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Social media platforms generate massive amounts of data that reveal valuable insights about users and com-

munities at large. Existing techniques have not fully exploited such data to help practitioners perform a deep

analysis of large online communities. Lack of scalability hinders analyzing communities of large sizes and re-

quires tremendous system resources and unacceptable runtime. This article proposes a new analytical query

that identioes the top-k posts that a given user community has interacted with during a specioc time interval

and within a spatial range. We propose a novel indexing framework that captures the interactions of users

and communities to provide a low query latency. Moreover, we propose exact and approximate algorithms

to process the query eociently and utilize the index content to prune the search space. The extensive exper-

imental evaluation on real data has shown the superiority of our techniques and their scalability to support

large online communities.
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1 INTRODUCTION

Online communities have become more popular with the advancement of user-generated data
platforms. They are rich with useful and important data. Users are naturally forming communities
similar to the communities in the real world based on common interests, ideas, and locations.
These communities can be extremely useful in rescue missions [18, 39, 54], disease prevention [19],
urban planning [45], and public safety [11, 37]. Additionally, the research community has paid
signiocant attention to detecting [43] and searching communities [30] that are homogeneous and
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have shared characteristics in common. Nevertheless, analyzing a single community has received
very little attention. For example, a social scientist might analyze the US teenagers on Facebook
(representing 5.2 millions users [26]) or on Instagram (representing 57 millions users [40, 41])
to ond out what they interacted with during the past week on diferent topics such as bullying,
youth suicide, and COVID-19 pandemic. This kind of analysis is very crucial in understanding,
making the right decisions and ofering better services to the target community. In fact, there
are hundreds of online communities with multi-million users [4], each of them has lots of large
sub-communities, and it is recognized that analyzing these communities is of high importance
in various applications [13, 31, 32, 53, 59, 60, 62]. However, existing querying techniques are not
scalable to perform such analysis on large online communities that involve millions of users.
Queries on online communities come in various forms, e.g., onding top-k innuential users

[5, 14, 70, 73] and top-k experts in knowledge communities [74]. However, direct queries such
as <onding top-k posts on which teenagers in the US interacted the most during the past day= are not
currently supported on large communities. These queries are useful in studying various types of
online communities during diferent events, such as underrepresented communities during polit-
ical events or pandemic responses. To support this query using existing techniques, we need to
traverse millions of users to olter out their interactions temporally and based on the context of the
posts. This requires very expensive computations and unacceptable query latency due to the huge
number of users. Therefore, existing techniques are limited to reveal the full potential of online
user-generated data.
In this article, we propose a spatio-temporal community query that onds top-k posts with which

the given community has interacted during a given time and within a given spatial range. The na-
ture of the community is dynamic over time; some individuals join and others leave. Thus, this
work mitigates this problem to help the query capturing the dynamism of the community with
the support of the user index to process the query more eociently when the community is evolv-
ing. The proposed query helps practitioners to understand the interests of diferent communities
over diferent temporal and spatial ranges. However, processing this query using traditional in-
dexing techniques, e.g., classical RDBMS, requires a tremendous amount of system resources and
CPU time. In specioc, there are two main challenges: (1)The users’ interactions with the posts are
very huge in number and constantly increasing. For instance, Facebook users upload on average
240k photos/min and generate 4M likes/min [25]. Therefore, digesting this information is a major
challenge to reduce the query latency and minimize the system resources overhead. (2)The com-
munity nature is dynamic over time; so users join or leave communities all the time. Thus, the
system must account for this dynamism to support evolving communities in practice.
To address these challenges, we devise novel scalable indexing and query processing that deals

