Future Generation Computer Systems 149 (2023) 71-88

Contents lists available at ScienceDirect = =
FiGICIS!
Future Generation Computer Systems =
journal homepage: www.elsevier.com/locate/fgcs — =
An automated and portable method for selecting an optimal GPU N
frequency s

Ghazanfar Ali **, Mert Side ?, Sridutt Bhalachandra®, Nicholas J. Wright”, Yong Chen?

2 Texas Tech University, 2500 Broadway, Lubbock, 79409, TX, USA
b Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, 94720, CA, USA

ARTICLE INFO ABSTRACT

Article history:

Received 22 October 2022

Received in revised form 3 July 2023
Accepted 7 July 2023

Available online 17 July 2023

Power consumption poses a significant challenge in current and emerging graphics processing unit
(GPU) enabled high-performance computing systems. In modern GPUs, dynamic voltage frequency
scaling (DVFS) appears to be a reliable control to regulate power consumption and performance.
However, the DVFS design space is large - hence, brute-force approaches are infeasible to select the
optimal frequency. Furthermore, no single frequency can be universally optimal for applications with
Keywords: varying computational intensities. Thus, the application’s complexity and the availability of a wide
GPU frequency selection range of frequency settings are a challenge in selecting the optimal frequency configuration for a
DVFS given GPU workload. To that end, this paper proposes a systematic approach that consists of three
GPU power modeling steps. The feature characterization study identifies the fine-grain GPU utilization metrics that influence
GPU performance modeling the power consumption and execution time of a given workload. To understand the performance,
Energy delay product power, and energy consumption behaviors of a workload across GPU’s DVFS design space, we derived
E/Luelrt;;)gjfggle\;i;unctlon analytical power and performance models using the identified fine-grain features. It is shown that

the same set of GPU utilization metrics can estimate both the power consumption and execution time
while being agnostic of changes to frequency and input sizes. Applying a power control with the single
objective of reducing power may cause performance degradation, leading to more energy consumption.
A multi-objective approach is proposed to select the optimal GPU DVFS configuration for a workload
that reduces power consumption with negligible degradation in performance. The evaluation was
conducted using SPEC ACCEL benchmarks and three real applications - NAMD LAMMPS, and LSTM
on NVIDIA GV100, GA100, and AMD MI210 GPUs. On average, real applications showed 29.6% energy
savings with a performance loss of 5.2% on GA100 and 22.6% energy savings with a performance loss
of 4.7% on GV100. Moreover, the proposed models are portable to real applications, GPU architectures,
and vendors, and require metric collection at only the default frequency rather than all supported DVFS
configurations. Additionally, we conducted a comparison between our models and the GPU assembly
instructions (PTX)-based static models. The results revealed a significant reduction in the average error
rates, with a decrease from 19.7% to 3.1% for power models and from 29.4% to 5.2% for performance
models.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

In the new era of post-Moore’s law, GPUs are likely to be
crucial in accelerating computing capacity for current and fu-
ture high-performance computing (HPC) systems. While GPUs
are performant, they increasingly consume a significant amount
of power. For example, today, a single advanced GPU consumes
power up to 500 W [1] which is close to a traditional HPC
node [2]. As such, the power consumption of HPC systems built
with GPUs is limited by power. An exascale system built with cur-
rent generation GPUs expects to consume more than the desired

* Corresponding author.
E-mail address: ghazanfar.ali@ttu.edu (G. Ali).

https://doi.org/10.1016/j.future.2023.07.011
0167-739X/© 2023 Elsevier B.V. All rights reserved.

20 MW power budget [3] (e.g., the Frontier [4]), even without
considering the infrastructure and cooling overheads. Further-
more, HPC data centers have been more concerned about per-
formance historically; however, in more recent times due to the
“dark silicon” phenomenon [5], there has been a paradigm shift
toward striking a balance between power and execution time [6].
For example, literature [7] estimated that a 5% decrease in power
consumption of the Summit supercomputer could generate sav-
ings of around 1 million dollars. Therefore, it is increasingly
critical to develop GPU power management strategies that can
lower power consumption with a minimum impact on execution
time.

There are several challenges to designing efficient power man-
agement strategies for GPUs. First, the complexity of GPU work-

https://doi.org/10.1016/j.future.2023.07.011
https://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2023.07.011&domain=pdf
mailto:ghazanfar.ali@ttu.edu
https://doi.org/10.1016/j.future.2023.07.011

G. Ali, M. Side, S. Bhalachandra et al.

loads in terms of their utilization of computational resources can
lead to diverse power consumption needs. Second, GPUs offer a
wide array of power consumption controls, and understanding
the impact of these power controls on power consumption and
performance is non-trivial. For example, the NVIDIA GA100 (Am-
pere) and GV100 (Volta) GPUs provide 81 core DVFS configura-
tions in the range of 210-1410 MHz and 167 DVFS configurations
in the range of 135-1380 MHz, respectively. While this flexibility
is certainly favorable for saving power, it also makes the GPU’s
DVES design space more complex in selecting a DVFS configu-
ration that provides optimal power consumption and execution
time simultaneously. Given the complexity of different workloads
and power controls, it is not realistic for HPC system architects
and operators to select the optimal GPU frequency manually.

Limitations of state-of-art approaches: Many studies have
explored to improve GPU power, performance, and energy ef-
ficiency [8-14]. The major research areas include DVFS space
exploration, optimal frequency determination, analytical and ma-
chine learning (ML) based models using utilization metrics, and
static code analysis. However, the existing approaches have some
caveats: (1) features derived using static code analysis or uti-
lization metric are not always best representative of a workload
(often workload or architecture-specific), and (2) multi-objective
functions provide a range of best frequencies rather a definitive
optimal frequency [7,15].

Experimental methodology and artifact availability: To ad-
dress these challenges, the Optimal GPU Frequency Selection [16]
has been proposed to automate the selection of the optimal
DVES configuration for a workload that requires three steps.
First, characterization and identification of the GPU features that
directly influence power and performance. We used the mutual
information technique to prune the features most relevant to
power and performance. Second, modeling of power and per-
formance behaviors across DVFS design space to enable model-
based estimation of a workload’s power and execution time using
the workload’s utilization requirements. Third, the determina-
tion of the optimal DVFS configuration based on the estimated
power and execution time profiles across all DVFS configura-
tions. Flexible optimal frequency selection techniques were de-
vised using multi-objective functions. These techniques included
energy-delay product (EDP) [6,17-19] and energy-delay-square
product (ED?P). EDP takes the optimality of both energy and
execution time (delay) into consideration simultaneously while
selecting the optimal frequency. ED?P provides double-weight to
the execution time.

Although the Optimal Frequency Selection has been previously
described, a methodology to make it portable across different
GPU architectures and real applications have remained unde-
veloped. In this study, we approached this by performing data
collection for real applications on new GPU architecture, sev-
eral inter-architectural analyses, and an extension of the power
model. In particular, we analyze the portability of the features
selected in study [16] on the NVIDIA GA100 GPU. The power
model proposed in [16] is extended to mitigate inter-architectural
power consumption variations. The application-level portabil-
ity is evaluated by estimating optimal frequencies of real ap-
plications using the models developed with micro-benchmarks.
The GPU architecture-level portability is evaluated by estimat-
ing the optimal frequencies of real applications on GA100 us-
ing the models developed with micro-benchmarks on GV100.
We provided more evaluation data (selected frequencies, en-
ergy savings, changes in performance), useful insights, and ex-
ample usage of our methodology in a production environment.
The source codes, including data collection, power controls, data
analysis, and implementation of analytical models, are publicly
available [20].

72

Future Generation Computer Systems 149 (2023) 71-88

Key insights and contributions: Overall, this study makes the
following contributions.

1. Features Portability: The initial characterization of fea-
tures using micro-benchmarks in study [16] confirms the
impact of GPU utilization features on power usage, energy,
and execution time. In this study, we evaluate the portabil-
ity of features in terms of different input sizes, other GPU
architectures, and vendors. We observe that the selected
features are portable across architectures and vendors.

2. Models portability: Based on the characterization study,
analytical models for execution time and power were pro-
posed in the study [16]. We evaluated the portability of
the models using real-world HPC and machine-learning
workloads (application-level portability), NVIDIA GA100
GPUs (architecture-level portability), and AMD MI210 GPUs
(vendor-level portability). The metric collection is required
only at the GPU’s maximum DVFS configuration for a given
workload. These metrics are used to estimate a work-
load’s power and performance for the remaining DVFS
configurations using the proposed models. We evaluated
the portability of the proposed methodology in study [16]
for real-world applications. On NVIDIA GV100, using real-
world applications, these models estimated power and
performance up to 95.2% and 96.9%, respectively. Further-
more, we have evaluated the portability of the models
across different GPU architectures and vendors. The power
and performance models, developed using GV100’s data
(thermal design power (TDP) of 250 W), estimated power
and execution time of real applications on GA100 (TDP
of 500 W) with accuracies of up to 97.9% and 98.2%,
respectively. To evaluate vendor-level portability, we have
mapped the feature set utilized in constructing the models
from NVIDIA to a corresponding feature set available in
AMD. The power and performance models, utilizing data
from GV100, accurately estimated the power consumption
and execution time of real applications on the AMD Instinct
MI210 GPU, achieving accuracies of up to 96.1% and 99%,
respectively.

3. Energy-performance trade-offs: The efficacy of the multi-
objective optimal functions is evaluated. The energy pro-
files chosen by the ED?P-based optimal frequency achieved
an energy saving of up to 29.6% with a performance loss of
5.2% for real applications on GA100.

4, Comparison with state-of-the-art models: We conducted
a comparison between our models and the GPU assembly
instructions (PTX)-based static models [7]. The results re-
vealed a significant reduction in the average error rates,
with a decrease from 19.7% to 3.1% for power models and
from 29.4% to 5.2% for performance models.

Limitations of the proposed approach: The models require a
given workload to be run at the maximum frequency to acquire
utilization metrics. The models can only be used in association
with DVFS. Other power controls, like power capping, are beyond
the current scope of this work.

This paper is organized as follows. Section 2 provides the
background and motivation of this research. Section 3 describes
the experimental setup. Section 4 presents an overview of the
methodology, data collection, feature analysis, analytical mod-
eling, and explains the multi-objective algorithm for selecting
the optimal frequency. Sections 5 and 6 present the evaluation
results. Section 7 provides a comparison of models with state-of-
the-art research. We discuss other related work and comparison
in Section 8. Section 9 provides sample deployment options and
Section 10 discusses concluding remarks.

G. Ali, M. Side, S. Bhalachandra et al.

: : = : : :
E 250 F X &&@mm«(‘ 1 ; 1L 1
2 200} MMNLO i 2o 3.95, 1380 MHz [|
= (@ =
g 150+ (M(u’l\’“@@(@wku =i]
100 € 1 9
& sof TPl{ g5
0 w3

660 860 1600 12‘00 14‘00
(b) DGEMM-Core Frequency (MHz)

660 860 10‘00 12‘00 14‘00
(a) DGEMM-Core Frequency (MHz)

- 40 . . :
5 igg I 38 1.9s, 1072 MHz
o I £ 3.0
$ 150+ TDP =
£ 100/ @@ Fost
@U@
g 50 *(V{li\(\(\{\U‘U‘L(\\‘{(‘K(\‘w““«“(Mh(l @ 1 g ol
- X
0 wis

660 860 ldOO 12‘00 14‘00
(f) STREAM-Core Frequency (MHz)

\ , . . .
600 800 1000 1200 1400
(e) STREAM-Core Frequency (MHz)

Future Generation Computer Systems 149 (2023) 71-88

960 ‘ ‘ T
S i E 2
<, 920 808.3), 1087 MHz | i =6 \\\\\\\\\\\\\\\\\\\\\\<<<<07
D gg0 4** 2 al \\\\\\\\\\\\\\g\\\\\\\\\\\
7] ’ i o SN
c T e IPARES - |
S 840 lgf‘ T 2[ES Max. Attainable
800 . . it Ll . 0 . n n D i
600 800 1000 1200 1400 600 800 1000 1200 1400
(c) DGEMM-Core Frequency (MHz) (d) DGEMM-Core Frequency (MHz)
210 : . n\"; 1000F T T =
~ 200F) 0 .
2190} 148.6), 915 MHz 9, 800 @<<<\<<<\<</\<<</<<<<<”
> 180} £ 600} S B
o = L&
g 170F .'§ 400 LY j
e 160+) -
w j50} T 200- Max. Attainable |4
140 L L L L L % 0 L I I I I
600 800 1000 1200 1400 m 600 800 1000 1200 1400

(g) STREAM-Core Frequency (MHz) (h) STREAM-Core Frequency (MHz)

Fig. 1. Power, execution time, energy, and FLOPS variations across different frequency configurations for DGEMM (upper) and STREAM (lower), respectively.

2. Motivation

This section discusses the impact of DVFS on performance,
power, and energy patterns on compute- and memory-intensive
workloads. It also explains why multi-objective optimal functions
are needed to select the optimal DVFS configuration.

2.1. Impact of DVFS on compute-intensive workload

DVFS technique is one of the widely used techniques to reg-
ulate power and performance by clocking the GPU core to dif-
ferent frequency configurations. Several previous works [9,10]
observed that the impact of DVFS on power and execution time
depends on GPU architecture and application intensity. Hence,
GPU workloads with different computational intensities show
different power and execution time behaviors for a given core
DVFS configuration. As a preliminary step, we tested DGEMM and
STREAM [21,22] GPU micro-benchmarks to understand the power
and execution time characteristics of compute- and memory-
intensive applications. Even though we have tested all supported
GPU configurations, configurations below 510 MHz showed high
performance penalties leading to a higher power and thus are
infeasible. Hence, we only use configurations in the range of 510-
1410 MHz (61 configurations) for GA100 and 510-1380 MHz (117
configurations) for GV100. It is worth noting that unlike some
previous GPU architectures, which provide multiple memory fre-
quency configurations, GA100 and GV100 support a single high
bandwidth memory (HBM) frequency, i.e., 1593 MHz and 877
MHz, respectively.

