 10 connected Dubins cars with task horizon K = 60
timesteps.
—12-dimensional quad-rotor with task horizon K = 45 timesteps.

Table 2 highlights the versatility of Algorithm 1 in handling above case studies. We use a diverse
set of temporal tasks which include nested temporal operators and two independently moving
objects (quad-rotor and moving platform case study). The detail of the experiments are also discussed
as follows.

"The source code for the experiments is publicly available from https://github.com/Navidhashemicodes/STL_dropout
80ur results show that integrating a waypoint function in Algorithm 1 enhances the efficiency of the training process to a
small extent.
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Fig. 6. This figure shows the simulation of trained control parameters to satisfy the specified temporal task
in companion with the simulation result for initial guess for control parameters.

5.1 12-Dimensional Quad-Rotor (Nested 3-Future Formula)

We assume a 12-dimensional model for the quad-rotor of mass, m = 1.4 kg. The distance of rotors
from the quad-rotor’s center is also £ = 0.3273 m and the inertia of vehicle is J, = J, = 0.054 and
J. = 0.104 (see [10] for the detail of quad-rotor’s dynamics). The controller sends bounded signals
6y, 01, 0p,0 < 5f < 1 to the right, left, back, and front rotors, respectively, to drive the vehicle. Each
rotor is designed such that given the control signal § it generates the propeller force of k;6 and also
exerts the yawing torque k,d into the body of the quad-rotor. We set k; = 0.75 mg such that, the net
force from all the rotors cannot exceed 3 times of its weight (g = 9.81). We also set k, = 1.5¢k; to
make it certain that the maximum angular velocity in the yaw axis is approximately equivalent to
the maximum angular velocity in the pitch and roll axis. We use the sampling time ¢t = 0.1 seconds
in our control process. The dynamics for this vehicle is proposed in Equation (6), where F, 74, 79, 7y
are the net propeller force, pitch torque, roll torque, and yaw torque, respectively. We plan to train
an NN controller with tanh() activation function and structure [13, 20, 20, 10, 4] for this problem
that maps the vector, [s]:, k]T to the unbounded control inputs [a; k, @z, a3, a4x] " - In addition to
this, the trained controller should be valid for all initial states,

I= {so | [<0.1,-0.1,-0.1,0051] " <o < [ 0.1, 0.1, 0.1,69x1]T}

x1 = cos(xg) cos(x9)x4 + (sin(x7) sin(xs) cos(xg) — cos(x7) sin(x9))xs

+(cos(x7) sin(xg) cos(x9) + sin(x7) sin(x9))xs
%z = cos(xg) sin(x9)x4 + (sin(x7) sin(xs) sin(xg) + cos(x7) cos(x9))xs F k1 k1 k1 ki1 [6r
+(cos(x7) sin(xg) sin(x9) — sin(x7) cos(x9))xs 5| _| 0 —tky 0 thi| |6
x3 = sin(xg) x4 — sin(x7) cos(xg)xs — cos(x7) cos(xg)xe 9|~ | tky 0 —tky 0 |5
X4 = X12X5 — X11X%6 — 9.81sin(xg) Ty —ks ks —ks ko | |61
X5 = X10Xe — X12X4 + 9.81 cos(xg) sin(x7)
X6 = X11X4 — X10%5 + 9.81 cos(xg) cos(x7) — F/m S = 0.5(tanh (0.5 a;) +1),
%7 = %10 + (sin(x7) (sin(xg) /cos(xg)))x11 + (cos(x7) (sin(xs)/cos(xs)))x12 8y = 0.5(tanh (0.5 az) + 1),
xg = cos(x7)x11 — sin(x7)x12 S8p = 0.5(tanh(0.5 a3) + 1),
X9 = (sin(x7)/cos(xg))x11 + (cos(x7)/cos(xg))x12 87 = 0.5(tanh(0.5 a4) + 1),
xX10 = = (Jy = J) [ ) xnxiz + (1/ ) g ay, az, as, a4 € R.
X1 = (e = Je)/Jy)xoxiz + (1/Jy)) 7o
X12 = (l/]z)Tg//

(6)

Figure 6 shows the simulation of quad-rotor’s trajectories with our trained controller parameters.
The quad-rotor is planned to pass through the green hoop, between the 10th and 15th timestep.