with communities as whole units instead of processing individual users’ data. Our index eociently
supports established communities to process eocient queries on them with limited system re-
sources. Established communities are formed by users or system administrators based on arbitrary
criteria that connect all community users, e.g., users of common interest, geographic location, or
demographic groups. The proposed index shares the same spirit of database indexes where admins
create and drop indexes on demand on any user-deoned community that is frequently queried to
tune the system performance. Every community interaction is being indexed temporally through
time slicing with temporal resolutionT . Each community is predeoned by a set of users, and every
user interaction is indexed to the corresponding community index. Whenever a user interaction
occurs, it is indexed to the most recent time slice to all communities to which she belongs. The
proposed index stores aggregated information that renects the total interactions of the commu-
nity with various posts. However, the community index does not index any interactions from
non-member users. Therefore, dynamic communities, where users join and leave communities
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over time, have no pre-built index in the system. To support community dynamism, we comple-
ment the community index with a new indexing component to index all users’ interactions based
on time slices that correspond to the community index slicing. This component is utilized dur-
ing query processing to handle newly joined or left users, which seamlessly supports community
dynamism. Combining the two indexing components, community index and user index, makes it
easy to avoid expensive restructuring for the community index frequently and enables eocient
support for large and dynamic communities.
The query processor smartly exploits the index content to provide low query latency. We pro-

pose three query processing techniques, two exact algorithms, baseline ComCQ and fast ComCQ,
and one approximate algorithm, approximate ComCQ. The query processor locates parts of both
community and user indexes that intersect with diferent query predicates, temporal, spatial, and
user predicates. Then, corresponding index contents are aggregated to ond top-k posts for the
community. Depending on how large the query predicates, processing the index aggregates could
still be highly expensive. Thus, the approximate query processing techniques smartly select the
most important content to process. This enables querying large communities and extended spatial
areas and temporal ranges using limited system resources.
This work is a signiocant extension for our work in Reference [9] to enable data practitioners to

analyze dynamic online communities where users join and leave over time. To support community
dynamism, we signiocantly extend both indexing and query processing to facilitate joining and
leaving communities for users at scale while still providing eocient performance. For indexing, we
added a new user index, in addition to the community index. The user index organizes aggregate
data from all individual users based on temporal slices. Then, it is used to compute a community
delta component that represents newly joined or left users to be used in providing accurate query
answers on the changing community. For query processing, we added a new approximate query
processing technique, approximate ComCQ, that supports eocient aggregation on large commu-
nities. Instead of aggregating all data in main-memory, approximate ComCQ smartly selects the
most important parts of the data to enable eocient queries on large highly dynamic communities
that encounter large numbers of joining or leaving users.
The extensive experimental evaluation of our proposed techniques on real data has shown the

eociency of our indexing framework and query processing techniques. Our contributions are sum-
marized as follows:

—We introduce a new analytical query over large online communities that returns the top-k
posts that a community has interacted with.

—We propose a novel indexing paradigmwith multiple components to eociently support both
established and dynamic communities.

—We develop diferent query processing techniques to eociently process the query evenwhen
the system resources are limited.

—We provide an extensive experimental evaluation on real data to show the superiority of our
proposed techniques.

The rest of this article is organized as follows: Section 2 presents the related work. Section 3
presents the problem deonition. Sections 4 and 5 detail the proposed community and users index-
ing and query processing techniques, respectively. Section 7 provides an extensive experimental
evaluation. Section 8 concludes the article.

2 RELATEDWORK

Existing related work mostly focuses on community search and detection, in addition to other
problems. There is no current research work that addresses eocient querying for large online
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communities, to the best of our knowledge. This section covers notable works that address the
community problems in diferent contexts.
Community Search and Detection. The community search problem was orst proposed in

Reference [68]. The problem refers to onding a sub-graph of cohesive community with respect
to a set of query nodes such as users. Diferent community search models have been proposed,
including k-core [21, 68], k-truss[38], k-clique [20], location-aware community search [48], and
degree-based label propagation algorithm for detecting community search [24]. Some techniques
focus on improving the quality of the cohesion [29] or output accuracy [52] on attributed graphs,
while other techniques introduce a new dimension such as spatial-aware community search [16,
28]. We refer the reader to this survey for a detailed evaluation of the existing techniques [30].
However, onding communities in a large graph is a fundamental andwell-studied problem in the

data-mining domain known as community detection. In contrast to community search, community
detection tries to ond all the communities in a graph rather than a single specioc community. There
are many proposed techniques for community detection [7, 23, 57, 72, 77]. Some techniques focus
on optimizing the modularity measure, which is widely used for the goodness of the community
[17]. Other techniqueswork on scalability [51] and provide search strategies that are faster than the
traditional modularity-based search. Comprehensive surveys on community detection techniques
are presented in References [34, 44, 58].