Fig. 1(a) to (d) show variations in power, execution time,
energy, and execution time (floating-point operations per sec-
ond (FLOPS)) across 117 DVFS configurations for the compute-
intensive workload (i.e., DGEMM). It is observed that power is
approximately a direct linear function of GPU core frequency.
Performance degradation of up to 3x was observed when the
GPU core frequency was changed from the maximum to the
minimum frequency. We also noted that performance degra-
dation is negligible for the frequencies in the range of 1250-
1380 MHz. These frequencies can potentially be a viable opportu-
nity for energy-performance trade-offs. Overall, it shows that for
compute-intensive applications, DVFS is an effective technique to
scale power. The power behavior can be scaled down to less than
half of the GPU’s TDP at the lower configuration (e.g., 510 MHz).
On the other hand, the power can be ramped up to its TDP limit
at the maximum frequency.

The execution time exhibits an indirect nonlinear relationship
with DVFS configurations, as shown in Fig. 1(b). Performance
degradation of up to ~3x was observed when the DVFS config-
uration was swayed from the maximum to the minimum con-
figuration. We also noted that the performance degradation is

negligible in the ~1250-1380 MHz frequency range. This fre-
quency range can potentially be viable options for energy and
performance trade-offs for compute-intensive workloads.

Fig. 1(c) shows that energy is a parabolic (i.e., quadratic rela-
tionship) function of DVFS configuration. The energy metric for
each DVFS configuration was computed as a product of power
(a) and execution time (b). In general, the global minimum en-
ergy point across DVFS configurations is considered the optimal
frequency where the compute-intensive DGEMM can save energy
up to ~15.8%.

Fig. 1(d) shows nearly a direct linear relationship between
FLOPS and DVES configurations. Like the execution time, the
increment in FLOPS after 1250 MHz is insignificant.

To summarize, we can infer two main corollaries. First, the
power consumption is highly dependent on the DVFS configura-
tion. Second, an application’s performance (both time and FLOPS)
does not improve after reaching a particular DVFS configuration.
Hence, any further increase in frequency causes increased in
power without noticeable performance gain.

2.2. Impact of DVFS on memory-intensive workload

Fig. 1 (e) to (h) show variations in power, execution time,
energy, and bandwidth across supported DVFS configurations
for STREAM. Like DGEMM, power for STREAM is nearly linear
with DVFS configuration as shown in Fig. 1(e). The power at the
maximum DVFS configuration (1380 MHz) is ~100 W and can
be reduced up to ~50 W at the minimum DVFS configuration
(510 MHz) used in this study. Fig. 1(f) shows an indirect nonlinear
relationship between execution time and DVFS configurations. It
is worth noting that the execution time does not change for over
800 MHz. Thus, this configuration is optimal for the execution
time. This phenomenon is also reflected in Fig. 1(h) showing
that the bandwidth does not improve after ~ 800 MHz. Fig. 1(g)
depicts the quadratic relationship between the frequency and
energy. It is worth noting that the frequency providing the low-
est energy point for STREAM (with energy savings of ~33%) is
not the same frequency as DGEMM, suggesting that the opti-
mal frequency of an application is driven by its computational
intensity.

The HBM data rate is nearly a direct linear function of DVFS
configuration as demonstrated in Fig. 1(h). The increase in GPU
frequency also speeds up the data rate of the HBM. In alignment
with (f), bandwidth does not improve after a DVFS configuration.

Two key takeaways: First, the execution time, power, and
energy patterns of compute- and memory-intensive workloads
indicate - (a) the change in GPU frequency effectively changes the
execution time, power, and energy metrics. (b) The intensity of
the change in these metrics is highly dependent on the workload’s
computational intensity. Second, the lowest DVFS configuration
consumes the lowest power. However, the same configuration

73

G. Ali, M. Side, S. Bhalachandra et al.

Future Generation Computer Systems 149 (2023) 71-88

Table 1 Table 2
The real applications used in our evaluations. The SPEC ACCEL benchmarks suite containing 19 OpenCL enabled benchmarks.
Benchmark Language Domain Benchmark Language Domain
NAMD C++/Charm++ Parallel molecular dynamics tpact C++ Astrophysics
code for large biomolecular stencil C++ Thermodynamics
systems 1bm C++ Fluid Dynamics
LAMMPS C++ Large Atomic Simulations, tfe c Signal Pprocessing
Molecular Simulations spmv G Sparse Linear Algebra
mriq C Medicine
LST™M Python Binary classification, histo C Silicon Wafer Verification
Sentiment Analysis bfs C Electronic Design Automation, Graph Traversals
cutcp C Molecular Dynamics
kmeans C++ Dense Linear Algebra, Data Mining
lavamd C N-Body, Molecular Dynamics
degrades performance at maximum. Furthermore, the maximum cfd CH++ Unstructured Grid, Fluid Dynamics
configuration can provide maximum performance; on the other o Cr+ Dynamic Programming, Bioinformatics
hand, it may not be optimal for power and energy savin hotspot ¢ Structured Grid, Physics Simulation
! y p p gy & lud C++ Dense Linear Algebra, Linear Algebra
ge C++ Dense Linear Algebra, Linear Algebra
srad C Structured Grid, Image Processing

2.3. Can one DVFS configuration fit all?

The optimal DVFS configuration for an application refers to a
GPU operating frequency that reduces the power at the cost of no
performance degradation (ideally) or achieves the best trade-off
between performance degradation and reduction in power and
energy. However, empirical results in Figs. 1 (b) and (c) show
that the optimal execution time and optimal power consumption
are exhibited by different DVFS configurations for an applica-
tion. Furthermore, these configurations are not portable across
applications (Fig. 1(b) and (f) or (c¢) and (g)). Comparatively, the
optimal execution time was achieved at higher frequencies than
the frequencies that delivered the optimal energy, and optimizing
one objective can adversely affect the other. Thus, selecting the
optimal frequency automatically for an arbitrary application is
not a trivial task due to conflicting criteria of high performance
and low power and energy. This observation supports a need
for a multi-objective solution that simultaneously considers both
execution time and power consumption for an application to
determine the optimal DVFS configuration, which is the ultimate
objective of this work.

3. Experimental setup
3.1. Target applications

In this study, we used three real applications, two micro-
benchmarks, and 19 industry benchmark applications in the SPEC
ACCEL suite.

3.1.1. Real applications

In this study, we used three GPU-enabled real-world applica-
tions, including: (1) Nanoscale Molecular Dynamics (NAMD) [23,
24], a large biomolecular systems simulation program; (2) Large-
scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)
[25,26], a particle simulator that models solid-state, soft matter,
and coarse-grained materials; and (3) Long short-term memory
(LSTM) [27] algorithm, a TensorFlow-based [28] implementa-
tion of binary sentiment classification of large movie review
dataset [29]. The domains for these applications are shown in
Table 1

3.1.2. Benchmark applications

The proposed models were validated using the SPEC ACCEL®
benchmark suite [30]. The application domains for the bench-
marks in the SPEC ACCEL are shown in Table 2.

74

heartwall C
bplustree C

Structured Grid, Medical Imaging
Graph Traversal, Search

3.2. Target systems

In this study, we collected the utilization metrics for SPEC
ACCEL, DGEMM, and STREAM, real applications (LAMMPS, NAMD,
and LSTM) using NVIDIA Ampere A100 GPU node at the National
Science Foundation (NSF)'s Chameleon CHI@UC site [31], AMD
Instinct MI210 node at AMD site, and Volta V100 GPU node at
High Performance Computing Center of Texas Tech University,
managed by the Slurm Scheduler [32]. Table 3 lists the config-
urations of these systems. To avoid any interference from other
jobs, all our experiments were run on nodes that were exclusive.
All experiments were performed using an NVIDIA GV100 with
CUDA version 11.2 and driver version 450, and GA100 with CUDA
version 11.5 and driver version 465. For MI210, we used ROCm
5.4, rocprof 2.0, and rocm-smi 5.4. Data analysis and modeling
was performed using Python 3.10.1 64-bit.

4. Methodology

This section introduces the overall methodology, data col-
lection process, feature analysis, power modeling, performance
modeling, and the multi-objective approach to selecting the op-
timal frequency.

4.1. Overview

Our methodology consists of two phases: (1) building an-
alytical models for power and execution time and (2) select-
ing the optimal frequency selection for a given workload using
multi-objective optimal functions based on estimated power and
execution time using analytical models.

Fig. 2(a) shows the process of building analytical models for
power and execution time, which are built using workloads’
GPU utilization metrics across GPU’s DVFS design space. The
following functions were involved in developing power and per-
formance models: workload execution across GPU’s DVFS design
space, metric collection, feature analysis, and model construc-
tion. For developing models, we used utilization metrics of only
DGEMM (representative of compute-intensive workloads) and
STREAM (representative of memory-intensive workloads) micro-
benchmarks. The GPU’s utilization metrics were collected across
the GPU’s DVFS design space for the entire execution duration
at the sampling interval of 20 ms. To mitigate statistical errors
such as run-to-run variations, these benchmarks were run three
times for each frequency. As demonstrated in Fig. 1, extensive

G. Ali, M. Side, S. Bhalachandra et al.

Future Generation Computer Systems 149 (2023) 71-88

Table 3

Platforms used for our evaluations.
Site Platform CPU Memory OS GPU GPU memory GPU TDP
Chameleon@UC Dell PowerEdge XE8545 2 x 64 cores x AMD EPYC 7763 512 GB CentOS 8 GA100 SXM4 80 GB HBM2e 500 W
Chameleon@UC Dell PowerEdge C4140 2 x 24 cores x Intel Xeon Gold 6230 128 GB CentOS 7 GV100 PCle 32GB HBM2 250 W
HPCC@TTU Dell PowerEdge R740 2 x 20 cores x Intel Xeon Gold 6242 384 GB CentOS 8 GV100 PCle 32GB HBM2 250 W
Test Server@AMD SUPERMICRO AS-4124GS-TNR 2 x 64 cores x AMD EPYC 7742 528 GB Ubuntu 18.04 MI210 PCle 64GB HBM2e 300 W

(a) Model Development E(b) Optimal DVFS Config Selection

GPU

C i V--mmm Yy i
Kernel JL Kernel

Run kernels k
across all
DVFS configs

GPU's Utilization Metricsl
Feature Analysis

Power Related Metrics Performance Related Metrics

S
Performance
Model

GPU

Workload

Run workload
at maximum
DVFS config

GPU's Utilization Metrics

Estimate power
across all DVFS
configs

Estimate exec.
time across all
DVFS configs

_7Estimate energy
across all DVFS
configs

Multi-objective
optimal functions,

Optimal DVFS config

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
V
'
'
'
'
'
'
'
!
Power Model 1
'
'
'
'

Fig. 2. (a) Functions related to power and performance models development.
(b) Functions related to the selection of the optimal frequency for a workload
using the proposed models and multi-objective techniques.

analyses were performed to understand the impact of different
frequencies on power, execution time, energy, bandwidth, and
FLOPS. The metrics were characterized to find their relationship
with power and execution time, as shown in Section 4.3. Finally,
power and performance models were constructed empirically
using the features which showed the highest correlations with
power and execution time, respectively. One of the main ob-
jectives of these models is the portability and applicability of
this methodology to a wide variety of applications and other
GPU architectures. We modeled GPU architectural characteristics,
which are instrumental in mitigating the changes in power and
execution time for a target GPU architecture. These models do not
require readjustment based on the target GPU architecture.

As shown in Fig. 2(b), to determine the optimal GPU DVES con-
figuration, the following steps are involved. First, a workload was
run three times for data collection. As performance is paramount
to HPC workloads, we collected GPU’s utilization metrics at the
GPU'’s maximum DVFS configuration. Furthermore, the power and
performance profile at the maximum configuration was used
as a reference point for the power and performance profile at
the selected DVFS configuration. GPU’s metrics were collected
at a sampling interval of 20 ms for each run of the workload.
Second, the workload’s power and execution time were estimated
via the proposed power and performance models, respectively.
These estimations were performed for each GPU DVFS configu-
ration using the workload’s utilization metrics acquired at the
maximum frequency. This model-based estimation of power and
execution time across a GPU’s supported DVFS configurations
eliminates the need for the execution of a workload across these
different DVFS configurations. The energy for a workload was
computed using the estimated power and execution time for each
DVES configuration. Finally, multi-objective functions were used
to determine the optimal frequency among the GPU’s supported
frequencies. These multi-objective functions use EDP and ED?P,
which establish energy-performance trade-offs by simultaneously
taking energy savings and performance degradation into account.
The EDP function computes the score for each frequency by multi-
plying the energy and execution time of the DVFS configuration.

75

The DVES configuration with the lowest score is determined as
the optimal frequency. The ED?P function is similar to EDP; how-
ever, ED?P applies more weight to the execution time. The ED?P
always selects a higher DVFS configuration than the EDP for a
given workload. Thus, it is useful in enabling performance-centric
energy-saving trade-offs.

4.2. Data collection

We collected 12 GPU utilization metrics (seemingly relevant
to power and performance) for DGEMM, STREAM, SPEC ACCEL
benchmarks, and three real applications (LAMMPS, NAMD, and
LSTM) across 117 DVFS configurations on the NVIDIA GV100.
The same metrics were collected for real applications across 61
DVFS configurations on the NVIDIA GA100. We used the state-of-
the-art NVIDIA Data Center GPU Manager interface (DCGMI) [33]
interface for metric acquisition. The same interface was used to
change the DVFS configuration of the GPU.

Table 4 provides the description of the collected metrics. As
described above, metrics related to DGEMM and STREAM were
used to build the power and performance models. The metrics
related to the SPEC ACCEL and real applications were used as
the measured data in the model validation demonstrated in Sec-
tions 5 and 6. Section 6 also evaluates the inter-architectural
portability of the proposed models and the selection of the op-
timal frequency mechanism using the real applications.

4.3. Feature engineering

In this section, we discuss the process of selecting fine-grained
features which directly impact power and execution time. Fur-
thermore, we analyze the impact of different DVFS configurations
and input sizes on the selected features, and the portability of
these features across GPU architectures.

