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Abstract—High-definition (HD) maps have recently gained
critical importance in automated driving applications due to
their ability to contain a high density of information, far
exceeding traditional maps. They offer precise instructions for
automated driving software agents. However, the construction
and maintenance of HD maps present several challenges. More-
over, the unprecedented detail and precision of geo-referenced
information extraction have sparked new potential applications.
This paper provides a comprehensive review of the extensive
body of literature on HD maps. We categorize the principal
tasks discussed in the literature into eight main sub-areas.
These sub-areas encompass the research work focused on the
creation, maintenance, and various applications of HD maps.
We underscore key directions in each sub-area and delve into
the associated challenges. Further, we spotlight potential future
directions to broaden the scope of HD maps usage in an array
of applications.

Index Terms—Spatial databases, Knowledge and data engi-
neering tools and techniques, Navigation

I. INTRODUCTION

Digital maps, e.g., Google Maps, Bing Maps, and Apple
Maps, are being extensively used in various applications by
hundreds of millions of users every day. All traditional dig-
ital maps are designed and developed for human-to-machine
interactions. So, there is an implicit assumption that a human
user is consuming the mapping information, such as using
maps in driving or searching for points of interest (POIs).
Recently, major applications, such as autonomous driving,
have invalidated this fundamental assumption and introduced
the need for digital maps that are designed and developed
for machine-to-machine interaction [1]-[3]. In autonomous
driving, maps are used for the perception of distances that
are beyond the sensors’ ranges. In this case, the consumer
is not a cognitive human, but an automated software driver.
Other applications that use automated map consumers include
motion planning [4], [5] and 3D object detection [6]—[8].

Driven by the rise of automated map users like self-
driving cars, High-Definition (HD) maps emerge. Compared
to traditional maps with meter-level accuracy, HD maps of-
fer high-resolution details, accurate to centimeters [2], [9].
These details cater to "machine" consumers, enabling them
to "recognize" lane boundaries, signs, road obstacles and
other information typically understood by humans. This is
achieved by vectorizing the surrounding environment and on-
map computation of precise displacements and angles, going
beyond conventional map-making methods.
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The applications of high-resolution maps are popular in
indoor environments, where robots use detailed maps in com-
bination with sensors to navigate smart spaces like factories
and workshops, health facilities and homes, etc [10], [11].
However, the shift from small and controlled indoor settings
to the vast and dynamic outdoor environments for self-driving
vehicles necessitates new approaches to address fundamental
challenges in map creation and usage [12]-[15]. This has
spurred significant research efforts in this area.

Building and maintaining HD maps globally, depending
only on specialized equipment, is a cost-prohibitive task.
Currently, comprehensive coverage doesn’t exist. This open
research area faces challenges in partially automating the
integration of available big spatial data into HD maps. Several
works have addressed these challenges, aiming for large-scale,
detailed map development and maintenance.

In this paper, we provide a lengthy glimpse of the literature
on building, maintaining, and using HD maps. It is extremely
challenging to cover the whole literature of such a rich topic.
Nevertheless, due to the importance and richness of the topic,
there is a need for research efforts to summarize the current
status and discuss research opportunities. Our objective in the
paper is to take a middle position, we outline the main sub-
areas of research in this literature, pointing out some of the
existing challenges and future directions. Yet, we encourage
readers to refer to the whole literature for a deep coverage for
all existing research in one of these sub-areas as it is beyond
of our scope to cover an extensive list of references in such
a rich topic. We particularly refer to [16] for map generation
techniques in particular.

