
Performance-Aware Energy-Efficient GPU Frequency Selection
using DNN-based Models

Ghazanfar Ali
Texas Tech University

Lubbock, USA
ghazanfar.ali@ttu.edu

Mert Side
Texas Tech University

Lubbock, USA
mert.side@ttu.edu

Sridutt Bhalachandra
Lawrence Berkeley National

Laboratory
Berkeley, USA
sriduttb@lbl.gov

Nicholas J. Wright
Lawrence Berkeley National

Laboratory
Berkeley, USA

njwright@lbl.gov

Yong Chen
Texas Tech University

Lubbock, USA
yong.chen@ttu.edu

ABSTRACT
Energy efficiency will be important in future accelerator-based HPC
systems for sustainability and to improve overall performance. This
study proposes a deep neural network (DNN)-based learning model
for execution time and power consumption of workloads across
GPUs DVFS design space. Micro-architectural data obtained by run-
ning SPEC-ACCEL, DGEMM, and STREAM benchmarks are used
for model training. These features are consistent for a workload
unaffected by frequency and input size reducing the data required
significantly. For real-world applications - LAMMPS, NAMD, GRO-
MACS, LSTM, BERT, and ResNet50 power and time models show
89% – 98% accuracy on NVIDIA Ampere. Multi-objective functions
help select optimal frequencies that lower power and minimize
performance impact showing maximum energy savings of 27%
at a performance loss of 1.8%. The same models trained on Am-
pere showed an accuracy of greater than 93% on an NVIDIA Volta,
thereby demonstrating model portability across architectures.

KEYWORDS
GPU, dynamic voltage frequency scaling, Ampere GPU, Volta GPU,
energy-efficiency, high-performance computing
ACM Reference Format:
Ghazanfar Ali, Mert Side, Sridutt Bhalachandra, Nicholas J.Wright, and Yong
Chen. 2023. Performance-Aware Energy-Efficient GPU Frequency Selection
using DNN-based Models. In 52nd International Conference on Parallel Pro-
cessing (ICPP 2023), August 07–10, 2023, Holladay, UT, USA. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3605573.3605600

1 INTRODUCTION
While the first exascale system, Frontier [40], delivered on the
20MW power budget goal [13], future deployments are set to con-
sume almost double this power [42]. These future HPC systems

This work is licensed under a Creative Commons Attribution International
4.0 License.

ICPP 2023, August 07–10, 2023, Holladay, UT, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0843-5/23/08.
https://doi.org/10.1145/3605573.3605600

are estimated to achieve more than 90% compute capability from
GPUs [30]; therefore, improving the energy efficiency of GPUs can
significantly contribute to lowering the overall power budget of
GPU-enabled HPC systems.

Three key questions drive our current research. First, as GPU
workloads exhibit different computational intensities, what key
features could uniquely identify their power and performance be-
haviors? Second, GPUs offer a wide array of performance and power
controls. For example, NVIDIA GA100 [5] supports 81 dynamic volt-
age frequency scaling (DVFS) configurations in the range between
210 MHz and 1410 MHz. While these configurations favor saving
power, they also make the power and performance control design
space more complex. How do we go beyond traditional brute-force
approaches that may not always be feasible? Third, an HPC center
aspires to reduce power with little or no impact on performance.
How to select a DVFS configuration that satisfies these criteria?

Limitations of state-of-art approaches:While several studies
have explored the relationship between GPU utilization, power,
and performance, such as [1, 7, 12, 16], little attention has been
given to identifying fine-grain GPU’s low-level utilization features
that uniquely recognizes the power and performance signature of
a workload. Furthermore, the features identified in previous re-
search are not always portable across applications and agnostic to
changes in input sizes and DVFS configurations. Numerous studies
that have intended to model power and performance behaviors
across different DVFS configurations using analytical and machine
learning (ML)-based models have limitations too. For example, data
acquisition of these existing methodologies is complex and costly,
and often they require metrics collection at all supported DVFS
configurations [4, 7, 41, 43]. Many proposed ML models are specific
to optimizing power or performance and thus have higher perfor-
mance overheads while optimizing for energy. On the other hand,
existing models may use application-specific characteristics and
hence are not versatile. The majority of the models are based on
traditional ML-based learners that may not be suitable for making
reliable predictions for workloads with different computational pat-
terns. Last, the existing multi-objective optimal approaches provide
a set of multiple optimal DVFS configurations rather than a single

433

https://doi.org/10.1145/3605573.3605600
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3605573.3605600
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3605573.3605600&domain=pdf&date_stamp=2023-09-13

ICPP 2023, August 07–10, 2023, Holladay, UT, USA Ghazanfar Ali, Mert Side, Sridutt Bhalachandra, Nicholas J. Wright, and Yong Chen

DVFS configuration for an application [8, 11]. However, this flexibil-
ity may come at the cost of simplicity for an average user unaware
of the performance implications of a particular DVFS setting.

In this study, we first characterized and selected GPU utilization
metrics correlating power and execution time using the mutual
information (MI) technique. Then, we developed power and per-
formance models based on a DNN guided by the selected features.
Finally, using a multi-objective function, the predicted values are
used to select the optimal GPU frequency for a workload.

Key insights and contributions: This study make the follow-
ing key contributions:
• Selection of fine-grained features: Using the Mutual Information,
we analyzed different GPU utilization metrics for their rela-
tionship with power and performance. We identified features
agnostic to changes in DVFS and input size. It is shown that
the same set of features can model both power and time.
• Deep learning-based power and performance models and selec-
tion of optimal frequency: We developed models based on deep
learning to improve prediction accuracy for GPU workloads
that exhibit linear, non-linear, and other complex relationships
between utilization metrics and power/ performance. These
are efficient in learning complex power and performance be-
haviors of applications across different DVFS configurations. A
multi-objective function (energy-delay product (EDP) or ED2P)
is used to select the optimal frequency.
• Portability of the approach: The portability of the proposed
approach was validated on both application and architecture
levels. The power and performance models, developed using
metrics from general-purpose GPU benchmarks (SPEC ACCEL,
DGEMM, STREAM), predicted the power and performance
of real applications (which were not used in model training)
on NVIDIA GV100 and GA100 architectures with an accuracy
between 89% and 98%. The energy profiles were chosen using
ED2P achieved, on average, an energy saving of up to 27.1%
with 1.8% performance loss for the real applications on GA100.
Further, energy saving of up to 23.6% was achieved with less
than 1% performance loss on GV100.

2 MOTIVATION
Understanding the impact of power controls on workload power
and performance is an essential foundational step toward enabling
power and energy-efficient computing. To understand these pat-
terns, we analyzed the impact of 61 DVFS configurations, in the
range of 510 MHz - 1410 MHz, of NVIDIA GA100 on the power, per-
formance, and energy of DGEMM (i.e., representative of compute-
intensive workload) and STREAM (i.e., representative of memory-
intensive workload) micro-benchmarks, as shown in Figure 1. The
workloads running below 510 MHz experience heavy performance
degradation and are thus excluded from the design space. Figures 1
(a) and (e) show that the power is approximately a nonlinear func-
tion of GPU core frequency. The observation shows that at the max-
imum core frequency, a compute-intensive workload can use power
up to 100% of GPU’s thermal design power (TDP), and a memory-
intensive workload can use up to ∼50% of the TDP. Similarly, at the
lowest frequency, the power for compute- and memory-intensive
workloads can be reduced by up to one-fifth of the TDP.