4.3.1. Selection of the fine-grain features

Feature analysis was performed to choose features that di-
rectly impact an application’s power usage and execution time.
These features are critical to developing accurate, reliable, and
scalable analytical models for power and execution time estima-
tion. We used the Mutual Information (MI) technique [34-36] to
identify the features correlated with power and execution time.
MI estimates distances using nonparametric k-nearest neighbors
algorithm. This approach shows an unbiased correlation, which
is more effective than the correlation (often algorithm-specific)
shown by a machine learning algorithm. As a representative of
compute-intensive and memory-intensive applications, the fea-
ture analysis used the dataset for DGEMM and STREAM bench-
mark applications only. Fig. 3 shows the dependency between
power_usage and run_time, and other GPU utilization features.
The feature with a higher mutual correlation value (close to 1)
is indicative of a higher dependency. Out of these features, we
observed that fp_active, sm_app_clock, and dram_active are the
most prominent features that influence both power usage and
execution time.

The fp_active and dram_active are instrumental in understand-
ing the computational intensity of a workload. In general, compute-
intensive applications show higher fp_active than the memory-
intensive applications as depicted in Fig. 4 where floating-point

G. Ali, M. Side, S. Bhalachandra et al.

Table 4
Feature description.

Feature

Description

power_usage

Last measured power draw for the entire
board. [From DCGMI.]

dram_active

Fraction of cycles where data was sent to or
received from device memory. It reports a
value between 0 and 1 that represents an
average activity over a time interval. For
example, an activity of 0.2 indicates that 20%
of the cycles read from or write to device
memory over the time interval. [DCGMI.]

fp64_active

Fraction of cycles where the FP64 (double
precision) pipe was active. It reports a value
between 0 and 1 that represents an average
over a time interval. [DCGML.]

fp32_active

Fraction of cycles where the FP32 (single
precision) pipe was active. The value is defined
similarly to fp64_active feature. [DCGMI.]

gr_engine_active

Overall graphics engine activity. The value
(between 0 and 1 represents an average over
a time interval. [DCGMI.]

sm_app_clock

Application level SM clock frequency (MHz).
[DCGMI.]

sm_active

Fraction of time at least one warp was active
on a multiprocessor, averaged over all
multiprocessors. Warps both performing
actively computing and waiting on memory
requests are considered active. The value [0:1]
represents an average over a time interval.
Usually, a value of 0.8 or higher indicates
effective usage of GPU. [DCGMI.]

sm_occupancy

Fraction of resident warps on a multiprocessor,
relative to the maximum number of
concurrent warps supported on a
multiprocessor. The value [0:1] represents an
average over a time interval. The higher
occupancy does not always represent optimum
GPU usage. [DCGMI.]

pcie_tx_bytes

Bytes sent by PCle. [DCGMLI.]

pcie_rx_bytes

Bytes received by PCle. [DCGMI.]

gpu_utilization

Fraction of time the compute pipe was busy.

The value represents an average over a time
interval. [DCGML.]

Execution time of a specific benchmark kernel.
Sourced as wall time.

run_time

activity (fp_active) for DGEMM is higher than STREAM. While
DGEMM is also shown to have considerable memory activity
(dram_active), the value for STREAM is much higher. Moreover,
we observed that the inclusion of gpu_utilization does not im-
prove the prediction accuracy, and the pcie_* metrics did not
provide any significant improvement for our models either.

The sm_app_clock is used to scale the power and execution
time of an application. For both benchmarks, power decreases
(as depicted in Fig. 1-(a) and (e)) with sm_app_clock while the
execution time increases (as illustrated in Fig. 1(b) and (f)). It
shows that a change in GPU frequency changes the power and ex-
ecution time in a computational intensity-aware way. Therefore,
it can be deduced that the GPU metrics fp_active, dram_active, and
sm_app_clock are reliable features for controlling an application’s
power usage and time.

4.3.2. Impact of DVFS on computational activities

We further investigated the impact of changes in DVFS con-
figurations on the computational activities (i.e., fp_active and
dram_active) of memory- and compute-intensive applications.

76

Future Generation Computer Systems 149 (2023) 71-88

=23 power_usage run_time
10 T T T T T T T K T
osl 08 [<lgg 0809
[0.7
= 0.6 0.6
06 0.6 -
8 0505 0.5 A o
0 04 0.2 o ot o X 7
02k 0232 Ff] ot ot o _
o o o o o
0.010:000 00,00 E@. Yol Sl rol Yoy AN
e) 5 o™ 5 e ol W&
90\\4 ") ‘ e,”d‘\“ ‘*}N\e “\\1})\\0 *}ﬂ\e ,"’G\N o /o\oo }O\N
BN o N 5@ » et ® o9 o™
O < RS 7 o & o7 &
&5
Feature

Fig. 3. Dependency between GPU's utilization metrics, power and time.

o 10F R T
£ 08 H@@@~ _

g oer DGEMM Max Activity [] STREAM

< g'g N @9 GV100 I

a 021

E ool GA100

z

] 1.0 | T T T ® - 10F T T p —
£ o8| 4 os} S SRR
< AT SITEINE TSRS
< 06 DGEM%«(@Q«@@@«@’@@- 0.6 - e e]
zo4r (@G ELEEE 1 o fee®]
$ 0.2 fu@ " o 02 |e STREAM]
o 0.0 1 1 1 1 e 0.0 | | | . A
= 600 800 1000 1200 1400 600 800 1000 1200 o

Core Frequency (MHz) Core Frequency (MHz)

Fig. 4. Impact of DVFS on the computational activities (i.e., fp_active and
dram_active) of memory- and compute-intensive applications.

DGEMM and STREAM were tested by changing the DVFS con-
figurations at maximum input sizes on GA100 and GV100 ar-
chitectures. As demonstrated in Fig. 4, the floating-point activ-
ity is almost unaffected by the change of DVFS configurations
for both compute- and memory-intensive applications; however,
memory-activity shows variations for both applications. We also
observed that DGEMM exhibited different memory usage be-
haviors across GV100 and GA100. We will explain the rationale
behind this deviation later.

4.3.3. Impact of input size on computational activities

We investigated the impact of changes in input sizes on the
computational activities of memory- and compute-intensive ap-
plications. DGEMM and STREAM were tested using different input
sizes at the maximum core frequency on GA100 and GV100
architectures, as depicted in Fig. 5.

As in the case of changes in frequency, we observed similar
patterns concerning the change of input sizes on computational
activities. The floating-point activity is approximately unaffected
by the change of input sizes for both applications on both GPU
architectures. The memory activity of DGEMM showed variations
within and across both architectures. Unlike in the previous case,
the memory activity of STREAM was observed to be mostly un-
affected by the change in input sizes on both architectures. In
addition, our preliminary analyses confirm that a change in input
sizes of memory and compute-intensive applications does not
change their power signature [37].

4.3.4. Features portability across GPU architectures

We analyzed the portability of fp_active and dram_active
reported by memory-intensive (STREAM) and compute-intensive
(DGEMM) kernels across GV100 and GA100 architectures. Figs. 4
and 5 corroborate five findings concerning to portability of these
features across GPU architectures: (1) floating-point activity for
memory- and compute-intensive kernels was reported the same
on both architectures and were unaffected by the change in DVFS
configuration and the change in input size; (2) memory activity
is nearly unimpacted by the change in input size for a memory-
intensive kernel; (3) memory activity to some extent showed
variation with the change in DVFES configuration for both kernels;

G. Ali, M. Side, S. Bhalachandra et al.

Future Generation Computer Systems 149 (2023) 71-88

Max =9 GV100-MEM GV100-FP64 B0 GA100-MEM 2] GA100-FP64 Max =9 GV100-MEM GV100-FP64 B0 GA100-MEM [Z] GA100-FP64
0.99 0.9 0.98 _0.99 0.98_0,99 0.97- 0.99 0.97 _1.00. T T T T
10k .S , . X 1.00 |
V] f V] 0,86 0.87 0.87 0.87
08k 9 0 i
> >
£ =
> 06 > 4
3 0.38 3
4 - .
<’ 2 <
02 o7 0147 [l g
0o LI ~0.01110.01 01 010.01 .01

5Kx5K 10Kx10K 15Kx15K 20Kx20K

DGEMM Matrix Size

23Kx23K

10240 20480

STREAM Vector Size

Fig. 5. Impact of different input sizes on the computational activities (i.e., fp_active and dram_active) of memory- and compute-intensive applications.

and (4) non-uniform memory activity patterns on GV100 and
GA100 for DGEMM benchmark.

While GA100 memory frequency (i.e., 1593 MHz) is signifi-
cantly higher than the GV100 memory frequency (i.e., 877 MHz),
results showed comparatively low memory activity on GA100
for DGEMM. We investigated this deviation by looking into the
architectural characteristics of both GPUs. We found that GA100
is enhanced with double-precision tensor cores, which support
double-precision matrix multiply-accumulate (DMMA) instruc-
tion. A single DMMA instruction (on GA100) is equal to eight
traditional FP64 instructions (on GV100) [38]. This architectural
enhancement enables GA100 to save significant memory space
and bandwidth. The reduction in memory activity for DGEMM on
GA100 (Fig. 4) is due to its support for Double-Precision Tensor
Cores capability.

Summary: MI technique confirms fp_active, dram_active,
sm_app_clock as the top three features exhibiting a strong
relationship with power and execution time. sm_app_clock (DVFS
configuration) is a hardware feature of the target GPU. fp_active
is unaffected by the change in sm_app_clock, the change in the
input size, and the change of GPU architecture. dram_active is
slightly affected by the change in sm_app_clock, the change in the
input size, and the change in GPU architecture. Overall, fp_active
and dram_active of an application can uniquely identify power
and execution time signature for a given GPU sm_app_clock.

4.4. Power modeling

To develop a power model, it is essential to consider the
aspects of applications and architectures that directly influence
power. Our empirical analysis indicates that the floating-point
and memory activities directly impact the (dynamic) power at
a given core frequency. This implies that the floating-point and
memory activities are reliable features to identify an applica-
tion’s power signature. The power is shown to increase approxi-
mately in a linear manner up to the GPU’s TDP, depending upon
the application’s activity. With these underlying basics, we use
floating-point activity (FP,), memory activity(DRAM,), and core
frequency (f) to model activity-driven power (Pf) behavior of an
application as shown in Eq. (1).

Pr=oa FPyt+ B -DRAMy +y - f +C LA (1)

where «, 8, and y represent regression coefficients for floating-
point activity, memory activity, and core frequency, respectively,
and C is a constant. These coefficients are estimated using metrics
data from DGEMM and STREAM benchmarks. A is a constant
factor that essentially scales up or down power for other GPU
architectures. Its value is a ratio of the target GPU’s core count
to the base GPU’s core count. When the core count of the target
GPU is more than the core count of the base GPU, the resultant
value is calculated by adding this value. However, when the
cores count of the target GPU is less than the cores count of
the base GPU, the resultant value is estimated by subtracting
this value. Moreover, computing the coefficients for the models
has no noticeable overhead. In our evaluations, the estimation of
power and execution time, along with the selection of the optimal
frequency, took less than a second.

77

4.5. Performance modeling

While the execution time of individual kernels is predictable
based on their computational activities, repetitive tasks and dif-
ferent data input sizes involved in real-world applications make
execution time estimation complicated. The execution time de-
pends on the input size, and literature [39] confirms our obser-
vations. The proposed performance model requires the execution
time of a workload at the maximum-frequency, and then our
model scales the execution time for other frequencies. Another
key point in designing a DVFS-based performance model is to
consider the impact of frequency scaling on time. Based on our
observations, the execution time exhibits nonlinear inverse re-
lation with GPU’s core frequencies, as shown in Fig. 1-(b) and
(f). To address this challenge, researchers use the application’s
execution time at maximum core frequency as the application’s
default execution time and linearly estimate the variations in the
execution time for the remaining core frequencies. For example,
recent literature [39] tried to estimate the change in execution
time in relation to a change in core frequency by using the appli-
cation’s default execution time as an input execution time. Our
evaluation of [39] shows two fundamental shortcomings. First,
the execution time estimation is limited to compute-intensive
applications. Second, the change in the estimated execution time
when the frequency is changed from the GPU’s highest frequency
is estimated in linear rather than the desired nonlinear fashion.
Therefore, we model these nonlinear (nearly parabolic) behaviors
demonstrated in Fig. 1-(b) and (f) as a second-degree polynomial
function of floating-point activity (FP,.) and change in frequency
(Af). The performance model is derived using Egs. (2), (3),
and (4). The performance model is intended to estimate nonlinear
variations in the application’s execution time between the highest
core frequency and the remaining core frequencies.

Tf = Tfmux + TfA (2)

where Ty denotes the execution time at frequency f, Tf,, rep-
resents the execution time at the highest frequency, and Ty,
refers to the change in execution time from the maximum core
frequency to the given core frequency f, which is determined
using Eq. (3).

TfA =,31'FPact+,32'Af+ﬁ3'FPact2+
Ba - FPact - Af + Bs - Af?

where FP,; refers to the application’s FP activity at maximum fre-
quency and Af denotes the change in frequency from maximum
to the given frequency as shown in Eq. (4).

Af :fmax _f (4)

The B1, B2, B3, Pa, and Bs are polynomial coefficients, which are
estimated using variations in execution time corresponding to
changes in frequency configurations and application’s FP activity.
These estimations were empirically computed using metrics data
from DGEMM and STREAM benchmarks. The inclusion of FP ac-
tivity is critical because it reflects the application’s computational
activity (see Fig. 1(b) and (f)).

(3)

G. Ali, M. Side, S. Bhalachandra et al.

Future Generation Computer Systems 149 (2023) 71-88

Table 5
Power and performance estimation accuracy for SPEC ACCEL benchmark applications.
tpacf stencil 1lbm fft spmv mriq histo bfs cutcp kmeans lavamd cfd nw hotspot lud ge srad heartwall bplustree
Power(%) 98.5 86.1 94.5 90.8 89.6 97.8 83.2 98.3 93.7 83 98.4 95.1 94.2 90 90 96.3 90.8 99.1 94.6
Time (%) 91.9 922 97.8 86.3 97.5 81.9 98.8 98.7 855 97.6 80.6 96.2 98.3 87.2 94.1 98.4 94.8 96.2 93
4.6. Optimal frequency selection Table 6

As already discussed in Section 2.3, the optimal frequency is
the one that reduces the power with no performance degradation
(ideally) or achieves the best trade-off between execution time
and power. The optimal frequency for an application is selected
using a multi-objective approach including EDP [6,17-19] and
ED?P. These approaches require energy and execution time es-
timations. The energy is computed for each frequency (f) using
Eq. (5) based on the power usage and execution time estimated
via the proposed power and performance models.

