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Convolutional neural networks applied to
differential dynamic microscopy reduces noise
when quantifying heterogeneous dynamics
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Differential dynamic microscopy (DDM) typically relies on movies containing hundreds or thousands of
frames to accurately quantify motion in soft matter systems. Using movies much shorter in duration
produces noisier and less accurate results. This limits the applicability of DDM to situations where the
dynamics are stationary over extended times. Here, we investigate a method to denoise the DDM
process, particularly suited to when a limited number of imaging frames are available or when dynamics
are quickly evolving in time. We use a convolutional neural network encoder-decoder (CNN-ED) model
to reduce the noise in the intermediate scattering function that is computed via DDM. We demonstrate
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1 Introduction

Researchers interested in quantifying the dynamics of colloidal
suspensions, gels, biological systems, or other soft materials
have numerous tools to choose from, e.g., dynamic light
scattering, single-particle tracking, particle image velocity,
and more. A relative newcomer to the suite of available meth-
ods is differential dynamic microscopy (DDM). First introduced
in 2008," this technique has now been used to measure the
dynamics of diffusing colloids,"? active bacteria,’® intracellular
transport,® colloidal gels,>® active networks,” and more. The
range of systems probed with DDM will likely only expand as
software packages for DDM become more robust and user
friendly.

Multiple features of DDM make it an ideal tool for soft
matter applications (see the many review papers® " that clearly
enumerate these features), but a drawback can be the need to
acquire 100s or 1000s of images for the analysis. Collecting
such videos can take 10s or 100s of seconds. In many scenarios,
the system under investigation is, or can be well approximated
to be, in a steady state during that time interval. However, in
systems with evolving dynamics (e.g., a sample undergoing
gelation or an active system driven out of equilibrium by some
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and high-throughput screens could benefit from a method to denoise the outputs of DDM.

exhaustible fuel supply), there can be a difficult balance to
make between acquiring images over a long enough time
duration to obtain reliable statistics and having fine enough
time resolution to describe the temporal evolution of
the dynamics. Of course, this trade-off is in no way unique to
DDM. But, as DDM relies on microscopy imaging where camera
frame rates and the need for adequate signal-to-noise ratios can
limit imaging rates to the 10-100 Hz range and as soft matter
and biological systems often have dynamics which evolve at
rates not vastly slower, DDM users in the soft matter and
biophysics community may readily confront this issue.

To address this challenge, we have turned to machine
learning. Machine learning approaches have demonstrated
success in addressing challenges in soft matter research®>*
and in denoising data in numerous other contexts. In X-ray or
electron imaging and medical imaging situations, machine
learning can counter the increased noise when using low doses
of radiation to help prevent sample damage.”*>* In fluores-
cence microscopy, machine learning has likewise been used to
denoise images so that fluorescence excitation intensity can be
minimized to reduce photodamage and photobleaching.>*"°
Applied to DDM, machine learning approaches have previously
been used for the purposes of uncertainty quantification®” and
for help guiding DDM-based microrheology experiments.>®

While DDM typically operates on images acquired from
a microscope, our approach is not to denoise the real-space
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images which are then the inputs to the DDM algorithm.
Rather, we denoise, using a convolutional neural network
encoder-decoder (CNN-ED), one of the outputs of the DDM
process: the intermediate scattering function (ISF) which we
can express as a two-dimensional (2D) function of lag time and
of wave vector. We show that this 2D ISF suffers from noise
when we use DDM on 10s (rather than 100s or 1000s) of
imaging frames, but that a trained CNN-ED model can amelio-
rate this situation. Our approach to this denoising process
draws heavily from recent work by Konstantinova et al.***°
Those authors showed that a CNN-ED model could reduce the
noise in the 2D correlation functions computed for X-ray
photon correlation spectroscopy.

In this work, we train and deploy a CNN-ED model with ISFs
that can be well described by a single exponential function.
This is typically the case with dynamics that are relatively
simple such as a monodisperse colloidal suspension exhibiting
Brownian diffusion. We note that DDM has previously been
applied to samples showing much more complex dynamics. For
example, in studies of polydisperse samples of protein clusters
or colloidal particles, modified cumulant fits to the ISF were
used;*"*? in studies of samples with multiple relaxation modes,
the ISFs were fit to functions with multiple exponential
terms;'**7 in studies of motile bacteria, ISFs were described
by more complex functions to account for both diffusive and
ballistic motion;****” in studies of samples with non-ergodic
dynamics, ISF models containing a non-ergodicity factor were
used;*>*® and in studies of flowing samples, the ISFs were fit to a
model to account for the flow velocities.>® That multiple classes
of dynamics can be investigated with DDM is one of the many
assets of the technique. However, that asset of DDM is not
explored in this work where we examine simple dynamics
exhibiting a single decay mode. How machine learning could
be used with DDM to study complex and multimodal dynamics
and how a machine learning model trained with one class of
dynamics would fare when applied to dynamics of another class
are interesting questions for future studies.