ACM Transactions on Cyber-Physical Systems, Vol. 8, No. 4, Article 42. Publication date: November 2024.



42:16 N. Hashemi et al.

Once it passed the green hoop it should pass the blue hoop in the future 10th to 15th timesteps and
again once it has passed the blue hoop it should pass the red hoop again in the future next 10 to 15
timesteps. This is called a nested future formula, in which we design the controller such that the
quad-rotor satisfies this specification. Assuming p as the position of quad-rotor, this temporal task
can be formalized in DT-STL framework as follows:

@3 = F10.15] (p € green_hoop A Fig15] (p € blue_hoop A Fjy15)(p € red_hoop) ) ). (7)

Figure 6 shows the simulation of trajectories, generated by the trained controller. The black
trajectories are also the simulation of the initial guess for the controller, which are generated
completely at random and are violating the specification. We sampled 7 with nine points, that are
the corners of I including its center. The setting for gradient sampling is M = 9, N = 5. We trained
the controller with p = 0, in Algorithm 1 with optimization setting (N; = 30, N, = 40, € = 107°)
over 1,120 gradient steps (runtime of 6,413.3 seconds). The runtime to generate LB4TL is also
0.495 seconds and we set b = 5 for it. Algorithm 1 utilizes gradients from waypoint function, critical
predicate, and LB4TL, 515, 544, and 61 times, respectively.

5.2 Multi-Agent: Network of Dubins Cars (Nested Formula)

In this example, we assume a network of 10 different Dubins cars that are all under the control of
an NN controller. The dynamics of this multi-agent system is

xi
Lr
that is, a 20-dimensional multi-agent system with 20 controllers, 0 < vl<10teR, i€, --,10.
Figure 7(a) shows the initial position of each Dubins car in R? in companion with their corresponding
goal sets. The cars should be driven to their goal sets, and they should also keep a minimum distance
of d = 0.5 m from each other while they are moving toward their goal sets. We assume a sampling

time of §t = 0.26 seconds for this model, and we plan to train an NN controller with tanh()

activation function and structure [21, 40, 20] via Algorithm 1. For this problem, the controller maps
10

i i o' « tanh(0.54}) + 1,a’ € R
_[v cos( )] 1 1 ’ el 10, )

o' sin(6%)

0" —al eR

. Note that S;; = (xi,y]’;). This

the vector, [SZ, k]™ to the unbounded control inputs {ai a; k} L

Lk’ i1
temporal task can be formalized in DT-STL framework as follows:

10

Q4= /\ (F[2048)Glo.12] (8" € Goal')) /\ /\ Grogo) (lIs" = ¢/l > d).

i=1 i#]
i,je{1,---,10}
Figure 7(c) shows the simulation of the trajectories for the trained controller, and Figure 7(b)
presents the simulation of trajectories for the initial guess for control parameters. We observe
that our controller manages the agents to finish the task in different times. Thus, we present the
timestamps with asterisk markers to enhance the clarity of the presentation regarding satisfaction
of the specification in Figure 7(c). Although the task is not a long horizon task, due to the high
dimension and complexity of the task, we were unable to solve this problem without time sampling.
However, we successfully solved this problem with Algorithm 1 within 6,298 seconds and 2,532
gradient steps.

We also set the optimization setting as M = 12, N =5,N; =30, N, = 1,€ = 107>, The runtime to
generate LB4TL is also 6.2 seconds and we set b = 15 for it. Over the course of the training process
we utilized 187, 1,647, and 698 gradients from waypoint function, critical predicate, and LB4TL,
respectively.
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Fig. 7. These figures show a multi-agent system of 10 connected Dubins cars. (a) shows the start (blue dots)
and goal points (green squares) for agents. (b) and (c) show simulated system trajectories with both the initial
untrained controller and the centralized NN controller trained with Algorithm 1. The controller coordinates
all cars to reach their respective goals between 20 and 48 seconds, and then stay in their goal location for at
least 12 seconds. It also keeps the cars at a minimum distance from each other. We remark that the agents
finish their tasks (the first component of ¢4) at different times.