(5)

Efestimated = Pfestimﬂted X Tfestimated

Algorithm 1 Optimal frequency determination using ED*P

Require: E;...Ey,T;...Ty,F1...Fy o list of energies, run times,
and frequencies

Ensure: f > optimal frequency

1: function OpTIMAL(E[], T[1, F[1)

2: EDP < E x T? > compute list of EDP scores

3: min < 0

4: index < 0

5. N < length(ED?P)

6: fork=1to N do

7 if ED*P;, < min then

8 min < ED?P,

9 index < K

f < Findex

The algorithm for selecting the optimal frequency among sup-
ported DVFS configurations is straightforward and shown in Al-
gorithm 1. This algorithm takes three lists, including energy (E),
execution time (T), and frequency (F) as input. It outputs the
optimal f setting based on the ED?P score. The algorithm involves
two major steps: First, the ED?P score for each set of energy
and time is computed by multiplying the energy with the square
of execution time. Second, the lowest score decides the optimal
energy-delay profile out of the given sets of energy and time
for the given workload. The frequency (£) corresponding to the
lowest score is the optimal frequency and will be selected as the
optimal frequency. The optimal frequency selection using EDP
is similar to this algorithm. The only difference is that the EDP
score is calculated instead of the ED?P score, where the energy is
multiplied by the execution time (i.e., energy and time are given
equal weights).

> find the minimum EDP score

10: > optimal frequency

5. Evaluation with SPEC ACCEL benchmarks

This section provides evaluation results for 19 benchmark ap-
plications in the SPEC ACCEL suite (see Table 2). Their utilization
metrics were unseen by our proposed models.

5.1. Estimation of power and performance

The power usage and execution time were estimated for
the SPEC ACCEL benchmarks across 117 DVFS configurations on
GV100 using the proposed power and performance models.

An application’s power was estimated using the frequency
along with the FP and DRAM activities acquired at the maxi-
mum frequency. Fig. 6 compares the estimation power generated

78

The optimal DVFS at GV100 selected with measured-EDP, estimated-EDP,
measured-ED?P and estimated-ED?P for SPEC ACCEL benchmark.

Benchmark Optimal frequency (MHz)

EDP ED’P
Measured Estimated Measured Estimated
tpacf 907 1020 997 1110
stencil 1102 1020 1102 1102
Ibm 907 982 997 1065
fft 1102 1065 1102 1155
spmv 1102 990 1102 1072
mriq 960 1117 997 1207
histo 1050 982 1102 1057
bfs 1200 982 1200 1057
cutcp 907 1072 997 1162
kmeans 1072 990 1072 1065
lavamd 990 1132 990 1230
cfd 1072 997 1102 1080
nw 997 982 997 1065
hotspot 907 1057 907 1147
lud 1222 1005 1222 1095
ge 997 982 997 1065
srad 997 1005 1102 1087
heartwall 997 997 997 1080
bplustree 907 1012 997 1102

by the proposed power model and measured power for each
benchmark in the SPEC ACCEL. We used the mean absolute per-
centage error (MAPE) metric to understand the accuracy of the
proposed models. As shown in Table 5, the proposed power
model estimated power usage for 15 of the benchmarks in the
SPEC ACCEL with an accuracy of over 90% (and up to 99.1%). How-
ever, the model slightly overestimated or underestimated power
usage for the benchmarks with significantly low or high compu-
tational activities. For example, hist (FP=0.0005, DRAM=0.0235)
and kmean (FP=0.0243, DRAM=0.3197) overestimated power us-
age. Conversely, stencil (FP=0.2781, DRAM=0.7301) underesti-
mated power usage.

For estimating the execution time, only frequency and FP ac-
tivity were used. Fig. 7 compares the execution time estimated by
the proposed performance model and measured execution time
for each benchmark in the SPEC ACCEL. The execution time was
estimated with an accuracy of more than 90% (and up to 98.8%)
for 15 benchmarks, as shown in Table 5. We did not observe any
underestimation of execution time. However, the proposed model
is likely to slightly overestimate execution time for a benchmark
exhibiting higher FP activity (e.g., lavamd, mriq).

5.2. Optimal frequency selection

The (measured) M-EDP and M-ED?P optimal frequencies refer
to the optimal frequencies selected via EDP and ED?P approaches
using measured energy and execution time metrics. Similarly,
(estimated) E-EDP and E-ED?P optimal frequencies refer to the
optimal frequencies selected via EDP and ED?P approaches using
energy and execution time metrics estimated by the proposed
models. Fig. 8 shows the optimal frequencies selected via M-EDP,
E-EDP, M-ED?P, and E-ED?P approaches for each benchmark in
the SPEC ACCEL on GV100. Table 6 lists M-EDP, E-EDP, M-ED?P,
and E-ED?P optimal frequencies for each SPEC ACCEL benchmark
on GV100.

G. Ali, M. Side, S. Bhalachandra et al.

Power (norm.) Power (norm.) Power (norm.)

Power (norm.)

Time (norm.) Time (norm.) Time (norm.) Time (norm.)

Time (norm.)

Power (norm.)
N

6.5 T T T T T
5.0
3.5

I

xxx Measured +++ Estimated

xxx Measured

++4 Estimated

.0
510 655 800 945 109012351380

tpacf - GPU Frequency (MHz)

10 655 800 945 1090 1235 1380
stencil - GPU Frequency (MHz)

6.5 x%Xx Measured +++ Estimatedl xxx Measured ++4 Estimatedl
. U T T T T T
2.0 1 1 A 2.0 Il 1 1 1 1 1 1
510 655 800 945 109012351380 510 655 800 945 1090 1235 1380
spmv - GPU Frequency (MHz) mriq - GPU Frequency (MHz)
x%Xx Measured +++ Estimatedl x%x Measured ++4 Estimated
6.5 6.5 U T T T T T 1
5.0
3.5 R %
2.0 20 Il 1 1 1 1 1 1
510 655 800 945 109012351380 510 655 800 945 1090 1235 1380

cutcp - GPU Frequency (MHz)

kmeans - GPU Frequency (MHz)

x%xx Measured +++ Estimated xxx Measured ++4 Estimatedl
6.5 U 1 1 1 1 1 6.5 U 1 1 1 1 1
5.0 (s
3.5 jl
2.0 Il 1 1 1 1 1 A 2.0
510 655 800 945 109012351380 510 655 800 945 1090 1235 1380

nw - GPU Frequency (MHz)

hotspot - GPU Frequency (MHz)

xXx Measured +++ Estimatedl xxx Measured ++4 Estimated
65 65 U T T T T T 1
5.0
3.5
2.0 2.0
510 655 800 945 109012351380 510 655 800 945 1090 1235 1380

srad - GPU Frequency (MHz)

heartwall - GPU Frequency (MHz)

Future Generation Computer Systems 149 (2023) 71-88

xxx Measured ++4 Estimated

xxx Measured ++4 Estimated |

U T T T T T 1
s

2.0
510 655 800 945 1090 1235 1380

Ibm - GPU Frequency (MHz)

2.0
510 655 800 945 1090 1235 1380

fft - GPU Frequency (MHz)

xxx Measured ++4 Estimated

xxx Measured ++4 Estimated

presm——

e

2.0 L L
510 655 800 945 1090 1235 1380

2.0
510 655 800 945 1090 1235 1380

histo - GPU Frequency (MHz)

2.0 L
510 655 800 945 1090 1235 1380

bfs - GPU Frequency (MHz)

xXx Measured +++ Estimatedl

xXx Measured ++4 Estimated

6.5

lavamd - GPU Frequency (MHz)

2.0
510 655 800 945 1090 1235 1380

cfd - GPU Frequency (MHz)

xxx Measured ++4 Estimated

xxx Measured ++4 Estimated

2.0
510 655 800 945 1090 1235 1380
lud - GPU Frequency (MHz)

xxx Measured ++4 Estimated
U T T T T T 1

2.0
510 655 800 945 1090 1235 1380

bplustree - GPU Frequency (MHz)

2.0
510 655 800 945 1090 1235 1380

ge - GPU Frequency (MHz)

Fig. 6. Comparisons between evaluated and estimated power for each benchmark in the SPEC ACCEL.

x%x Measured Estimated xxx Measured Estimated
65 U T T T T T 65 U T T T T T 1
5.0 - 5.0 -
3.5 freiiice i —— = 3.5 E
ol X : CHR— o — i
510 655 800 945 109012351380 510 655 800 945 1090 1235 1380
tpacf - GPU Frequency (MHz) stencil - GPU Frequency (MHz)
xxx Measured Estimated xXx Measured Estimated
6.5 U T T T T T 6.5 U T T T T T 1
5.0 - 5.0 | -
3.5 [4 3.5 <
20l 1 1 1 1 1 2.0l 1 1 1 1 1 I
510 655 800 945 109012351380 510 655 800 945 1090 1235 1380
spmv - GPU Frequency (MHz) mriq - GPU Frequency (MHz)
x%xx Measured Estimated xxx Measured Estimated
6.5 U 1 1 1 1 1 1 1 1 1 1 1
5.0 | E -
3.5 pw 4 L T
2.0 Il 1 1 1 1 1 2.0 Il 1 1 1 1 1 1
510 655 800 945 109012351380 510 655 800 945 1090 1235 1380

cutcp - GPU Frequency (MHz)

kmeans - GPU Frequency (MHz)

x%xx Measured Estimated x%x Measured Estimated

65 U T T T T T 65 U T T T T T 1

5.0 E 5.0 —

35K = 3.5 pane b

2.0 Il 1 1 1 1 1 2.0 Il 1 1 1 1 1 1
510 655 800 945 109012351380 510 655 800 945 1090 1235 1380

nw - GPU Frequency (MHz) hotspot - GPU Frequency (MHz)

x%Xx Measured Estimated x%x Measured Estimated

6.5 U T T T T T 6.5 U T T T T T 1

5.0 E 5.0 | -

3.5 [iimmm— q 3.5 [A

20l 1 1 R I 20l I P T I f
510 655 800 945 109012351380 510 655 800 945 1090 1235 1380

srad - GPU Frequency (MHz)

heartwall - GPU Frequency (MHz)

6.5
5.0

3.5 Rl

2.0

5.0
3.5
2.0

6.5
5.0
3.5

2.
510 655 800 945 1090 1235 1380

6.5

6.5
5.0
3.5

2.0
510 655 800 945 1090 1235 1380

Ibm - GPU Frequency (MHz)

xxx Measured Estimated xxx Measured Estimated

U T T T T T 1 65 U T T T T T 1

- . 5.0 .
- 3.5 -

Il 1 1 1 1 1 1 2.0 Il 1 1 1 1 1 1

10 655 800 945 1090 1235 1380 510 655 800 945 1090 1235 1380

fft - GPU Frequency (MHz)

histo - GPU Frequency (MHz)

xXx Measured Estimated xXx Measured Estimated
U T T T T T 1 6.5 U T T T T T 1
o - 5.0 | -
e e 3.5 —
Il 1 1 1 1 1 1 20 Il 1 1 1 1 1 1
10 655 800 945 1090 1235 1380 510 655 800 945 1090 1235 1380

bfs - GPU Frequency (MHz)

xxx Measured Estimated

xxx Measured Estimated

lavamd - GPU Frequency (MHz)

2.
510 655 800 945 1090 1235 1380

cfd - GPU Frequency (MHz)

xxx Measured Estimated

6.5

xxx Measured Estimated

5.0
3.5

10 655 800 945 1090 1235 1380
lud - GPU Frequency (MHz)

x%x Measured Estimated

bplustree - GPU Frequency (MHz)

2.0
510 655 800 945 1090 1235 1380

ge - GPU Frequency (MHz)

Fig. 7. Comparisons between evaluated and estimated execution time for each benchmark in the SPEC ACCEL.

79

G. Ali, M. Side, S. Bhalachandra et al.

Future Generation Computer Systems

149 (2023) 71-88

160 — T T T T T T 240 — T T T T T T 160 — T T T T T T W-Ebp
f M-ED?P) i
ol tpac 220 stencil w-£DP |
_ED?
* E-ED®P| 200 A E-ED*P
_ 120 .@ |
E o 180 7
5 100l ° M-EDP| M-EDP | M-EDP
% 160
E-EDP
& g E-EDP| g
LX) . 140 E-EDP
Cuveo, o e
L] = R T
60 [P 120
2%
pry L L L L L L 100 Lt L L L L L L 40—t L L L L L L 100 Lt L L L L L L
20 22 24 26 28 30 32 20 22 24 26 28 30 32 20 22 24 26 28 30 32 20 22 24 26 28 30 32
Time (S) Time (S) Time (S) Time (S)
170 T T T T T T T 200 T T T T T T T 48 T T T T T T T 90 T T T T T T
] bfs M-EbP
160 |- 1wl Pe mriq M-EDP| 46| 85|
o
150 |- a4 80|
160 -
__ 140 EEDP| 4o 75
< 30l 140 4 sk 70}
=
[M-EDP
g 120 120 1 s8f 65 -
o 110 36 60 |-
100 E-EDP - E-EDP @
.
100 34l 3’3«, 4 S5 . & ® g
80 Con @ qq), 1 *oe e ° ot
w | r Coveg 1 o o 1
80 L1 L L L L L L 60 L1 L L L L L L 30t L L L L L L sl L L L L L L
20 22 24 26 28 30 32 20 22 24 26 28 30 32 20 22 24 26 28 30 32 20 2 24 26 28 30 32
Time (S) Time (S) Time (S) Time (S)
220 T T T T T T T 50 T T T T T T T 180 T T T T T T T 130 T T T T T T
M-EDP
lavamd w-EDP U cfd
200 160 120 o i
L }e
180 |- 140 E-EDP
110 '%. -
S 160 120
E 100 0% E
= M-EDP
o 140} 100
g % -
o 120 80 e
80 ? E-EDP
100 - 60 L O%
A'Qo
80| 20 70 & e 4
60 L1 L L L L L L 30l L L L L L L 20l L L L L L L 601 L L L L L L
20 22 24 26 28 30 32 20 22 24 26 28 30 32 20 22 24 26 28 30 32 20 22 24 26 28 30 32
Time (S) Time (S) Time (S) Time (S)
200 T T T T T 130 T T T T T T T
lud M-EDP
180 120
110
160
E 100
< 140
o %
g 120
'Y 80
100
70
% e
%0
80 60 &ow 'é 4
60 501 L L L L L L
20 22 24 26 28 30 32
Time (S) Time (S) Time (S)
170 — T T d T T T 120 — T T T T T T 160
Py sra M-ED?P|
wof %
3
140
ol s
__ 140}
= O3 120
<= 130}
=
@
3 120
° 100
8 ol
100 | 80
90
80 60

Time (S)

Time (S)

Time (S)

Fig. 8. The optimal DVFS profiles at GV100 selected with measured-EDP, estimated-EDP, measured-ED?P and estimated-ED?P for each benchmark in the SPEC ACCEL

shown along with the power and execution time for each supported DVFS configurations.