In what follows, we will first expand on the principles of
DDM and where in the workflow of this analysis method we
insert a CNN-ED model. We then describe how we have trained
a CNN-ED model using experimental images of diffusing
micron-sized colloidal particles. Implementation of this model
is then demonstrated on two experimental data sets. In the first
experiment, we observe colloidal particles suspended in a
protein solution of sodium caseinate undergoing gelation. We
quantify how the diffusion of these colloids slows as the system
gels. Our use of the CNN-ED model to denoise data improved
our ability to capture the non-stationary dynamics. Our second
experimental demonstration showcases how DDM with a CNN-
ED model could enable high throughput screening with an on-
the-fly scanning approach. We suspend colloidal particles in a
gradient of dextran and image the sample while continuously
moving our imaging field of view across this gradient. These
demonstrations reveal how a CNN-ED model can reduce the
noise in the intermediate scattering function (and, therefore,
the extracted diffusion coefficients) when employing DDM

This journal is © The Royal Society of Chemistry 2024

Soft Matter

on short image sequences, as short as 51 frames in our
experiments.

2 Background

DDM extracts scattering-like information from videos recorded
using a microscope. Numerous microscopy modalities, such as
bright-field, wide-field fluorescence, confocal,* light-sheet,**
and dark-field,”” have been employed, and we direct readers to
the provided references for how aspects of the imaging process,
such as linear space variance,*” degree of optical section,*>*!
multiple scattering events,”> and coherence of the light
source,** affect DDM analysis.

In dynamic light scattering, one measures the intensity of
scattered light at one (or more) wave vectors and computes the
temporal correlation of this signal to determine dynamics.
With a microscope, dynamics can be extracted in an analogous
manner by finding the temporal correlations of the intensities
of images in Fourier space. By performing such analyses in
Fourier space, one can pull out correlation functions across a
range of spatial frequencies (or wave vectors) limited by the
smallest resolvable element (the size of a pixel or a diffraction-
limited spot) and the size of the field-of-view. From character-
istic decay times of these correlation functions and how the
decay times depend on the wave vector, one can determine
diffusion coefficients, velocities, or other metrics of a sample’s
dynamics.

In detail, as presented in Fig. 1, after recording a sequence
of images (Fig. 1(A)), I(x, y, t), we compute the Fourier transform
of the differences between images separated by a lag time, At.
This is averaged over all pairs of images separated by At and
results in what is referred to as the DDM matrix or the image
structure function (Fig. 1(B)):

D(qs, Gyy AY) = ([1(gs Gy> ) — 1(r Gy t + AD*)e (1)

For isotropic dynamics, this DDM matrix is azimuthally aver-
aged to yield D(q, At) where g is the magnitude of the wave

vector, ¢ = \/q\* + ¢,*. Typically, this DDM matrix is fit to a
function of the form:

D(g, At) = Ag)[1 - f(g, AY)] + B(g) (2)

where the A(q) is an amplitude term that depends on the optical
properties of the microscope and the structure of the sample,
B(g) is a background term that depends on the noise in the
image, and f(q, At) is the intermediate scattering function (ISF).
For samples exhibiting diffusive dynamics, we model the ISF as
an exponential function (Fig. 1(C)), f(g, Af) = exp(—At/t(q))
where 7(g) is a characteristic decay time related to the diffusion
coefficient according to t = (Dg®)~" (Fig. 1(D)). While in prior
work using DDM, the ISF is typically displayed as plots of the
ISF at particular values of g as a function of lag time, as shown
in Fig. 1(C), in this work, we display the ISF as a 2D matrix
(Fig. 1(E)) as this matrix is what we denoised using a machine
learning approach.
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Fig.1 DDM quantifies dynamics of microspheres from microscopy
movies. (A) Brightfield microscopy images of 1-um-diameter colloidal
particles in a solution of dextran are shown. A sequence of images is
captured to perform DDM analysis. (B) From the movie, we calculate the
DDM matrix D(qx. g, At) where g, and g, are the x- and y-components of
the wave vector and At is the lag time. The DDM matrix shown is for At =
2.64 s. (C) Given the symmetry of the DDM matrix (expected given that the
diffusive dynamics of the colloidal particles are isotropic), we average
azimuthally to acquire D(g, At) where g is the magnitude of the wave
vector. Assuming that the DDM matrix can be described by eqgn (2), we use
estimates of the amplitude (A) and background (B) terms to compute the
intermediate scattering function (ISF). The ISFs plotted as a function of lag
time are for wave vector magnitudes that span from 0.7 to 7.3 pm™1. At
larger wave vectors (corresponding to smaller length scales and redder
colors), the ISFs decay more quickly than at smaller wave vectors (bluer
colors). (D) We fit the ISFs to exponential functions to determine a
characteristic decay time, 7. A plot of 1 vs. g on a log-log scale reveals a
power law behavior. In this case, © = (Dg?)™* where D is the diffusion
coefficient. (E) In the DDM literature, ISFs are most often depicted as plots
of the ISF vs. lag time at various wave vectors (as in (C)). However, one
could also represent the ISF as a 2D matrix as shown. It is this representa-
tion of the ISF which we denoise. Note that lag times are logarithmically
spaced on the vertical axis.