We classify the literature into two main categories that are
outlined in Table I: (1) HD maps design and construction
(Section II). This category corresponds to the first three
rows in Table I and highlights techniques that model, design,
and build HD maps’ content. It is further categorized into:
(1.1) Modeling and design (Section II-A) that highlights data
models and design schemes that are used to represent HD
mapping data. (1.2) Map creation that highlights major direc-
tions to build HD maps’ content. (1.3) HD map maintenance
and update that highlights major directions to keep HD maps
up to date despite having a significantly higher change rate
compared to traditional maps. (2) HD maps applications
(Section III). This second category has discussed five sub-areas
that are branched from autonomous navigation in both outdoor
and indoor environments. The five applications’ sub-areas



TABLE I
TAXONOMY OF THE PRESENTED TECHNIQUES

. Map Modeling and Design [31, [17]-[25]

lc)ﬁilsgtl:':cl:g)n Map Creation [26]-{40]
Map Maintenance and Update [10], [11], [41]-[47]
Localization [22], [48]-{57]
Pose Estimation [22], [23], [58]
Path Planning [2], [44], [52], [59]-[62]

Applications Perception [6], [54], [63]

ATVs [11], [64]

correspond to the last five rows in Table I, and summarized
as follows: (2.1) Localization applications that use HD maps
to position objects with high accuracy in real time. (2.2) Pose
estimation that uses HD maps to understand a detailed view of
the surrounding environment. (2.3) Path planning techniques
that generate end-to-end high-precision routes to be consumed
by machines for routing. (2.4) Perception that uses HD maps
to improve real-time accuracy of information perceived about
the surrounding elements. (2.5) Automated transfer vehicles
(ATVs) that use HD maps in indoor environments, e.g., smart
factories. The rest of this paper discusses each category and
its sub-areas.

II. HD MAPS DESIGN AND CONSTRUCTION

HD maps introduce fundamental changes to existing map-
ping frameworks. So, a significant portion of the current efforts
is being made in designing new data models for HD maps
and new frameworks to automate collecting high-resolution
mapping data from various data sources. This section presents
three sub-categories: HD maps modeling and design (Sec-
tion II-A), HD map creation and HD map maintenance and
update (Section II-B).

A. HD Maps Modeling and Design

Lack of standardization in HD maps poses a major chal-
lenge [65]. While NDS (Navigation Data Standard) is a promi-
nent format [18], its complexity discourages adoption, leading
to vendor-specific layers and hindering reusability [65], [66].
Recent research combats this by proposing unified models
through various approaches: extending existing models [21],
leveraging existing maps and images [17], [23], and designing
new techniques [19], [20]; to enable richer mapping details.

HiDAM [21] is a research-friendly HD map data model
extending the node-edge structure to incorporate richer in-
formation like lane systems and diverse landmarks (on-road
and off-road). Unlike traditional models, each road segment
becomes a multi-directional lane bundle representing parallel
lanes. HIDAM addresses compatibility with existing applica-
tions through its node-edge foundation and explores future
applications beyond self-driving cars.

The work of [19] proposes a hardware-efficient Weighted
Mode Filter (WMoF) for Full-HD depth maps using VLSI ar-
chitecture. WMOF leverages different external memory levels
to construct the Full-HD Depth Map to include the benefits
of each circuit or major leak. This approach enables Full-HD
depth map creation at 43 fps with only 5.4 KB of memory.
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Inspired by robotics, [17] proposes "semantics maps" for
outdoor tasks, incorporating commonsense knowledge with
object classification. This HD map variant defines the world
as a tuple of entities, poses, and attributes. Each entity will
be associated with one pose and can be associated with a
subset of attributes [22]. The vectorized elements in the map
definition are the same as the vectorized road defined in HD
maps. Harsha Vardhan in [3] discusses a globally accepted
definition of HD maps in what, how, and why terms. The
map in this definition contains only vectorized elements and
can achieve high precision (error less than 1 meter). However,
satisfying the basic needs cannot ensure the quality of HD
maps since more processing techniques, e.g., the accuracy of
localization, are considered in the process of evaluation.

HDMI-Loc [23] tackles memory inefficiency in aerial
image-based localization. It represents the vector map as a
top view 8-bit image, with each bit representing a label for an
element class. Localization involves matching this image with
an online 8-bit image database using a bitwise particle filter,
significantly reducing storage and update costs. This approach
can perform localization with a median error of only 0.3m
over an 11km drive.

