
Pyneapple-R: Scalable and Expressive Spatial
Regionalization

Yunfan Kang∗† Yongyi Liu‡§ Hussah Alrashid‡§ Akash Bilgi‡ Siddhant Purohit‡

Ahmed Mahmood¶ Sergio Rey∥∗∗ Amr Magdy‡§
∗ CyberGIS Center for Advanced Digital and Spatial Studies, University of Illinois at Urbana-Champaign

† Department of Geography and Geographic Information Science, University of Illinois at Urbana-Champaign
‡ Department of Computer Science and Engineering, University of California, Riverside

§ Center for Geospatial Sciences, University of California, Riverside
¶Google LLC ∥ Department of Geography, San Diego State University

∗∗ Center for Open Geographical Science, San Diego State University
Email: yfkang@illinois.edu {yliu786, halra004, abilg003}@ucr.edu

siddhant.0519@gmail.com amahmoo@google.com srey@sdsu.edu amr@cs.ucr.edu

Abstract—This paper demonstrates Pyneapple-R, an open-
source library for scalable and expressive regionalization. Re-
gionalization algorithms, also known as the ‘spatially-constrained
clustering algorithms’, have been widely adopted in spatial
analysis tasks and now evolving towards a more large-scale and
fine-scale direction. Through collaborations with social scientists
and domain experts, we have identified emerging challenges
in existing regionalization techniques, particularly regarding
scalability and expressiveness. As data volumes continue to grow
and regionalization algorithms become increasingly crucial to
decision-making across various fields, enhancing these aspects
can significantly impact the quality and effectiveness of re-
search and applications. To address these challenges, Pyneapple-R
provides novel algorithms for regionalization queries including
the expressive p-regions algorithm, the scalable max-p regions
algorithm, and the expressive max-p regions problem. To show-
case Pyneapple-R, we have developed frontend web applications
that enable users to interact with the algorithms by selecting
constraints or simply engaging in conversation with the system
to issue queries with the help of popular AI models. Interactive
notebooks, designed to demonstrate the superiority and simplicity
of Pyneapple-R, provide varying levels of detail to help social
scientists and developers explore its full potential.

Index Terms—spatial analysis, algorithms, library, regionaliza-
tion, query

I. INTRODUCTION

Spatial analysis has become an indispensable tool in various
social science studies [1]–[3]. It enables social scientists to
conduct complex analyses on diverse socioeconomic phenom-
ena [4] and plays a vital role in everyday applications and
policy making. Among the spatial analysis techniques, region-
alization has gained much attention in recent years [5]. Spatial
regionalization involves grouping spatial areas into spatially
contiguous and homogeneous regions. It finds applications in
numerous fields, such as epidemic analysis [6], service deliv-
ery systems [7], water quality assessment [8], weather tem-
perature classification [9], rainfall erosivity estimation [10],
health data analysis [11], spatial crowdsourcing [12], [13],
and constituency allocation [14]. Regionalization is also one
of the core functionalities of the spatial analysis module of

the geographic information systems (GIS) and is being used
by multitudes of users and organizations every day [15].

Although regionalization problems can be modeled as
mixed-integer problems and solved using general MIP
solvers [16], deriving an optimal solution in a feasible time-
frame is formidable, especially for larger inputs. This com-
plexity stems from their NP-hard nature. As a result, several
heuristic algorithms have been proposed to address the re-
gionalization problem [5], [17]. However, despite the benefits
social scientists gain from regionalization techniques, partic-
ularly with the increased availability of big geospatial data,
several emerging problems remain unsolved due to the limited
scalability and expressiveness of existing tools and techniques.
For instance, the current best-performing algorithm, max-p-
regions (MP-regions) — available in the PySAL library and
ArcGIS — can take 3-10s of minutes to process a dataset
with approximately 3K areas, depending on the threshold
value, limiting its practical applicability. Moreover, the tra-
ditional MP-regions formulation often falls short in catering
to multifaceted analytical tasks. While it permits a singular,
user-defined threshold lower bound on one attribute, many
real-world scenarios necessitate multiple constraints to draw
meaningful insights. An example can be seen in the context
of COVID-19 where transmission patterns are intertwined with
factors like prosperity and mobility [6]. The existing formula-
tion’s inability to address such composite queries impedes the
broader adoption of regionalization algorithms.

