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Abstract

This paper demonstrates Pyneapple-L, an open-source library de-
signed to enhance scalable spatial analysis through learning-based
techniques. Through collaboration with social scientists and do-
main experts, we identify scalability challenges inherent in con-
ventional spatial analysis methods, particularly as the data size
increases. Pyneapple-L addresses these challenges by leveraging
learning-based models to offer scalable solutions. We demonstrate
two modules: scalable learning of spatial hotspots along spatial
networks and augmented geographically weighted regression. To
showcase Pyneapple-L, we have developed a user-friendly fron-
tend web application to interact with different datasets, algorithms,
model configurations, and visualize outcomes on interactive maps
that support both broad and analytical views.
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1 Introduction

The widespread use of location-based services has led to an abun-
dance of spatial data, empowering domain experts, such as social
scientists, to discover valuable patterns and insights from the data.
In spatial analysis, hotspot detection over spatial networks [8] and
geographically weighted regression (GWR) [11] stand out as two
critical analyses with broad implications and applications, including
traffic management and transportation [2, 10], public health [12],
housing price modeling [4], and crime analysis [7]. However, due
to the rapid growth of data sizes, traditional methods are often con-
strained by their limited scalability, preventing the potential use of
such methods on large-scale spatial data. In contrast, learning-based
methods have arisen as powerful solutions due to their scalabil-
ity and adeptness at uncovering complex spatial patterns. These
models have found extensive applications across various fields,
including urban planning, traffic management, and public health.
Pyneapple-L demonstrates two scalable and expressive techniques
that were recently developed to tackle the problems of learning
hotspots from large spatial networks [8] and boosting the scalability
and expressiveness of the popular geographically weighted regres-
sion (GWR) technique through augmenting it with general-purpose
machine learning models [11]. The objective of hotspot detection in
spatial networks is to pinpoint areas within a network that exhibit
a significantly higher concentration of objects than surrounding
regions. Hotspot detection is applied in diverse fields such as traffic
management [10], public health [12], and crime analysis [7]. Ex-
isting spatial network hotspot detection methods can be classified
as either clustering-based methods or statistical-based methods.
While clustering methods have efficient runtime, they might re-
sult in false-positive results. On the other hand, statistical methods
offer rigorous statistical validation for the detected hotspots, e.g.,
Monte Carlo trials, and log-likelihood scores, ensuring the detected
hotspots are statistically robust. However, such methods do not
scale to large-sized datasets due to the unacceptable execution time
in statistical validation [13], which takes tens of minutes to run
on tens of thousands of objects. This is particularly problematic in
applications requiring fast response times, such as traffic hotspot
detection. While social scientists prefer statistical-based hotspot
detection methods due to their reliability, scalability becomes the
limitation. For instance, the Chicago crime dataset includes 7 mil-
lion objects, exceeding the capacity of existing statistical methods.
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Figure 1: Pyneapple Overview

On another hand, geographically weighted regression (GWR)
extends traditional regression analysis by modeling the spatial
variability in the relationships among variables. It assigns a lo-
cal regression equation to each observation in the dataset across
different geographical locations. GWR has been widely applied
in diverse areas including transportation science [2] and housing
price modeling [4]. Nonetheless, GWR encounters two primary
challenges: expressiveness and scalability. The issue of limited ex-
pressiveness arises from the fact that many GWR models utilize a
uniform weighting factor (bandwidth) across all features, neglecting
the fact that different features may exhibit unique spatial scales. On
the scalability front, the efficiency of GWR is constrained by its qua-
dratic time complexity in training, which restricts the applicability
of GWR to large spatial datasets.

This paper presents a system demonstration of Pyneapple-L, an
open-source library for scalable expressive learning-based spatial
analysis based on our research work in [8, 11]. Our techniques
achieve orders of magnitude in runtime improvement as outlined
below. Attendees at our demonstration can interact with Pyneapple-
L from a frontend application to visualize hotspots and employ
geographically weighted regression algorithms in different use
cases. Subsequent sections offer an overview of the Pyneapple-L
library (Section 2) and the demonstration scenarios (Section 3).

2 Pyneapple-L Overview

Pyneapple-L is an integral sub-package of the more extensive
Pyneapple library [9]. Figure 1 shows an overview of the Pyneap-
ple ecosystem, which is currently under development with more
features being added. The current version of Pyneapple comprises
three main sub-packages, regionalization queries (Pyneapple-R [6]),
group-by-aggregation queries (Pyneapple-G [1]), and learning-
based queries (Pyneapple-L). Pyneapple-L consists of two modules
to demonstrate our work in [8, 11]: (a) scalable learning of hotspots
over large spatial networks [8], and (b) scalable expressive aug-
mented geographically weighted regression (A-GWR) [11]. Each
module in Pyneapple-L is equipped with Python API documenta-
tion, facilitating a seamless integration into the broader data science
landscape. The rest of this section outlines Pyneapple-L modules.