Our work is orthogonal from, yet complementary to, these works. In fact, the output communi-
ties in this work are valid as input to our querying module. Thus, we enable eocient querying on
large communities that is not addressed by these works.
Graph Data Management. With the rapid advancement of social networks and their ap-

plications, researchers have paid tremendous attention to big graph data management systems
[1, 50, 67, 75] in terms of modeling [46], storing [71], accessing [6], and querying [10, 61] graph
data. We refer the reader to this survey for detailed approaches and techniques on graph data man-
agement [42]. Although graph data management systems are very suitable to be adopted by many
community problems due to the nexible representation of these data, they are not very eocient
for community-centric queries. Graph-based techniques are well-suited for users-centric queries
such as onding top-k users who are expert in certain subjects based on the given user social net-
work. However, community-based queries are more complex and require aggregated results and
auxiliary indexes to capture and maintain the structure of a community to respond eociently to
the queries, especially for the large-size communities where the graph-based techniques do not
scale due to the inherently query complexity. Moreover, these systems process communities as a
set of individual users, leading to unacceptable query latency on a large number of users. Our work
addresses this limitation by introducing community-centric data management structures that deal
with a community as a whole unit rather than a bag of users. This enables eocient data manage-
ment and provides a low query latency.
OtherCommunity Problems. Several scattered problems have been studied on online commu-

nities, such as community-based question answering [56, 69] and multi-dimensional communities
[33]. Our work is orthogonal from all these works, focusing on identifying the top interactions
within a large community of users over spatial and temporal dimensions.

Top-k Spatial Queries. There has been a variety of research work that focused on spatial
queries with diferent predicates, including top-k spatial keyword queries [15, 63], top-k spatial
temporal queries [35, 49], and top-k spatial temporal keyword queries [22, 36, 47]. In the context
of user interactions, interactive top-k spatial keyword query [78] has been proposed by learning
user preferences at each round of interaction to improve the quality of top-k results. However,
these works are inherently user-centric queries, while this work focuses on the community as
a whole.
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3 PROBLEM DEFINITION

Before we deone the problem formally, we orst deone the terminologies used throughout this
work:

— Post: is a piece of content that is generated by a user and usually associated with text, times-
tamp, and geo-location.

— Interaction: is an event triggered by the users such as liking, commenting, or sharing posts.
— Established Community: is a community that has been around for a long time with a oxed
users base.

— Dynamic Community: is a community that is constantly changing and evolving where new
users join and existing users leave.

— Ad hoc Community: is a community that is formed to respond to an urgent event or formed
for a specioc purpose.

— User Index: is a data structure that stores information about users’ interactions partitioned
into subsets based on the time intervals.

— Community Index: is a data structure that stores aggregated information about community
interactions partitioned into subsets based on the time intervals.

The existing work on community detection and search is orthogonal and could serve as a prepro-
cessing phase to generate our established communities. However, our work focuses on scalable
indexing and processing complex queries on such detected communities, especially when they in-
volve a substantial number of users. A community could be a social media group where individuals
can join and leave or could be as simple as followers of a public ogure or a company. In the former
case, an administrator of the group, which is usually appointed upon the group creation, manages
the enrollment process or the group could be open where any individual can join and leave any-
time. In the latter case, the users choose to follow or unfollow, which is the common practice on
all major social media platforms such as Facebook [2] and LinkedIn [3].
We evaluate community queries on a dataset D that consists of posts P generated by the users.