Lanelet2 [20] offers an open source, layered mapping
framework designed for diverse applications like localization,
motion planning, and highly automated driving. Its three layers
are: (1) Physical: stores the usual real observable elements.
(2) Relational: connects physical elements to lanes, areas, and
traffic rules. (3) Topological: implicitly inferred from spatial
relationships in the relational layer.

HDMapGen [24] employs a two-level hierarchical graph for
HD map generation. A global graph, where nodes represent
lane endpoints or intersections and edges signify lane connec-
tions, captures overall map structure. Each lane’s curvature
details are then modeled by a local graph.

B. HD Maps Construction

This section highlights methods to construct HD maps. HD
maps creation and update are among the most challenging
tasks in the literature of HD maps. As previously introduced,
HD maps provide significant additional content compared to
traditional maps to enable machine-to-machine information
consumption. Collecting and organizing such new content to
create and update HD maps is very costly on a large scale for
two reasons. First, creating and updating HD maps requires
human input, which is prone to errors and inefficient in terms
of time [67]. Second, HD maps are constantly changing at
a rapid pace [1]. This introduces the need for automated
techniques for HD maps’ creation and update. Thus, several re-
search efforts are being made, by both academic and industrial
researchers, to enable building HD maps worldwide. Several
data sources and different computational techniques are being
used to automate or semi-automate this process. We highlight
below methods for map creation and map maintenance and
update.



(1) Map Creation

Dabeer et al. [29] propose a cost-effective HD map cre-
ation pipeline using crowdsourcing with cost-effective sensors.
Leveraging the "crowd capacity", their approach collects di-
verse mapping information. Sensor data help triangulate road
signs and lane markings. This information is continuously
refined through corrective feedback mechanisms, achieving
mean absolute accuracy below 20 cm. This method tackles the
high-cost barrier associated with traditional HD map creation.

Kim et al. [31] leverage crowdsourcing to add new feature
layers to existing HD maps, addressing latency and cost
concerns. Their method enriches the existing map with crowd-
sourced information without extra cost, resources, or latency,
achieving centimeter-level accuracy unlike the few meters’ ac-
curacy in traditional maps. Additionally, decoupling the layers
allows enriching map content through separate crowdsourcing
applications and isolates human error within layers, enabling
targeted improvement in later stages.

Chen et al. [26] leverage ground-level LiDAR for large-
scale HD map creation in mobile mapping systems. Compared
to video-based methods, LiDAR offers: (1) Direct acquisition
of 3D coordinates: minimizing errors and improving localiza-
tion accuracy. (2) Reduced processing: Enabling large-scale
support. (3) Lighting and shadow invariance: unlike cameras.
(4) Robustness for irregular shapes: handling occlusions and
sharp curves. (5) Distance-agnostic object distinction: accu-
rately separating foreground and background. This approach
processes large datasets efficiently, as demonstrated by their
3.1-minute processing time.

LiDAR is one of the most popular technologies that are
used solely to collect 3D mapping data as part of mobile
mapping systems. It is utilized by [32] for automated HD map
creation and update, eliminating manual effort. Their approach
leverages LiDAR data in a five-step process: (1) Generate a
3D point cloud of the scene. (2) Convert it to a 2D projection.
(3) Eliminate ground data from the projection. (4) Extract road
boundaries. (5) Apply a probabilistic fusion model to refine
map boundaries. This method achieves an average absolute
pose error of 1.83m for road scenes ranging from hundreds of
meters to 10 kilometers.

Since LiDAR is not a cheap technology, [35] explore using
existing LiDAR sensors in vehicles for on-the-go HD map
creation, achieving centimeter-level accuracy (around 2 cm).
While not a traditional mobile mapping system, it leverages
readily available sensors for cost-effective 3D mapping. This
approach benefits autonomous vehicles by providing a detailed
representation of their surroundings, overcoming limitations in
real-time object detection and simplifying perception tasks.