5.3 6-Dimensional Quad-Rotor and Moving Platform: Landing a Quad-Rotor

We use a 6-dimensional model for quad-rotor dynamics as follows:
[3’( Uy oz 9y Oy z)z] = [vx vy v, gtan(u;) -—gtan(u;) g- ll3], where,
u; < 0.1tanh(0.1a;), wup < 0.1tanh(0.1a;), us < g-—2tanh(0.1a3), aj,azas €R. (9)

Let x = (x,y,z) denote the quad-rotor’s position and v = (vy,v,,0;) denote its velocity along
the three coordinate axes. The control inputs uy, uz, u3 represent the pitch, roll, and thrust inputs,
respectively. We assume that the inputs are bounded as follows: —0.1 < uy,u; < 0.1, 7.81 < u3 <
11.81.

The horizon of the temporal task is 1,500 timesteps with 6t = 0.05s. The quad-rotor launches at
a helipad located at (xy, 3o, z0) = (—40,0,0). We accept a deviation of 0.1 for x, and y, and train
the controller to be valid for all the states sampled from this region. The helipad is also 40 m far
from a building located at (0, 0,0). The building is 30 m high, where the building’s footprint is
10 m X10 m. We have also a moving platform with dimension 2 m X 2 m X 0.1 m that is starting
to move from (10,0, 0) with a variable velocity, modeled as, % = uy. We accept a deviation of 0.1
for xg , and our trained controller is robust with respect to this deviation. We define T with nine
samples located at the corners of 7 and the center of 7. The frame is required to keep a minimum
distance of 4.5 m from the building. We train the NN controller to control both the quad-rotor and
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Fig. 8. This figure shows the simulated trajectory for trained controller in comparison to the trajectories for
naive initial random guess. The frame is moving with a velocity determined with the controller that also
controls the quad-rotor.

the platform to ensure that the quad-rotor will land on the platform with relative velocity of at
most 1 m/s in x, y, and z directions, and its relative distance is at most 1 m in x, y direction and
0.4 m in z direction. Let p = (x, y, z) be the position of the quad-rotor, this temporal task can be
formulated as a reach-avoid formula in DT-STL framework as follows:

@5 = Gyos500] (p ¢ obstacle) A Fi1100,1500] (P € Goal) A Gyg,1500] (x}: > 9.5), (10)

where the goal set is introduced in Equation (11). We plot the simulated trajectory for the center
of set of initial states 7, in Figure 8. The NN controller’s structure is specified as [8, 20, 20, 10, 4]
and uses tanh() activation function. We initialize it with a random guess for its parameters. The
simulated trajectory for initial guess of parameters is also depicted in black. The setting for gradient
sampling is M = 100, N = 15. We trained the controller with p = 0, over 84 gradient steps (runtime
of 443 seconds). The runtime to generate LB4TL is also 7.74 seconds and we set b = 15, for it. In
total, Algorithm 1 utilizes gradients from waypoint function, critical predicate, and LB4TL, 5,71,
and 8 times, respectively.

g ]
-1 _
Yk 1 Tk xl{
Zk - Yk
0.11 0.6
Goal = { [Vxk| | <| % |< (11)
0 0 Z)x k 2
yk 1 ’
Oz k Uyk
xf -1 Uz k
L Xk |

5.3.1 Influence of Waypoint Function, Critical Predicate, and Time Sampling on Algorithm 1. Here,
we consider the case study of landing a quad-rotor, and perform an ablation study over the impact
of including (1) critical predicate, (2) waypoint function, and (3) time sampling, in the training
process via Algorithm 1. To that end, we compare the results once these modules are excluded from
the algorithm. In the first step, we remove the waypoint function and show the performance of
the algorithm. In the next step, we also disregard the presence of critical time in time sampling
and train the controller with completely at random time sampling, and finally we examine the
impact of time sampling on the mentioned results. Table 3 shows the efficiency of training process
in each case, and Figure 9 compares the learning curves. Our experimental result shows the control
synthesis for quad-rotor (landing mission) faces a small reduction in efficiency when the waypoint
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Table 3. Ablation Studies for Picking Different Options for the Optimization

