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Abstract

This paper demonstrates Pyneapple-L, an open-source library de-

signed to enhance scalable spatial analysis through learning-based

techniques. Through collaboration with social scientists and do-

main experts, we identify scalability challenges inherent in con-

ventional spatial analysis methods, particularly as the data size

increases. Pyneapple-L addresses these challenges by leveraging

learning-based models to o�er scalable solutions. We demonstrate

two modules: scalable learning of spatial hotspots along spatial

networks and augmented geographically weighted regression. To

showcase Pyneapple-L, we have developed a user-friendly fron-

tend web application to interact with di�erent datasets, algorithms,

model con�gurations, and visualize outcomes on interactive maps

that support both broad and analytical views.
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1 Introduction

The widespread use of location-based services has led to an abun-

dance of spatial data, empowering domain experts, such as social

scientists, to discover valuable patterns and insights from the data.

In spatial analysis, hotspot detection over spatial networks [8] and

geographically weighted regression (GWR) [11] stand out as two

critical analyses with broad implications and applications, including

tra�c management and transportation [2, 10], public health [12],

housing price modeling [4], and crime analysis [7]. However, due

to the rapid growth of data sizes, traditional methods are often con-

strained by their limited scalability, preventing the potential use of

suchmethods on large-scale spatial data. In contrast, learning-based

methods have arisen as powerful solutions due to their scalabil-

ity and adeptness at uncovering complex spatial patterns. These

models have found extensive applications across various �elds,

including urban planning, tra�c management, and public health.

Pyneapple-L demonstrates two scalable and expressive techniques

that were recently developed to tackle the problems of learning

hotspots from large spatial networks [8] and boosting the scalability

and expressiveness of the popular geographically weighted regres-

sion (GWR) technique through augmenting it with general-purpose

machine learning models [11]. The objective of hotspot detection in

spatial networks is to pinpoint areas within a network that exhibit

a signi�cantly higher concentration of objects than surrounding

regions. Hotspot detection is applied in diverse �elds such as tra�c

management [10], public health [12], and crime analysis [7]. Ex-

isting spatial network hotspot detection methods can be classi�ed

as either clustering-based methods or statistical-based methods.

While clustering methods have e�cient runtime, they might re-

sult in false-positive results. On the other hand, statistical methods

o�er rigorous statistical validation for the detected hotspots, e.g.,

Monte Carlo trials, and log-likelihood scores, ensuring the detected

hotspots are statistically robust. However, such methods do not

scale to large-sized datasets due to the unacceptable execution time

in statistical validation [13], which takes tens of minutes to run

on tens of thousands of objects. This is particularly problematic in

applications requiring fast response times, such as tra�c hotspot

detection. While social scientists prefer statistical-based hotspot

detection methods due to their reliability, scalability becomes the

limitation. For instance, the Chicago crime dataset includes 7 mil-

lion objects, exceeding the capacity of existing statistical methods.



Figure 1: Pyneapple Overview

On another hand, geographically weighted regression (GWR)

extends traditional regression analysis by modeling the spatial

variability in the relationships among variables. It assigns a lo-

cal regression equation to each observation in the dataset across

di�erent geographical locations. GWR has been widely applied

in diverse areas including transportation science [2] and housing

price modeling [4]. Nonetheless, GWR encounters two primary

challenges: expressiveness and scalability. The issue of limited ex-

pressiveness arises from the fact that many GWR models utilize a

uniformweighting factor (bandwidth) across all features, neglecting

the fact that di�erent features may exhibit unique spatial scales. On

the scalability front, the e�ciency of GWR is constrained by its qua-

dratic time complexity in training, which restricts the applicability

of GWR to large spatial datasets.