In general, the M-EDP, E-EDP, M-ED?P, and E-ED?P optimal
frequencies for each benchmark were less than the GPU's max-
imum frequency. This observation confirms our hypothesis that

the GPU’s maximum frequency is not always optimal. Further, E-
ED?P optimal frequency selected for each benchmark was always
higher than the E-EDP optimal frequency. This outcome affirms

80

G. Ali, M. Side, S. Bhalachandra et al.

Future Generation Computer Systems 149 (2023) 71-88

Energy (E-EDP) [GV100]

Time (E-EDP) [GV100]

D Energy (M-EDP) [GV100] 722 Time (M-EDP) [GV100]

80 | 7 _
Hi
43 49
a
33 3,7 34 09 3371 39| 3434 3535 33
224 521 X 9 0 2726 2729 - L T 212
18 18 X : b : B 5 2
14 5 X 5 X I
«o 03 °21|§zlo1°‘ %z3§3°23lozio !202 °22«o
, , L2 -1 , -1
o) Y «\ & G x° xe Q S &0 « o\ O of oy A\)
,&o 9@\0 W Q«\ PR CL G\,\G *‘(\e’b \o*""“\ c o o\‘i‘Q W i " (\«av\‘é‘e

(a) Energy savings and change in execution time achieved with measured and estimated EDP optimal frequencies for each SPEC ACCEL benchmark application.

Energy (E-ED?P) [GV100]

Time (E-ED?P) [GV100]

ECE Energy (M-ED2P) [GV100] 771 Time (M-ED2P) [GY100]

80 | 7 i
H
49
39 40 41
35 35 4
31 26 29 27 27 3034 31 323
: 21 23 2122 : 023 21 245 24 A 3 P 2122 [X

X 16 17 o 15 e o X e o A o o .
°2°o323 22 (o3 Floh °32 03 w2003 o2 reo| (22 [loH2 Fioi3 (22 Fi3H2

1 '2 1 1 1 -1 1 1 1 1 1
A\ SRS] (3 A\]
2° <\°\ \‘0‘“ '& o ‘\°‘ s\° ‘o"c" \09 2 6\6 & e @ o o @

Q @' 0 « W M *«\e \oq%) “e"‘« Q\\)e

(b) Energy savings and change in execution time achieved with measured and estimated ED?P optimal frequencies for each SPEC ACCEL benchmark application.

Fig. 9. Energy savings and change in execution time achieved with (a) measured and estimated EDP optimal frequencies and (b) measured and estimated ED?P

optimal frequencies for each SPEC ACCEL benchmark application.

our assumption that ED?P approach is useful in defining more
performant trade-offs. We also observed a symbiotic relationship
between models accuracy, and P-EDP and E-ED?P optimal fre-
quencies: (1) A higher accuracy in estimation of power usage and
execution time for a benchmark lead to the selection of more ac-
curate E-EDP and E-ED?P optimal frequencies (e.g., ge, nw); (2) an
overestimated power lead to the selection of comparatively lower
E-EDP and E-ED?P optimal frequencies (e.g., kmean, histo); and
(3) an overestimated execution time lead to selection of compara-
tively higher E-EDP and E-ED?P optimal frequencies (e.g., 1avamd,
mriq). The actual energy-performance trade-offs are evaluated
below.

5.3. Energy and performance evaluation

The effectiveness of the optimal frequency is measured by its
ability to save energy with minimal performance degradation.
The change in execution time and energy savings of the optimal
frequency are calculated with reference to the GPU’s highest
frequency. The change in execution time can be computed using

Eq. (6):

where Tpgximum and Topima are the measured execution times
for the application at maximum and optimal frequencies, re-
spectively. The T_Change can be either positive or negative. A
positive value indicates performance gain, and a negative value
suggests performance degradation using the optimal frequency.
The energy savings can be computed using Eq. (7):

)

Tmaximum Toptimal

(6)

maximum

T_Change(%) = 100 - (

Emaximum - Eoptimal

E_Savings(%) = 100 - ((7)

maximum

81

where Epaximum and Eopima are energy consumed as measured at
the maximum and optimal frequencies, respectively.

Fig. 9 shows energy savings and changes in execution time
achieved with (a) measured and estimated EDP optimal frequen-
cies and (b) measured and estimated ED?P optimal frequencies
for each SPEC ACCEL benchmark application. On average, M-
EDP and E-EDP (Fig. 9(a)) saved energies 36% and 28.6% with
performance gains 0.3% and 1.2%, respectively. Similarly, M-ED?P
and E-ED?P (Fig. 9(b)) collectively saved energies 35.2% and 25.2%
with performance gains 1.3% and 2%, respectively. We noted that
energy savings attained with estimated optimal frequencies are
less than the energy savings attained with the measured optimal
frequencies. The reason behind this minor undersaving is overes-
timating the power usage of some benchmarks (as concluded in
the previous section). In addition, the measured and estimated
energy savings are similar for the benchmarks having higher
accuracy in the estimation of their power and execution time
(e.g., ge, cfd). In conclusion, our approach saves energy by one-
fourth without performance degradation for the SPEC ACCEL 19
benchmarks. These observations confirm the effectiveness of our
approach.

6. Portability evaluation

This section evaluates the portability of the proposed approach
from two perspectives: (1) portability with real-world applica-
tions, including NAMD, LAMMPS, and LSTM (see Table 1 for more
details about the applications), and (2) portability with the state-
of-the-art NVIDIA Ampere GPU and AMD Instinct MI210 GPUs
(see Table 3 for more details about GPUs). These evaluations
confirm the suitability and applicability of the approach across
various architectures and vendors.

To evaluate real applications, we used the following config-
urations. For NAMD, we performed an experiment using the

G. Ali, M. Side, S. Bhalachandra et al.

Future Generation Computer Systems 149 (2023) 71-88

3 x%x Measured +++4 Estimated x%x Measured +++ Estimated x%xx Measured +++ Estimated
£ 657 T T T T T T 6.5 T T T T T T
©

£

£

o

=

8 20

2 7510 655 800 945 1090 1235 1380 510 655 800 945 1090 1235 1380 510 655 800 945 1090 1235 1380
e GV100-NAMD-GPU Frequency (MHz) GV100-LAMMPS-GPU Frequency (MHz) GV100-LSTM-GPU Frequency (MHz)

b x%Xx Measured ++4 Estimated xXx Measured +++4 Estimated x%x Measured ++4 Estimated
2 657 T T T T T T T] 6.5 T T T T T T
£ 50 ey UK

£ .‘_f_.f.««««‘« H poooeecs | FOROE PRV oLES 535
2 35 []

3 20k 1 1 1 1 1 1 . 1 1 1 1 1 1
2 510 660 810 960 1110 1260 1410 510 660 810 960 1110 1260 1410 510 660 810 960 1110 1260 1410
& GA100-NAMD-GPU Frequency (MHz) GA100-LAMMPS-GPU Frequency (MHz) GA100-LSTM-GPU Frequency (MHz)

T |E=3 Measured <A Estimated 3 Measured <71 Estimated =3 Measured <A Estimated
N

= 6 6 6

:s : :

53 3 3

£2 2 2

v 1 1 1

g0 0 0

o

o

MI210-NAMD-Configured Frequency (MHz)

MI210-LAMMPS-Configured Frequency (MHz)

MI210-LSTM-Configured Frequency (MHz)

Fig. 10. Comparison of power estimated by the proposed power model and measured power for applications on NVIDIA GV100, GA100, and AMD MI210.

Table 7 Table 8
Feature mapping between NVIDIA DCGM and AMD rocprof. Accuracy of power and performance models.
NVIDIA DCGM AMD rocprof GPU Application Power model Performance model
FP_ACTIVE (sum of FP64_ACTIVE, sum of VALUBusy and SALUBusy NAMD 95.2% 96.9%
FP32_ACTIVE, FP16_ACTIVE, and NVIDIA GV100 LAMMPS 94.4% 85.5%
TENSOR_ACTIVE) LSTM 80.8% 95.9%
DRAM_ACTIVE MemUnitBusy NAMD 96% 98.2%
NVIDIA GA100 LAMMPS 97.9% 91.4%
LSTM 80.8% 96.4%
.))) NAMD 96.1% 97.2%
standard Apolipoprotein A1 (ApoA1) dataset, which comprised AMD MI210 LAMMPS 94.5% 93.9%
92,224 atoms of lipid, protein, and water [40]. ApoA1 simulates a LSTM 86.5% 99%

bloodstream lipoprotein. For LAMMPS, we performed a standard
Lennard-Jones 3D melt experiment. For LSTM, we used a dataset
of 50000 movie reviews for binary sentiment classification; 50%
of the movie reviews were used for training and the remaining
50% for testing. In contrast to the benchmarks executed only
on the GPU, the real applications run on both CPU and GPU.
However, only the corresponding GPU metrics are used in our
evaluation.

6.1. Feature mapping

The proposed approach requires floating point and memory
activities of an application at the GPU’s default frequency, along
with the set of supported frequency configurations, in order to
estimate power and performance at each frequency. We acquired
these features using the NVIDIA DCGM interface for the GV100
GPU. Since the DCGM interface is supported by NVIDIA GA100,
these features are inherently portable to NVIDIA GA100. However,
for the AMD MI210 GPU, which supports different metrics and
interfaces, it posed a challenge to identify equivalent features
and related interfaces for data acquisition. After exploring various
interfaces and metrics, we confirmed that the AMD rocprof
interface provides the necessary low-level architectural features
that are equivalent to the features used in our approach. Ta-
ble 7 illustrates the mapping between the NVIDIA DCGM and
AMD rocprof interfaces for the features employed in our ap-
proach. We utilized the AMD rocm-smi interface to obtain a list
of supported frequency configurations and power consumption
data. The same interface was also used to modify the GPU core
frequency. For measuring the execution time, we used wall-clock
time.

82

6.2. Estimation of power and performance

In this section, we not only evaluate the portability of the
models to real applications but also evaluate the portability to
unseen GPU architectures. Real applications, like SPEC ACCEL,
are unseen by the power and performance models. The model
features for the MI210 were calculated using the feature map-
ping shown in Table 7. For the real applications, the power and
execution time are estimated similarly to that for SPEC ACCEL
presented in Section 5.

Fig. 10 provides a comparison of power consumption esti-
mated by the proposed power model and measured power us-
age for NAMD, LAMMPS, and LSTM on NVIDIA GV100, GA100,
and AMD Instinct MI210. The accuracy of the power models for
NAMD, LAMMPS, and LSTM on these GPUs are shown in Table 8.
On average, power usage estimation for HPC applications was
achieved with accuracy > 95% on both GPU architectures. As
we observed in SPEC ACCEL benchmarks, LSTM overestimated
power consumption due to its lower floating-point and memory
activities.

Fig. 11 compares execution time estimated by the proposed
performance model and measured execution time for NAMD,
LAMMPS, and LSTM on NVIDIA GV100, GA100, and AMD Instinct
MI210. The accuracy of the performance models on these GPUs
is shown in Table 8. These applications showed > 91% accu-
racy except LAMMPS, which showed comparatively low accu-
racy due to overestimation. We selected the OpenCL-based SPEC
ACCEL benchmark suite, which is a standard application suite
for measuring GPU performance. Compared to OpenCL, CUDA

G. Ali, M. Side, S. Bhalachandra et al.

Future Generation Computer Systems 149 (2023) 71-88

§ xXx Measured Estimated x%Xx Measured Estimated xXx Measured Estimated

N 42 4.6

- U I I I I I I U U T T T T 1] I A

T 40 R 4 4R J

£ 38" 1 3F]]

S 36| .. | : i - i

2 P 3.8 | '.{«:.:'«.{«{,«{ i, bon| el eana

< 34 . Ry L R . b

PRI N S S i Lz IS R W i o > Y i

£ 510 655 800 945 1090 1235 1380 510 655 800 945 1090 1235 1380 510 655 800 945 1090 1235 1380
GV100-NAMD-GPU Frequency (MHz) GV100-LAMMPS-GPU Frequency (MHz) GV100-LSTM-GPU Frequency (MHz)

:!;: xXx Measured Estimated x%Xx Measured Estimated x%x Measured Estimated

N 387 T T T T T T 3 T T T T T T T T T T T T T

R] 3k 12T i

4 M - 8 .
g 32 O x] 36 Bteettergr o . 50 - 1
3.0 g - SE At 1 : . R R

Z 28 T “Jv--\-..w\.““«‘ﬂ :;(2] r 644848 3.5 R

o 26l 1 1 1 1 1 1 58 lL 1 1 1 1 1 1 20l 1 1 I 1 1 |

.E 510 660 810 960 1110 1260 1410 510 660 810 960 1110 1260 1410 510 660 810 960 1110 1260 1410
GA100-NAMD-GPU Frequency (MHz) GA100-LAMMPS-GPU Frequency (MHz) GA100-LSTM-GPU Frequency (MHz)

§ 3 Measured Estimated 3 Measured Estimated =3 Measured Estimated

N T T T T T T T T

g g g 51 4.4 a5 4.4 a5] g - - 5'6, S 54 d >4]

‘6 g :Enoeoui o000 00 0 . g C 23 3.0 2.3 2.4 2.3 2.4] % ont:,n° °n°o° .

2 2}|o0c0 oo 000 - 2|ec0 - 2 © 0 o LX-X-J —

~ 1_ oo LN] © 0 0 - 1 00 O 000 oo - 1 o0 oo -

Q0 oooll cogdl oood 0 coodl [uool luoul 0 oool coooll

.E 500 800 1700 500 800 1700 800 1700

MI210-NAMD-Configured Frequency (MHz)

MI210-LAMMPS-Configured Frequency (MHz)

MI210-LSTM-Configured Frequency (MHz)

Fig. 11. Comparison of time estimated by our performance model and measured time for applications on NVIDIA GV100, NVIDIA GA100, and AMD MI210.