Process
Learning Curve’s Waypoint  Critical Time Number of Runtime
Color in Figure 9 Function = Predicate  Sampling Iterations
S v v v 84 443 seconds
J— X v v 107 607 seconds
S v X v DNF[—-0.74] 6971 seconds
X X v DNF[-1.32] 4822 seconds
S v v X DNF[—-4.52] 1505 seconds
X v X DNF[-11.89] 1308 seconds

This table shows the results of the training algorithm in case study 5.3.1. We indicate that
the training does not result in positive robustness within 300 gradient steps by DNF (did
not finish) with the value of robustness in iteration 300 in brackets. The table represents
an ablation study, where we disable the various heuristic optimizations in Algorithm 1
in different combinations and report the extent of reduction in efficiency. We use v/, X to
respectively indicate a heuristic being included or excluded. The time sampling technique is
utilized in all the experiments.

:

robustness value

bouddhddbo

P NN A
E»n.ﬁn./l ﬂ.[\/\.

50 100 . 150 200 250 300
iteration

o

Fig. 9. This figure shows the learning curve for training processes. Note, the figure has been truncated and
the initial robustness for all the experiments at iteration 0 is —47.8. This figure shows that Algorithm 1 in the
presence of the waypoint function concludes successfully in 84 iterations while when the waypoint function is
not included, it terminates in 107 iterations. The algorithm also fails if the critical predicate is not considered
in time sampling.

function is disregarded and fails when the critical predicate is also removed from time sampling.
This also shows that control synthesis fails when time sampling is removed.

5.4 Dubins Car: Growing Task Horizon for Dubins Car (Ablation Study on Time
Sampling)

In this experiment, we consider Dubins car with dynamics,

[)'c B [vcos(@)
il =

v sin(6)

and present an ablation study on the influence of gradient sampling on control synthesis. Given a
scale factor a > 0, a time horizon K, and a pre-defined initial guess for control parameters 0 we
plan to train a tanh() NN controller with structure [3, 20, 2], to drive a Dubins car, to satisfy the
temporal task, g := Fjoox k] (p € Goal) A Gox) (p ¢ Obstacle), where p = (x,y) is the position
of Dubins car. The Dubins car starts from (xo, yo) = (0, 0). The obstacle is also a square centered on
(a/2, a/2) with the side length 2a/5. The goal region is again a square centered on (9a/10, 9a/10)
with the side length a/20. We solve this problem for K = 10, 50, 100, 500, 1,000 and we also utilize
a = K/10 for each case study. We apply standard gradient ascent (see Algorithm 2) to solve each
case study, both with and without gradient sampling.

] , 0« tanh(0.5a;)+1,a; €R, 6« ay€R,
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Algorithm 2: Standard Gradient Ascent Backpropagation via Smooth Semantics

1 Initialize variables

2 while (mirl (p((p,cf[so ;9(1)],0)) < p) do

soel
3 so < Sample from J
4 olso ;0] « Simulate using policy 7y

5 d — Vgp(o[so 0N using o[so ;00)]
6 U+D — 0() 4+ Adam(d)
7 jej+1

Table 4. Ablation Study

Standard Gradient Ascent Standard Gradient Ascent Algorithm 1(No Waypoint) Algorithm 1(with Waypoint)

Horizon (No Time Sampling) (With Time Sampling) (With Time Sampling) (With Time Sampling)
Num. of Runtime Num. Runtime  Num. of Runtime Num. of Runtime
Iterations (seconds) Iterations (seconds) Iterations (seconds) Iterations  (seconds)
10 34 2.39 11 1.39 6 0.9152 4 5.61
50 73 2.46 53 14.01 20 2.7063 25 6.09
100 152 8.65 105 112.6 204 79.33 157 90.55
500 DNF[-1.59] 4,986 3,237 8,566 2,569 2,674 624 890.24
1,000 DNF[-11.49] 8,008 DNF[-88.42] 28,825 812 1,804 829 3,728

We mark the experiment with DNF[.] if it is unable to provide a positive robustness within 8,000 iterations, and the value
inside brackets is the maximum value of robustness it finds. We magnify the environment proportional to the horizon. All
experiments for K = 10, 50, 100 use a unique guess for initial parameter values, and all the experiments for K = 500, 1, 000
use another unique initial guess. Here, we utilized critical predicate module in both cases of Algorithm 1 (columns 3 and 4).