Since DDM was first described, there have been numerous
extensions to the technique. DDM has been used to perform
microrheology by obtaining a mean squared displacement from
D(q, At).*>*® Strategies have been developed to mitigate the
effects of objects leaving the field of view,"” of linear space
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Fig. 2 DDM analysis on movies with fewer frames results in noisier ISFs.
(A) Four ISFs are plotted as a function of lag time, all for the same
magnitude of the wave vector, g = 3.73 um~* These four ISFs are
calculated from the same movie of 1 uym beads recorded at 25 frames
per second. Curves have been offset to prevent their overlap with the solid
lines at the small and large lag times indicating 1 and O for each ISF. The top
curve (cyan circles) is the ISF when all 3000 frames were used for
calculating the DDM matrix. The next curve (orange squares) was gener-
ated using only the first 1000 frames. The following (purple diamonds and
pink triangles) were generated using the first 500 frames and 51 frames,
respectively. (B) The ISFs are depicted as matrices with the vertical axis
being lag time and the horizontal axis being the magnitude of the wave
vector, q. Here, the lag times are linearly spaced from 1 frame to 50 frames
(0.04 s to 2 s). The left ISF was generated using the full 3000 frame movie
of diffusing micron-sized beads. The right ISF, which is visibly noisier, was
generated using only the first 51 frames of that same movie.

variant imaging modes,*

of multiple scattering in turbid
samples,*® and of drift in flowing samples.’>®*® Strategies have
also been described to extend DDM’s temporal resolution,**>°
to combine DDM with shear cells®* or optical tweezers,”” and to
extract multiple modes of dynamics, such as both translational
and rotational diffusion,**® multiple diffusivities in suspen-
sions with multimodal size distributions,*** or both diffusive
and advective motion in biological systems.>***> Our goal
for this work was to complement DDM with machine learning
to reduce noise in situations where a limited number of video
frames are available for DDM analysis.

We were motivated to denoise DDM because the use of a
limited number of frames in calculating the ISF can lead to
imprecise or inaccurate estimates of a sample’s dynamics. This
is shown in Fig. 2 where the ISFs calculated from movies of
varying numbers of frames, from 3000 to 51 (corresponding to
durations of 120 s to 2 s), are shown. In cases where samples
exhibit steady-state dynamics, collecting a large number of
frames to achieve accurate characterization is feasible. But this
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may not be the case for non-equilibrium samples or other
situations with non-stationary dynamics.

3 Results and discussion
3.1 Data collection and processing

In all our presented data, we used samples containing 1-um-
diameter colloidal spheres (Fluoresbrite YG Carboxylate Micro-
spheres, Polysciences). We used two optical microscopes, both
Olympus IX73 systems where we used a 40x objective, either a
LUCPIanFLN 0.60 NA or a PlanN 0.65 NA. The primary differ-
ence between the two systems was the camera: either a Hama-
matsu Orca-Flash 2.8 CMOS camera or pco.edge 4.2 LT CMOS
camera. For data processing, we used in-house DDM software
written in Python, PyDDM.® For the CNN-ED model, we used
the code developed for denoising X-ray photon correlation
spectroscopy data which was implemented with the PyTorch
framework.*® We note that while the authors of ref. 30 denoised
a two-time correlation function, our adaptation denoises a 2D
matrix representation of the ISF as shown in Fig. 2(B).

For training and implementing the CNN-ED model, we used
ISFs calculated with DDM. To retrieve the ISF from the DDM
matrix, we require a measure or estimate of the amplitude,
A(q), and background, B, parameters. For these estimates, we
assumed B is independent of the wave vector. We found A(g)
and B by computing the mean of the squared Fourier-
transformed images, (|i(q,t)|*);, and assumed it equal to
(A(g)+B)/2.>>*” We further assumed that A(g) goes to zero at
large q.

To determine the diffusion coefficient of the micron-sized
beads, either from the ISFs calculated directly from the
acquired movies or from the denoised ISFs that are outputted
by the CNN-ED model, we first fitted the 1D ISF at each value of
g as a function of the lag time to an exponential function of the
form f(g, At) = exp(—(At/x(q))'?) where y(q) is a stretching
exponent included in our function to account for possible
polydispersity or heterogeneity in the dynamics. With the
assumption that the dynamics are diffusive, we found the
diffusion coefficient, D, by taking the mean of (1¢*)"" across a
range of g values, generally 3.0 to 4.2 um ™', We note that it is
more common in DDM studies to estimate D from fitting data
to the relationship t(g) = (Dg*)~'. When plotting the diffusion
coefficient, we used the standard deviation across this range as
the error bar.