Figures 1 (b) and (f) show that execution time and frequency
exhibit an inversely nonlinear relationship. However, DGEMM and
STREAM attain maximum performance at different frequencies. We
can generalize that the performance of a memory-intensive work-
load is less impacted at lower frequencies than a compute-intensive
workload. Energy (Figures 1 (c) and (g)) is a product of power and
execution time. Thus, it shows a nonlinear relationship with the
core frequency. Predictably, energy is higher at the lower and higher
frequency ranges. This increase in energy at the extremes is due
to higher execution time at the lower frequency ranges and higher
power at higher frequency ranges.

Figure 1 (d) shows a measure of performance in terms of floating
point operations per second (FLOPS), which is a direct linear func-
tion of core frequency, and the highest FLOPS were attained at the
maximum frequency. The FLOPS count was reduced by about one-
fourth at the lowest frequency. Thus, lower frequencies significantly
degrade the performance of the compute-intensive kernels.

Figures 1 (h) showed the change in bandwidth in relation to
the core frequency, which initially increases with the frequency
but flattens at ∼ 900 MHz. In alignment with the execution time
behavior of the STREAM, the bandwidth does not significantly
improve after ∼900 MHz. Thus, memory-intensive kernels can be
clocked to the lower frequency ranges without a significant impact
on performance.

The impact of DVFS on an application is highly dependent on its
computational intensity. In Figure 1, DGEMM shows optimal energy
and run time at 1080 MHz and 1410 MHz (maximum frequency),
respectively. Likewise, STREAM provides optimal energy and run
time at 1005 MHz and 1260 MHz, respectively. Thus, there is no
universally optimal DVFS configuration.

3 EXPERIMENTAL SETUP
In this study, we collected the utilization metrics for SPEC AC-
CEL, DGEMM, and STREAM, real applications (LAMMPS, NAMD,
GROMACS, and LSTM) from an NVIDIA Ampere A100 GPU node
located at the National Science Foundation (NSF)’s Chameleon
CHI@UC site [20]. The Volta V100 GPU measurements were ob-
tained from a node at High Performance Computing Center, Texas
Tech University [15]. Table 1 lists the configuration of the NVIDIA
GPU used in this study.We used CUDA 11.2 (NVIDIA driver version
450) and CUDA 11.5 (driver version 495) for GV100 and GA100,
respectively. All our experiments were performed with exclusive
access to the node to avoid any interference from other applications.

Table 1: Specifications of the GPUs used in this study.

GA100 GV100

Core Frequency Range (MHz) [210:1410] [135:1380]
Default Core Frequency (MHz) 1410 1380
Used DVFS Configurations 61 out of 80 117 out of 167
Memory Frequency (MHz) 1597 877
GPU Memory (HBM2e) (GB) 80 40
Peak Memory Bandwidth (GB/s) 2039 900
TDP (W) 500 250

We usedDGEMM[26] and STREAM [6] as ourmicro-benchmarks
since they are representative of compute- and memory-intensive

434

Performance-Aware Energy-Efficient GPU Frequency Selection using DNN-based Models ICPP 2023, August 07–10, 2023, Holladay, UT, USA

600 800 1000 1200 1400
(a) DGEMM-Core Frequency (MHz)
0

100
200
300
400
500

Po
w

er
 (

W
)

TDP
600 800 1000 1200 1400

(b) DGEMM-Core Frequency (MHz)
1

2

3

4

Ex
ec

. T
im

e
(s

)

1.3 s, 1410 MHz

600 800 1000 1200 1400
(c) DGEMM-Core Frequency (MHz)

400

500

600

En
er

gy
 (

J) 374.2 J, 1080 MHz

600 800 1000 1200 1400
(d) DGEMM-Core Frequency (MHz)
0

10

20

FL
O

PS
 (

T)

Max. Attainable

600 800 1000 1200 1400
(e) STREAM-Core Frequency (MHz)
0

100
200
300
400
500

Po
w

er
 (

W
)

TDP

600 800 1000 1200 1400
(f) STREAM-Core Frequency (MHz)

2.2
2.6
3.0
3.4
3.8
4.2

Ex
ec

. T
im

e
(s

)

2.7 s, 1260 MHz

600 800 1000 1200 1400
(g) STREAM-Core Frequency (MHz)

350
400
450
500
550
600
650

En
er

gy
 (

J) 445.6 J, 1005 MHz

600 800 1000 1200 1400
(h) STREAM-Core Frequency (MHz)

1000

1500

2000

Ba
nd

w
id

th
 (

G
B/

s)

Max. Attainable

Figure 1: Power, execution time, energy, and FLOPS variations across different frequency configurations of NVIDIA A100 GPU
for DGEMM (upper) and STREAM (lower).

workloads, respectively. The proposed models were trained using
DGEMM, STREAM, and SPEC ACCEL® benchmark suite [18]. The
SPEC ACCEL benchmark suite consists of 19 parallel workloads
specifically designed to test the performance of the accelerators,
such as GPUs. The portability of the proposed models was eval-
uated using four GPU real-world applications on NVIDIA GV100
and GA100 GPUs. Table 2 lists the applications used for the training
and evaluations of our models.

Table 2: List of applications used in this study.

Category Applications
SPEC ACCEL [Training] TPACF, STENCIL, LBM, FFT, SPMV,

MRIQ, HISTO, BFS, CUTCP, KMEANS,
LAVAMD, CFD, NW, HOTSPOT, LUD,
GE, SRAD, HEARTWALL, BPLUSTREE

Micro-Benchmarks [Training] DGEMM, STREAM
Real-world [Evaluation] LAMMPS, NAMD, GROMACS, LSTM,

BERT, ResNet50

4 METHODOLOGY
Our goal is to devise a systematic method that reduces energy
for applications with minimal performance degradation. Figure 2
illustrates the key components involved in finding an optimum
DVFS configuration. Our approach consists of two phases: (1) an
offline training phase; and (2) an online prediction phase.

Each training workload was executed three times across all sup-
ported DVFS frequencies. The execution time of some workloads
was small, so a 20-ms interval is used to collect metrics to develop
a statistically significant dataset. These metrics are analyzed (see
Section 4.2 for more details) to identify features that affect a work-
load’s power and execution time. The deep learning-based power
and performance models are then constructed using these features.

In the prediction phase, an application is executed only at the
maximum frequency to acquire the model features. This is because
the features do not change significantly across DVFS configura-
tions (see Section 4.2) and are used across all other frequencies to
create the dataset for the workload. This is one of the key distinc-
tions between our methodology and other prior works involving
utilization metrics. This dataset is then used to predict power and

execution time across all DVFS configurations for the workload.
The energy for the workload is computed using the predicted power
and execution time. The predicted execution time and power at
each frequency are used to select the optimal frequency.

4.1 Data Collection Framework
This study has designed and developed a transparent, extensible
framework (no compiling or linking needed) for GPU data (metrics)
acquisition. The data acquisition is performed using three modules.
The launchmodule initiates data acquisition and allows the orches-
tration of the data collection process. It enables the specification
of the desired DVFS configurations, executables’ names with their
arguments and paths, the results path, the number of runs, and
the sampling interval. The control module applies the desired
operating frequency to the GPU cores and memory to regulate
the GPU power. The NVIDIA Data Center GPU Manager (DCGM)
interface [29] is used for frequency control and metric collection.
The profilemodule runs the application and collects GPU metrics
using DCGM throughout the execution of the application. Finally,

Collect Utilization
Metrics

Training Applications

Collect Time & Power

Metrics Time & Power

Application

Online Metric
Collection

Metrics

DNN-based ML Model

Power

Training Phase Prediction Phase

Energy Time

Optimal Frequency
Selection

Run across DVFS Design Space Run on Maximum Frequency

Figure 2: Overview of themethodology for selecting theDVFS
configuration with optimal energy and performance.