Each post p ∈ P is represented with four main attributes (oid , kw , timestamp, location), where oid
is a unique identioer of the object, kw is a set of keywords that represent the textual description of
the object, timestamp is the time when the object is posted, and location is a tuple that represents
the geographical location, i.e., latitude and longitude coordinates, of the object when it is posted.
Table 1 shows a sample of posts. In this work, we use the terms post and object interchangeably. A
virtual community (C) is deoned as a set of users {u1, u2, u3, . . . , un } as members of the community
where |C | = n is the community size. An interaction is a specioc action that a user u performs on a
post p, such as like, reply, or share. Table 2 shows a sample of interactions between the users and
the posts with diferent type of interactions. We formally deone our community query as follows:
Community Spatio-Temporal Interaction Query (CSTIQ): given a virtual community C ,

a time interval Tq=[t1,t2], an integer k , an optional point location c and a spatial range r , and an
optional set of keywordsW , CSTIQ query onds a set of k posts Po so each post p ∈ Po satisoes the
following: (1) p.location lies within a spatial range centered at c with radius r , (2) p.kw ∩W � ∅,
i.e., p contains one or more of the query keywords, and (3)p is ranked top with respect to a ranking
function F (C,p,Tq) that is deoned as follows:

F (C,p,Tq) =
∑

∀u ∈C

Interaction(u,p,Tq),

where Interaction(u,p,Tq) is the total number of interactions that a user u makes with a post
p during a time interval Tq . F ranks posts based on total interaction from the given community
C , so the query outputs the top-k posts that have been most popular in C during the query time
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Table 1. Sample of Objects

OID Keywords Timestamp Object Location

o1 NBA, Lakers, Kobe, Bryant 05-05-2022 01:20:58 34.05° N, 118.24° W

o2 Coronavirus, Wuhan, China 05-05-2022 03:17:27 37.77° N, 122.41° W

o3 Election, GOP, Caucus 05-05-2022 05:55:23 40.71° N, 74.00° W

o4 Stocks, Tesla, Electric, Cars 05-05-2022 05:56:19 33.98° N, 117.37° W

o5 Windy, Weather, Wildores 05-05-2022 15:46:17 32.77° N, 96.79° W

o6 Tokyo, Olympics 05-05-2022 18:06:14 35.67° N, 139.65° E

o7 Beaches, Summer, Surong 05-05-2022 19:17:09 25.76° N, 80.19° W

o8 Sunny, Sport, Marathon 05-05-2022 19:33:06 42.36° N, 71.05° W

Table 2. Sample of Users’ Interactions with Objects

UID CID OID Location Action Timestamp

u1 c1 o1 34.05, −118.24 Like 5-5-2022 20:18:50

u2 c1, c3 o2 37.77, −122.41 Reply 5-5-2022 20:18:27

u3 − o3 40.71, −74.00 Share 5-5-2021 20:18:23

u1 c1 o3 40.71, −74.00 Like 5-5-2022 20:18:19

u4 c1 o1 34.05, −118.24 Like 5-5-2022 20:18:17

u2 c3 o5 32.77, −96.79 Reply 5-5-2022 20:18:14

u5 − o4 33.98, −117.37 Mention 5-5-2022 20:18:09

u6 c2 o1 34.05, −118.24 Like 5-5-2022 20:18:06

period. Both keywords and locations are optional, which enables the query to be nexible in diferent
aspects. First, providing keywords W enables the query to search for popular posts related to
a specioc topic, while omittingW allows discovering any popular topics within the community
C . Second, providing or omitting a query location allows nexibility to pose either pure spatio-
temporal or temporal queries. This is important due to several reasons. It facilitates supporting
virtual communities that are not tied to a physical location, e.g., data-mining research community,
and it enables to query global-scale communities, e.g., animal rights activists.

4 CSTIQ INDEXING

Indexing user interactions in large online communities faces two main challenges. First, user
interactions are huge in number, up to an order of magnitude larger than the posts. For instance,
our evaluation real dataset has 80 million posts with over 1.9 billion interactions. With the high
arrival rates of such data, the index needs a light and eocient digestion mechanism. Second, the
community nature is dynamic over time, so users join and leave. The index should avoid expensive
rebuilding and restructuring operations.
To address these challenges, while serving our query as deoned in Section 3, we introduceCom-

munity Spatio-Temporal Indexing Query (CSTIQ) framework. Figure 1 shows an overview
of CSTIQ framework. It consists of multiple indexing components. The orst component is the
community index that indexes interactions in established communities where the community
users are already known in advance. This index aggregates the interactions of all users within
the community. Thus, it will expedite the query processing by dealing with the whole community
as one unit instead of millions of individual users. This index is light and temporally sliced to
handle an excessive volume of interactions eociently. However, the community index helps the
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Fig. 1. CSTIQ framework.