This paper presents a system demonstration of Pyneapple-
R1, an open-source library for scalable and expressive re-
gionalization, currently under active development with more
features being added. Pyneapple-R builds upon our research
work, which has yielded three novel algorithms: the scalable p-
regions with user-defined constraints (PRUC) [18], the scalable
MP-regions algorithm (SMP) [19], [20], and the expressive
MP-regions algorithm (EMP) [21]. Attendees at our demon-
stration can acquaint themselves with Pyneapple-R through

1https://github.com/MagdyLab/Pyneapple

https://github.com/MagdyLab/Pyneapple

Pyneapple-R

Expressive P-regions

Scalable Max-P-Regions

Expressive Max-P-Regions

Pyneapple

Frontend Application

!"#$%"&'()*&+,'$Notebooks

Machine Learning

Augmented GWR

Spatial Network Hotspots

Group-By Aggregation

Group-By Point

Group-By Line

API Python / Java API

Fig. 1. Pyneapple Overview

frontend applications, which allow interactive constraint selec-
tion and visualization of results. In a novel approach, the GPT-
3.5 model enables users to converse directly with the system,
while the backend automates query interpretation and process-
ing. Additionally, interactive Jupyter Notebooks for Python
and Java enthusiasts will showcase API usage and the edge our
algorithms have over existing counterparts. Subsequent sec-
tions offer an in-depth exploration of the Pyneapple-R library
(Section II) and the demonstration specifics (Section III).

II. Pyneapple-R OVERVIEW

Pyneapple-R is an integral sub-package of the more exten-
sive Pyneapple library [22]. Figure 1 furnishes a comprehen-
sive overview of the Pyneapple ecosystem. The current version
of Pyneapple comprises three main modules: regionalization
queries, machine learning (ML) assisted analysis and group-
by-aggregation queries. Pyneapple-R refers to the regionaliza-
tion module, as bolded in the figure. Each of the algorithms
in Pyneapple-R is equipped with thorough Python and Java
API documentation, facilitating a seamless integration into the
broader data science landscape. The rest of this section delves
deeper into the specifics of each algorithm housed within the
Pyneapple-R library.

A. Expressive P-Regions Problem

The p-regions problem is akin to clustering tasks like k-
means, where users must specify the number of regions and
an optimization objective. However, existing variants of the
p-regions problem lack support for user-defined constraints,
limiting its applicability across various domains and a wide
range of use cases. To address this limitation, the PRUC
problem [18] generalizes the p-regions problem to include
an additional user-defined constraint, such as a minimum
population requirement for each region.

Introducing a user-defined constraint in PRUC presents
several challenges. First, existing techniques have a significant
probability, up to 80%, of generating regions that fall short of
the user-specified constraints. Second, ensuring that regions
adhere to the constraints often demands extensive spatial
rearrangements. Third, the additional overhead in producing
valid solutions exacerbates scalability issues, making it more
challenging to handle large datasets.

To adeptly navigate these challenges, the Pyneapple-R li-
brary introduces the Global Search with Local Optimization
(GSLO) algorithm. GSLO operates in two phases (1) Global
Search and (2) Local Optimization. The Global Search phase
employs innovative techniques to derive a region partitioning
that aligns with the user-defined constraints, boasting a high
success probability. In the Local Optimization phase, parallel
stages are used to progressively improve the partitioning’s
quality concerning similarity properties within each region.
Experimental results demonstrate that GSLO is over 100×
faster and achieves up to 6× better heterogeneity compared
to state-of-the-art algorithms. Furthermore, GSLO solves the
original p-regions problem with up to 4× better heterogeneity
than existing algorithms.

B. Scalable MaxP-Regions Problem

In contrast to the conventional p-regions problem, the MP-
regions problem deviates by requiring users to specify a
constraint on an attribute with a lower bound threshold, such
as a minimum total population. This constraint-based approach
allows for the meaningful definition of spatial regions based on
attribute values, rather than requiring the explicit specification
of the number of regions. It proves especially valuable when
social scientists aim to automatically determine the appropriate
spatial scale, as manually specifying the number of regions
can be challenging. Unfortunately, scalability issues have his-
torically hindered the effective use of MP-regions, particularly
when dealing with a large number of geographical units [23]–
[25].