435

ICPP 2023, August 07–10, 2023, Holladay, UT, USA Ghazanfar Ali, Mert Side, Sridutt Bhalachandra, Nicholas J. Wright, and Yong Chen

the launch module saves output metrics of each run into a comma-
separated values format file.

We collected 12 GPU utilization metrics ((1) fp64_active, (2)
fp32_active, (3) sm_app_clock, (4) dram_active, (5) gr_engine_
active, (6) gpu_utilization, (7) power_usage, (8) sm_active, (9)
sm_occupancy, (10) pcie_tx_bytes, (11) pcie_rx_bytes, and (12)
exec_time) for DGEMM, STREAM, and SPEC ACCEL benchmarks.
For the four real applications (LAMMPS, NAMD, GROMACS, and
LSTM), onlymodel features, power, and execution time are collected
at the maximum frequency for prediction and validation.

4.2 Feature Characterization
We identified the relationship between power, execution time, and
the GPU’s utilization features. Furthermore, we investigated the
impact of DVFS and input size on them.

sm_app_clock

dram_active

fp_active

pcie_rx_bytes

gpu_utiliz
ation

pcie_tx_bytes

gr_engine_active

sm_active

sm_occupancy

Feature

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Sc
or

e

1.0
0.8

0.7 0.6 0.5 0.5

0.2
0.0 0.0

0.8 0.9 0.8

0.6 0.6 0.5

0.2
0.0 0.0

power_usage run_time

Figure 3: Feature dependency for predicting power and time.

4.2.1 Selection of the Fine-Grained Features. Feature selection was
performed to choose features that directly impact an application’s
power usage and execution time. These features are critical in
developing accurate and reliable ML models. We used MI [32] tech-
nique to identify the features closely related to predictands (i.e.,
power_usage and execution_time). MI is a nonparametric procedure
based on estimating distances using k-nearest neighbors [22, 35].
The advantage of this approach is that it is neutral and independent
of machine learning algorithms. We used the dataset for DGEMM
and STREAM to discover the relationship between the predictands
and features, as shown in Figure 3. The feature with a higher mu-
tual correlation (close to 1) value indicates higher dependency with
the predictand. Out of 10 features, we selected the top three fea-
tures (i.e., fp_active, sm_app_clock, dram_active) that showed
the highest association with power usage and execution time.

The impact of sm_app_clock on power and execution time is
shown in Figure 1 for supported frequencies. For bothmicro-benchmarks,
a decrease in frequency causes a decrease in power and an increase
in execution time. However, the rate of change for DGEMM is
higher than STREAM for both cases. It is well known that fre-
quency changes have a more prominent effect on compute-bound
kernels like DGEMM compared to STREAM, which is memory-
bound. Therefore, knowing the computational intensity of a work-
load is necessary, and the fp_active and dram_active metrics
help with this.

0.0
0.2
0.4
0.6
0.8
1.0

FP
 A

ct
iv

it
y

DGEMM

Max Activity

STREAM

600 800 1000 1200 1400
Core Frequency (MHz)

0.0
0.2
0.4
0.6
0.8
1.0

M
em

or
y

Ac
ti

vi
ty

DGEMM

600 800 1000 1200 1400
Core Frequency (MHz)

STREAM

Figure 4: Impact of DVFS on the computational activities (i.e.,
fp_active and dram_active) of STREAM and DGEMM.

4.2.2 Impact of DVFS on Selected Features. We further investi-
gated the impact of changes in DVFS configurations on fp_active
and dram_active for memory- and compute-intensive workloads.
DGEMM and STREAM were tested by changing the frequency at
the maximum input size supported. As demonstrated in Figure 4,
the floating-point activity is almost unaffected by the change in
frequency for both compute- and memory-intensive applications;
however, memory-activity shows variations to some extent for both
applications. Nevertheless, this change in memory activity did not
show any noticeable impact on our model prediction.

4.2.3 Impact of Input Size on Selected Features. We investigated the
impact of changes in input sizes on fp_active and dram_active.
DGEMM and STREAM were tested using different input sizes at
maximum frequency (i.e., 1410 MHz), as depicted in Figure 5. As
in the case of frequency, floating-point activity is also unaffected
by the change in the input size. For STREAM, memory activity is
largely unaffected by the change in input sizes; however, it increases
with the increase in input size for DGEMM. Again, the impact
of input size change on memory activity showed little effect on
DGEMM power/time prediction.

5Kx5K 10Kx10K 15Kx15K 20Kx20K 23Kx23K
DGEMM Matrix Size

0.0
0.2
0.4
0.6
0.8
1.0
1.2

A
ct

iv
ity

0.07

0.38
0.67 0.71 0.71

0.99 0.98 0.98 0.97 0.97

Max Memory FP

5120 10240 15360 20480 25600
STREAM Vector Size

0.0
0.2
0.4
0.6
0.8
1.0
1.2

A
ct

iv
ity

0.83 0.78 0.79 0.80 0.84

0.01 0.01 0.01 0.01 0.01

Max Memory FP

Figure 5: Impact of input sizes on the computational activities
(i.e., fp_active and dram_active) of STREAM and DGEMM.

436

Performance-Aware Energy-Efficient GPU Frequency Selection using DNN-based Models ICPP 2023, August 07–10, 2023, Holladay, UT, USA

4.2.4 Features Portability Across GPU Architectures. We analyzed
the portability of the selected features on the NVIDIA GV100
GPU architecture. We observed that patterns of fp_active and
dram_active for DGEMM and STREAM were similar to their pat-
terns on GA100 as depicted in Figures 4 and 5. The selected features
and the proposed approach are thus portable to Volta.

0 20 40 60 80 100
Epoch

0.00

0.05

0.10

Er
ro

r

Training Loss
Validation Loss

(a) Power model loss

0 5 10 15 20 25
Epoch

0.05

0.10

0.15

Er
ro

r

Training Loss
Validation Loss

(b) Performance model loss

Figure 6: The training loss and validation loss for ourmodels.

Summary:We confirm that the FP activity and memory activity
directly influence power and execution time. They can uniquely
identify power patterns for the applications regardless of their input
sizes and DVFS configurations. Thus, we consider the feature values
obtained at default as constant, thereby making our models portable
to unseen applications and GPU architectures.

4.3 Power and Performance Modeling
The non-linear behaviors of an application’s power and execution
time with respect to frequency change led our decision to use a deep
learning-based standard feedforward neural network (FNN) [17, 36]
to model the power and execution time of applications across dif-
ferent DVFS configurations. These models were constructed using
input, hidden, and output layers, and trained on the same dataset.
The dataset consists of the selected features for 21 benchmarks –
DGEMM, STREAM, and 19 benchmarks in SPEC ACCEL across
61 DVFS configurations on NVIDIA GA100 GPU. As shown in
Equation 1, feature vector ®𝑋 consists of three features, fp_active,
dram_active, and sm_app_clock, for both power and time models.

®𝑋 = (𝑠𝑚_𝑎𝑝𝑝_𝑐𝑙𝑜𝑐𝑘1, 𝑓 𝑝_𝑎𝑐𝑡𝑖𝑣𝑒1, 𝑑𝑟𝑎𝑚_𝑎𝑐𝑡𝑖𝑣𝑒1), ...,
(𝑠𝑚_𝑎𝑝𝑝_𝑐𝑙𝑜𝑐𝑘N, 𝑓 𝑝_𝑎𝑐𝑡𝑖𝑣𝑒N, 𝑑𝑟𝑎𝑚_𝑎𝑐𝑡𝑖𝑣𝑒N)

(1)

The optimal configurations for the proposed model architectures
were selected after extensive testing with various numbers of layers,

optimizers, activation functions, and epochs. We ran experiments
with activation functions including rectified exponential linear
unit (ReLU), exponential linear unit (elu), Leaky ReLU, scaled ex-
ponential linear unit (SELU), sigmoid, tanh, softmax, softplus,
softsign coupled with various learning optimizers including Adam,
Adamax, Nadam, RMSprop, and AdaDelta. Based on our experiments,
SELU is the most efficient and provides robust inference for unseen
applications. Furthermore, it almost eliminates the risk of gradients
vanishing. Thus, we selected SELU as an activation function [21]
and RMSprop [39] for training both models. The SELU function is
defined as shown in Equation 2.

selu(𝑥) =
{
scale · 𝑥, if 𝑥 > 0

scale · alpha · (exp(𝑥) − 1), if 𝑥 < 0
(2)

where alpha and scale are pre-defined constants (i.e., alpha=
1.67326324 and scale=1.05070098).