Furthermore, in addition to standard gradient ascent, we also utilize Algorithm 1 to solve them.
Consider we set the initial guess and the controller’s structure similar, for all the training processes,
and we also manually stop the process once the number of iterations exceeds 8,000 gradient steps.
We also assume a singleton as the set of initial states {(0,0)} to present a clearer comparison. The
runtime and the number of iterations for each training process is presented in Table 4. Figure 10
displays the simulation of trajectories trained using Algorithm 1 for K = 1,000 timesteps (via
gradient sampling), alongside the simulations for the initial guess of controller parameters.

Table 4 shows our approximation technique outperforms the original gradient when the compu-
tation for original gradient faces numerical issues (such as longer time horizons K = 500, 1,000).
However, in case the computation for original gradient does not face any numerical issues, then
the original gradient outperforms the sampled gradient which is expected. This table also shows
that the standard gradient ascent (with time sampling) is still unable to solve for the case K = 1,000
while Algorithm 1 solves for this case efficiently. This implies the combination of time sampling,
critical predicate, and safe-resmoothing provides significant improvement in terms of scalability.
The experiment K = 500 in this table also shows that inclusion of waypoint in Algorithm 1 is
sometimes noticeably helpful.

5.5 Robustness of NN Feedback Controllers over Open-loop Alternatives

In this section, we empirically demonstrate that feedback NN controllers are more robust to noise
and uncertainties compared to open-loop controllers, even when the feedback controller is not
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Fig. 10. This figure shows the simulation of the results for Dubins car in the ablation study proposed in
Section 5.4. In this experiment, the task horizon is 1,000 timesteps.

trained in the presence of noise. We then show that if we train the feedback controller after
introducing a stochastic noise in the original system dynamics, the performance vastly outperforms
open-loop control trained in the presence of noise. To illustrate, we use the example proposed in
[42] but add a stochastic noise and also include some uncertainty on the choice of initial condition.
The modified system dynamics are shown in Equation (12), where the sampling time dt = 0.1:

Sk+1 = Sk + urdt + cyog, so=[-1, =1]" +c2n. (12)

Here, for k € 1,--- , K and vy and n are both i.i.d. random variables with standard distribution, e.g.,
1,0k ~ N(02x1, Irx2), where Ly, is the identity matrix. In this example, the desired objective for
the system is

Qs = F[0’44] (G[O,S] (S (S Goall)) /\ F[0’44] (G[0’5] (S (S Goalz)) /\ G[0’49]_| (S € Unsafe), (13)

where the regions Goal;, Goaly, and Unsafe are illustrated in Figure 11.°

In the first step of the experiment, we train the feedback and open-loop controllers in the absence
of the noise (¢; = ¢; = 0) and deploy the controllers on the noisy environment (¢; = 0.0314, ¢, =
0.0005) and compare their success rate.'’ In the second step of the experiment, we train both the
feedback and open-loop controllers on the noisy environment (¢; = 0.0314, ¢, = 0.0005), and also
deploy them in the noisy environment (c¢; = 0.0314, ¢, = 0.0005) to compare their success rate. If
we train the open-loop and NN feedback controllers in the absence of noise, then the controllers
will, respectively, satisfy the specification in 3.7% and 65.4% of trials when deployed in a noisy
environment. However, we can substantially improve performance of feedback controllers by
training in the presence of noise; here, the controllers satisfy the specification 5.4% and 94.4% of
trials, respectively, showing that the NN feedback controller has better overall performance in the
presence of noise, which open-loop control lacks.