3.2 Training

In our demonstrations of the CNN-ED model with DDM, we
performed imaging of 1-um-diameter colloidal spheres moving
diffusively. Therefore, we train this model using images
of these colloidal particles suspended in various dextran
(500 kDa, Fisher BP1580) concentrations. All microscopy data
used for training was acquired using the brightfield imaging
modality on an Olympus IX73 microscope using a 40x 0.65 NA
objective.
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Our machine learning approach requires training the CNN-
ED model with pairs of 2D matrices: a noisy or “raw” 2D ISF
and a corresponding ‘“‘target” 2D ISF that is significantly less
noisy. For training, we generate a target ISF from a 3000-frame
video recorded at 25 frames per second with a resolution of
128 x 128 pixels. We compute this target ISF using all
3000 frames with time lags linearly spaced between 1 frame
and 50 frames. Thus, a target ISF with dimensions of 50 x 63 is
generated with the first dimension being the lag time and the
second being the wavenumber. Given our image resolution of
128 x 128 and the pixel size of 0.36 pm, our wave vector with
the greatest magnitude is 8.6 um™'. However, wave vectors
beyond approximately 2nNA/A ~ 6.8 um ™', where NA is the
objective numerical aperture and / is the wavelength of light,
exceed the theoretical maximum for our spatial resolution.
Therefore, we crop the data at large g from our ISFs to generate
50 x 45 matrices. After this cropping, our highest g is 6.1 um™".
To generate the raw, noisier ISFs, we divide each 3000-frame
movie into chunks of 51 consecutive frames, with chunks
overlapping by 25 frames. From each subset of 51 frames, we
compute the ISF with, again, lag times linearly spaced between
1 and 50 frames (corresponding to 0.04 s to 2.0 s) and g values
that go to 6.1 um ™. Therefore, from a 3000-frame movie, we
end up with 119 raw ISFs. From a single 3000 frame movie, each
of those 119 raw ISFs is paired with the same target ISF.

To generate the ISFs, whether raw or target, from our DDM
analysis, we calculated (|I(q,t)|*); to determine A(q) and B, as
described previously. We always calculated (|I(g,t)|*), using the
full 3000-frame movie (rather than from the smaller chunks of
51 frames). This approach for determining A(g) and B was also
used on the test cases presented here. That is, in the demon-
strations of our denoising approach to be shown, when we
denoise the ISFs from short chunks of image frames, those ISFs
were generated using A(q) and B calculated from much longer
videos. This approach relies on the assumption that A(g) and B
are not changing in time, even if the sample’s dynamics are not
in a steady state.

For training a CNN-ED model appropriate for dynamics that
could span a range of timescales, we recorded movies of the
1-pm-diameter colloidal spheres in solutions of various viscos-
ities. We prepared 12 solutions of dextran with concentrations
ranging from 0.5% to 9% (w/v). The resulting diffusivities of
our microspheres ranged from 0.017 um” s~ " to 0.33 pm?* s~
(or, 0.02 pixel® per frame to 0.39 pixel® per frame). For each of
the 12 dextran concentrations, we recorded 10 videos, each of
3000 frames and with 128 x 128 pixel resolution. Of this, we
split the data into training and validation sets. Seven of the
10 movies at each dextran concentration were used for training
and the other three were used for validation. Thus, 252000
image frames (or 3000 x 7 x 12 where 12 is number of dextran
concentrations) which generates 84 target ISFs and 9996 raw
ISFs were used for training. Reserved for validation were 4284
raw ISFs (357 raw ISFs for each dextran concentration).

We used the CNN-ED model architecture and adapted the
code from the work of Konstantinova et al.*® which used the
model to denoise correlation functions generated with X-ray
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photon correlation spectroscopy. We refer readers to that
publication for details of the model and published code.
In brief, the CNN encoder consists of two 10-channel convolu-
tional layers with 1 x 1 kernels. The output of each channel
goes through a rectified linear unit (ReLU) activation function.
A linear transformation then takes the output to a lower
dimensional latent space. We used a latent space of size 16.
The decoder is symmetric to the encoder and converts the data
from latent space to the ISFs of dimensions 50 x 45. As the cost
function, we simply use the mean squared error between the
output of the CNN-ED and the target. A simplified picture of the
CNN-ED model layout is shown in Fig. 3(A) where the raw ISF is
reduced to a lower dimensional latent space and then decoded.
Because much of the noise in the raw ISF cannot be described
with the limited number of variables available in the latent
space, the output of the model is less noisy.

As a first test of this approach of using a CNN-ED model to
denoise DDM-acquired ISFs, we used the movies of micron-
sized beads diffusing in dextran that were set aside as the
validation data sets. These movies were not used to build the
CNN-ED model but they were taken using the same sample and
microscopy settings as the data used to build the model. We
plotted the determined decay time, 7, as a function of g using
an ISF determined from a group of 51 consecutive frames as
part of the validation movies recorded as previously described,
as shown in Fig. 3(B). The data points plotted with blue squares
are from the raw ISFs and exhibit noticeable fluctuations from
the power law relationship expected for simple diffusive
motion. This is as expected given that with only 51 frames we
covered a limited range of lag times from 0.04 to 2 s and have
few pairs of images to compute the ISF compared to the
number of image pairs typically used for DDM. The data points
plotted with red circles were generated after passing the same
ISF through the trained CNN-ED model. As observed, this 7(g)
data follows the expected power law relationship much better.
From the determined t(g) and the relationship for diffusive
motion, t = (Dg*)~", we found the diffusion coefficient of the
beads in the three 3000-frame validation datasets with a
dextran concentration of 5%. Given that we broke each movie
into chunks of 51 frames (overlapping by 25 frames), we have
119 x 3 = 357 ISFs calculated. The distribution of diffusion
coefficients found from these 357 ISFs is shown with the blue
histogram in Fig. 3(C). In red, we show the distribution of
diffusion coefficients after employing the CNN-ED to denoise
each ISF. Both distributions are centered around the diffusion
coefficient found when DDM was used on all 3000 frames of
each movie, 45.7 nm> ms™ . However, when using the CNN-ED
model, the distribution of diffusion coefficients has a width
that is about 5 times smaller than when using the raw ISFs.