Using specialized equipment is not always affordable or
needed, so combining cheaper methods for map creation has
got considerable attention in the literature. Hirabayashi et
al. [33] propose an accurate method for traffic light extraction
from images using camera and 3D information fusion. Their
approach achieves 97% average precision through a three-part
implementation: (1) Autoware integration, which Implements
the traffic light recognition module within the Autoware frame-
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Fig. 1. Image-based lane extraction [27]

work, (2) SSD implementation, for training and recognizing
color states, and (3) the Inter-frame filter.

Another method that combines cheap data sources to im-
prove the accuracy and scalability of map creation is [27]. It
combines aerial and ground-level images for high-resolution
road extraction (0.57m error), showcasing improvement over
GPS+IMU (1.67m error on average). Their four-phase tech-
nique, depicted in Figure 1, decodes aerial images and lever-
ages ground images to cooperatively create a gridded HD
map. This approach shows a great improvement in road center
alignment and ground feature localization, with an inference
time of 6 seconds per kilometer.

In [30], HD maps are directly used on a pilot emulator
project. The pilot model is based on the conventional training
experience in the previous work, but in the model the use of
HD maps is crucial in providing a more accurate relationship
between the pilot and the actual environment. The model
achieves an accuracy of 2 cm.

Machine-crowd crowdsourcing is also proposed to create
HD maps through crowdsourced probe data from connected
vehicles [28], capitalizing on the projected millions of ter-
abytes of vehicle probe data by 2019 [36]. Their scalable
infrastructure ingests, manages, and analyzes this data to
build layered HD maps. They propose two approaches: one
assuming limited probe data (GPS only) and achieving a 2.4m
accuracy, and another approach requiring additional sensor
data that can be retrieved from a series of vehicle sensors
yielding a 1.9m accuracy.

Maeda et al. [37] also propose a cost-effective method for
HD map generation using readily available camera data and a
lane detection algorithm to localize the driving car on the road.
Detected lane information is then integrated with the lines’ in-
formation on the HD map without requiring expensive sensors.
By piggybacking lane extraction overhead on the localization
process, they achieve map updates with minimal overhead
compared to dedicated HD map construction methods.

Smartphone-based HD map creation is explored in [34].
They leverage a Kalman filter to refine sensor data and employ
a deep neural network combined with color and gradient
information for lane detection. The approach achieves better
than a 3 meter accuracy.

Companies in the industry field create their own HD maps
for autonomous driving. Waymo [68] let their team members



manually drive a car equipped with LiDAR sensors in a new
location to capture the necessary data. TomTom [69] employs
Al and machine learning techniques to create and update their
HD maps. HERE Technologies also uses Al to create maps
from the data collected via DGPS, IMU, and LiDAR.

Zhou et al. [38] proposes an automatic technique to con-
struct lane-level HD maps for urban scenes. The map is first
represented as a directed cyclic graph from OpenStreetMap,
which is an online mapping database. Semantic segmentation
is then performed on 2D images from ego vehicles to explore
the lane semantics on a birds-eye-view domain.

HDMapNet [25] offers an on-the-fly HD map construction
framework using onboard sensors. Processing camera and
LiDAR point clouds, it effectively predicts map elements.
HDMapNet is bench-marked on the nuScenes dataset and
improves semantic segmentation significantly.

Wei et al. [39] present a framework for HD map creation
combining aerial imagery, vehicle telemetry, and navigation
maps. They leverage pre-processed aerial images, informed by
aggregated vehicle telemetry, to classify roads and predict lane
configurations using a convolutional neural network (CNN).
This approach integrates diverse data sources for efficient HD
map generation.

(2) Map Maintenance and Update

HD maps demand much more updates due to their vast
amount of information compared to traditional maps. This
poses a challenge: balancing update frequency to maintain
accuracy with cost-effectiveness. Some methods that are pro-
posed in the literature to handle map updates are actually used
in building maps in the first place before putting the update
mode into action. This can be accomplished by combining the
update methods with traditional maps as a preliminary map
version, or a lower-cost HD map that did not capture all the
details. Regardless of the method, update methods are vital for
both building and maintaining accurate HD maps.