This paper presents a system demonstration of Pyneapple-L, an

open-source library for scalable expressive learning-based spatial

analysis based on our research work in [8, 11]. Our techniques

achieve orders of magnitude in runtime improvement as outlined

below. Attendees at our demonstration can interact with Pyneapple-

L from a frontend application to visualize hotspots and employ

geographically weighted regression algorithms in di�erent use

cases. Subsequent sections o�er an overview of the Pyneapple-L

library (Section 2) and the demonstration scenarios (Section 3).

2 Pyneapple-L Overview

Pyneapple-L is an integral sub-package of the more extensive

Pyneapple library [9]. Figure 1 shows an overview of the Pyneap-

ple ecosystem, which is currently under development with more

features being added. The current version of Pyneapple comprises

three main sub-packages, regionalization queries (Pyneapple-R [6]),

group-by-aggregation queries (Pyneapple-G [1]), and learning-

based queries (Pyneapple-L). Pyneapple-L consists of two modules

to demonstrate our work in [8, 11]: (a) scalable learning of hotspots

over large spatial networks [8], and (b) scalable expressive aug-

mented geographically weighted regression (A-GWR) [11]. Each

module in Pyneapple-L is equipped with Python API documenta-

tion, facilitating a seamless integration into the broader data science

landscape. The rest of this section outlines Pyneapple-L modules.

2.1 Learning Hotspots Over Spatial Networks

We learn hotspots by computing a localized network ć-function

that reveals the inherent statistical distribution of objects within a

spatial network [8]. Unlike training an o�-shelf machine-learning

model, our learning paradigm �ne-tunes the computation scalability

of theć-functionmethod to scale it up on large datasets.We address

two problems for learning hotspots within spatial networks. The

�rst problem, known as Hotspot Detection with Prede�ned Radius

(HDPR), requires inputs of a radius distance threshold and a statisti-

cal con�dence threshold. It identi�es hotspots that exceed the given

con�dence at the speci�ed radius. The second problem is Hotspot

Detection Without Prede�ned Radius (HDWPR), which only re-

quires a statistical con�dence threshold as input and autonomously

determines the optimal radius for each identi�ed hotspot.

To address Hotspot Detection with Prede�ned Radius (HDPR),

Incremental Batched Traversal (IBT) has been introduced. IBT pro-

poses a batch-processing strategy that processes all objects located

on the same edge collectively in a single batch. This approach stems

from the principle that identifying a hotspot requires the statistical

analysis of adjacent network areas, such as counting the objects and

measuring the size of the isodistance subnetwork. Since objects on

the same edge are close to each other and have shared neighboring

objects, IBT utilizes this spatial proximity to streamline calcula-

tions for these objects collectively. Furthermore, IBT introduces

optimizations to reduce unnecessary calculations. For example, it

prunes the exploration of objects far from a certain center, utilizing

precomputed distances at a high level.

Approximate Hotspot Identi�cation via Incremental Batched

Traversal (AH-IBT) is proposed to address Hotspot Detection With-

out a Prede�ned Radius (HDWPR). AH-IBT introduces a unique

strategy that involves incrementally expanding the hotspot radius

until it encounters the �rst local maximum of statistical con�dence,

at which point this hotspot is selected for its high degree of local-

ization. This method ensures that the hotspot identi�ed represents

a truly dense cluster that is as localized as possible. Given the vast

range of possible radius sizes, AH-IBT achieves a trade-o� between

e�ciency and e�ectiveness by gradually enlarging the radius in

larger steps to incorporate surrounding locations. This allows for

the inclusion of neighboring locations in an incremental manner.

Through this method, AH-IBT identi�es hotspots e�ciently while

maintaining practical e�ectiveness.

The experimental results on large spatial road network datasets

show that, IBT achieves up to 28 times faster compared to the

state-of-the-art methods [3] in solving Hotspot Detection with Pre-

de�ned Radius (HDPR). AH-IBT achieves more than four orders of

magnitude faster in solving Hotspot Detection Without Prede�ned

Radius (HDWPR). The signi�cant runtime improvements stem from

the optimization in sharing computation and the e�ective reduction

of unnecessary exploration space.