3.3 Solution undergoing gelation

As a demonstration of how this machine learning approach to
DDM analysis can be useful for studying non-equilibrium
samples with dynamics that evolve in time we investigated a
protein gel system. We prepared a solution of 6% (w/w) sodium
caseinate solution in deionized water containing a trace
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Fig. 3 Convolutional neural network used to denoise the intermediate scatter-
ing function. (A) A representation of the encoder-decoder model is shown. The
ISF, seen here with the lag time along the vertical axis and the magnitude of the
wave vector along the horizontal axis and with a color map as in Fig. 1(E), is
encoded to a lower dimensional latent space using 2D convolutional layers and
rectified linear unit activation functions. From this latent space, a denoised ISF is
then decoded. (B) To quantify the dynamics with DDM, we determine char-
acteristic decay times for each value of g by fitting the ISF to an exponential
function. The blue square data points are from an ISF calculated using 51 frames
of a movie of 1 um beads recorded at 25 frames per second. Using the CNN-ED
model, that ISF is denoised and used to generate the data points in red. The solid
dark gray line shows the power law relationship t oc g2 expected for diffusive
dynamics. (C) From the t vs. g plot, we determine the diffusion coefficient
according to D = (zg9)~% This histogram shows the diffusion coefficients
determined from ISFs calculated using 51 frames. For three movies of 1 um
beads, each of 3000 frames, we generate 119 groups of 51 consecutive frames
each (thus, each group overlaps by 25 frames). The light blue histogram shows
what we determine for the diffusion coefficient of the micron-sized bead from
these ISFs. We then run those ISFs through the CNN-ED model for denoising
and determine the diffusion coefficient. Those are shown in the red histogram.
Note that the three 3000 frame movies were not used to train the CNN-ED
model but were instead reserved for validation.
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amount of the same colloidal microspheres used in our model
training and validation data. To induce gelation, we added
glucono-é-lactone (GDL) at a concentration of 2.6% (w/w). The
GDL causes the pH to progressively lower. Prior studies have
shown that as the pH gets near and then goes below the
isoelectric point of casein (pH ~ 4.6), the casein particles
aggregate and the system gels.”® For our samples prepared
thusly, we found that the system gels in ~45 minutes after
adding the GDL as inferred by the apparent immobilization of
the colloidal microspheres.

As with the data used for training the CNN-ED model, we
acquired images with a 40x objective at a rate of 25 frames
per second. However, we used fluorescence imaging rather than
the brightfield modality used in the training datasets. Given
that the ISFs depend solely on the dynamics and not on the
structure or intensity profile of the diffusing objects, we
expected the CNN-ED model to work when using this fluores-
cence modality. An example image of this system is shown in
Fig. 4(A) where we also display particle trajectories, determined
through single particle tracking using the trackpy package,>® of
these beads over two 16-second intervals before the sample
has fully gelled (bottom left) and after the sample has nearly
completely gelled (bottom right).

We also highlight the non-stationary dynamics of this
system by displaying the time dependent ISF in Fig. 4(B). This
two-time correlation function (2TCF) representation is shown
for a particular value of g and with the horizontal and vertical
axes both being time. Near this function’s diagonal that runs
from the bottom left to the top right, we have pairs of frames
closely separated in time where the ISF would be near one
(redder colors). Moving away from that diagonal, the correla-
tion between images decreases (i.e., the ISF decreases to zero).
Notice that the red (or more highly correlated) region of the
2TCF broadens as time moves forward which indicates that the
dynamics are slowing over time, as expected for this gelling
sample. A typical DDM approach would be to average this 2TCF
over time (i.e., average together all data points that lie on lines
parallel to the bottom left to top right diagonal) or to do so at
least over time spans that encompass hundreds or thousands of
image frames. In this case, such an approach would mask how
the dynamics are evolving in time.

Fig. 4(C) shows how the ISFs for particular values of g are
affected by the number of frames used in DDM. In Fig. 4(C)-(i),
we show ISFs computed using 1000 frames, the lighter gray
data points being from a group of 1000 frames earlier in the
gelation process and the black data points from a non-
overlapping group of 1000 frames later in the gelation process,
hence the slower decay. The 1000-frame groups for these ISFs
are shown as the boxes with dashed outlines in the 2TCF in
Fig. 4(B). We notice that the ISFs generated when using 1000
frames are fairly smooth with lag time. But they are also smooth
in g. We show this by having plotted the ISFs in Fig. 4(C) at
three different values of ¢. In Fig. 4(C)-(i), it may not be
immediately noticeable by eye that there are three sets of points
for the light gray and black data since those curves largely
overlap. These three data sets are at consecutive values of ¢
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(2.12,2.19, and 2.27 um ™). In Fig. 4(C)-(ii), we have plotted ISFs
that were calculated using only 51 frames, again at different
times in the gelation process (light gray at earlier times and
black at later times, as shown with the boxes with the solid
outlines in the 2TCF in Fig. 4(B)). This reduces the maximum
lag time accessible. It also significantly increases the noise.
We observe that the ISFs are less smooth with lag time and with
g. The same data from Fig. 4(C)-(ii) is plotted in Fig. 4(C)-(iii)
after the ISFs were denoised using the CNN-ED. While the data
is not as smooth (in neither lag time nor in g) as the ISF
generated using 1000 frames, it is considerably less noisy than
the raw ISFs.