The target variable for the power model was power_usage and
is represented as shown in Equation 3.

𝑌𝑝𝑜𝑤𝑒𝑟 = (𝑝𝑜𝑤𝑒𝑟_𝑢𝑠𝑎𝑔𝑒1, ..., 𝑝𝑜𝑤𝑒𝑟_𝑢𝑠𝑎𝑔𝑒N) (3)

The dataset is represented as

(®𝑋,𝑌𝑝𝑜𝑤𝑒𝑟) = (®𝑥1, 𝑦𝑝𝑜𝑤𝑒𝑟1), ..., ®𝑥N, 𝑦𝑝𝑜𝑤𝑒𝑟N)) (4)

where ®𝑥i (see Equation 1) is a feature vector and 𝑦𝑝𝑜𝑤𝑒𝑟𝑖 is the
target value. The training of the power model is initiated by feeding
the dataset in Equation 4 as input. We used three hidden layers, 64
neurons in each layer, and the same was used as the batch size. The
functional behavior of each neuron is shown in Equation 5. Each
neuron performs three key tasks: (1) receiving input signals, i.e.,
x_1, x_2, ..., x_N multiplied with their corresponding weights; (2)
computing the neuron’s input s by adding weighted signals and
bias b; and (3) activating the neuron’s output using Equation 5.

𝑠 =

𝑁∑︁
𝑖=1

𝑤𝑖𝑥𝑖 + 𝑏 (5)

In this way, all neurons learn about the training dataset, and the
output layer predicts the final outcome. An error is computed by
comparing measured and predicted values using MSE. Based on
the error, new weights are propagated using the backpropagation
mechanism. This procedure continues until the network is stabi-
lized to a minimum error. We selected the number of epochs by
considering training loss and overfitting. The training dataset was
split into training (80%) and validation (20%) sets to compute the
losses. The training loss and validation loss were observed to fit up
to 100 epochs optimally, as shown in Figure 6 (a).

Likewise, to build the performance model, the same dataset
(Equation 4) was used as input, and execution_time was used as
the target variable. The target variable for the performance model
was execution_time and is represented as shown in Equation 6.

𝑌𝑡𝑖𝑚𝑒 = (𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒1, ..., 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒N) (6)

The dataset is represented as

(®𝑋,𝑌𝑡𝑖𝑚𝑒) = (®𝑥1, 𝑦𝑡𝑖𝑚𝑒1), ..., ®𝑥N, 𝑦𝑡𝑖𝑚𝑒N)) (7)

where ®𝑥i (see Equation 1) is a feature vector and 𝑦𝑡𝑖𝑚𝑒𝑖 is the target
value. The training of the time model is initiated by feeding the
dataset in Equation 7 as input. We used three hidden layers, with

437

ICPP 2023, August 07–10, 2023, Holladay, UT, USA Ghazanfar Ali, Mert Side, Sridutt Bhalachandra, Nicholas J. Wright, and Yong Chen

64 neurons in each layer, and the same was used as the batch size.
The functional behavior of each neuron is the same as discussed in
the power model above. For the performance model, the training
loss and validation loss converged after 25 epochs, as shown in Fig-
ure 6 (b). After 25 epochs, slight overfitting was observed, and we
stopped training here to avoid overfitting. The execution time for
training power and performance models were 6.5 and 2.6 seconds,
respectively. The variations in time are due to each model’s vary-
ing numbers of epochs to converge. The power and performance
prediction took only about 0.2 seconds.

4.4 Optimal Frequency Selection
As discussed in Section 2, choosing an optimal frequency is to
reduce power with minimal performance degradation. The optimal
frequency for an application is selected using a multi-objective
function. Our framework allows a user to define this objective
function. However, in the current study, EDP and ED2P [10, 23,
25, 31] were used. These approaches require energy and execution
time across different DVFS configurations. The energy is computed
using the power usage and the execution time predicted via the
proposed power and time models across 61 DVFS configurations,
as shown in Equation 8.

𝐸𝑓𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑃𝑓𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 ×𝑇𝑓𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 (8)

The algorithm for selecting an optimal frequency among supported
DVFS configurations is straightforward and shown in Algorithm 1.
This algorithm takes performance degradation threshold (in %) and

Data: 𝑡ℎ, 𝐸1 . . . 𝐸𝑁 , 𝑇1 . . .𝑇𝑁 , 𝐹1 . . . 𝐹𝑁 // perf. loss
threshold, list of energies, execution times, and
frequencies

Result: 𝑓 // optimal frequency

1 𝐸𝐷𝑃 ← 𝐸 ×𝑇 // compute list of EDP scores
2 𝑚𝑖𝑛 ← 0
3 𝑖𝑛𝑑𝑒𝑥 ← 0
4 𝑁 ← 𝑙𝑒𝑛𝑔𝑡ℎ(𝐹) // number of frequencies
5 for 𝑘 ← 1 to 𝑁 // loop through all freqs
6 do
7 if 𝐸𝐷𝑃𝑘 < 𝑚𝑖𝑛 then
8 𝑚𝑖𝑛 ← 𝐸𝐷𝑃𝑘

9 end
10 end
11 for 𝑖 ← 𝑘 to 𝑁 // loop k to N freqs
12 do

13 𝑝𝑒𝑟 𝑓 𝐷𝑒𝑔𝑖 ←
𝑚𝑎𝑥𝑃𝑒𝑟 𝑓 − 𝑝𝑒𝑟 𝑓𝑖

𝑚𝑎𝑥𝑃𝑒𝑟 𝑓

14 if 𝑝𝑒𝑟 𝑓 𝐷𝑒𝑔𝑖 < 𝑡ℎ then
15 𝑖𝑛𝑑𝑒𝑥 ← 𝑖

16 end
17 end
18 𝑓 ← 𝐹𝑖𝑛𝑑𝑒𝑥 // optimal frequency

Algorithm 1: Optimal frequency determination using EDP

three lists: energy (E), execution time (T), and frequency (F) as
input. It outputs an optimal f setting based on the EDP score. The
algorithm involves two major steps: First, the EDP score for each
set of energy and time is computed by multiplying the energy by
the execution time. Second, the lowest score decides the optimal
energy-delay profile out of the given sets of energy and time for the
given workload. The frequency (f) corresponding to the lowest
score is selected as the EDP-based optimal frequency. The frequency
is the desired configuration when the performance degradation is
less than the threshold degradation. A higher frequency configu-
ration is selected when the performance loss is greater than the
threshold degradation. This step is repeated until the performance
degradation is less than the threshold degradation. Note that our
evaluation selected optimal frequency without using the perfor-
mance degradation threshold. Thus, performance degradation is
solely determined by EDP. The optimal frequency selection using
ED2P is similar to this algorithm, and the only difference is that
the ED2P score is calculated instead of the EDP score, where the
energy is multiplied by the square of the execution time to give
more emphasis to the execution time).