250

T T T T w-EDP 350 T T T TEDT 100 T T T T
300 M-ED*P
200 - E-EDP E-ED*P 80 | 4
E 250 | 4
= 18or = E-EDP | 200} 60 - k
° 2 = / E-EDP
3 00l i 4 180 (E,/ b 40k i
no_ @ «(4}???(‘0 (((ii’(((.
((@(i(_ 100 | (YK] N
O Gecer ®o
50 | oo i o G@ oo 20k i
e®e GV100 GA100] e®e GV100 GA100] e®s GV100 GA100]
I T N ! 0 T T 1 1 T T 1 1
00 2000 3000 2000 50.00 60.00 10.00 3000 5000 70.00 90.00 110.00 24.00 26.00 28.00 30.00 32.00 34.00
(NAMD) Time (S) (LAMMPS) Time (S) (LSTM) Time (S)

Fig. 12. The optimal DVFS profiles selected with measured(M)-EDP, estimated(E)-EDP, measured(M)-ED?P and estimated(E)-ED?P for NAMD, LAMMPS, and LSTM
shown along with the power and execution time for each supported DVFS configurations on GV100 and GA100.

Table 9
The measured EDP, estimated EDP, measured ED?P, and estimated ED?P optimal
frequencies for real applications.

GPU Application ~ M-EDP E-EDP M-ED?P E-ED?P
GV100 NAMD 1072 1012 1095 1095
(Optimal LAMMPS 1072 1050 1125 1140
Frequency (MHz)) LSTM 652 975 652 1057
GA100 NAMD 1155 1020 1215 1095
(Optimal LAMMPS 1110 1065 1215 1155
Frequency (MHz)) LSTM 810 975 810 1065

benchmarks are more optimized for NVIDIA GPUs; however, our
selected features (floating-point activity, memory activity, and
frequency) are agnostic of OpenCL, CUDA, or HIP. In addition to
SPEC ACCEL, our approach predicted power and performance with
accuracy between 80% and 99% for CUDA and HIP-based real HPC
applications (i.e., LAMMPS, NAMD).

Summary: These results confirm that the inter-architecture
and inter-vendor accuracy difference is negligible. The overall
accuracy also confirms the feasibility of the selected features in
estimating power and time on a new GPU architecture (same
vendor) and a GPU architecture from another vendor.

6.3. Optimal frequency selection
6.3.1. Optimal frequency for NVIDIA GPUs

The optimal frequencies selected for real applications were
in alignment with the optimal frequencies selected for the SPEC

83

ACCEL benchmark applications. Fig. 12 shows DVFS profiles se-
lected with measured(M)-EDP, estimated(E)-EDP, M-ED?P, and
E-ED?P for NAMD, LAMMPS, and LSTM, along with the power and
execution time for each supported DVFS configuration. Table 9
provides a list of estimated and measured optimal frequencies
for these applications. For each application, as expected, esti-
mated optimal frequencies using ED?P were always higher than
the optimal frequencies using EDP. The selection of higher frequen-
cies leads to lower performance degradation. Also, all selected
optimal frequencies for real applications were always less than
the GPU maximum frequency. Due to a slight overestimation of
power usage, the estimated optimal frequencies for LAMMPS and
NAMD were slightly less than or close to their measured optimal
frequencies. As a consequence of the overestimation of the ex-
ecution time, the estimated optimal frequencies for LSTM were
observed to be higher than its measured optimal frequencies. This
observation was consistent with SPEC ACCEL benchmarks.

Concerning the inter-architectural portability of the selected
optimal frequency, the difference between the optimal frequen-
cies selected via ED?P for an application on GV100 and GA100
is minimal (< 1%). For example, E-ED?P selected the same op-
timal frequency (i.e., 1095 MHz) for NAMD on both GV100 and
GA100. It validates the portability of the selection of the optimal fre-
quency technique across different GPU architectures. It is pertinent
to mention that the optimal frequency is kernel or algorithm-
specific. Therefore, an application involving multiple kernels may
lead to the selection of different optimal frequencies throughout
the application’s execution lifecycle.

G. Ali, M. Side, S.

Bhalachandra et al.

Future Generation Computer Systems 149 (2023) 71-88

=1 Energy (E-EDP) [GV100] [EEH Energy (M-EDP) [GV100] [Energy (E-ED?P) [GV100] Energy (M-ED?P) [GV100]
Time (E-EDP) [GV100] 71 Time (M-EDP) [GV100] E=3 Time (E-ED?P) [GV100] 1 Time (M-ED?P) [GV100]
T
40 - -
30 - -
26 25 25
—_
&\o’ 20 i
o 10 B
(=}
S or — -
2 0 =]
© 42 -1 -10
-20 - '18 -
-30 - i
1 1 1
NAMD LAMMPS LSTM

(a) Energy savings and change in execution time achieved with measured and estimated optimal frequencies achieved using EDP and ED?P for applications on GV100.

=3 Energy (E-EDP) [GA100] E=E Energy (M-EDP) [GA100] <1 Energy (E-ED2P) [GA100] Energy (M-ED2P) [GA100]
Time (E-EDP) [GA100] 1 Time (M-EDP) [GA100] E= Time (E-ED?P) [GA100]] Time (M-ED?P) [GA100]
40 T T T
31
30}k 27 29 28 28 -
<L N 23
S 20} _
S
o 10F 5 .
o
f= ol — [E u
.‘Cv 1 E _4
O -10F — -7 u
-11 —
-20F -1 -
-30 -24 -
1 1 1
NAMD LAMMPS LSTM

(b) Energy savings and change in execution time achieved with measured and estimated optimal frequencies obtained with EDP and ED?P for applications on GA100.

Fig. 13. Energy savings and change in execution time achieved with (a) measured and estimated optimal frequencies achieved using EDP and ED*P approaches on
GV100 and (b) measured and estimated optimal frequencies achieved using EDP and ED?P approaches on GA100 for NAMD, LAMMPS, and LSTM applications.

Table 10

Average energy saving and change in execution time for real applications
using measured and estimated optimal frequencies achieved via EDP and ED?P
approaches on NVIDIA GV100 and GA100.

GPU Approach Energy saving Performance
M-ED?P 1 27.4% | —0.6%
E-ED2P 129.6% 1 —5.2%

GA100 M-EDP 1 31.7% 1} —3.4%
E-EDP 1 30.2% | —8.8%
M-ED2P 1 25% 1 —4.9%
E-ED2P 122.6% 1 —4.7%

G100 M-EDP 127.1% |} —6.6%
E-EDP 1 24.6% 1 —9.8%

6.3.2. Optimal frequency for AMD MI210

The AMD MI210 GPU offers three frequency configurations:
Minimum (500 MHz), Auto (800 MHz), and Maximum (1700
MHz). The Minimum and Maximum frequency configurations
are allowed to be set in manual performance mode, while the
Auto configuration is applied in auto performance mode. In the
Auto mode, the frequency starts at 800 MHz as a baseline and
dynamically increases based on the workload’s computational
intensity and GPU’s TDP limit.

During our evaluation of real applications on the MI210, we
observed that the Minimum configuration resulted in reduced
power consumption (see Fig. 10 for MI210 power evaluation).
However; it also led to significant performance degradation (see
Fig. 11 for MI210 performance evaluation). On the other hand,
both Auto and Maximum frequencies exhibited similar power
and performance behaviors. This behavior was consistent across
memory- and compute-intensive benchmarks as well. Conse-
quently, the frequency configurations available for the MI210 GPU

are not suitable for balancing power and performance trade-offs
effectively.

Furthermore, we noted a distinction between AMD and NVIDIA
GPUs in terms of frequency and voltage configurations. While
AMD GPUs offer three frequency options and allow users to
adjust multiple voltage configurations, NVIDIA GPUs only allow
frequency adjustments and manage voltage internally without
user configurability. Based on this observation, we hypothe-
size that a combination of frequency and voltage configurations
specific to a workload could potentially yield improved energy-
performance trade-offs for AMD GPUs. In future research, we
plan to investigate and study the selection of optimal voltage
and frequency configurations for maximizing performance while
minimizing energy consumption.

6.4. Energy and performance evaluation

In this section, we evaluate the energy savings and change in
execution time in regard to real applications across GV100 and
GA100 architectures. Fig. 13 shows energy savings and change
in execution time for NAMD, LAMMPS, and LSTM applications
achieved with (a) measured and estimated optimal frequencies
achieved using EDP and ED?P approaches on GV100 and (b) mea-
sured and estimated optimal frequencies achieved using EDP and
ED?P approaches on GA100. Overall, the real applications’ energy
saving and change in execution time are listed in Table 10. In
contrast to SPEC ACCEL benchmarks, NAMD and LAMMPS applica-
tions showed performance degradation even with the measured
optimal frequencies. For NAMD, the measured and estimated
optimal frequencies selected via ED*P approach showed exactly
the same energy saving (i.e., 25%) and performance loss (i.e., 10%)
on GV100. For LAMMPS, the measured and estimated optimal

84

G. Ali, M. Side, S. Bhalachandra et al.

frequencies selected via ED?P approach showed slightly variable
energy savings (i.e., 23% and 21%) at the same performance loss
(i.e., 9%) on GV100. On the other hand, LSTM saved 28% and 26% of
energy on GA100 and GV100, respectively, with no performance
loss. It indicates that an application with higher computational
activities (e.g., NAMD, LAMMPS) is likely to save energy at the
cost of some performance loss compared to an application with
lower computational activity (e.g., LSTM). In other words, appli-
cations with higher computational activity are less likely to have
sweet spots of DVFS configurations, reducing energy without any
performance penalty. More adaptive approaches could take ED?P
execution time as a baseline and scale the execution time to
the desired level. These performance-centric approaches would
ensure minimal performance degradation while saving energy.

Another important observation is that the proposed approach
is able to determine optimal frequency even when there was
lower accuracy in estimating power or execution time. For ex-
ample, LSTM with comparatively lower accuracy (i.e., 80.8%) in
the estimation of power consumption on both GPU architectures
showed significant energy savings with no performance loss.
Based on the energy savings and performance degradation for
SPEC ACCEL benchmarks and real applications, ED?P is shown
to be a better choice as it offers better power and execution
time trade-offs. These energy savings for real-world applications
across GPU architectures further confirm the effectiveness of our
approach.

7. Comparison to state of the art
7.1. Overview

We compared our approach with Guerreiro et al. [7], which
is a state-of-the-art research and method. Guerreiro et al. pro-
posed GPU predictive models, which were trained using a dataset
created by sequencing the GPU assembly (i.e., PTX) instructions
of the workloads. These models intend to predict changes in
execution time, power, and energy consumption and select the
minimum-energy frequency configuration.

Among the real workloads used in our evaluations 6.2, only
executables of LAMMPS and NAMD support CUDA PTX code. We
used the cuobjdump tool to acquire the PTX code of LAMMPS
and NAMD using the same CUDA executables which were used in
collecting the utilization metrics. These executables were built on
NVIDIA GA100 GPU. Finally, the gpuPTXParser [7] tool was used
to parse the PTX code and to generate the dataset for LAMMPS
and NAMD.

We used the gpuPTXModel [7] tool to train power, time,
and energy models using 126 benchmarks for training and 14
benchmarks on GTX Titan X. We used LAMMPS and NAMD for
testing using their statistical PTX dataset and performance coun-
ters on GA100, including one memory and 61 core frequency
configurations along with power, energy, and time across these
frequency configurations. The PTX dataset was used for predicting
the power, energy, and time of real applications on GA100 using
the models trained on GTX Titan X.

7.2. Model comparison

We compared the efficacy of the models proposed in [7] and
models proposed in this study. In particular, we compared the
prediction accuracy, quality of optimal frequency, and modeling
complexity and cost.

The models trained with 126 benchmarks on the GTX Titan
X GPU showed errors of 18.9%, 16.7%, and 16.5% for predicting
power, performance, and energy, respectively, for the 14 valida-
tion benchmarks on the same GPU. We predicted the execution

85

Future Generation Computer Systems 149 (2023) 71-88

Table 11
Comparison of our models with the state of the art.
Model App
LAMMPS NAMD
Our Work Guerreiro et al. [7] Our Work Guerreiro et al. [7]
Power 2.1% 21.8% 4% 17.6%
Time 8.6% 24.4% 1.8% 34.4%

time, power, and energy of real applications on the GA100 using
the same models trained on the GTX Titan X. The error rates are
shown in Table 11. Our power and performance models showed
on average ~6X improvements compared to the state-of-the-art
model in [7]. This prediction accuracy is crucial for enabling real
savings. For example, a 5% decrease in power consumption at the
scale of the Summit supercomputer could generate savings of ~1
million dollars [7].

7.3. Optimal frequency comparison

Guerreiro et al. [7] and our approach use different methods in
determining the optimal frequency for a given workload. Guer-
reiro et al. manually configured a lower-bound optimal frequency
(e.g., 80% of the supported maximum frequency). In their study,
the maximum frequency is implicitly considered as an upper-
bound optimal frequency. A Pareto-optimal is defined using the
energy consumption of the frequencies within the lower- and
upper-bounds. Their study considers a frequency configuration
with the lowest power consumption as an optimal frequency.
However, we observed the following caveats in their selection
of optimal frequency. First, manually picking a (lower-bound)
frequency for all workloads may potentially obstruct the selection
of an energy-efficient optimal frequency, especially for memory-
bound workloads. Second, our observations indicate that a fre-
quency showing the lowest energy is not necessarily a performant
frequency (see Fig. 1 - b, ¢, f, g).

In our study, as explained in Section 4.6, we addressed these
concerns as follows. First, our method does not require manual
lower-bound optimal frequency. It rather searches the entire
DVFS design space for the optimal frequency. Second, we do not
select an optimal frequency, merely exhibiting the lowest energy.
Instead, our algorithm selects the optimal frequency that shows
minimum energy with little to no performance degradation.

8. Other related work and comparison

Existing analytical models depend on acquiring some fea-
tures (e.g., voltage) that involve complex and costly procedures.
Moreover, these features do not necessarily influence power and
performance effectively across different computational intensi-
ties; therefore, the applicability and accuracy of these models are
often limited [41-46].