Scaling up MP-regions confronts several formidable chal-
lenges. First, MP-regions is an NP-hard problem, rendering
exhaustive exploration of all possible solutions and finding an
optimal solution prohibitively costly. Second, applying stan-
dard spatial partitioning methods to divide input spatial areas
into smaller subsets while preserving spatial contiguity is far
from straightforward. Conventional techniques tend to parti-
tion spatial objects based solely on their individual boundaries,
often ignoring the spatial relationships with neighboring ob-
jects. This approach leads to spatially disconnected partitions,
thwarting parallelized methods from generating connected
regions. Third, existing techniques for MP-regions typically
employ tightly coupled steps that challenges straightforward
parallelization. Consequently, these methods remain inherently
centralized and struggle to support large datasets effectively.

To navigate these impediments, Pyneapple-R unveils the
SMP strategy [19], [20], which innovatively refines the region-
building process through parallelization. SMP’s cornerstone
is its two-phase spatial partitioning approach that emphasizes
spatial contiguity and minimizes processing overhead. Such
a blueprint paves the way for efficient, fully parallelized
methodologies, adeptly scaling with augmented computational
resources on commodity machines. As a result, SMP achieves
an impressive 97% reduction in query time and extends its
support to datasets that are an order of magnitude larger than
what state-of-the-art approaches can accommodate.

C. Expressive MaxP-Regions Problem

In addition to the scalability issue pointed out in Sec-
tion II-B, the MP-regions formulation is also limited in ex-
pressiveness because it only supports a single constraint with
a lower-bound threshold. However, many real-world analysis
tasks require multiple constraints with different aggregate
functions. To address the need for a broader range of complex
analysis tasks, the EMP formulation [21] was introduced.
EMP extends the MP-regions problem by incorporating the
five SQL aggregation operators: MIN, MAX, AVG, SUM, and
COUNT. Notably, it accommodates multiple constraints within
a singular query. Each constraint is adaptable via a range
operator, enabling representation of both lower and upper
bounds.

This substantial enhancement of the expressiveness of
the MP-regions problem presents several challenges. First,
EMP is computationally more demanding than MP-regions.
It formulates the MP-regions problem as a subproblem by
specifying only a single SUM constraint with a lower-bound
threshold. Additionally, supporting multiple constraints with
varying mathematical properties and range operators renders
existing MP-regions solutions inadequate for EMP. Second,
the new constraints are non-monotonic, meaning that adding
or removing areas to or from a region does not guarantee
satisfaction or violation of these constraints. This necessitates
exhaustive exploration of the entire search space, which is
infeasible for such an NP-hard problem. Third, while satis-
fying multiple non-monotonic constraints, a region can easily
become oversized, reducing the number of regions (p), which
contradicts the goal of maximizing p in the original definition
of MP-regions.

The Pyneapple-R offers a three-phase solution, namely
FaCT algorithm, to address these challenges and solve the
EMP problem. The first phase establishes theoretical bounds
to assess the feasibility of finding a solution given the user-
defined constraints. The second phase constructs a feasible
solution that adheres to the input constraints while maximiz-
ing the number of regions (p). This phase comprises three
independent steps, each tailored to leverage the mathematical
properties of a specific constraint type to maximize p to its
theoretical upper limit. The third phase employs a local search
based on the Tabu search [23] algorithm to enhance overall
region heterogeneity. Notably, our algorithm demonstrates
exceptional scalability when processing datasets larger than
those previously examined in the existing literature as well.

III. DEMONSTRATION SCENARIO

To demonstrate Pyneapple-R, we design different scenarios
for different groups of target audiences. Users will interact
with the Pyneapple-R library through user-friendly web ap-
plications and Jupyter Notebooks, illustrating the ease of use
and interactive nature of the toolkit. Attendees will be able
to visualize the results, explore different parameter settings,
and gain a deep understanding of the potential applications of
Pyneapple-R in various domains. By the end of this demon-
stration scenario, attendees will be confident in the capabilities

Fig. 2. Frontend UI for Regionalization Queries

of Pyneapple-R to address complex spatial analysis tasks and
appreciate the potential impact it can have on real-world
decision-making processes.