5 EVALUATION
This section evaluates the portability of the proposed models and
the efficacy of the selected optimal frequency using real-world
applications on NVIDIA GV100 and GA100 GPUs.We used six GPU-
enabled real-world applications, including (1) Nanoscale Molec-
ular Dynamics (NAMD) [27, 33], a large biomolecular systems
simulation program; (2) Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS) [28, 38], a particle simulator that
models solid-state, soft matter, and coarse-grained materials; (3)
GROMACS [14, 34], a software package that performs molecular
dynamics simulation; It is fundamentally designed to study bonded
interactions in biochemical molecules. (4) Long short-term memory
(LSTM) [37] algorithm, a TensorFlow-based implementation of bi-
nary sentiment classification of large movie review dataset [24]. (5)
BERT (Bidirectional Encoder Representations from Transformers)
is a language representation model trained on the movie review
dataset, which is the same dataset used for LSTM. (6) ResNet50
(Residual Networks) is a deep learning architecture trained on the
CIFAR-10 dataset. For our experiments with NAMD, we used the
standard NAMDApolipoprotein A1 (ApoA1) dataset, which is based
on a protein-coding gene with 92,224 atoms [19]. For tests with
LAMMPS, we ran a standard Leanard-Jones 3D melt experiment.
For GROMACS, we have used a standard water molecule motion
simulation, where the algorithm simulates a protein (lysozyme)
solution in a box of water.

5.1 Power and Time Models
The DNN-based power and timemodels, trained using the data from
DGEMM, STREAM, and SPEC ACCEL benchmarks, were evaluated
using real applications on GV100 and GA100. Figure 7 compares
measured and predicted power for each real application across 61
DVFS configurations of GA100. To measure the prediction accuracy
of models, we used mean absolute percentage error (MAPE) [32].
The prediction accuracy of the power model for each application
was greater than 96% and 94% on GA100 and GV100, respectively,

438

Performance-Aware Energy-Efficient GPU Frequency Selection using DNN-based Models ICPP 2023, August 07–10, 2023, Holladay, UT, USA

510 810 1110 1410
LAMMPS - Frequency (MHz)

100
200
300
400
500

Po
w

er
 (

W
)

Measured Predicted

510 810 1110 1410
NAMD - Frequency (MHz)

Measured Predicted

510 810 1110 1410
GROMACS - Frequency (MHz)

Measured Predicted

510 810 1110 1410
LSTM - Frequency (MHz)

Measured Predicted

510 810 1110 1410
BERT - Frequency (MHz)

Measured Predicted

510 810 1110 1410
ResNet50 - Frequency (MHz)

Measured Predicted

Figure 7: Predicted and measured power consumption for real applications on NVIDIA A100 GPU.

510 810 1110 1410
LAMMPS - Frequency (MHz)

0.4
0.6
0.8
1.0
1.2
1.4

Ti
m

e
(n

or
m

.)

Measured Predicted

510 810 1110 1410
NAMD - Frequency (MHz)

Measured Predicted

510 810 1110 1410
GROMACS - Frequency (MHz)

Measured Predicted

510 810 1110 1410
LSTM - Frequency (MHz)

Measured Predicted

510 810 1110 1410
BERT - Frequency (MHz)

Measured Predicted

510 810 1110 1410
ResNet50 - Frequency (MHz)

Measured Predicted

Figure 8: Normalized predicted and measured execution time for real applications on NVIDIA A100 GPU.

15 20 25 30 35 40

(LAMMPS) Time (S)

100

150

200

250

300

350

Po
w

er
 (W

)

M-EDP

M-ED²P

P-EDP

P-ED²P

14 16 18 20 22 24 26 28 30 32

(NAMD) Time (S)

80

100

120

140

160

180

200

220

240

260

M-EDP

M-ED²P

P-EDP

P-ED²P

28 28 28 29 30 30

(GROMACS) Time (S)

70

80

90

100

110

120

130

Po
w

er
 (W

)

M-EDP

M-ED²P

P-EDP

P-ED²P

24 26 28 30 32 34

(LSTM) Time (S)

60

65

70

75

80

85

90

95

M-EDP

M-ED²P

P-EDP

P-ED²P

80 100 120 140 160 180 200

(BERT) Time (S)

100

150

200

250

300

Po
w

er
 (W

)

M-EDP

M-ED²P

P-EDP

P-ED²P

200 250 300 350 400 450 500

(RESNET) Time (S)

60

80

100

120

140

160

180

M-EDP

M-ED²P

P-EDP

P-ED²P

Figure 9: Optimal DVFS configurations selected via EDP ap-
proach using measured data (M-EDP), EDP approach using
predicted data (P-EDP), ED2P approach using measured data
(M-ED2P), and ED2P approach using predicted data (P-ED2P)
for the applications shown along with the power usage and
execution time for different DVFS configurations on GA100.

as shown in Table 3. We observed that deep learning-based models
outperformed multi-learners-based models (see Figure 11)

Figure 8 compares measured and predicted execution time for
each real application across 61 DVFS configurations of NVIDIA
GA100. The prediction accuracy of the performance model for each
application was greater than 88% and 90% on GA100 and GV100, re-
spectively, as shown in Table 3.While execution time for GROMACS
was predicted with reasonably good average accuracy (i.e., 88.7%),

Table 3: Accuracy of power and performance models for each
real application on NVIDIA GA100 and GV100.

GPU Application Power Performance

GA100

LAMMPS 96.5 % 96.2 %
NAMD 96.8 % 98.1 %
GROMACS 97.5 % 88.7 %
BERT 95.7 % 95.9 %
ResNet50 98.5 % 88.4 %
LSTM 98.2 % 95.4 %

GV100

LAMMPS 94.9 % 93.4 %
NAMD 96.5 % 96.5 %
GROMACS 95.1 % 93.5 %
BERT 94.5 % 95.9 %
ResNet50 95.7 % 97.1 %
LSTM 98.6 % 90.7 %

in Figure 8 (c) execution time is seen to be slightly overpredicted
at lower frequencies and underpredicted at higher frequencies. In
reality, we observed that the change of DVFS configurations for
GROMACS does not impact execution time. We plan to further
address applications whose power or performance are not affected
by DVFS in future work.

Table 4: The measured ED2P, predicted ED2P measured EDP,
and predicted EDP optimal frequencies for real applications.

GPU Application M-ED2P P-ED2P M-EDP P-EDP

GA100
(Optimal

Frequency (MHz))

LAMMPS 1215 1065 1110 1050
NAMD 1215 1410 1155 1050
GROMACS 1110 1140 1110 930
LSTM 810 1065 810 1065
BERT 1155 1410 1125 1410
ResNet50 1410 1020 795 975

5.2 Optimal Frequency Selection
We determined optimal frequencies using EDP and ED2P functions
for measured and predicted data (by the proposed deep learning-
based models). Figure 9 depicts optimal DVFS configurations se-
lected with EDP for measured (M-EDP) and predicted data (P-EDP),
and ED2P for measured (M-ED2P) and predicted data (P-ED2P) for
LAMMPS, NAMD, GROMACS, LSTM, BERT, and RESNET50 on

439

ICPP 2023, August 07–10, 2023, Holladay, UT, USA Ghazanfar Ali, Mert Side, Sridutt Bhalachandra, Nicholas J. Wright, and Yong Chen

GA100. The power usage and execution time for other DVFS config-
urations are also shown. Table 4 provides the optimal frequencies
for these applications selected via M-EDP, P-EDP, M-ED2P, and
P-ED2P on GA100.