SLAMCU leverages a dynamic Bayesian network (DBN) to
detect and update HD map changes efficiently. DBN acts as an
inference graph with known nodes as inputs (actions/physical
changes), estimated nodes, and unknown nodes. Known inputs
come from a measurement model solving a localization prob-
lem. The DBN transfers nodes from unknown to estimated
through inference with edge constraints, utilizing known in-
puts. Detected and updated map changes are reported to the
HD map database for sharing with other vehicles/systems.
Evaluation on real-world HD map data of traffic signs (20km
highway) showed an average position error of 0.8m with 0.9m
standard deviation and 96.12% accuracy for estimated map
changes, Figure 2 shows a histogram of position error to
estimate the rough distribution, approximated by the red curve.

Pannen et al. [42], [44] propose a dynamic HD map update
system utilizing data from a "machine-crowd" of connected
autonomous vehicles. The proposed technique makes reliable
prior information on lane markings and road edges available
to automated driving functions. It operates in real-time, es-
timating the probability of change based on floating cards
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Fig. 2. SLAMCU mapping error for the position estimation of new map
features [41]

data (FCD) and updating the map when required. It functions
through three key pipelines: change detection, job creation,
and map updating. Scalability is achieved by partitioning
the workload and aggregating results from smaller areas.
A novel map learning component leverages both FCD data
and real-time trajectory statistics to learn new map updates
incrementally. Robust localization is ensured through two-
particle filters, followed by metric calculations and classi-
fier application with boosted performance. Evaluated on 300
traversals across seven construction sites, the system show-
cases its effectiveness. Notably, multi-traversal classification
achieves significantly higher performance (98.7% sensitivity,
81.2% specificity) compared to single-traversal methods.

Tas et al. [10], [11] propose an HD-map update methodol-
ogy for Autonomous Transfer Vehicles (ATVs) in smart fac-
tories. The methodology uses visual simultaneous localization
and mapping (SLAM) with object detection and localization.
Their key contribution is detecting new or missing safety
signs by comparing the valid HD-map data with a virtual
HD map constructed from visual sensors. An improved grid
map incorporating visual SLAM and object detection is used
to position detected objects which are then batched as map
updates.

Liu et al. [43] propose an incremental HD map update
technique that combines historical data with updated sensor
measurements using a Kalman filter-based fusion algorithm.
This improves map element position and semantic confidence.
It also quickly adapts to slight environmental changes by
including a time decay term. Unmatched elements are fed back
with historical information for future matching attempts.

Kim et al. [45] offer a low-cost HD map update method
using crowdsourced data from inexpensive sensors. To address
the data’s inherent uncertainty and low accuracy, they propose
a lane learner algorithm leveraging the geometric features of
all crowdsourced lane information.

Diff-Net [46] is an end-to-end deep learning approach that
leverages a neural network (DNN) to detect HD map changes
in a single step. Projecting map elements into rasterized
images allows the DNN to compare features extracted from
camera data and the images, revealing map changes directly.

Qi et al. [47] propose a distributed crowd-sensing approach
for HD map updates. Leveraging sensors in autonomous
vehicles and roadside units (RSUs), MEC servers within each
RSU pre-process data by matching it against the onboard HD
map and extract changes. This data is then transmitted and



aggregated in a central node.

Wang et al. [40] propose a tightly-coupled framework using
multiple non-repetitive LiDARs for HD map construction.
Their synchronization strategy merges extracted features from
diverse LiDAR sensors, including Livox, mechanical, and
MEMS LiDARs.

III. HD MAPS APPLICATIONS

While high-resolution maps have found success in con-
trolled indoor environments e.g., for robots in smart factories
and workshops [10], [11], their application to outdoor au-
tonomous navigation for self-driving vehicles [12], [13], [70],
[71] presents fundamentally different challenges. The larger
scale and less controlled nature of outdoor settings challenge
key assumptions made about indoor environments, leading to
new and exciting research avenues. Despite the potential of
several HD map techniques to be used in a wider variety
of applications (as discussed in Section IV), the existing
literature primarily focuses on outdoor autonomous navigation.
This complex task encompasses several sub-applications, each
requiring specialized approaches. This section highlights re-
search methods proposed for four key categories: localization,
pose estimation, path planning, and perception, in addition to
methods specific to automated transfer vehicles (ATVs). The
rest of this section highlights each of these categories.