2.1 Learning Hotspots Over Spatial Networks

We learn hotspots by computing a localized network K-function
that reveals the inherent statistical distribution of objects within a
spatial network [8]. Unlike training an off-shelf machine-learning

model, our learning paradigm fine-tunes the computation scalability
of the K-function method to scale it up on large datasets. We address
two problems for learning hotspots within spatial networks. The
first problem, known as Hotspot Detection with Predefined Radius
(HDPR), requires inputs of a radius distance threshold and a statisti-
cal confidence threshold. It identifies hotspots that exceed the given
confidence at the specified radius. The second problem is Hotspot
Detection Without Predefined Radius (HDWPR), which only re-
quires a statistical confidence threshold as input and autonomously
determines the optimal radius for each identified hotspot.

To address Hotspot Detection with Predefined Radius (HDPR),
Incremental Batched Traversal (IBT) has been introduced. IBT pro-
poses a batch-processing strategy that processes all objects located
on the same edge collectively in a single batch. This approach stems
from the principle that identifying a hotspot requires the statistical
analysis of adjacent network areas, such as counting the objects and
measuring the size of the isodistance subnetwork. Since objects on
the same edge are close to each other and have shared neighboring
objects, IBT utilizes this spatial proximity to streamline calcula-
tions for these objects collectively. Furthermore, IBT introduces
optimizations to reduce unnecessary calculations. For example, it
prunes the exploration of objects far from a certain center, utilizing
precomputed distances at a high level.

Approximate Hotspot Identification via Incremental Batched
Traversal (AH-IBT) is proposed to address Hotspot Detection With-
out a Predefined Radius (HDWPR). AH-IBT introduces a unique
strategy that involves incrementally expanding the hotspot radius
until it encounters the first local maximum of statistical confidence,
at which point this hotspot is selected for its high degree of local-
ization. This method ensures that the hotspot identified represents
a truly dense cluster that is as localized as possible. Given the vast
range of possible radius sizes, AH-IBT achieves a trade-off between
efficiency and effectiveness by gradually enlarging the radius in
larger steps to incorporate surrounding locations. This allows for
the inclusion of neighboring locations in an incremental manner.
Through this method, AH-IBT identifies hotspots efficiently while
maintaining practical effectiveness.

The experimental results on large spatial road network datasets
show that, IBT achieves up to 28 times faster compared to the
state-of-the-art methods [3] in solving Hotspot Detection with Pre-
defined Radius (HDPR). AH-IBT achieves more than four orders of
magnitude faster in solving Hotspot Detection Without Predefined
Radius (HDWPR). The significant runtime improvements stem from
the optimization in sharing computation and the effective reduction
of unnecessary exploration space.

2.2 Augmented Geographical Regression

Geographically Weighted Regression (GWR) extends traditional
regression analysis by integrating spatial geography into its frame-
work. This approach considers not only the variables of interest
but also the spatial coordinates of each data point, enabling a nu-
anced examination of how relationships vary across geographical
space. The inputs for GWR include spatial coordinates, predictor
variables, and a bandwidth type parameter that defines the extent
of spatial variation being modeled. This bandwidth may be fixed,
which applies the same scale of influence across all locations as
in the traditional GWR, or adaptive, which allows different scales



for different features as in the multiscale GWR (MGWR). The pri-
mary output of GWR and its variants is a series of local regression
coefficients for each geographical location, illustrating the spatial
variability in the relationships among variables.

We introduce Augmented Geographical Weighted Regression
(A-GWR) [11] as an advanced GWR variant to handle large-sized
spatial datasets with more expressive capabilities. First, to improve
scalability, A-GWR incorporates a novel spatial regression com-
ponent known as Stateless-MGWR (S-MGWR), an adaptation of
the MGWR model based on directly fitting a set of bandwidths,
which eliminates the need to store historical bandwidth values.
This design also enhances flexibility and efficiency in optimizing
bandwidth parameters through the use of black-box optimization
techniques. To address the challenge of scaling with large datasets
during training, A-GWR employs a divide-and-conquer strategy.
This method divides the dataset into smaller, more manageable
chunks without losing the spatial relationships among the data
points. By doing so, A-GWR can handle large datasets effectively,
even with limited computing resources.

Second, to improve expressiveness, A-GWR combines the S-
MGWR spatial regression model with general-purpose machine
learning models, such as random forests, to analyze complex non-
spatial relationships within the data. This integration allows A-
GWR to uncover intricate patterns and dependencies in the input
data, ensuring high accuracy and efficiency in its results. A major
strength of our framework is that the integration of spatial-aware
regression models (such as GWR variants) with traditional machine
learning models is seamless. This allows the spatial models to make
use of the new advances in machine learning models without the
need to tailor every new model for spatial data.

A-GWR achieves up to 14.4 times faster compared to the state-
of-the-art models [5] on large spatial datasets. This improvement is
due to its streamlined optimization methods, such as removing the
requirement to keep the historical bandwidth data during fitting,
using advanced black-box parameter optimization techniques, and
dividing the data into smaller chunks for scalable training.