A. Scenario 1: Interactive Querying and Visualization

To demonstrate its capabilities and engage a general audi-
ence with varying technical backgrounds, we have developed
an intuitive and user-friendly frontend that offers a straight-
forward web UI. Users can easily issue queries by selecting
datasets and composing constraints by interacting with drop-
down menus and sliders, as illustrated in Figure 2. Let’s as-
sume a user is interested in exploring the employment situation
in Los Angeles. By clicking the Browse button, the shapefile
of the census tracts of Los Angeles is loaded and visualized
in the left panel. Simultaneously, the contiguity matrices are
computed at the back end so that the user can select how
he wants to define the connectivity of the regions. After
specifying the attribute names and the aggregation methods,
the slide bars are initialized, allowing users to set the range for
each constraint intuitively. Upon pressing the Query button, the
query is sent to the backend, and the corresponding regional-
ization algorithm (in this case, the EMP module) performs the
regionalization and returns the region labels. The regions are
then automatically colored, and the users can interact with the
visualization to view the detailed attribute values by clicking
on the regions. For use cases whose scalability is greatly
improved by Pyneapple-R, such as the SMP, we also include
the APIs of the state-of-the-art implementations. The frontend
application also provides an option to turn on the side-by-
side comparison with statistics to illustrate the superiority and
the correctness of Pyneapple-R algorithms. This demonstration
scenario highlights the potential of Pyneapple-R in making
spatial analysis more accessible and efficient for various users,
emphasizing its ability to handle an enriched set constraints
and large-scale problems.

B. Scenario 2: Building Applications

For social scientists working primarily in the Python en-
vironment, Pyneapple-R encapsulates all low-level Java im-
plementations as black boxes and exposes just the essential
functions as plug-and-use modules.

Fig. 3. Query by Talking to the System

To demonstrate the simplicity of Pyneapple-R Python APIs,
we carefully design Jupyter Notebooks for each of the mod-
ules. Each notebook contains detailed guidance and examples
to walk the audience through the life cycles of algorithms in
Pyneapple-R. To get started, we show that social scientists can
simply install the Pyneapple-R Python package through conda.
All dependencies, including the JDK and the configuration
of the Java environment, can be configured by the script
and the users will not be aware of the Java-Python bridge.
For demonstrating the usage of Pyneapple-R Python APIs,
we adopt familiar, classic, or popular use cases that social
scientists can relate to in order to demonstrate how the APIs
of the existing techniques can be replaced with Pyneapple-
R APIs that accept the same input and produce compatible
output within the original computation workflow. Compar-
isons between Pyneapple-R APIs and original APIs, along
with corresponding visualizations, are shown to highlight
Pyneapple-R’s superiority in terms of efficiency and result
quality. Through this demonstration, we show users that their
work is painlessly improved with Pyneapple-R APIs while
gaining huge benefits in scalability and expressiveness.

C. Scenario 3: Natural Language Querying

To further ease using Pyneapple-R for social scientists and
extend its interactivity and user friendliness, we introduce a
middle layer powered by GPT-3.5 APIs to enable the audiences
to interact with the system using natural language. This
innovative approach allows users to either speak their query or
type it in as text, making the process more user-friendly and
intuitive. For example, a user may say, “Partition the Mexican
states datasets where each region needs to be at least 20 million
Hectares large and optimize the dissimilarity on per capita
GDP in the 1940s.”, as shown in Figure 3 The recorded audio
is then processed by the large-v2-whisper model to generate
text. With the help of the text-davinci-003 model, the AI-
driven system would recognize the query, identify the required
dataset and parameters to invoke the corresponding function,
and execute the necessary steps to visualize the results on
the frontend. The user can modify the query to get a more
desirable result or issue another query by simply continuing
the discussion.

REFERENCES

[1] J. R. Logan, “Making a place for space: Spatial thinking in social
science,” Annual review of sociology, vol. 38, pp. 507–524, 2012.

[2] D. Darmofal, Spatial analysis for the social sciences. Cambridge
University Press, 2015.

[3] L. Anselin, “The future of spatial analysis in the social sciences,”
Geographic information sciences, vol. 5, no. 2, pp. 67–76, 1999.

[4] L. M. Scott and M. V. Janikas, “Spatial statistics in arcgis,” in Handbook
of applied spatial analysis: Software tools, methods and applications,
pp. 27–41, Springer, 2009.

[5] R. Wei, S. Rey, and E. Knaap, “Efficient Regionalization for Spatially
Explicit Neighborhood Delineation,” IJGIS, vol. 35, pp. 1–17, 2020.

[6] R. Benedetti, F. Piersimoni, G. Pignataro, and F. Vidoli, “The Identi-
fication of Spatially Constrained Homogeneous Clusters of Covid-19
Transmission in Italy,” RSPP, vol. 12, pp. 1169–1187, 2020.

[7] M. P. Armstrong, G. Rushton, R. Honey, B. T. Dalziel, P. Lolonis, S. De,
and P. J. Densham, “Decision Support for Regionalization: A Spatial
Decision Support System for Regionalizing Service Delivery Systems,”
CEUS, vol. 15, pp. 37–53, 1991.