Static code-based models analyze GPU assembly instructions
and try to establish their relationship with performance, power,
and energy [7,15]. Braun et al. [13] characterized PTX code and
attempted to predict execution time and power; however, their
study does not explore DVFS configurations.

DVES is the preferred control for scaling power and perfor-
mance. Several state-of-the-art studies target only performance
or power consumption across different DVFS configurations. Wang
et al. [12] proposed a DVFS-based model. However, its scope is
limited to the application’s performance. Nabavinejad et al. [47]
implemented batchDVFS approach, which leveraged the batch
size of the DNN inference and DVFS technique to control the
power and performance. Nevertheless, the scope of this work is

G. Ali, M. Side, S. Bhalachandra et al.

Table 12
Comparison of this study against the state-of-the-art.
Study Analytical Static ML Real apps Cross-GPU Multi-Objective
Guerreiro et al. [7] X v 4 X 4 X
Fan et al. [15] X v v X X X
Wu et al. [8] X X v X X X
Our Work v X X v v v

limited to DNN workloads. Guerreiro et al. [48] proposed DVFS-
based power and performance models; however, they do not
offer an optimal DVFS configuration. Similarly, Dutta et al. [11]
provided a DVFS-based ensemble machine learning framework
that only predicts power usage for a target GPU frequency. Wu
et al. [8] attempted to define clusters of kernels exhibiting similar
power and performance patterns across GPU’s DVFS design space.
Then, it used machine learning techniques to map a new kernel
to one of the clusters. As the models are based on coarse-grained
performance counters; thus, prediction accuracy is limited. Such
models will result in the selection of a sub-optimal GPU profile. In
contrast, our work proposes a fine-grain and comprehensive ap-
proach to predict power, execution time, and energy with better
accuracy and to select a performance-aware optimal frequency.

Numerous studies attempt to develop machine learning-
based models to predict the application’s power and execution
time. However, the portability of the ML-based model is a con-
cern. For example, a real HPC application’s execution time is
unbounded and can vary based on input sizes. Therefore, an
ML-based model trained with a particular input size cannot
effectively predict the application’s execution time with different
input sizes or an unseen application.

Multi-objective solutions mainly involve two approaches. First,
the Pareto-optimal uses a set of solutions that any member of
the solution set does not dominate. Second, optimal decision-
making techniques narrow down to a single solution from the
available set. EDP [6], ED?P, and MCDM [49-51] are the promi-
nent decision-making techniques. Guerreiro et al. [7], and Fan
et al. [15] use PTX-based assembly code to extract features re-
lated to GPU performance, power, and energy across DVFS con-
figurations using ML-based models. These studies leverage the
Pareto-optimal mechanism to find the optimal set of DVFS con-
figurations. While PTX-based code modeling is promising as it
does not require prior application execution, it is challenging to
determine utilization, especially for memory access patterns.

Summary: This research differentiates itself from the previous
studies on several aspects as highlighted in Table 12. First, as
the low-level application’s utilization metrics and architecture’s
scaling features are used in developing the analytical models, no
static source code analysis and ML-based modeling are required.
Second, the multi-objective algorithm can use EDP, ED?P, or po-
tentially other functions to determine the optimal frequency. We
have observed that changing the objective function has no impact
on the underlying analytical models. On average, these frequen-
cies save one-fifth of the energy with little to no performance loss.
Third, it is one of the first studies that evaluate the portability and
feasibility of optimal frequency selection with the state-of-the-
art NVIDIA GA100 GPU. On GA100, our models showed accuracy
up to 98% and saved one-fourth of the energy consumption of
real applications. Finally, unlike the majority of the prior works,
we use two HPC applications and one real ML application in
our evaluation to further demonstrate our proposed approach’s
effectiveness.

9. Use in HPC production environment

The proposed techniques can be integrated into the HPC pro-
duction environment via two methods. The first is the offline

86

Future Generation Computer Systems 149 (2023) 71-88

method that involves executing the desired application at the
maximum frequency to acquire the utilization metrics (i.e.,
floating-point and memory activities) to estimate the applica-
tion’s power and execution time across the DVFS configurations
supported on the target GPU. Afterward, the optimal DVFS con-
figuration is determined and stored in a database. When the same
application is scheduled for execution, the workload manager
(e.g., Slurm) fetches the application’s optimal configuration (as
a part of the Slurm Prolog mechanism) and interjects the optimal
frequency into the job script. The optimal frequency is applied to
the target GPU at the application’s execution time. This method
requires the user to submit the job using an identifiable job name.
Furthermore, the DVFS configuration cannot be readjusted during
the execution lifecycle of the application. This method is useful
for applications with uniform computational activity. We have
a template that automates selecting the optimal frequency for a
given application with minimal user input.

The second method is the online method which does not
require any prior execution or identity of the application. The
application’s utilization metrics are collected periodically during
its execution. When the application’s utilization metrics change,
power and execution time are estimated across the GPU’s DVES
configurations, and the new optimal DVFS configuration is de-
termined accordingly. The optimal configuration is enforced di-
rectly using GPU’s native interface (e.g., dcgmi, nvidia-smi). This
method is suitable for applications comprising multiple kernels
(or phases).

10. Conclusions and future work

Power consumption presents an increasingly critical challenge
in current and emerging GPU-enabled HPC systems and is the
dominant constraint for exascale systems and beyond. Arguably,
it is imperative to develop effective GPU power management
approaches to lower power while maintaining minimal impact
on execution time. The DVFS is a reliable control for regulating
power and execution time; however, the DVFS design space for
GPU is large; therefore, brute-force approaches are infeasible in
selecting the optimal power and execution time. The problem is
further compounded by the fact that it is impractical to actually
measure power and execution time across all DVFS configurations
in the GPU’s DVFS design space. Furthermore, the selection of
a DVFS configuration (among the DVFS design space) that is
optimal in terms of both energy and performance is non-trivial.
To address these challenges in a more systematic manner, we
came up with an approach that involves three key steps: (1)
identification of GPU utilization metrics that influence both the
power and execution time of a given workload; (2) development
of analytical models to estimate power and execution time across
GPU'’s DVFS design; and (3) selection of optimal frequency using
multi-objective optimal functions. To evaluate the efficacy of the
proposed approach, we acquired metrics using the state-of-the-
art NVIDIA DCGM interface for 24 workloads including two HPC
applications, one real ML application, 19 benchmark applications
from SPEC ACCEL, and two micro-benchmarks.

Through feature characterization, we have identified key fea-
tures that directly cause power consumption and change in the
execution time of applications with different computational in-
tensities. We empirically developed reliable and scalable models
using the identified feature set. The multi-objective approach
took optimal performance and optimal energy into consider-
ation simultaneously and selected an energy-efficient optimal
DVFS configuration. The accuracy of analytics-based power and
performance models for estimating SPEC ACCEL benchmark ap-
plications were up to 99% and 98% for the estimation of power
and execution time, respectively. On average, the energy savings

G. Ali, M. Side, S. Bhalachandra et al.

for SPEC ACCEL benchmark applications were over 25%, with
no performance degradation on GV100. Similarly, the real appli-
cations showed over 22.6% energy savings with a performance
degradation of 4.7% on GV100.

We validated the portability of the selected feature set, analyt-
ical models, and multi-objective approaches on the state-of-the-
art HPC-grade NVIDIA GA100 and AMD MI210 GPUs using real
applications. The power and performance models developed on
GV100 can be used on GA100 with accuracy up to 97.9%. The
same models estimated power and performance on MI210 GPU
with accuracy up to 96.1% and 99%, respectively. The evaluation
showed 29.6% energy savings with a performance loss of 5.2%.
Additionally, we conducted a comparison between our models
and PTX-based static models. The results revealed a significant
reduction in the average error rates, with a decrease from 19.7%
to 3.1% for power models and from 29.4% to 5.2% for performance
models.

The curated feature set, power and performance estimation
models, and systematic determination of the optimal DVFS profile
using the multi-objective approach are together a novel attempt
toward building an energy-efficient HPC system. In the future,
we would like to extend our work to create a solution that
encompasses both CPU and GPU to optimize the power draw of
the entire node.

CRediT authorship contribution statement

Ghazanfar Ali: Conceived and designed the analysis, Collected
the data, Contributed data or analysis tools, Performed the anal-
ysis, Writing - original draft. Mert Side: Collected the data, Con-
tributed data or analysis tools, Writing - original draft. Sridutt
Bhalachandra: Conceived and designed the analysis, Writing -
original draft. Nicholas J. Wright: Conceived and designed the
analysis. Yong Chen: Conceived and designed the analysis, Writ-
ing - original draft.

Declaration of competing interest

The authors declare the following financial interests/personal
relationships which may be considered as potential competing
interests: Yong Chen reports equipment, drugs, or supplies, sta-
tistical analysis, and writing assistance were provided by E O
Lawrence Berkeley National Laboratory.

Data availability
Data will be made available on request.
Acknowledgments

The National Energy Research Scientific Computing Center
(NERSC) is a U.S. Department of Energy Office of Science User
Facility operated under Contract No. DEAC02-05CH11231. Re-
sults presented in this paper were obtained using the Chameleon
testbed supported by the National Science Foundation. This re-
search is supported in part by the National Science Founda-
tion, United States under grants CNS-1817094, OAC-1835892,
and CNS-1939140 (A U.S. National Science Foundation Industry-
University Cooperative Research Center on Cloud and Autonomic
Computing). The authors thank Mathew Colgrove (NVIDIA) and
Max Katz (NVIDIA) for their assistance in SPEC ACCEL and GPU
metrics, Thomas Brown (TTU) for reviewing, and Victor Sheng
(TTU) and Abdul Serwadda (TTU) for their comments on model-

ing.

87

Future Generation Computer Systems 149 (2023) 71-88
References

[

NVIDIA A100 GPU datasheet, 2022, https://www.nvidia.com/content/dam/
en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-nvidia-us-
2188504-web.pdf. (Accessed 8 April 2022).

Y. Jiao, et al., Power and performance characterization of computational
kernels on the GPU, in: 2010 IEEE/ACM Int'L Conference on Green Com-
puting and Communications & Int'’L Conference on Cyber, Physical and
Social Computing, IEEE, 2010, pp. 221-228.

K. Bergman, et al., Exascale computing study: technology challenges in
achieving exascale systems, vol. 15, in: Tech. Rep., Defense Advanced Re-
search Projects Agency Information Processing Techniques Office (DARPA
IPTO, 2008.

Top500, Top500, June 2022 Ranking, 2022, TOP500 https://www.top500.
org/lists/top500/2022/06/.

M. Shafique, S. Garg, Computing in the dark silicon era: Current trends
and research challenges, IEEE Des. Test 34 (2) (2016) 8-23.

JH. Laros III, et al, Energy delay product, in: Energy-Efficient High
Performance Computing, Springer, 2013, pp. 51-55.

J. Guerreiro, et al., GPU static modeling using PTX and deep structured
learning, IEEE Access 7 (2019) 159150-159161.

G. Wu, et al., GPGPU performance and power estimation using machine
learning, in: 21st International Symposium on High Performance Computer
Architecture, IEEE, 2015, pp. 564-576.

R.A. Bridges, et al., Understanding GPU power: A survey of profiling,
modeling, and simulation methods, ACM Comput. Surv. 49 (3) (2016) 1-27.
X. Mei, et al,, A survey and measurement study of GPU DVFS on energy
conservation, Digit. Commun. Netw. 3 (2) (2017) 89-100.

B. Dutta, et al., GPU power prediction via ensemble machine learning for
DVFS space exploration, in: Proceedings of the 15th ACM International
Conference on Computing Frontiers, 2018, pp. 240-243.

Q. Wang, X. Chu, GPGPU performance estimation with core and mem-
ory frequency scaling, IEEE Trans. Parallel Distrib. Syst. 31 (12) (2020)
2865-2881.

L. Braun, et al, A simple model for portable and fast prediction of
execution time and power consumption of GPU kernels, ACM Trans. Archit.
Code Optim. (TACO) 18 (1) (2020) 1-25.

A. Majumdar, et al., A taxonomy of GPGPU performance scaling, in: 2015
IEEE International Symposium on Workload Characterization, 2015, pp.
118-119, http://dx.doi.org/10.1109/IISWC.2015.22.

K. Fan, et al, Predictable GPUs frequency scaling for energy and perfor-
mance, in: Proceedings of the 48th International Conference on Parallel
Processing, 2019, pp. 1-10.

G. Alj, S. Bhalachandra, N. Wright, M. Side, Y. Chen, Optimal GPU frequency
selection using multi-objective approaches for HPC systems, in: 2022 IEEE
High Performance Extreme Computing Conference, HPEC, IEEE, 2022.

J. Park, J.A. Abraham, A fast, accurate and simple critical path monitor for
improving energy-delay product in dvs systems, in: IEEE/ACM International
Symposium on Low Power Electronics and Design, IEEE, 2011, pp. 391-396.
R. Gonzalez, M. Horowitz, Energy dissipation in general purpose
microprocessors, IEEE]. Solid-State Circuits 31 (9) (1996) 1277-1284.

V. Mishra, S. Akashe, Calculation of power delay product and energy delay
product in 4-bit FinFET based priority encoder, in: Advances in Optical
Science and Engineering, Springer, 2015, pp. 283-289.

G. Ali, M. Side, Power analysis and prediction model for GPU architectures
in HPC systems, 2020, GitHub repository, GitHub, https://github.com/
nsfcac/gpupowermodel.

NVIDIA Corporation, CUDA samples, 2013, NVIDIA Documentation Cen-
ter, URL https://docs.nvidia.com/cuda/cuda-samples/index.html#matrix-
multiplication--cublas-.

T. Deakin, et al., GPU-STREAM v2. 0: Benchmarking the achievable memory
bandwidth of many-core processors across diverse parallel programming
models, in: International Conference on High Performance Computing,
Springer, 2016, pp. 489-507.

NVIDIA Corporation, NGC NAMD container, 2020, UIUC, https://ngc.nvidia.
com/catalog/containers/hpc:namd.

J.C. Phillips, et al, Scalable molecular dynamics on CPU and GPU
architectures with NAMD,]. Chem. Phys. 153 (4) (2020) 044130.