query processor only when querying an established community. Thus, this index cannot serve
any query that targets either a new community or even a slight variant of an existing community.
To support dynamic communities, CSTIQ introduces the second component, the user index, to
index all users’ interactions regardless of their community memberships. The user index stores
any user interactions aggregated by user IDs. This index stores more detailed information than
the community index and can serve any query, including the ad hoc communities that have never
been seen before. The two indexing components store only post ids and locations. These ids are
used to retrieve data from a third indexing component, called the master index, that stores all
available information about posts, e.g., user proole or keywords.

CSTIQ index always includes one user index, but it might include more than one community
index. The proposed community index is created and dropped on demand to tune the system
performance for frequently queried communities, just like database indexes where admins create
and drop indexes on demand to tune performance. CSTIQ index organizes data based on temporal
and keyword dimensions while storing raw location information, enabling the query processor to
serve CSTIQ query with all its three-dimensional parameters, time, location, and keywords. Both
user and community index have two sub-components: an in-disk component and an in-memory
bufer to swap the data between memory and disk. The bufer adopts the famous least recently
used (LRU) policy to evict the old data. The query processor blends data from diferent indexing
components to provide low query latency, as detailed in the following sections. The rest of this
section details both the community index and user index. The pseudocode for the index update is
presented in Algorithm 1.

5 QUERY PROCESSING

5.1 Community Index

This section presents the community index. This index summarizes interactions of an established
community as one whole unit. The section details index structure and update operations.
Index Structure. The community index has two identical indexing components: memory-based

index and disk-based index. The former is mainly for the most recent community interactions to
enable light and eocient digestion for excessive recent data. The latter is for the relatively old
interactions that are evicted from the main memory and usually receive much fewer updates. Both
components are divided into non-overlapping time slices [T0, T1, T2, . . . , Tnow ]. These time slices
are equal in size and of user-deoned length. They can be set to cover any period of time, e.g., 24 hrs,
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ALGORITHM 1: CSTIQ Index Update

1 Input: Posts (P), Interaction (IR)

2 for each p ∈ P do

3 Update Master Index:

4 Index p in the Master Index

5 for each (u,p) ∈ IR (user u interacts with post p) do

6 Update User Index:

7 if u ∈ Hu .key then

8 Hu [u].append(p.oid,p.location)

9 else

10 Hu [u] = [(p.oid,p.location)]

11 Update Community Index:

12 CI = the community index of the community u belongs to

13 Hm = master hash structure in CI

14 if p.oid ∈ Hm [ID] then

15 Hm .ID[p.oid][Count] = Hm .ID[p.oid][Count] + 1

16 else

17 Hm .ID[p.oid][Count] = 1

18 I = the inverted index in CI

19 for each keyword kwd ∈ p.kw do

20 if kwd ∈ I then

21 Hi = the hash structure associated with kwd

22 Hi [p.oid][Count] = Hi [p.oid][Count] + 1

23 else

24 add kwd to I and create Hi associated with kwd

25 Hi [p.oid][Count] = 1

26 Return Updated Master Index, Community Index, User Index

12 hrs, or 1 hr, based on available system resources and data size. Whenever the current time slice
has passed, a new time slice is created andmarked to beTnow . All interactions happeningwithin the
current time interval are indexed into the Tnow slice. Each time slice includes two data structures:
(1) a master hash structure (Hm ), where the post ID is a key and the value is the post location
and total interactions; (2) an inverted index (I ), where every entry represents a keyword, and each
keyword points to a hash structure (Hi ) similar to the master hash structure. Any query that does
not have a keyword,Hm data structure will be utilized. However, the query that specioes keyword
parameter, I will be used to process the query eociently. The Community Index is constructed
and updated incrementally. Initially. both the master hash structure Hm and the inverted index
are empty. As interactions occur between users and posts, these changes are renected within the
community index, as discussed as follows:
Figure 2 shows the structure of an example community index. The ogure shows three time

slices, labeled as T0, T1, and Tn . T0 has Hm , which stores object ids, locations, and the counts of
interaction from this community such as o1 has 66 community interactions and location coordi-
nates (30.26,−97.74). In addition,T0 has I , which stores Pizza keyword, which points toHi that has
two posts, o3 and o4, and their count values are 40 and 15 community interactions and locations
(41.87,−87.62) and (33.98,−117.37), respectively.