2.2 Augmented Geographical Regression

Geographically Weighted Regression (GWR) extends traditional

regression analysis by integrating spatial geography into its frame-

work. This approach considers not only the variables of interest

but also the spatial coordinates of each data point, enabling a nu-

anced examination of how relationships vary across geographical

space. The inputs for GWR include spatial coordinates, predictor

variables, and a bandwidth type parameter that de�nes the extent

of spatial variation being modeled. This bandwidth may be �xed,

which applies the same scale of in�uence across all locations as

in the traditional GWR, or adaptive, which allows di�erent scales



for di�erent features as in the multiscale GWR (MGWR). The pri-

mary output of GWR and its variants is a series of local regression

coe�cients for each geographical location, illustrating the spatial

variability in the relationships among variables.

We introduce Augmented Geographical Weighted Regression

(A-GWR) [11] as an advanced GWR variant to handle large-sized

spatial datasets with more expressive capabilities. First, to improve

scalability, A-GWR incorporates a novel spatial regression com-

ponent known as Stateless-MGWR (S-MGWR), an adaptation of

the MGWR model based on directly �tting a set of bandwidths,

which eliminates the need to store historical bandwidth values.

This design also enhances �exibility and e�ciency in optimizing

bandwidth parameters through the use of black-box optimization

techniques. To address the challenge of scaling with large datasets

during training, A-GWR employs a divide-and-conquer strategy.

This method divides the dataset into smaller, more manageable

chunks without losing the spatial relationships among the data

points. By doing so, A-GWR can handle large datasets e�ectively,

even with limited computing resources.

Second, to improve expressiveness, A-GWR combines the S-

MGWR spatial regression model with general-purpose machine

learning models, such as random forests, to analyze complex non-

spatial relationships within the data. This integration allows A-

GWR to uncover intricate patterns and dependencies in the input

data, ensuring high accuracy and e�ciency in its results. A major

strength of our framework is that the integration of spatial-aware

regression models (such as GWR variants) with traditional machine

learning models is seamless. This allows the spatial models to make

use of the new advances in machine learning models without the

need to tailor every new model for spatial data.

A-GWR achieves up to 14.4 times faster compared to the state-

of-the-art models [5] on large spatial datasets. This improvement is

due to its streamlined optimization methods, such as removing the

requirement to keep the historical bandwidth data during �tting,

using advanced black-box parameter optimization techniques, and

dividing the data into smaller chunks for scalable training.

3 Demonstration Scenarios

To demonstrate Pyneapple-L, we design di�erent scenarios for di�er-

ent groups of target attendees. Users will interact with Pyneapple-L

library through user-friendly web interfaces. Attendees will be

able to visualize results on interactive maps for both broad and

detailed perspectives and explore di�erent features in Pyneapple-L.

By exploring these scenarios, the attendees will discover the full

capabilities of the algorithms within the library for tackling large-

scale spatial analytics challenges. The rest of this section outlines

di�erent demonstration scenarios.

3.1 AGWR - Local View

In the �rst scenario, the user can initiate a GeographicallyWeighted

Regression (GWR) analysis by creating an instance of the AGWR

model on a selected dataset and a set of parameters. For example,

as demonstrated in Figure 2, assume the user is interested in gener-

ating a suggested rate (US dollar) for an Airbnb rental in New York

City, with a set of features including room type, minimum nights,

number of reviews, and location, among others. The user begins

Figure 2: Local View of AGWR

Figure 3: Global View of AGWR

by choosing the New York City Airbnb dataset from the provided

examples. Next, the user selects the desired spatial and machine

learning models for the analysis. For this scenario, SMGWR is cho-

sen as the spatial model and Random Forest as the general-purpose

model. Then, a request containing the speci�cations is sent to the

backend where the corresponding module generates the model and

predictions with AGWR and returns a response containing the re-

sults. Upon receiving the response from the backend, the results

are displayed on an interactive map.