(1) Localization. Localization is the most popular applica-
tion that uses HD-maps in autonomous driving. Localization
is used to position vehicles as well as road objects (e.g.,
signs, obstacles). A road segment in an HD map is detailed
into multiple components including lane marking, centerline,
pedestrian crossing, signs, and obstacles. Thus, accurately
localizing objects within these close components (centimeter-
level) is a challenging task that is fundamental to facilitate
real-time autonomous driving decision making.

For lane-level localization in autonomous vehicles, Ghallabi
et al. [50] propose a method utilizing a multi-layer LiDAR
sensor. Their approach relies on road lane markings and an
HD map. It achieves lane-level accuracy by segmenting road
points from the LiDAR point cloud, extracting markings using
the intensity of LiDAR data, and finally, matching them against
the map for localization. The segmentation process leverages
ring geometry analysis to eliminate non-road elements that are
not smooth and discontinuous like vegetation and gravel. This
is followed by a Hough line transform using an apriori infor-
mation on the environment to detect lane markings. Finally, a
map-matching algorithm has been implemented to validate the
detection phase. While promising results have been achieved
on highway-like test tracks, the absence of reliable landmarks
in highways raises concerns about the method ability to
maintain acceptable accuracy in actual highways.

Juang [72] leverages pre-mapped on-road landmarks for lo-
calization using triangulation with known landmark locations.
It proposes a landmark detection method using LiDAR scans
for detection based on size, shape, reflectivity, and height.
Building on this, [53] incorporates High Reflective Landmarks
(HRLs) as 3D map elements and proposes an HRL detection
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and map-matching approach using LiDAR data and a particle
filter for localization based on the unique reflectivity of HRLs.

Geometry influence of sign detection on localization is
discussed in [49]. It proposes a high-precision localization
system using HD maps. Geometric strength is assessed under
various scenarios considering feature distribution, quantity,
and vehicle-feature distance. Results show primary influence
from feature number and distance; random distribution, abun-
dant features, and close proximity yield better estimation for
the vehicle position.

Lane-based localization using a particle filter and road
surface is explored by Bauer et al. [48]. They divide the road
into 3D surfaces based on lane markings and evaluate each
particle state against the HD map, localizing it on a specific
surface. When a particle leaves a surface area, it is re-localized
on a new surface (lane) on the other side of the targeted
accessor for speedup, and to ensure it remains on lane surfaces
throughout the process.

Han et al. [51] present a map matching technology for robust
vehicle localization. They propose a novel line segmentation
matching model and geometric correction for extracted road
markings from inverse perspective mapping (IPM). Tested on
real autonomous vehicles, the technique successfully acquired
the autonomous driving license of the Republic of Korea.

HD map-based localization using low-cost advanced driver
assistance system (ADAS) sensors for automated vehicles is
proposed in [54]. This approach leverages LiDAR, RADAR,
vision, and GPS alongside existing vehicle sensors that provide
information on speed, acceleration, steering angle, etc. The
algorithm incorporates environmental feature representation
with low-cost sensor data, digital map analysis, location
correction based on map-matching , verification gates, and
extended Kalman filter positioning and fusion for robust
localization.

MLVHM [22] proposes segmenting HD maps properties
into small monocular segments for low-cost vehicle local-
ization using camera images. It utilizes an image processing
module to extract visual and geometric features, and a map
module to leverage key points features, enabling initial pose
prediction. The initial pose associates frame motion informa-
tion with objects to output object locations. Pose estimation
techniques are highlighted later in the section.