9We also add the following updates to the original problem presented in [42]:
—We omit the requirement sg = [1, 1]7 from both control problems for simplicity.
—We increase the saturation bound of the controller to ux < 4V2. We also apply this condition to the open-loop controller
proposed in [42].
10To report the success rate, we deploy the controllers 1,000 different times and compute the percentage of the trajectories
that satisfy the specification.
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: i ¥ i
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Fig. 11. This figure shows the simulation of trajectories when the trained controller is deployed on the
noisy deployment environment, both controllers are trained in the presence of noise. The trajectories of NN
feedback controller that satisfy (a) and violate (b) the specification and those of the open-loop controller that
satisfy (c) and violate (d) the specification are shown.

We utilized STLCG PyTorch toolbox [42] to solve for the open-loop controller. We also utilized
the standard gradient ascent proposed in Algorithm 2 (via LB4TL as smooth semantics p) for
training the feedback controllers. We let the training process in Algorithm 2 and STLCG to run for
5,000 iterations, and then terminated the training process. Figure 11 shows the simulation of trained
controllers when they are deployed to the noisy environment. Here, we generate 100 random
trajectories via trained controllers and plot them in green and red when they satisfy or violate the
specification, respectively. However, all trained feedback controllers in this article exhibit the same
level of robustness to noise.

5.6 Statistical Verification of Synthesized Controllers

In [33], we showed that if the trained NN controller, the plant dynamics, and the NN representing
the STL quantitative semantics all use ReLU activation functions, then we can use tools such as NNV
[66] that compute the forward image of a polyhedral input set through an NN to verify whether a
given DT-STL property holds for all initial states of the system. However, there are few challenges in
applying such deterministic methods here: we use more general activation functions, the depth of the
overall NN can be significant for long-horizon tasks, and the dimensionality of the state-space can
also become a bottleneck. In this article, we thus eschew the use of deterministic techniques, instead
reasoning about the correctness of our NN feedback control scheme using a statistical verification
approach. In other words, given the coverage level §; € (0, 1) and confidence level §, € (0, 1) we
are interested in a probabilistic guarantee of the form, Pr[ Pr[o[sy;0] F¢] =61 | = ..

The main inspiration for our verification is drawn from the theoretical developments in conformal
prediction [70]. Of particular significance to us is the following lemma:

LEMMA 5.1 (FroM [16]). Consider m independent and identically distributed (i.i.d.), real-valued
data points drawn from some distribution D. After they are drawn, suppose we sort them in ascending
order and denote the ith smallest number by R;,(i.e., we have Ry < R, < ... < Ry,). Let Beta(a, f)
denote the Beta distribution."’ Then, for an arbitrary Ry,.1 drawn from the same distribution D, the

following holds:
Pr[Rp+1 < Ry] ~Beta(f,m+1-¢), 1<¢<m. (14)

1The Beta distribution is a family of continuous probability distributions defined on the interval 0 < x < 1 with shape
-1 -1
parameters a and f3, and with probability density function f(x;a, f) = %

rr(((gig) and I'(z) = /om t?~le~*dt is the Gamma function.

, where the constant B(a, f) =
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The original m i.i.d. data points are called a calibration set. The above lemma says that the
probability for a previously unseen data point R,,4+; drawn from the same distribution D being less
than the /th smallest number in the calibration set is itself a random variable that has a specific
Beta distribution. We next show how we can exploit this lemma to obtain probabilistic correctness
guarantees for our trained controllers.

We assume that there is some user-specified distribution over the set of initial states in 7, and
that we can sample m initial states sq 1, . .., So» from this distribution. For a sampled initial state
Soi i € 1,---,m, we can obtain the corresponding negative robust satisfaction value, and set:
Ri =—p(p,0[so, ;0],0),i€1,- - ,m.

From Lemma 5.1, we know that for a previously unseen initial state sg n,+1, the corresponding
(negative value of) robustness R+ satisfies the relation in Equation (14). Now, almost all sampled
trajectories generated by a trained controller are expected to have positive robustness value, so we
expect the quantities Ry, ..., Ry, to be all negative. In the pessimistic case, we expect at least the
first ¢ of these quantities to be negative. If so, the guarantee in Equation (14) essentially quantifies
the probability of the robustness of a trajectory for a previously unseen initial state to be positive.
Note that