Index Update. Whenever a user who belongs to a community C interacts with an object oid ,
C’s corresponding index is updated accordingly. The in-memory index updates two data structures:
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Fig. 2. Community index structure.

Fig. 3. Community index update example.

the master hash index Hm and the inverted index I . First, oid is looked up in Hm . If oid is found,
then its count is incremented by one; otherwise, it is inserted with count set to one and location
set to oid .location, marking the orst interaction from C’s users to oid . Then, the inverted index I

will index oid’s keywords. For a specioc post p, p.kw is a set of keywords that represent the textual
description of the post. We extract each keyword from p.kw and apply necessary preprocessing
techniques. In the inverted index I , every keyword kwi is also associated with a hash structure
Hi , which is similar to Hm . During the processing of a keyword kw , if kw is not already present
in I , then it gets added to I and an associated hash structure for it is created. Conversely, if I does
include kw , then the relevant hash structure linked to kw is identioed and the corresponding count
value is subsequently updated.

Figure 3 shows an example of updating the community index at temporal slice T . Consider a
user from the community, denoted as u1, who interacts with a post o10, which is characterized
by the textual description <Basketball Olympics= with a geographical location 34.69, 135.50. Both
the indices Hm and Hi associated with the terms <Olympics= and <Basketball= are to be updated
in response to this interaction. Since o10 is not in the ID column of Hm , a new entry with ID o10
and an initialized count of 1, together with the geographical location of the post, is added to Hm .
Further, the keywords from o10, i.e., <Olympics= and <Basketball= are extracted and used to update
I . Since <Olympics= is already in I , the corresponding Hi is retrieved and a new entry is added at
the bottom. The word <Basketball= is not in I , so it is added to I and a new Hi associated with
<Basketball= is created and initialized.

Once the current time slice expires, bothHm and I are concluded, and a new time slice is initiated
with empty structures.Hm and eachHi of the concluded time slice are sorted based on the number
of interactions in descending order. The sorted time slices enable eocient query processing, as
detailed in the following sections. After the total designated memory budget is consumed, the least
recently used time slices are evicted from the in-main index to the corresponding in-disk index.
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Fig. 4. User index structure.

Fig. 5. User index update example.

5.2 User Index

The user index organizes all users’ interactions regardless of their aoliations to communities. This
enables the query processor to eociently support community dynamism as users join and leave
established communities. The index has two identical components, an in-memory index and an
in-disk index. Each of them is divided into disjoint time slices of lengthT , which are corresponding
to the ones of the community index. To eociently index the huge number of interactions, a hash
structure Hu is used where the user ID serves as a key and the value is a list of posts that includes
ids and locations that the users interacted with. This hash structureHu is light and provides a very
efective search and insertion. When the time slice T0 is expired, a new time slice T1 is created.
After consuming all designated memory budgets, the least recently used time slices are evicted
from the main memory and stored in the disk-based index to free up space for new time slices in
memory.
Figure 4 shows the user index structure. The ogure shows three time slices, T0, T1, and Tn . T0

points to a hash structureHu that stores user ids u1, u3, u5, and u8. u1, for example, points to a list
of objects with ids o2 and o1 and locations (37.77,−122.41) and (30.26,−97.74), respectively, with
which u1 has interacted during T0.