In Fig. 4(D) we plot the diffusion coefficient, D, of the
micron-sized beads as a function of time. The black dots
indicate the diffusion coefficients found by employing standard
DDM on non-overlapping groups of 750 frames (spanning a
time window of 30 s). We also found the diffusion coefficients
by using groups of 51 frames, as plotted with the blue data
points. While the temporal resolution is finer, there is both
enhanced noise in the values of D and a departure from the
values of D expected from the DDM analysis over larger time
windows (the black data points). In red, we plot our results after
using the CNN-ED model to denoise the ISFs generated from
groups of 51 frames. There is both less uncertainty in the
determined values of D and they are generally closer to what
we expect from the analysis of 750 frames (at least during times
when the dynamics are relatively stationary, i.e., at times earlier
than 90 s).

3.4 On-thefly scanning

As our next demonstration, we performed on-the-fly scanning
of a sample having a gradient in dextran concentration (and,
hence, a gradient in the viscosity). This gradient was created by
pipetting, from either end of a sample chamber made from a
glass slide and coverslip, a 1% dextran solution and a 10%
dextran solution, both containing 1-um-diameter tracer parti-
cles. Such a sample was prepared to demonstrate how we can
use DDM to quantify the diffusion of tracer particles (for the
purpose of microrheology, for example) in a situation where the
dynamics will be heterogeneous or non-uniform throughout
the sample volume. In such a situation, one approach to quan-
titatively mapping out the diffusivity of the tracers throughout
the sample using DDM would be to record sequences of images
at different positions within the sample. This approach of
moving the slide to image at a certain location, recording a
movie, moving the slide to a new location, and repeating would,
of course, be time consuming. Furthermore, if the spatially
heterogeneous dynamics were also changing in time, then a
protracted measurement method would confound the results.

We investigated an approach to mapping out the dynamics
over the sample volume that consists of recording a movie as
the slide is moved at a constant velocity with a motorized
microscope stage. This on-the-fly scanning method could
potentially allow for fast mapping or for high-throughput
screens. Two main difficulties to overcome with this approach
were (i) the apparent drift velocity of the tracer particles due to
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Fig. 4 Denoising ISFs improves accuracy of the quantification of colloidal dynamics in a non-equilibrium gelling sample. (A) We used fluorescence microscopy to
image 1 um beads in a solution containing sodium caseinate and GDL. We recorded a movie of 4000 frames at 25 Hz. The bottom two images depict trajectories of
particles over a time span of 16 s (400 frames). Left: Trajectories shown for six beads from frames 2751 to 3150 (corresponding to t = 110 s to 126 s). Right:
Trajectories for five beads from frames 3801 to 4200 (corresponding to t = 152 s to 168 s). At the earlier time, the beads are able to move greater distances than
compared with the later time due to the casein forming a gel. (B) This depiction of the ISF where instead of computing the ISF at a given lag time, we compute itas a
function of two times is referred to as a two-time correlation function (2TCF). Red colors correspond to a high degree of correlation between image frames at the
two times (i.e., ISF near 1) while blue colors correspond to little correlation (i.e., ISF near 0). This depiction of the ISF demonstrates the non-steady state nature of the
dynamics. The regions boxed by gray and black solid and dashed lines correspond to the time-averaged ISFs plotted below. (C) Plots of the ISF are shown vs. lag
time, all for the same three values of g, 2.12, 2.19, and 2.27 um™2. Left, i: the two ISFs are each computed from 1000 frames of the recorded movie. The light gray
curves show the ISFs using frames 2000—-3000 (the region of the 2TCF outlined by the dashed gray line). The black curves show the ISFs using frames 3000-4000
(the region of the 2TCF outlined by the dashed black line). Note that for both the light gray and the black data points, there are three sets of points corresponding to
three values of g. The three curves largely overlap as the values of g are close. As gelation of casein occurred during the recording of the movie, the ISFs calculated
from the later frames decay more slowly. Middle, ii: the ISFs are computed from 51 frames of the recorded movie. The light gray curves show the ISFs using frames
2025-2076 (the region of the 2TCF outlined by the solid gray line). The black curves show the ISFs using frames 3075-3126 (the region of the 2TCF outlined by the
solid black line). As with the left plot, we show the ISFs for three different g values. Right, iii: the same ISFs are plotted as in the middle plot but after being denoised
with our CNN-ED. (D) The diffusion coefficients of the micron-sized beads are plotted as a function of time. The black data points correspond to conventional DDM
applied to non-overlapping groups of 750 frames (covering time intervals of 30 s). The blue data points correspond to using groups of 51 frames. The red data points
correspond to our results after applying the CNN-ED denoising method on the same data used for generating the blue data points.
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Fig. 5 Denoising ISFs and ¢DM were used to perform on-the-fly scan-
ning for fast characterization of a spatial gradient in the diffusivity of
micron-sized beads. (A) This schematic of our experiment depicts beads
within a solution having a gradient in the dextran concentration. The slide
was scanned at 1.74 pm s* along the gradient while images were recorded
at 25 frames per second. The top color bar denotes that we recorded
20 000 frames which corresponds to a scanned distance of 1.4 mm. (B) For
each plot, nine ISFs are plotted as a function of lag time. All are for the
same value of g, 3.07 um~2. The nine sets of points are the ISFs computed
from non-overlapping groups of 2000 frames (corresponding to a stage
displacement of 139.2 um) of the entire movie. The nine sets of ISFs are
color coded according to the color bar in (A). In (i), the ISFs computed for
different times (corresponding to different distances along the dextran
gradient) all nearly overlap. We also notice oscillations in the ISFs. These
features are because DDM is picking up on the dominant feature of the
dynamics: the steady drift velocity of the beads. This drift velocity is the
same over the entire movie (due to the stage moving at a constant velocity)
so the ISFs measured in regions of the sample with different dextran
concentrations are relatively similar. In (i), we have computationally removed
the drift velocity using DM. We observe that the ISFs (all for the same
q = 3.07 um™?) steadily decay more and more slowly as the movie progresses
(and, therefore, the region of the sample imaged contains higher con-
centrations of dextran). (C) In (i), we use groups of 51 frames rather than
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2000 frames to compute the ISFs, using ¢DM for removal of the drift
velocity. As before, these nine ISFs are for the same value of q. In (i), we
have used the CNN-ED to denoise the ISFs computed with 51 frames.
(D) We plot the diffusion coefficient of the beads as a function of the
position along the dextran gradient. For all data shown here, we have
used DM to remove the drift velocity. The black points are from DDM
analysis of groups of 2000 frames. The blue data points are from DDM
analysis of groups of 51 frames. The red data points are also from analysis
with 51 frames but with the CNN-ED used to denoise the ISFs.