Hery et al. [55] propose a decentralized cooperative local-
ization method using local dynamic maps (LDMs) exchanged
between vehicles. Their framework addresses the unknown
degree of LDM error correlations using 2D LiDAR for pose
estimation. To reduce errors, they introduce a bias estimator
that leverages geo-referenced features from HD maps when a
Global Navigation Satellite System (GNSS) is used.

The work of [56] achieves localization by combining HD
maps with image semantics in two stages: initialization and
tracking. In the first stage, a car equipped with a GPS is
used to provide coarse initialization combined with fine pose
searching. The second stage refines the vehicle’s pose by
aligning the semantic segmentation result between the image
and landmarks in HD maps.



Usorac et al. [57] create an object localization HD map
layer by fusing traffic data from cameras, GPS, and a central
Automotive Video Logger system. Objects are detected using
YOLOV4 object detection algorithm.

(2) Pose estimation. While pose estimation is primarily
employed for localization assistance as in MLVHM [22], some
research explores pose estimation as a distinct task. Unlike
localization’s focus on precise object positioning, pose esti-
mation offers broader scene understanding, spanning beyond
the immediate vicinity (typically a few meters). For instance,
HDMI-Loc [23] achieves a full six degrees of freedom (6-
DoF) global pose estimation leveraging semantic road data
from HD maps and query stereo images. A particle filter
initially estimates the vehicle’s 4-DoF partial pose (translation
and heading) through patch image matching. Subsequently,
roll and pitch are calculated, yielding a complete 6-DoF pose
relative to the HD map.

Stannartz et al. [58] leverage semantic information to
resolve data association ambiguities between measurements
and HD map landmarks. Their method, tested in controlled
CARLA simulations, demonstrates accurate pose estimation.

(3) Path planning. Beyond localization and pose estima-
tion, path planning applications generate complete navigation
paths using HD maps. These applications provide detailed
routing instructions for machines like self-driving cars, analo-
gous to navigation apps like Google Maps and Apple Maps. Li
et al. [60] propose a low-cost vector map-based approach for
navigation. Recording the vector map offline enables optimal
route planning for any starting and ending point. However,
conventional HD maps face storage challenges. For instance,
Pannen et al. [44] require 200 GB for 20,000 miles of roads
(10 MB/mile). To address this, Li et al. use high-precision
DGPS to extract latitude and longitude, mark key data (lanes,
links, speed limits, signs) and remove large-scale laser point
cloud data. This reduces storage size to 300 KB for 3 miles
(100 KB/mile), a two-order-of-magnitude improvement while
maintaining navigation accuracy.

Jian et al. [52] propose a two-step path planning approach
utilizing semantic road information from HD maps. The first
step, path set generation, reflects vehicle kinematics onto the
lane coordinate system and leverages this, along with HD map
lane details, to generate optimized path sets. The subsequent
path selection step employs their inertia-like path selection
algorithm to identify a stable path for obstacle avoidance.

Chu et al. [61] propose a Predictive Cruise Control (PCC)
system using HD maps for fuel-efficient driving. They formu-
late the PCC problem as a nonlinear model predictive control
(MPC) and propose a fast solver. They construct a novel shift-
map to define different working regions from the application’s
perspective, and integrate real-time HD map information into
the system. This approach achieved an 8.73% fuel saving
compared to a factory-installed adaptive cruise control system
over a 370 km route.

A bidirectional hybrid path search (BHPS) technique is pro-
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posed in [62]. Leveraging lane-level HD maps to extract global
driving environment info, BHPS runs a bidirectional hybrid
path search combining forward BFS search-reverse Dijkstra
search and forward Dijkstra search-reverse BFS search.

HD path planning dives deep into the intricacies of naviga-
tion, offering lane-level directions, and not only a bird’s-eye or
road segment view of the route. This requires combining road-
segment-level routing with lane-level techniques like lane-level
localization and map matching. One promising approach is
Simultaneous Localization and Mapping (SLAM) used in [2].
By reconciling real-time sensor data with cloud-based HD
maps, SLAM creates a virtual picture of the car’s surround-
ings, enabling precise localization and relation to other road
users. Alternatively, lane-level map matching with a particle
filter, as in [59], offers an efficient method. This involves
pre-loading the entire map (feasible due to its limited size),
populating the initial filter sample set and matching it to the
road network, and then running a real-time execution loop.