Figure 5 illustrates the update of the user index. In this case, the user u1 interacts with the post
o10; consequently, an entry (o10, (34.69, 135.50)) is added to end of the list corresponding to u1 in
the user index.
This section describes the query processing of CSTIQ query, which is deoned in Section 3 utiliz-

ing the indexing framework that is introduced in Section 4. The query processor employs diferent
techniques tominimize the overhead on system resources and provide eocient query latency.More
speciocally, we propose three algorithms to process CSTIQ query, namely, baseline ComCQ, fast
ComCQ, and approximate ComCQ algorithms. The rest of this section introduces a high-level query
processing framework that is utilized for the three algorithms, and then we detail the speciocs for
each algorithm.
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5.3 uery Processing Framework

This section introduces a three-step query processing framework. The orst two steps are shared
among all our proposed algorithms, while the third step difers based on the algorithm. Every
CSTIQ query takes a community C parameter as an input, and there are three diferent cases for
the community C parameter: Case 1: C has been previously established and an index for C has
been already built and being maintained. Case 2: C is not established but it is a variation of an
established communityCe , whereC=Ce ±U∆. Thus, the list of user changesU∆ must be considered
in the query processing. Case 3: NeitherC has been established nor the index forC has been built.
Our query processor consists of three steps:
(1) Step 1: Index retrieval. Given a community C , as an input of CSTIQ query, in this step,

we check which case the community C falls into. If C falls into Case 1, then the index of C is
retrieved and fed to Step 2. If C falls into Case 2, then another auxiliary community in-memory
index is being built utilizing the index of users interactions for only U∆ users within the given
query time interval; we call this auxiliary community index U∆ index. The index for Ce and the
newly generated auxiliary U∆ index are retrieved and fed to Step 2. If C falls into Case 3, then a
new index is being built utilizing the index of users interactions for communityC within the given
query time intervals. Then, the new index is fed to Step 2.
(2) Step 2: Temporal and keyword oltering. Given the community C index from Step 1, the

query processor retrieves the time slices that overlap with the query time interval T=[t1,t2] and
stores a copy of each slice in in-memory list Lj that corresponds to interval j. A list Lj stores the
entries of its time slice in descending order of their total interactions. These entries are already
ordered as part of the indexing process, so it adds no sorting overhead. The exception to this is the
most recent sliceTnow that is not ordered, so it is copied and the corresponding list Lnow is sorted
on the spot if it lies within the query time. If the query has keywords, then the query processor
retrieves Hi hash structures that are corresponding to every query keyword and merges them
in one list Lj ordered by total interactions. The merged list holds the union of the posts and the
total interactions of each post. If the query does not have any keywords, then the query processor
just copies the master hash structure Hm . To reduce the overhead of reading back-and-forth from
the disk, all lists are stored in an in-memory bufer. When the in-memory bufer is full, the least
recently used (LRU) policy is adopted to evict data to continue serving incoming queries.
IfU∆ index exists, then the copied lists are updated to renectU∆’s users changes, whether adding

their interactions or subtracting them. For each time slice in U∆ index, we iterate over all posts
and update corresponding list Lj . Finally, the updated list is reordered based on the new total
interactions. The updates afect only the copied lists in the main-memory. Thus, the original copy
of community time slices, either in memory or in disk, is not afected. Finally, the lists Lj are fed
to Step 3.
(3) Step 3: Spatio-temporal aggregation. Given the lists of posts that are retrieved in Step 2,

these lists are processed to return top-k posts that the community C interacted with during the
query time interval and within the query spatial range. Due to variations in query parameters,
data sizes, and system resources, we have three diferent variations of our query processing tech-
nique that accommodate diferent needs. Each of these variations perform Step 3 diferently. The
following sections detail each of them.

5.4 Baseline ComCQ

In case of small data sizes, we provide a baseline algorithm, called baseline ComCQ (B-ComCQ),
that performs straightforward aggregation to process CSTIQ query and returns exact results. B-
ComCQ’s input is the lists Lj that are retrieved in Step 2. B-ComCQ creates a new hash structure
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ALGORITHM 2: Baseline ComCQ