the sample scanning needing to be subtracted from the mea-
sured dynamics (in our case, to reveal the underlying diffusive
motion) and (ii) the spatial resolution of the dynamics mapped
out throughout the sample needing to be balanced by the time
needed to acquire enough images to accurately capture the
dynamics. Naturally, our approach to (ii) was to use the CNN-
ED model to denoise the ISFs and quantify the dynamics with a
limited number of frames. For (i), we used a previously
described extension of DDM that allows for a constant drift
velocity, v, to be computationally removed. This technique is
known as phase differential microscopy (¢DM) due to the fact
that a translation in real space results in a phase shift in
Fourier space.***® Essentially, before subtracting the Fourier
transforms of two images separated by a lag time, A¢, we
multiply one of the Fourier transforms by exp(—i¢) where ¢ =
q-vAt.

The experimental setup we used is depicted in Fig. 5(A). We
imaged 1 pm beads with a 40x objective using brightfield
microscopy. The sample was on a motorized x-y stage (MS-
2000 from Applied Scientific Instrumentation with standard
6.35 mm pitch lead screw) and translated at a constant 1.74 um
s~ ' in the direction along the gradient in dextran concen-
tration. We recorded images at 25 Hz for a total of 20000
frames (thus, lasting 13.3 minutes and covering a total distance
of 1.4 mm). In Fig. 5(B) we show ISFs calculated from groups of
2000 non-overlapping frames, all at the same value of q. In
Fig. 5(B)-(i), we have not corrected for the sample stage velocity,
thus we observe oscillations in the ISF, indicative of ballistic
motion. Furthermore, the ISFs shown in Fig. 5(B)-(i), captured
from different regions of the sample as shown with the colorbar
in Fig. 5(A), do not show much difference even though the bead
diffusivity is slowing as the stage moves toward the higher
dextran concentration. This is due to the drift velocity dom-
inating the dynamics regardless of the diffusivity. In Fig. 5(B)-
(ii), we have computationally removed the drift using ¢DM.
Here, we observe ISFs that resemble exponential decays (rather
than showing oscillations) and we note that as the stage
position moves forward, the ISFs decay more slowly, reflecting
the increased dextran concentration.

Increasing the spatial resolution of our diffusivity mapping
would require decreasing the number of frames used for DDM
(or, alternatively, moving the stage at a slower speed). If instead
of using 2000 non-overlapping sets of frames, we used 51
frames, then we find the ISFs shown at nine different positions
along the gradient in Fig. 5(C)-(i). Here, we have used ¢DM for
drift velocity removal. We note that the ISFs are considerably
noisier than those in Fig. 5(B)-(ii) in addition to extending to a
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smaller maximum lag time. By using the CNN-ED model, we
can reduce much of the noise in the ISFs as shown in Fig. 5(C)-
(if). Our results from using DDM, with ¢DM in all cases, to find
the diffusion coefficients of the micron-sized beads are shown
in Fig. 5(D) when using groups of 2000 frames (black squares),
groups of 51 frames (blue circles), or groups of 51 frames with
the CNN-ED model used for denoising (red circles). There are
still fluctuations in the measured diffusion coefficients when
using the CNN-ED model, but considerably smaller than with-
out the denoising step.