NVIDIA Corporation, NGC LAMMPS Container, 2021, Sandia National Lab,
https://ngc.nvidia.com/catalog/containers/hpc:lammps.

A.P. Thompson, et al., LAMMPS - A flexible simulation tool for particle-
based materials modeling at the atomic, meso, and continuum scales,
Comput. Phys. Comm. (2021) 108171.

TensorFlow, Long Short-Term Memory layer - Hochreiter 1997, 2021,
https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM.

Martin Abadi, et al., TensorFlow: Large-scale machine learning on het-
erogeneous systems, 2015, Software available from tensorflow.org. URL
https://www.tensorflow.org/.

AL Maas, et al, Learning word vectors for sentiment analysis, in: Pro-
ceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, Association for Computational
Linguistics, Portland, Oregon, USA, 2011, pp. 142-150, URL http://www.
aclweb.org/anthology/P11-1015.

2

[E]

[4

[5

[6

(7

[8

(9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-nvidia-us-2188504-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-nvidia-us-2188504-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-nvidia-us-2188504-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-nvidia-us-2188504-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-nvidia-us-2188504-web.pdf
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb2
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb2
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb2
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb2
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb2
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb2
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb2
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb3
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb3
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb3
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb3
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb3
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb3
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb3
https://www.top500.org/lists/top500/2022/06/
https://www.top500.org/lists/top500/2022/06/
https://www.top500.org/lists/top500/2022/06/
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb5
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb5
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb5
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb6
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb6
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb6
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb7
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb7
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb7
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb8
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb8
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb8
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb8
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb8
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb9
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb9
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb9
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb10
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb10
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb10
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb11
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb11
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb11
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb11
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb11
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb12
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb12
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb12
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb12
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb12
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb13
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb13
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb13
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb13
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb13
http://dx.doi.org/10.1109/IISWC.2015.22
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb15
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb15
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb15
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb15
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb15
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb16
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb16
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb16
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb16
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb16
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb17
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb17
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb17
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb17
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb17
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb18
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb18
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb18
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb19
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb19
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb19
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb19
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb19
https://github.com/nsfcac/gpupowermodel
https://github.com/nsfcac/gpupowermodel
https://github.com/nsfcac/gpupowermodel
https://docs.nvidia.com/cuda/cuda-samples/index.html#matrix-multiplication--cublas-
https://docs.nvidia.com/cuda/cuda-samples/index.html#matrix-multiplication--cublas-
https://docs.nvidia.com/cuda/cuda-samples/index.html#matrix-multiplication--cublas-
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb22
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb22
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb22
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb22
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb22
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb22
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb22
https://ngc.nvidia.com/catalog/containers/hpc:namd
https://ngc.nvidia.com/catalog/containers/hpc:namd
https://ngc.nvidia.com/catalog/containers/hpc:namd
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb24
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb24
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb24
https://ngc.nvidia.com/catalog/containers/hpc:lammps
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb26
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb26
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb26
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb26
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb26
https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM
https://www.tensorflow.org/
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015

G. Ali, M. Side, S. Bhalachandra et al.

[30] G. Juckeland, et al., Spec accel: A standard application suite for measuring
hardware accelerator performance, in: International Workshop on Per-
formance Modeling, Benchmarking and Simulation of High Performance
Computer Systems, Springer, 2014, pp. 46-67.

K. Keahey, et al., Lessons learned from the chameleon testbed, in: Pro-
ceedings of the 2020 USENIX Conference on Usenix Annual Technical
Conference, USENIX Association, USA, 2020, pp. 219—233.

HPCC, High Performance Computing Center, 2020, URL http://www.depts.
ttu.edu/hpcc.

NVIDIA Corporation, NVIDIA DCGM, 2021, NVIDIA Developer URL https:
//developer.nvidia.com/dcgm.

F. Pedregosa, et al., Scikit-learn: Machine learning in Python, J. Mach. Learn.
Res. 12 (2011) 2825-2830.

B.C. Ross, Mutual information between discrete and continuous data sets,
PLoS One 9 (2) (2014) e87357.

A. Kraskov, et al., Estimating mutual information, Phys. Rev. E 69 (6) (2004)
066138.

G. Alj, et al., Evaluation of power controls and counters on general-purpose
Graphics Processing Units (GPUs), in: SC Research Poster, 2020.

G. Gupta, What is a double-precision tensor core? 2020, NVIDIA Blog URL
https://blogs.nvidia.com/blog/2020/05/14/double- precision-tensor-cores/.
S. Ramesh, et al., Understanding the impact of dynamic power capping on
application progress, in: 2019 IEEE International Parallel and Distributed
Processing Symposium, IPDPS, IEEE, 2019, pp. 793-804.

N. Kashyap, HPC Benchmarks and Applications Performance Study on
Broadwell-EP 4S Processor, 2016, Dell URL https://downloads.dell.com/
manuals/all-products/esuprt_software/esuprt_it_ops_datcentr_mgmt/high-
computing-solution-resources_white-papers59_en-us.pdf.

]. Guerreiro, et al, GPGPU power modeling for multi-domain voltage-
frequency scaling, in: 2018 IEEE International Symposium on High
Performance Computer Architecture, HPCA, IEEE, 2018, pp. 789-800.

V. Adhinarayanan, et al., Online power estimation of graphics processing
units, in: 2016 16th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, CCGrid, IEEE, 2016, pp. 245-254.

J. Lim, et al., Power modeling for GPU architectures using McPAT, ACM
Trans. Des. Autom. Electron. Syst. 19 (3) (2014) 1-24.

S. Ghosh, et al, Statistical modeling of power/energy of scientific ker-
nels on a multi-GPU system, in: 2013 International Green Computing
Conference Proceedings, IEEE, 2013, pp. 1-6.

J. Chen, et al., Statistical GPU power analysis using tree-based methods,
in: 2011 International Green Computing Conference and Workshops, IEEE,
2011, pp. 1-6.

X. Ma, et al,, Statistical power consumption analysis and modeling for GPU-
based computing, in: Proceeding of ACM SOSP Workshop on Power Aware
Computing and Systems, Vol. 1, HotPower, 2009.

S.M. Nabavinejad, et al., Coordinated batching and DVFS for DNN inference
on GPU accelerators, IEEE Trans. Parallel Distrib. Syst. 33 (10) (2022)
2496-2508.

J. Guerreiro, et al., DVFS-aware application classification to improve GPG-
PUs energy efficiency, Parallel Comput. 83 (2019) 93-117, http://dx.doi.
org/10.1016/j.parco.2018.02.001.

F. Xiao, A multiple-criteria decision-making method based on D numbers
and belief entropy, Int. J. Fuzzy Syst. 21 (4) (2019) 1144-1153.

G.-H. Tzeng, K.-Y. Shen, New Concepts and Trends of Hybrid Multiple
Criteria Decision Making, CRC Press, 2017.

T. Florindo, et al., Application of the multiple criteria decision-making
(MCDM) approach in the identification of carbon footprint reduction
actions in the Brazilian beef production chain, J. Clean. Prod. 196 (2018)
1379-1389.

[31]

[32]
[33]
[34]
[35]
[36]
[37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]
[50]

[51]

Ghazanfar is a Ph.D. scholar at the Department of Com-
puter Science, Texas Tech University, Lubbock, Texas,
USA. His overall research goals are to develop new
methodologies to make HPC systems more performant,
power- and energy-efficient, automated, predictable,
and responsive to evolving computing needs. Prior to
his Ph.D. studies, Ghazanfar has been representing ZTE
Corporation at various standards development orga-
nizations (SDOs) and has been an active researcher,
contributor and editor in the development of Infor-
mation and Communications Technologies (ICT) related

88

Future Generation Computer Systems 149 (2023) 71-88

specifications (e.g., cloud computing platform, service delivery platforms and
communication service enablers) at International Telecommunications Union
(ITU), Open Mobile Alliance (OMA) and Distributed Management Task Force
(DMTF). He also represented ZTE as a Chair of DMTF Cloud Management Working
Group (CMWG) and worked in the area of standardization of cloud computing
technologies to promote ZTE cloud strategic interests in international SDOs. He
attended approx. 60 face-to-face international meetings and delivered about 300
proposals and technical editor of several standards at DMTF (CIMI, OVF, DNS
service management profile), OMA (Converged IP Messaging (CPM) enabler), and
ITU-T (Y.2025, Y.2240, Y.2214, Q.3610, Q.3611). He received his M.Sc. degree
in Computer Science in 2003 from Quad-e-Azam University (QAU), Islamabad
(Pakistan). His M.Sc. thesis was on the design and implementation of an Internet
Protocol-Private Branch eXchange (IP-PBX).

Mert Side is a Ph.D. Student at Texas Tech University,
under the supervision of Prof. Yong Chen. He earned
a bachelor’s degree in Computer Engineering and a
bachelor’s degree (double major) in Industrial Engi-
neering, both from Istanbul Okan University. He has
been involved in microarchitectural security projects on
GPUs. He is currently participating in a research project
that offers a scalable global address space extension for
High-Performance Computing (HPC) environments. His
research interests include computer architecture and
HPCs.

Sridutt Bhalachandra is a staff member in the Ad-
vanced Technologies Group (ATG) [NERSC] at the
Lawrence Berkeley National Laboratory. He received
his Ph.D. from the Computer Science department at
the University of North Carolina-Chapel Hill in 2018,
where he was a research assistant at Renaissance Com-
puting Institute (RENCI). Before joining Berkeley Lab,
he was a postdoctoral appointee in the Mathematics
and Computer Science Division at Argonne National
Laboratory.

Nicholas J. Wright is the chief architect and the ad-
vanced technologies group lead at the National Energy
Research Scientific Computing (NERSC) center. Most
recently, he led the effort to optimize the architecture
of the Perlmutter machine, the first NERSC platform
designed to meet needs of both large scale simula-
tion and data analysis from experimental facilities. His
research interests are in performance analysis of HPC
applications and architectures and he has published
more than 40 papers in these areas. Nicholas has a
Ph.D. from the University of Durham in computational
Chemistry and has been with NERSC since 2009

Yong Chen a Professor in the Computer Science
Department of the Texas Tech University (TTU) in
Lubbock, Texas. He is the founding Director of the Data-
Intensive Scalable Computing Laboratory (DISCL). He
is also the Site Director of the Cloud and Autonomic
Computing Center at TTU (CAC@TTU) sponsored by
the National Science Foundation IUCRC (Industry-
University Cooperative Research Centers) Program. His
research focuses on data-intensive computing, high-
performance computing, parallel and distributed com-
puting, cloud computing, computer architectures, and
systems software support for high-performance scientific computing/high-end
enterprise computing.

http://refhub.elsevier.com/S0167-739X(23)00261-3/sb30
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb30
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb30
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb30
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb30
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb30
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb30
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb31
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb31
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb31
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb31
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb31
http://www.depts.ttu.edu/hpcc
http://www.depts.ttu.edu/hpcc
http://www.depts.ttu.edu/hpcc
https://developer.nvidia.com/dcgm
https://developer.nvidia.com/dcgm
https://developer.nvidia.com/dcgm
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb34
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb34
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb34
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb35
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb35
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb35
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb36
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb36
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb36
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb37
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb37
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb37
https://blogs.nvidia.com/blog/2020/05/14/double-precision-tensor-cores/
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb39
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb39
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb39
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb39
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb39
https://downloads.dell.com/manuals/all-products/esuprt_software/esuprt_it_ops_datcentr_mgmt/high-computing-solution-resources_white-papers59_en-us.pdf
https://downloads.dell.com/manuals/all-products/esuprt_software/esuprt_it_ops_datcentr_mgmt/high-computing-solution-resources_white-papers59_en-us.pdf
https://downloads.dell.com/manuals/all-products/esuprt_software/esuprt_it_ops_datcentr_mgmt/high-computing-solution-resources_white-papers59_en-us.pdf
https://downloads.dell.com/manuals/all-products/esuprt_software/esuprt_it_ops_datcentr_mgmt/high-computing-solution-resources_white-papers59_en-us.pdf
https://downloads.dell.com/manuals/all-products/esuprt_software/esuprt_it_ops_datcentr_mgmt/high-computing-solution-resources_white-papers59_en-us.pdf
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb41
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb41
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb41
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb41
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb41
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb42
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb42
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb42
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb42
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb42
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb43
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb43
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb43
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb44
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb44
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb44
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb44
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb44
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb45
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb45
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb45
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb45
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb45
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb46
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb46
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb46
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb46
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb46
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb47
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb47
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb47
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb47
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb47
http://dx.doi.org/10.1016/j.parco.2018.02.001
http://dx.doi.org/10.1016/j.parco.2018.02.001
http://dx.doi.org/10.1016/j.parco.2018.02.001
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb49
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb49
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb49
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb50
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb50
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb50
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb51
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb51
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb51
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb51
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb51
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb51
http://refhub.elsevier.com/S0167-739X(23)00261-3/sb51
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://discl.cs.ttu.edu/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/
https://nsfcac.org/

	An automated and portable method for selecting an optimal GPU frequency
	Introduction
	Motivation
	Impact of DVFS on Compute-Intensive workload
	Impact of DVFS on Memory-Intensive workload
	Can One DVFS Configuration Fit All?

	Experimental Setup
	Target Applications
	Real Applications
	Benchmark Applications

	Target Systems
	Methodology
	Overview
	Data Collection
	Feature Engineering
	Selection of the Fine-Grain Features
	Impact of DVFS on Computational Activities
	Impact of Input Size on Computational Activities
	Features Portability Across GPU Architectures

	Power Modeling
	Performance Modeling
	Optimal Frequency Selection
	Evaluation with SPEC ACCEL Benchmarks
	Estimation of Power and Performance
	Optimal Frequency Selection
	Energy and Performance Evaluation

	Portability Evaluation
	Feature Mapping
	Estimation of Power and Performance
	Optimal Frequency Selection
	Optimal Frequency for NVIDIA GPUs
	Optimal Frequency for AMD MI210

	Energy and Performance Evaluation
	Comparison to State of The Art
	Overview
	Model Comparison
	Optimal Frequency Comparison

	Other Related Work and Comparison

	Use in HPC Production Environment
	Conclusions and Future Work

	CRediT authorship contribution statement

	Declaration of competing interest
	Data availability
	Acknowledgments
	References