(4) Perception. Beyond their crucial role in prediction (e.g.,
localization) and planning (e.g., path generation), HD maps are
increasingly explored for enhancing perception in autonomous
driving. Perception is responsible for understanding the sur-
roundings, while the rest of the autonomous driving pipeline
(i.e., prediction, planning and control) use this understand-
ing to produce driving decisions in real time. For instance,
HDNET [6] uses HD map information to improve perception
by improving 3D object detection on roads. It integrates ge-
ometric and semantic map priors into LiDAR representations.
When no HD map is available, a map prediction module that
estimates two map priors online using one LiDAR scan is used.
HDNET consistently outperformed competitors, confirming
the significant value for HD maps in perception [6], [54].

Masi et al. [63] presents a cooperative perception system
for autonomous vehicles navigating in a complex scenario. The
proposed system is an HD map-aided system that merges infor-
mation from roadside cameras with a LiDAR-sensor equipped
vehicle. Two experimental vehicles are used along a roadside
camera and the experimental results show an improvement in
the estimation accuracy of perceived objects’ state.

(5) Automated transfer vehicles (ATVs). ATVs are a
modern application for HD maps in indoor settings like smart
factories. Tas et al. [11] propose an ATV-based method for
updating indoor factory HD maps using visual SLAM with
object detection and positioning (highlighted in Section II-B).
This method effectively identifies new or missing safety and
direction signs by leveraging existing HD map information and
sensor data. In erroneous scenarios, accurate and robust ATVs
are crucial for real-time corrective decisions [64], which highly
depends on the accuracy of indoor HD maps. However, due to
the unique challenges of indoor navigation and its extensive
coverage in robotics literature, as highlighted at the beginning
of this section, a detailed discussion of indoor HD maps is
beyond the scope of this paper.



IV. CONCLUSION AND DISCUSSION

This paper has presented a bird’s eye view on modern
high-definition (HD) map literature, motivated by the shift
of autonomous driving to machine-based map consumers in
outdoor environments. This fundamentally differs from indoor
HD maps studied in robotics applications like smart factories
and healthcare facilities. These differences drive extensive re-
search on outdoor HD map construction and usage in outdoor
environments. Due to the vast literature, this paper provides
only a lengthy glimpse into key research categories, offering
valuable pointers for deeper exploration of specific sub-areas
by interested readers.

The paper categorized the HD map literature into two main
areas: (1) HD map design and construction and (2) applica-
tions. The first includes: (1.1) HD map modeling and design,
(1.2) map creation techniques, and (1.3) maintenance/update
methods, addressing the higher change rate of HD maps
compared to traditional ones. The second covers five sub-
areas related to autonomous navigation in both outdoor and
indoor environments: (2.1) Localization: High-accuracy object
positioning using HD maps in real time. (2.2) Pose estimation:
Detailed understanding of the environment through HD maps.
(2.3) Path planning: Generating precise machine-usable routes.
(2.4) Perception: Enhancing real-time perception accuracy of
the surroundings. (2.5) Automated Transfer Vehicles (ATVs):
HD map usage in indoor environments e.g., smart factories.

While primarily aimed at self-driving cars, HD maps of-
fer potential for diverse applications beyond the automotive
domain. Their granular detail opens doors for breakthroughs
in different fields as shown by on-going research projects
using Google geo images for tree disease detection, building
tree atlas in certain areas, and studying urban development
and human migrations through analyzing data from different
time snapshots. Through the on-going efforts on HD map
techniques, researchers will gain access to a relatively cheap
and high-resolution data source. However, due to the challenge
of the enormous map data size, improvements are needed for
efficient data management [73] and format compactness and
efficiency [18]. In addition, HD mapping gaps pose challenges
for the growing machine learning literature in computer vision,
spatial data analysis, and GeoAl.
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