From the interactive map, the user can click a location to see the

predicted value given by the model and the ground-truth value for

the object. For instance, in Figure 2, the model’s predicted rental

rate is 67 dollars, compared to the actual rate of 60 dollars. Addition-

ally, the map visually conveys the bandwidth for a speci�c feature

through color. The user can switch the bandwidth visualization for

di�erent features by clicking the "Bandwidth" button at the bottom.

In this example, "number of reviews" is selected as the feature to

visualize in red. Darker shades of red indicate objects that have a

larger in�uence on the prediction due to their proximity, whereas

lighter shades denote objects further away with less in�uence.

3.2 AGWR - Global View

In the second scenario, demonstrated in Figure 3, the user can ex-

plore the coe�cient of features at di�erent map locations, as well as

evaluate the accuracy of these predictions by using the "Coe�cient"

and "Residual" buttons located at the bottom of the interface. This



Figure 4: Basic View of Hotspot Detection

view facilitates a broader understanding of the relationships be-

tween features and outcomes at a higher level. For example, assume

the user is interested in analyzing the impact of the feature "number

of reviews" on house price prediction across King County, USA. The

user will �rst select the dataset of house sales in King County and

the desired models to be used, upon which a request will be sent to

the backend where the corresponding module generates the model

and predictions with AGWR and returns a response containing the

coe�cient map and residual map.

Figure 3 shows the coe�cient map on the feature "number of

reviews". In this map, purple indicates a greater coe�cient of this

feature and the prediction outcome, while cyan and grey repre-

sent weak and average coe�cients, respectively. The color gradient

across the map delineates the range of coe�cient strengths, re-

vealing areas where speci�c features have a more pronounced or

diminished impact on house prices. Similarly, the residual map

illustrates the discrepancies between the predicted and actual val-

ues across di�erent locations in King County, providing a visual

assessment of prediction accuracy.

3.3 Hotspot Detection - Basic View

In the third scenario, the user can issue a hotspot query and visual-

ize the results using a basic, color-di�erentiated map. For instance,

as shown in Figure 4, suppose the user aims to visualize hotspots

for Seattle tra�c collisions. The user starts by selecting the Seattle

tra�c collision dataset and determining the type of hotspot analysis

to be conducted, choosing between HDWPR (Hotspot Detection

without Prede�ned Radius) and HDPR (Hotspot Detection with Pre-

de�ned Radius). Following this, the user will specify the algorithm

parameters and a query will be sent to the backend. In this case, the

user uses HDPR with a prede�ned hotspot radius of 2000 meters

and a statistical con�dence level of 99%.

Once the analysis is complete in the backend, the user receives

a map visualization where hotspot objects are marked in red. Users

have the �exibility to zoom in or out to examine the hotspots

with varying degrees of detail. This basic view o�ers users a clear

and direct representation of hotspots, allowing for straightforward

identi�cation and analysis of patterns within the data.

3.4 Hotspot Detection - Analytical View

In this scenario, the application o�ers an analytical view of hotspot

detection, providing users with detailed statistical insights for each

Figure 5: Analytical View of Hotspot Detection

hotspot, as illustrated in Figure 5. Initially, the user selects a dataset

and chooses a hotspot detection method. In this case, HDWPR with

a minimum statistical con�dence of 99% is selected. These inputs

initiate a request to the backend where the selected algorithm

processes the data to identify hotspots on an interactive map.

As users navigate the interactive map, clicking on a speci�c

object reveals detailed statistical information about that hotspot. For

example, in Figure 5, when the user selects an object on themap, it is

highlighted in red. The detailed statistical breakdown then appears,

providing the hotspot label, coordinates, ć-function plot including

the corresponding normal distribution, statistical con�dence level,

the radius of the hotspot, the number of points, and the sum of edge

weights. This analytical view fosters a deeper understanding of

each hotspot, allowing users to explore and analyze the statistical

characteristics and signi�cance of each identi�ed location.
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