4 Conclusions

We have demonstrated how a machine learning approach can
assist DDM analysis. Conventionally, DDM is used on movies of
several hundred or thousands of frames. This need for a large
number of frames can be time consuming and can present
problems when non-stationary dynamics are present. Unfortu-
nately, with small numbers of frames used to calculate the
DDM matrix (and the ISF), the results are frequently noisy.
We have shown that a neural network can be used to denoise
the ISFs computed using DDM. This is not an unexpected result
given the prior use of neural networks for denoising applica-
tions. The test cases we have described show how the use of a
CNN-ED model can be used for quantifying the time-dependent
diffusivity of tracer beads in a gelling sample and for quantify-
ing the position-dependent diffusivity of tracer beads in a
sample having a gradient in viscosity.

In these test cases that we have described, we assumed that
the parameters A(g) and B were stationary over time, even
though the dynamics, quantified through the parameter 7(g),
were not. There are many soft matter systems of interest where
not just the dynamics but also the structure is evolving in time.
For example, samples exhibiting photobleaching, changes in
opacity, or coarsening®® would show changes in A(g). If A(q)
varied more slowly than 1(g), then our presented approach
could be extended to account for that by determining A(g)
using some subset of frames smaller than the total length of
the video (as we did with the data presented here) but larger
than the interval used to generate the ISFs which get denoised.
However, a less straightforward approach would be necessary
to deal with situations involving A(g) and t(g) evolving at
similar rates.

A related limitation to our approach is that it assumes that
A(q) and B can be estimated from the images rather than
determined through fits to eqn (2). Our approach to estimating
A(g) and B assumes that there is sufficient contrast between the
sample and the background. This condition is easily met with
brightly labeled fluorescent beads or with colloidal tracer
particles that are highly scattering. However, this approach
to estimating A(g) and B may fail when imaging much smaller
colloidal particles or objects with less contrast.*"®' As with
scenarios involving a non-stationary A(q), alternative appro-
aches for denoising DDM results are needed for samples with
very little contrast.
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Another shortcoming of our method could be situations
where the dynamics abruptly shift or rapid decorrelation events
occur, rather than the relatively gentle changes in dynamics for
the scenarios we have investigated here. If those decorrelation
events happen over time scales smaller than those used for
calculating the to-be-denoised ISFs, then one could miss those
events. One approach could be to generate the two-time corre-
lation function, such as that shown in Fig. 4(B), to estimate the
time scale over which the dynamics are changing and to
determine what window size would be appropriate to calculate
the ISFs. Such an approach could allow for DDM to be used to
study samples exhibiting intermittent decorrelation events.
Previous work has explored using time-dependent DDM analy-
sis to study samples where intermittent events occur.>®? If our
CNN-ED denoising method were applied to such samples, one
would have to test that rapid decorrelation events are not
removed along with noise and one would likely have to explore
the appropriate time window for calculating ISFs such that the
dynamics can be accurately measured without losing informa-
tion about the intermittent events.

We note that the data we denoised with a CNN-ED model
were all of diffusive dynamics that fell within the range of
diffusivities of the data sets used for model training. We have
yet to explore how well this model would work for quantifying
dynamics that are faster or slower than that captured in the
training data. To build up a library of training data to create a
CNN-ED model that is likely to work in a wider range of
scenarios we are exploring the use of computer simulations.
Additionally, to improve this method of denoising DDM data, it
will be important to understand how well a CNN-ED model
would perform, based on various kinds of training data,
in situations with more complex dynamics. For example, an
interesting case would be a sample where the decay time, t(g),
is not a monotonic function of g. Such a situation is possible in
polydisperse colloidal suspensions where, due to the particles’
different structure functions, the contributions to the DDM
signal of differently sized particles will depend on ¢.** Other
classes of dynamics that have been investigated with DDM were
mentioned in the Introduction and to what degree our model
would fail when presented with more complex dynamics is
worth exploring in future work.

There are numerous further avenues to explore how
machine learning could enhance DDM beyond addressing the
shortcomings described above. Firstly, we limited ourselves to
employing the CNN-ED architecture used in prior work.*® It
would be interesting to investigate other neural network archi-
tectures. Moreover, one could try other denoising algorithms.
For example, in the previous work on using a CNN-ED model to
denoise X-ray photon correlation spectroscopy data,*® denois-
ing methods such as using Gaussian filters or linear principle
components-based filters were tested. These methods did not
perform as well as the CNN-ED model in that work (and we
would expect similar results in our use of CNN-ED models on
DDM data), but there may be DDM applications of these more
easy-to-use image denoising filters that are worth exploring.
Secondly, we denoised the 2D ISFs generated from DDM. Other
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approaches would be to denoise 3D datasets (such as the 2D
ISFs we used with an added third dimension being time) or
2TCF. In particular, it may be helpful to denoise the 3D 2TCF
(like the one shown in Fig. 4(B) with the added third dimension
being ¢q) in cases where we expect the ISF to be smooth in lag
time, g, and time (which is what we expect for all the data
shown here). Thirdly, a more robust method of uncertainty
estimation, such as presented in earlier work,?” would improve
DDM workflow and allow for better assessments of the cred-
ibility of the denoising steps. As machine learning approaches
become more standard and easier to implement, we expect that
this will allow DDM to be used in more non-equilibrium and
high throughput scenarios.
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