[8] K. S. Cheruvelil, P. A. Soranno, M. T. Bremigan, T. Wagner, and S. L.
Martin, “Grouping Lakes for Water Quality Assessment and Monitoring:
The Roles of Regionalization and Spatial Scale,” JEM, vol. 41, pp. 425–
440, 2008.

[9] A. El Kenawy, J. I. López-Moreno, and S. M. Vicente-Serrano, “Summer
Temperature Extremes in Northeastern Spain: Spatial Regionalization
and Links to Atmospheric Circulation (1960–2006),” TAC, vol. 113,
pp. 387–405, 2013.

[10] S. Schönbrodt-Stitt, A. Bosch, T. Behrens, H. Hartmann, X. Shi, and
T. Scholten, “Approximation and Spatial Regionalization of Rainfall
Erosivity Based on Sparse Data in a Mountainous Catchment of the
Yangtze River in Central China,” JESPR, vol. 20, pp. 6917–6933, 2013.

[11] N. Bullen, G. Moon, and K. Jones, “Defining localities for health
planning: a gis approach,” Social Science & Medicine, vol. 42, no. 6,
pp. 801–816, 1996.

[12] Z. Chen, P. Cheng, L. Chen, X. Lin, and C. Shahabi, “Fair task
assignment in spatial crowdsourcing,” PVLDB, vol. 13, no. 12, pp. 2479–
2492, 2020.

[13] T. Song, Y. Tong, L. Wang, J. She, B. Yao, L. Chen, and K. Xu,
“Trichromatic online matching in real-time spatial crowdsourcing,” in
ICDE, pp. 1009–1020, IEEE, 2017.

[14] D. J. Rossiter and R. J. Johnston, “Program group: the identification of
all possible solutions to a constituency-delimitation problem,” Environ-
ment and Planning A, vol. 13, no. 2, pp. 231–238, 1981.

[15] Esri, “Unlock your data with machine learning and clustering tools
in arcgis pro.” https://mediaspace.esri.com/media/t/1 ghu5dirn, 2018.
Accessed on Sep 26, 2023.

[16] J. C. Duque, R. L. Church, and R. S. Middleton, “The p-regions
problem.,” Geographical Analysis, vol. 43, no. 1, pp. 104–126, 2011.

[17] J. C. Duque, L. Anselin, and S. J. Rey, “The max-p-regions problem,”
Journal of Regional Science, vol. 52, no. 3, pp. 397–419, 2012.

[18] Y. Liu, A. R. Mahmood, A. Magdy, and S. Rey, “PRUC: P-regions with
User-defined Constraint,” PVLDB, vol. 15, no. 3, pp. 491–503, 2021.

[19] H. Alrashid, Y. Liu, and A. Magdy, “SMP: Scalable Max-P Regional-
ization,” in ACM SIGSPATIAL, pp. 1–4, 2022.

[20] H. Alrashid, Y. Liu, and A. Magdy, “Page: Parallel scalable regional-
ization framework,” TSAS, vol. 9, no. 3, pp. 1–26, 2023.

[21] Y. Kang and A. Magdy, “EMP: Max-P Regionalization with Enriched
Constraints,” in IEEE ICDE, pp. 1914–1926, 2022.

[22] MagdyLab, “Pyneapple-r.” https://github.com/MagdyLab/Pyneapple.
[23] A. Poorthuis, “How to draw a neighborhood? the potential of big

data, regionalization, and community detection for understanding the
heterogeneous nature of urban neighborhoods,” Geographical Analysis,
vol. 50, no. 2, pp. 182–203, 2018.

[24] R. Wei, S. Rey, and E. Knaap, “Efficient regionalization for spatially ex-
plicit neighborhood delineation,” International Journal of Geographical
Information Science, vol. 35, no. 1, pp. 135–151, 2021.

[25] S. E. Spielman and D. C. Folch, “Reducing uncertainty in the ameri-
can community survey through data-driven regionalization,” PloS one,
vol. 10, no. 2, p. e0115626, 2015.

https://mediaspace.esri.com/media/t/1_ghu5dirn
https://github.com/MagdyLab/Pyneapple

	Introduction
	Pyneapple-R Overview
	Expressive P-Regions Problem
	Scalable MaxP-Regions Problem
	Expressive MaxP-Regions Problem

	Demonstration Scenario
	Scenario 1: Interactive Querying and Visualization
	Scenario 2: Building Applications
	Scenario 3: Natural Language Querying

	References