3 Demonstration Scenarios

To demonstrate Pyneapple-L, we design different scenarios for differ-
ent groups of target attendees. Users will interact with Pyneapple-L
library through user-friendly web interfaces. Attendees will be
able to visualize results on interactive maps for both broad and
detailed perspectives and explore different features in Pyneapple-L.
By exploring these scenarios, the attendees will discover the full
capabilities of the algorithms within the library for tackling large-
scale spatial analytics challenges. The rest of this section outlines
different demonstration scenarios.

3.1 AGWR - Local View

In the first scenario, the user can initiate a Geographically Weighted
Regression (GWR) analysis by creating an instance of the AGWR
model on a selected dataset and a set of parameters. For example,
as demonstrated in Figure 2, assume the user is interested in gener-
ating a suggested rate (US dollar) for an Airbnb rental in New York
City, with a set of features including room type, minimum nights,
number of reviews, and location, among others. The user begins
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Figure 2: Local View of AGWR
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Figure 3: Global View of AGWR
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by choosing the New York City Airbnb dataset from the provided
examples. Next, the user selects the desired spatial and machine
learning models for the analysis. For this scenario, SMGWR is cho-
sen as the spatial model and Random Forest as the general-purpose
model. Then, a request containing the specifications is sent to the
backend where the corresponding module generates the model and
predictions with AGWR and returns a response containing the re-
sults. Upon receiving the response from the backend, the results
are displayed on an interactive map.

From the interactive map, the user can click a location to see the
predicted value given by the model and the ground-truth value for
the object. For instance, in Figure 2, the model’s predicted rental
rate is 67 dollars, compared to the actual rate of 60 dollars. Addition-
ally, the map visually conveys the bandwidth for a specific feature
through color. The user can switch the bandwidth visualization for
different features by clicking the "Bandwidth" button at the bottom.
In this example, "number of reviews" is selected as the feature to
visualize in red. Darker shades of red indicate objects that have a
larger influence on the prediction due to their proximity, whereas
lighter shades denote objects further away with less influence.

3.2 AGWR - Global View

In the second scenario, demonstrated in Figure 3, the user can ex-
plore the coefficient of features at different map locations, as well as
evaluate the accuracy of these predictions by using the "Coefficient"
and "Residual" buttons located at the bottom of the interface. This
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Figure 4: Basic View of Hotspot Detection

view facilitates a broader understanding of the relationships be-
tween features and outcomes at a higher level. For example, assume
the user is interested in analyzing the impact of the feature "number
of reviews" on house price prediction across King County, USA. The
user will first select the dataset of house sales in King County and
the desired models to be used, upon which a request will be sent to
the backend where the corresponding module generates the model
and predictions with AGWR and returns a response containing the
coefficient map and residual map.

Figure 3 shows the coefficient map on the feature "number of
reviews". In this map, purple indicates a greater coefficient of this
feature and the prediction outcome, while cyan and grey repre-
sent weak and average coefficients, respectively. The color gradient
across the map delineates the range of coefficient strengths, re-
vealing areas where specific features have a more pronounced or
diminished impact on house prices. Similarly, the residual map
illustrates the discrepancies between the predicted and actual val-
ues across different locations in King County, providing a visual
assessment of prediction accuracy.

3.3 Hotspot Detection - Basic View

In the third scenario, the user can issue a hotspot query and visual-
ize the results using a basic, color-differentiated map. For instance,
as shown in Figure 4, suppose the user aims to visualize hotspots
for Seattle traffic collisions. The user starts by selecting the Seattle
traffic collision dataset and determining the type of hotspot analysis
to be conducted, choosing between HDWPR (Hotspot Detection
without Predefined Radius) and HDPR (Hotspot Detection with Pre-
defined Radius). Following this, the user will specify the algorithm
parameters and a query will be sent to the backend. In this case, the
user uses HDPR with a predefined hotspot radius of 2000 meters
and a statistical confidence level of 99%.

Once the analysis is complete in the backend, the user receives
a map visualization where hotspot objects are marked in red. Users
have the flexibility to zoom in or out to examine the hotspots
with varying degrees of detail. This basic view offers users a clear
and direct representation of hotspots, allowing for straightforward
identification and analysis of patterns within the data.

3.4 Hotspot Detection - Analytical View

In this scenario, the application offers an analytical view of hotspot
detection, providing users with detailed statistical insights for each
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Figure 5: Analytical View of Hotspot Detection

hotspot, as illustrated in Figure 5. Initially, the user selects a dataset
and chooses a hotspot detection method. In this case, HDWPR with
a minimum statistical confidence of 99% is selected. These inputs
initiate a request to the backend where the selected algorithm
processes the data to identify hotspots on an interactive map.

As users navigate the interactive map, clicking on a specific
object reveals detailed statistical information about that hotspot. For
example, in Figure 5, when the user selects an object on the map, it is
highlighted in red. The detailed statistical breakdown then appears,
providing the hotspot label, coordinates, K-function plot including
the corresponding normal distribution, statistical confidence level,
the radius of the hotspot, the number of points, and the sum of edge
weights. This analytical view fosters a deeper understanding of
each hotspot, allowing users to explore and analyze the statistical
characteristics and significance of each identified location.
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