(Rm+1 <Re) A(Re <0) = (Rps1 <0) = (c[som+1:0] E o) (15)
- Pr(o[som+1;0] E @) = Pr(Rps1 < Rp) ~Beta(f,m+1—1) (16)

In addition, from [16] we know that the mean and variance of the Beta distribution are given as
follows:
_ _tm+1-0) )
(m+1)2(m+2)
As the Beta distribution has small variance and is noticeably sharp, the desired coverage level
for a probabilistic guarantee can be obtained in the vicinity of its mean value. From the closed
form formula in Equation (17), we observe that in case we wish to have a coverage level close to
(1 -107%) or 99.99%, then we can set £ = [(m + 1)(1 — 10*)]. Here we also set m to 10°, giving
the value of £ = 99,991. Let’s denote Pr[R,,+; < R;] as §. Since § is a random variable sampled from
Beta(¢, m + 1 — £) where ((£ = 99,991, m = 10°),'? we can utilize the cumulative density function of
Beta distribution (i.e., regularized incomplete Beta function) and for a given §; € (0, 1) propose the
following guarantee,

¢
E[Pr[Rys1 < Re]| = — Var| Pr[Rp1 < Re]]

Pr[§ > 6] =1-1I5,(¢,m+1—¢), where I ( ., .) is the regularized incomplete Beta
function at point x.
Here §; is the desired confidence level that we consider for the probabilistic guarantee. However, if
we set §; = 0.9999 then Pr[§ > 0.9999] = 0.54 which indicates that the confidence in the 99.99%
guarantee is low. If we instead set § = 0.9998, this results in Pr[§ > 0.9998] = 0.995, which indicates

a much higher level of confidence. Finally, based on Equation (16), we can consider the provided
guarantee also for the trajectories and conclude,

Pr[ Prlo[se;0] @] =99.98% | > 99.5%. (18)

To summarize, in each of our case studies, we sample m = 10° i.i.d. trajectories, compute their sorted
negative robustness values Ry, ..., R, and check that R, for £ = 99,991 is indeed negative. This
gives us the probabilistic guarantee provided in Equation (18) that from unseen initial conditions
the system will not violate the DT-STL specification.

12\e can compute for its mean and variance via Equation (17) as g = E[8] = 0.9999 and var[§] = 9.9987 x 10710,
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6 Related Work and Conclusion

Related Work. In the broad area of formal methods, robotics, and cyber-physical systems, there
has been substantial research in synthesizing controllers from temporal logic specifications. This
research involves different considerations. First, the plant dynamics may be specified as either a
differential/difference equation-based model [22, 25, 27, 46, 51, 55, 56], or as a Markov decision
process [29, 37, 59] that models stochastic uncertainty, or may not be explicitly provided (but is
implicitly available through a simulator that samples model behaviors). The second consideration
is the expressivity of the specification language, i.e., if the specifications are directly on the real-
valued system behaviors or on Boolean-valued propositions over system states, and if the behaviors
are over a discrete set of timesteps or over dense time. Specification languages such as Linear
Temporal Logic (LTL) [53], Metric Temporal Logic (MTL) [39], and Metric Interval Temporal
Logic (MITL) [3] are over Boolean signals, while STL [48] and DT-STL considered in this article are
over real-valued behaviors. MTL, MITL, and STL are typically defined over dense time signals while
LTL and DT-STL are over discrete timesteps. The third consideration is the kind of controller being
synthesized. Given the plant dynamics, some techniques find the entire sequence of control actions
from an initial state to generate a desired optimal trajectory (open-loop control) [46, 50, 55, 75],
while some focus on obtaining a feedback controller that guarantees satisfaction of temporal logic
objectives in the presence of uncertainty [76] (in the initial states or during system execution). We
now describe some important sub-groups of techniques in this space that may span the categories
outlined above.

Reactive Synthesis. A reactive synthesis approach models the system interaction with its environ-
ment as a turn-based game played by the system and the environment over a directed graph [13].
The main idea is to convert temporal logic specifications (such as LTL) into winning conditions
and identify system policies that deterministically guarantee satisfaction of the given specification
[40]. As reactive synthesis is a computationally challenging problem, there are many sub-classes
and heuristics that have been explored for efficiency; for instance, in [73] a receding horizon
framework is used; in [67], the authors focus on piece-wise affine non-deterministic systems, while
[56] investigates reactive synthesis for STL.