LAMMPS NAMD
GROMACS LSTM BERT

RESNET
0

10
20
30
40

C
ha

ng
e

(%
)

33

0

27 28

0

17

28
23

30 31
26

0

Predicted Measured

LAMMPS NAMD
GROMACS LSTM BERT

RESNET
45
30
15
0

15

C
ha

ng
e

(%
)

-14

0 2 5
0

-34

-4 -7

3 5

-8

0

Predicted Measured

Figure 10: Percentage change in energy (upper) and change
in execution time (lower) related to predicted-ED2P, and
measured-ED2P for each real application on NVIDIA GA100.

The predicted optimal frequencies selected via P-ED2P for GRO-
MACS, and LSTM on GA100 were higher than their corresponding
measured optimal frequencies selected via M-ED2P. These higher
values are due to the underprediction of the execution time for these
applications at higher frequencies. This underprediction causes the
objective functions to choose a higher frequency as optimal. An
unintended but favorable consequence of the chosen higher fre-
quencies is less performance degradation, as discussed in Section 5.3.
Overall, optimal frequencies for each benchmark’s measured and
predicted data were less than the maximum core frequency. This
observation validates our hypothesis that GPUmaximum frequency
is not always optimal. We also observed that estimated ED2P opti-
mal frequencies were consistently higher than the estimated EDP
optimal frequencies, as expected.

5.3 Performance-Aware Energy Savings
Figures 10 - (a) and (b) show the percentage change in energy and ex-
ecution time (performance) with ED2P as the objective function on
the Ampere GPU. The change in execution time and energy savings
for the optimal frequency is calculated with reference to the GPU’s
maximum setting. It is pertinent to mention that performance degra-
dation can occur even with the measured data using EDP and ED2P
approaches (see performance degradation of LAMMPS, NAMD,
and BERT on GA100). Overall, the real applications showed that
predicted changes in energy savings and execution time closely
matched the measured changes in energy savings and time.

The energy performance trade-off using P-EDP, M-EDP, P-ED2P,
andM-ED2P approaches for each application is listed in Table 5. The
average for each approach is also shown. The results in negative
indicate a performance degradation. While P-ED2P predicted maxi-
mum frequency for NAMD on GA100 that resulted in no change

in execution time and energy savings, P-EDP predicted lower fre-
quency (i.e., 1050 MHz) as shown in Table 4. This trade-off allows
saving of 28% energy at the loss of 19.6% performance as shown
in Table 5. We observed that the optimal frequency selected for
ResNet50 is an outlier. Overall, we observed that greater than 27%
energy reduction is possible with a minimal performance degrada-
tion of 1.8% for real applications on GA100.

It is seen that LAMMPS and ResNet50 showed higher perfor-
mance penalties at their optimal frequencies in Table 5. Table 6
shows that performance degradation thresholds can be used to
improve the performance penalty. While thresholds limit the DVFS
exploration space and can yield no energy savings, it is shown that
the performance loss is greatly reduced.

6 RELATEDWORK
There have been numerous efforts to improve GPU performance,
power, and energy efficiency by developing models and techniques
using analytical, machine learning, and static code analysis ap-
proaches. Analytical modeling approaches depend on acquiring
low-level GPU performance metrics (e.g., voltage).The acquisition
of these features is costly and not always feasible in real-world sce-
narios. Much work focuses on establishing a relationship between
performance, power, and energy through static code analysis on
GPU assembly instructions [4, 9, 11]. Guerreiro et al. [11] and Fan
et al. [8] use Parallel Thread Execution (PTX) assembly code and
leverage the Pareto-optimal mechanism to model across DVFS con-
figurations without requiring a prior execution of an application.
PTX-based code modeling, while only applicable to PTX workloads,
cannot account for memory access patterns and do poorly with
model memory-intensive workloads. Further, they are slow and
not energy-efficient. While the principal benefit of our approach is
the estimation of an application’s profile before its execution, there
are several other advantages: (1) reliable for both compute- and
memory-intensive workloads; (2) portable to CUDA, heterogeneous
interface for portability (HIP) and (3) training speed (∼7 seconds).

Wu et al. [43] uses performance counters to analyze power and
performance. Their study requires an offline collection phase for
each application to predictions on subsequent runs, and it does
not consider the trade-off between power and performance in their
optimal solution. Laros et al. [23] require the acquisition of energy
and execution time across different performance states of CPUs and
developed a methodology to combine energy and time into a single
fused metric called EDP. The energy and performance were com-
bined using a weighting mechanism, which helps design acceptable
trade-offs between energy and time metrics. In contrast, our ap-
proach selects an optimal frequency using a model-driven approach
that requires feature acquisition at the maximum frequency.

To our knowledge, this work is the first to evaluate the efficacy
of deep learning-based models to predict power and performance
on the state-of-the-art NVIDIA Ampere architecture. This work
differentiates from the previous studies on several aspects shown
in Table 7. This is also the first to demonstrate the portability of
DNN models across architectures with high accuracy. Moreover,
unlike the majority of the prior works that have extensively used
benchmarks, we use real-world workloads in our evaluation to
further demonstrate the effectiveness of our approach.

440

Performance-Aware Energy-Efficient GPU Frequency Selection using DNN-based Models ICPP 2023, August 07–10, 2023, Holladay, UT, USA

Table 5: Change in energy and execution time for each application on NVIDIA GA100. Negative values indicate a performance
loss, while positives indicate a performance gain.

Energy (%) Time (%)
M-ED2P P-ED2P M-EDP P-EDP M-ED2P P-ED2P M-EDP P-EDP

LAMMPS GA100 28.3 33.4 34.3 32.76 -4.1 -14.4 -9.2 -16.4
NAMD GA100 23.4 0.0 27.3 28.0 -6.5 0.0 -11.1 -19.6
GROMACS GA100 30.0 27.1 30.0 28.9 2.8 1.8 2.8 -0.7
LSTM GA100 31.2 27.7 31.2 27.7 5.3 5.3 5.3 5.3
BERT GA100 25.5 0.0 27.03 0.0 -8.1 0.0 -9.8 0.0
ResNet50 GA100 0.0 16.9 25.6 15.3 0.0 -34.0 -32.9 -39.0
Average GA100 28.2 17.5 29.2 22.1 -1.8 -6.9 -9.1 -11.7

Table 6: Change in execution time and energy GA100 with
different performance thresholds. At Threshold=Nil, all the
frequencies are determined using EDP.

Threshold=Nil Threshold=5% Threshold=1%
Time (%) Energy (%) Time (%) Energy (%) Time (%) Energy (%)

LAMMPS -16 33 -4 28 -0.8 10
ResNet50 -39 15 0 0 0 0

Table 7: Comparison with state-of-the-art.

Study Static Machine Learning Real Apps Multi-Objective
Guerreiro et al. [11] ✓ ✓ ✗ ✗

Fan et al. [8] ✓ ✓ ✗ ✗

Wu et al. [43] ✗ ✓ ✗ ✗

Ali et al. [2, 3] ✗ ✗ ✓ ✓

Our Work ✗ ✓ ✓ ✓

7 DISCUSSION
Modern GPU architectures support a large number of DVFS con-
figurations. This makes designing an energy-efficient solution a
non-trivial task requiring understanding performance and power
at all supported frequencies. However, data acquisition across all
supported GPU frequencies is costly and tedious. One approach
to solving this challenge is developing predictive ML models for
forecasting power, performance, and energy for unseen (not used
in the model training) applications across all supported GPU fre-
quencies. Further, limiting the amount of data required by a model
is also desirable. Our feature characterization study helped us to
identify low-level GPU utilization metrics that impact the power
and execution time of a workload. It is shown that both power
and execution time can be accurately modeled using only three
features. Also, the identified features are shown not to be largely
affected by DVFS and changes in the input size. This dramatically
reduces data requirements and allows feature collection to be made
only at the default setting. We further confirmed these feature
characteristics on the NVIDIA GV100 GPU making our approach
portable across architectures. The prediction accuracy of an ML
method is also critical in choosing the optimal frequency. To further
validate the quality of our models, we compared the accuracy of
the power model to several other multi-learner methods – Ran-
dom Forest Regressor (RFR), eXtreme Gradient Boosting Regressor
(XGBR), Support Vector Regressor (SVR), and Multiple Linear Re-
gressor (MLR). These models were again trained with the metrics
from DGEMM, STREAM, and SPEC ACCEL benchmarks. Figure 11
shows their power prediction accuracy across different frequencies.
In comparison to our model (Table 3), the accuracy is shown to be

RFR SVR XGBR MLR

Machine Learning Algorithm

100
50
0

50
100
150

A
cc

ur
ac

y
(%

)

72.3 71.4
95.0 93.087.2 74.7 91.6 95.9

44.2

-104.6

80.7

-14.4-2.4

87.2

30.6
77.4

LAMMPS NAMD LSTM GROMACS

Figure 11: Prediction accuracy for power consumption across
different ML algorithms.

much lower. Further, the multi-learner approach is inefficient be-
cause it requires handling a plethora of different individual learners.
Therefore, we decided to use the deep learning method to model
the behavior of applications with complex utilization patterns and
varying computational intensities.

Workloads with low utilization (e.g., LSTM) showed more energy
saving with little to no performance loss. Some workloads (e.g.,
LAMMPS, NAMD) showed performance degradation using EDP
and ED2P even with measured data. Such applications are best left
untouched to run at the maximum frequency in scenarios where
performance is important. Ultimately, the quality of the objective
function determines the power-performance trade-off. Compared
to EDP, ED2P showed significant improvement in performance
with minimal impact on energy savings, making it better suited for
HPC centers where performance is paramount.

8 CONCLUSIONS AND FUTUREWORK
Future supercomputer scale and performance will be determined
by how efficiently power budgets are managed. Consequently, it
is imperative to develop effective power management solutions
for GPUs where a large portion of performance will reside. The
practicality concerns and infeasibility of brute-force approaches
in dealing with the large DVFS exploration space motivated us
to explore DNN-based models for predicting power and execu-
tion time on GPUs. GPU utilization metrics that influence power
and time were identified using the mutual information technique.
These features are largely unaffected by frequency and input size
changes, allowing for their acquisition at the default setting, sig-
nificantly reducing the data required by the models. Our models
(power and time) achieved accuracies between 89% and 98% for
the four real-world applications – LAMMPS, NAMD, GROMACS,
LSTM, BERT, and ResNet50 on the state-of-the-art NVIDIA GA100
as well as the previous generation GV100 GPU. It is shown that
the power-performance trade-off depends on the quality of the
objective functions (i.e., EDP, ED2P). The objective functions used

441

ICPP 2023, August 07–10, 2023, Holladay, UT, USA Ghazanfar Ali, Mert Side, Sridutt Bhalachandra, Nicholas J. Wright, and Yong Chen

in this study can achieve energy savings of up to 27.1% on GA100
with negligible performance degradation of 1.8%. Ultimately, we
have demonstrated the viability of using DNN-based models for
effective GPU power control. Moreover, we show that DNN-based
models are a better fit than multi-learner models for modeling GPU
power and time of complex applications. In the future, we plan to
evaluate the voltage design space using the proposed methodology
on GPUs supporting change of voltage configuration.

ACKNOWLEDGMENTS
TheNational Energy Research Scientific Computing Center (NERSC)
is a U.S. Department of Energy Office of Science User Facility oper-
ated under Contract No. DEAC02-05CH11231. Results presented in
this paper were obtained using the Chameleon testbed supported by
the NSF. This research is supported in part by the National Science
Foundation under grants CNS-1817094, OAC-1835892, and CNS-
1939140 (A U.S. National Science Foundation Industry-University
Cooperative Research Center on Cloud and Autonomic Computing).
The authors thank Mathew Colgrove (NVIDIA) for his assistance
in SPEC ACCEL, Alan Sill (TTU) for discussing, and Victor Sheng
(TTU) for their comments on modeling. We are also very grateful to
the High Performance Computing Center of Texas Tech University
for providing HPC resources for this research.

REFERENCES
[1] Yuki Abe et al. 2014. Power and performance characterization and modeling of

GPU-accelerated systems. In 2014 IEEE 28th International Parallel and Distributed
Processing Symposium. IEEE, 113–122.

[2] Ghazanfar Ali, Sridutt Bhalachandra, Nicholas J Wright, Mert Side, and Yong
Chen. 2022. Optimal GPU Frequency Selection using Multi-Objective Approaches
for HPC Systems. In 2022 IEEE High Performance Extreme Computing Conference
(HPEC). IEEE, 1–7.

[3] Ghazanfar Ali, Mert Side, Sridutt Bhalachandra, Nicholas J Wright, and Yong
Chen. 2023. Optimal GPU Frequency Selection using Multi-Objective Approaches
for HPC Systems, In Future Generation Computer Systems. Future Generation
Computer Systems. ACCEPTED.

[4] Lorenz Braun et al. 2020. A simple model for portable and fast prediction of
execution time and power consumption of GPU kernels. ACM Transactions on
Architecture and Code Optimization (TACO) 18, 1 (2020), 1–25.

[5] Jack Choquette et al. 2021. 3.2 the A100 datacenter GPU and Ampere architecture.
In 2021 IEEE International Solid-State Circuits Conference (ISSCC), Vol. 64. IEEE,
48–50.

[6] Tom Deakin et al. 2016. GPU-STREAM v2. 0: Benchmarking the achievable
memory bandwidth of many-core processors across diverse parallel programming
models. In International Conference on High Performance Computing. Springer,
489–507.

[7] Bishwajit Dutta et al. 2018. GPU power prediction via ensemble machine learn-
ing for DVFS space exploration. In Proceedings of the 15th ACM International
Conference on Computing Frontiers. 240–243.

[8] Kaijie Fan et al. 2019. Predictable GPUs frequency scaling for energy and perfor-
mance. In Proceedings of the 48th International Conference on Parallel Processing.
1–10.

[9] TJ Florindo et al. 2018. Application of the multiple criteria decision-making
(MCDM) approach in the identification of Carbon Footprint reduction actions
in the Brazilian beef production chain. Journal of Cleaner Production 196 (2018),
1379–1389.

[10] Ricardo Gonzalez and Mark Horowitz. 1996. Energy dissipation in general
purpose microprocessors. IEEE Journal of solid-state circuits 31, 9 (1996), 1277–
1284.

[11] João Guerreiro et al. 2019. GPU static modeling using PTX and deep structured
learning. IEEE Access 7 (2019), 159150–159161.

[12] João Guerreiro et al. 2019. Modeling and decoupling the GPU power consumption
for cross-domain DVFS. IEEE Transactions on Parallel and Distributed Systems 30,
11 (2019), 2494–2506.

[13] Stijn Heldens et al. 2020. The Landscape of Exascale Research: A Data-Driven
Literature Analysis. ACM Computing Surveys (CSUR) 53, 2 (2020), 1–43.

[14] Berk Hess and other. 2008. GROMACS 4: algorithms for highly efficient, load-
balanced, and scalable molecular simulation. Journal of Chemical Theory and

Computation 4, 3 (2008), 435–447.
[15] HPCC. 2020. High Performance Computing Center. Retrieved May, 2020 from

http://www.depts.ttu.edu/hpcc/
[16] Shadi Ibrahim et al. 2014. Towards Efficient Power Management in MapReduce:

Investigation of CPU-Frequencies Scaling on Power Efficiency in Hadoop. In
Adaptive Resource Management and Scheduling for Cloud Computing. Springer
International Publishing, Cham, 147–164.