Reinforcement and Deep Reinforcement Learning (RL). RL algorithms learn control policies
that maximize cumulative rewards over long-term horizons. Recently, RL temporal has been used
to infer reward functions that can guarantee satisfaction of an LTL specification [14, 24, 31, 60]. The
work in [9, 30, 38, 54, 69] generates reward functions from STL specifications. While the ultimate
objective of these methods is similar to our problem setting, we adopt a model-based approach to
control synthesis where we assume access to a differentiable model of the system and use gradient
ascent to train the controller in contrast to RL algorithms that may rely on adequate exploration of
the state space to obtain near-optimal policies (that may guarantee satisfaction of specifications).

Model Predictive Control (MPC) and Mixed Integer Linear Programming (MILP). A clever
encoding of LTL as mixed integer linear constraints was presented in [72] for the purpose of
reactive synthesis. This idea was then extended in [55] to show that model predictive control of
linear/piece-wise affine systems w.r.t. STL objectives (with linear predicates) can be solved using
MILP solvers. MILP is an NP-hard problem, and various optimization improvements to the original
problem [25, 41, 50, 65] and extensions to stochastic systems [22, 61] have been proposed. In
contrast to a model-predictive controller, we obtain an NN feedback controller that does not require
online optimization required in MPC.

Barrier Function-based Approaches. A Control Barrier Function (CBF) can be thought of as a
safety envelope for a controlled dynamical system. As long as the CBF satisfies validity conditions
(typically over its Lie derivative), the CBF guarantees the existence of a control policy that keeps
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the overall system safe [74]. CBFs can be used to enforce safety constraints and also to enforce
temporal specifications such as STL [4, 5, 17, 46]. The design of barrier functions is generally a hard
problem, though recent research studies compute for the CBFs through learning [57, 69], and using
quantitative semantics of STL [34].

Gradient-based Optimization Methods. This class of methods investigates learning NN controllers
by computing the gradient of the robustness function of STL through back-propagation STL. For
instance, training feedback NN controllers is studied in [34, 35, 47, 75, 76] and for open-loop
controllers is investigated in [44]. The main contributions in this article over previous work are to
scale gradient descent to long time horizons using the novel idea of dropout, and a more efficient
(and smooth) computation graph for STL quantitative semantics.

Prior Work on NN Controllers for STL. The overall approach of this article is the closest to the work
in [33, 34, 42, 43, 76], where STL robustness is used in conjunction with back-propagation to train
controllers. The work in this article makes significant strides in extending previous approaches to
handle very long horizon temporal tasks, crucially enabled by a novel sampling-based gradient
approximation. Due to the structure of our NN-controlled system, we can seamlessly handle time-
varying dynamics and complex temporal dependencies. We also note that while some previous
approaches focus on obtaining open-loop control policies, we focus on synthesizing closed-loop,
feedback NN-controllers which can be robust to minor perturbations in the system dynamics.
In addition, we cover a general DT-STL formula for synthesis, and we utilize LB4TL [32] for
backward computation that has shown significant improvement for efficiency of training over
complex DT-STL formulas.

Limitations. Some of the key limitations of our approach include the following: (1) we do not
address infinite time horizon specifications; (2) we only consider a DT-STL; (3) our approach would
fail if the chosen NN architecture for the controller has too few parameters (making it difficult
to control highly non-linear environment dynamics) or if it has too many parameters (making
it a difficult optimization problem); (4) we assume full system observability and do not consider
stochastic dynamics.

Conclusion. Using NN feedback controllers for control synthesis offers robustness against noise
and uncertainties, making them preferable over open-loop controllers. However, training these
controllers can be challenging due to issues like vanishing or exploding gradients, especially in long
time horizons or high-dimensional systems. To address this challenge, we introduced a gradient
sampling technique inspired by dropout [64] and stochastic depth [36]. Additionally, we proposed
incorporating critical predicates into this technique to enhance training efficiency, and we tested
our approach on various challenging control synthesis problems.
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