[17] Anil K Jain, Jianchang Mao, and K Moidin Mohiuddin. 1996. Artificial neural
networks: A tutorial. Computer 29, 3 (1996), 31–44.

[18] Guido Juckeland et al. 2014. SPEC ACCEL: A standard application suite for
measuring hardware accelerator performance. In International Workshop on Per-
formance Modeling, Benchmarking and Simulation of High Performance Computer
Systems. Springer, 46–67.

[19] Neha Kashyap. 2016. HPC Benchmarks and Applications Performance Study
on Broadwell-EP 4S Processor. https://downloads.dell.com/manuals/all-
products/esuprt_software/esuprt_it_ops_datcentr_mgmt/high-computing-
solution-resources_white-papers59_en-us.pdf.

[20] Kate Keahey et al. 2020. Lessons Learned from the Chameleon Testbed. In
Proceedings of the 2020 USENIX Annual Technical Conference (USENIX ATC ’20).
USENIX Association.

[21] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter.
2017. Self-normalizing neural networks. Advances in neural information processing
systems 30 (2017).

[22] Alexander Kraskov et al. 2004. Estimating mutual information. Physical review E
69, 6 (2004), 066138.

[23] James H Laros III et al. 2013. Energy delay product. In Energy-Efficient High
Performance Computing. Springer, 51–55.

[24] Andrew L. Maas et al. 2011. LearningWord Vectors for Sentiment Analysis. In Pro-
ceedings of the 49th Annual Meeting of the Association for Computational Linguis-
tics: Human Language Technologies. Association for Computational Linguistics,
Portland, Oregon, USA, 142–150. http://www.aclweb.org/anthology/P11-1015

[25] Vishwas Mishra and Shyam Akashe. 2015. Calculation of Power Delay Product
and Energy Delay Product in 4-Bit FinFET Based Priority Encoder. In Advances
in Optical Science and Engineering. Springer, 283–289.

[26] NVIDIA Corporation. 2013. CUDA Samples. https://docs.nvidia.com/cuda/cuda-
samples/index.html#matrix-multiplication--cublas-

[27] NVIDIA Corporation. 2020. NGC NAMD Container. https://ngc.nvidia.com/
catalog/containers/hpc:namd.

[28] NVIDIA Corporation. 2021. NGC LAMMPS Container. https://ngc.nvidia.com/
catalog/containers/hpc:lammps.

[29] NVIDIA Corporation. 2021. NVIDIA DCGM. https://developer.nvidia.com/dcgm
[30] Oak Ridge National Laboratory. 2022. Exascale, Project. https:

//www.exascaleproject.org/wp-content/uploads/2021/12/webinar-WrongWay-
220216.pdf.

[31] Junyoung Park and Jacob A Abraham. 2011. A fast, accurate and simple critical
path monitor for improving energy-delay product in dvs systems. In IEEE/ACM
International Symposium on Low Power Electronics and Design. IEEE, 391–396.

[32] F. Pedregosa et al. 2011. Scikit-learn: Machine Learning in Python. Journal of
Machine Learning Research 12 (2011), 2825–2830.

[33] James C Phillips et al. 2020. Scalable molecular dynamics on CPU and GPU
architectures with NAMD. The Journal of Chemical Physics 153, 4 (2020), 044130.

[34] Sander Pronk et al. 2013. GROMACS 4.5: a high-throughput and highly parallel
open source molecular simulation toolkit. Bioinformatics 29, 7 (2013), 845–854.

[35] Brian C Ross. 2014. Mutual information between discrete and continuous data
sets. PloS one 9, 2 (2014), e87357.

[36] Daniel Svozil, Vladimir Kvasnicka, and Jiri Pospichal. 1997. Introduction to multi-
layer feed-forward neural networks. Chemometrics and intelligent laboratory
systems 39, 1 (1997), 43–62.

[37] TensorFlow. 2021. Long Short-Term Memory layer - Hochreiter 1997. https:
//www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM.

[38] Aidan P. Thompson et al. 2021. LAMMPS - A flexible simulation tool for particle-
based materials modeling at the atomic, meso, and continuum scales. Computer
Physics Communications (2021), 108171. https://doi.org/10.1016/j.cpc.2021.108171

[39] Tijmen Tieleman and Geoffrey Hinton. 2012. Rmsprop: Divide the gradient by a
running average of its recent magnitude. coursera: Neural networks for machine
learning. COURSERA Neural Networks Mach. Learn (2012).

[40] TOP500.org. 2022. Top500, June 2022 Ranking. https://www.top500.org/lists/
top500/2022/06/.

[41] Qiang Wang and Xiaowen Chu. 2020. GPGPU performance estimation with core
and memory frequency scaling. IEEE Transactions on Parallel and Distributed
Systems 31, 12 (2020), 2865–2881.

[42] HPC Wire. [n. d.]. AMD’s MI300 APUs to Power Exascale El Capitan Super-
computer. <https://www.hpcwire.com/2022/06/21/amds-mi300-apus-to-power-
exascale-el-capitan-supercomputer. (Accessed on 10/06/2022).

[43] Gene Wu et al. 2015. GPGPU performance and power estimation using ma-
chine learning. In 21st International Symposium on High Performance Computer
Architecture. IEEE, 564–576.

442

http://www.depts.ttu.edu/hpcc/
https://downloads.dell.com/manuals/all-products/esuprt_software/esuprt_it_ops_datcentr_mgmt/high-computing-solution-resources_white-papers59_en-us.pdf
https://downloads.dell.com/manuals/all-products/esuprt_software/esuprt_it_ops_datcentr_mgmt/high-computing-solution-resources_white-papers59_en-us.pdf
https://downloads.dell.com/manuals/all-products/esuprt_software/esuprt_it_ops_datcentr_mgmt/high-computing-solution-resources_white-papers59_en-us.pdf
http://www.aclweb.org/anthology/P11-1015
https://docs.nvidia.com/cuda/cuda-samples/index.html#matrix-multiplication--cublas-
https://docs.nvidia.com/cuda/cuda-samples/index.html#matrix-multiplication--cublas-
https://ngc.nvidia.com/catalog/containers/hpc:namd
https://ngc.nvidia.com/catalog/containers/hpc:namd
https://ngc.nvidia.com/catalog/containers/hpc:lammps
https://ngc.nvidia.com/catalog/containers/hpc:lammps
https://developer.nvidia.com/dcgm
https://www.exascaleproject.org/wp-content/uploads/2021/12/webinar-WrongWay-220216.pdf
https://www.exascaleproject.org/wp-content/uploads/2021/12/webinar-WrongWay-220216.pdf
https://www.exascaleproject.org/wp-content/uploads/2021/12/webinar-WrongWay-220216.pdf
https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM
https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM
https://doi.org/10.1016/j.cpc.2021.108171
https://www.top500.org/lists/top500/2022/06/
https://www.top500.org/lists/top500/2022/06/
<https://www.hpcwire.com/2022/06/21/amds-mi300-apus-to-power-exascale-el-capitan-supercomputer
<https://www.hpcwire.com/2022/06/21/amds-mi300-apus-to-power-exascale-el-capitan-supercomputer

	Abstract
	1 Introduction
	2 Motivation
	3 Experimental Setup
	4 Methodology
	4.1 Data Collection Framework
	4.2 Feature Characterization
	4.3 Power and Performance Modeling
	4.4 Optimal Frequency Selection

	5 Evaluation
	5.1 Power and Time Models
	5.2 Optimal Frequency Selection
	5.3 Performance-Aware Energy Savings

	6 Related Work
	7 Discussion
	8 Conclusions and Future Work
	Acknowledgments
	References