1 Input: A CSTIQ query q

2 Initialization:

3 Retrieve the community index C and construct its variation based on the user index if needed

4 Filter the entries from each time slice and obtain the oltered lists of entries L = [L1, . . . ,Lm ]

5 Top-k Aggregation:

6 Ha = { }

7 for each Li ∈ L do

8 for each entry e = (id, count , loc) ∈ Li do

9 if distance(loc,q.c) < q.r then

10 if id ∈ Ha .keys then

11 Ha [id] = Ha [id] + 1

12 else

13 Ha [id] = 1

14 ans = rank the top-q.k entries from Ha according the count

15 Return ans

Ha that is similar in structure to Hm and Hi . The purpose of Ha is aggregating the total of in-
teractions for each post. For each list Lj , B-ComCQ iterates over all entries in its corresponding
hash structure. For each entry, it checks if the post p lies within the query q’s spatial range, i.e.,
distance(p.location,q.c) < q.r . If so, then its total interactions are added to Ha . After processing
all lists, Ha has all the aggregated entries. Finally, B-ComCQ sorts Ha , and the top-k entries of the
sortedHa are returned as the onal answer. Algorithm 2 gives the pseudocode for Baseline ComCQ.

5.5 Fast ComCQ

B-ComCQ performs exhaustive search to ond the top-k posts. This is ineocient when the number
of time slices or the number of entries is even moderate. Therefore, we develop an eocient, yet
exact, algorithm that is inspired by Fagin’s TA algorithm [27] called fast ComCQ (F-ComCQ).
F-ComCQ assumes that all time slices can ot in main memory. F-ComCQ does not need to access
every entry in every list Lj . Instead, it smartly prunes entries that surely have no chance to be in
the top-k posts. Thus, this will save many unnecessary searches. For each list Lj that is fed from
Step 2, F-ComCQ performs ove steps:

(a) Initialization with spatial oltering. F-ComCQ iterates items of Lj in order until the orst
item that lies within the query spatial range is found. This item is then inserted into a priority
queue Q with priority score equal to the number of interactions of the item. This repeats to every
list Lj , so Q is initialized with the most popular post from each time slice. An ordered list Ans
is initialized to keep track of the top-k items found so far in every iteration. A variable SumQ is
initialized with the sum of priority scores in Q .
(b) Top item pickup with spatial oltering. If the priority queue is not empty, then remove

the top entry eQ of the queue Q and insert into Q the next entry that lies within the query spatial
range from the same time slice of eQ and update SumQ accordingly. We maintain a pointer in each
list Lj that always points to the orst entry that has not been visited so far to facilitate iterating
over items of the same time slice.
(c) Temporal aggregation. Using the hash structures Hm and Hi of each time slice, this step

calculates the total interactions of eQ in all time slices. We check if eQ exists in Hm or Hi , and
we add its interactions to the summation variable. After iterating over all hash structures, the
summation variable includes the total interactions of eQ in all time slices.
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ALGORITHM 3: Fast ComCQ

1 Input: A CSTIQ query q

2 Initialization:

3 Retrieve the community index C and construct its variation based on the user index if needed

4 Filter the entries from each time slice and obtain the oltered lists of entries L = [L1, . . . ,Lm ]

5 Top-k Aggregation:

6 pq = ( ) //priority queue

7 for each Li ∈ L do

8 for each e = (id, count , loc) ∈ Li do

9 if distance(loc,q.c) < q.r then

10 pq.add(e)

11 break

12 ans = ( )

13 sumQ = sum of priority scores in pq

14 while pq is not empty do

15 e = pq.dequeue()

16 (id, count , loc) = e

17 L = the list e comes from

18 add the next entry that satsioes the distance constraint to pq from L

19 update sumQ

20 count_total = e .count+ interactions with this post from other time slices

21 if ans .size < k then

22 put (id, count_total) in ans

23 else

24 if count_total > kth score from pq then

25 remove the kth item in ans

26 put (id, count_total) in ans

27 if ans > k AND kth score in ans < sumQ then

28 break

29 Return ans

(d) Top-k answer update. If size of Ans list < k , then insert eQ into the ordered list Ans . Once
the size ofAns grows to k and larger, we maintain lower_bound as the kth, i.e., lowest, score inAns .
If total interactions of eQ > lower_bound , then we remove the kth item in Ans and insert eQ in
order, otherwise, eQ is discarded. Then lower_bound is updated with the new lowest score in Ans .
(e) Search termination. If Ans size ≥ k and lower_bound ≥ SumQ , then the search stops and

Ans is the onal answer. Otherwise, we repeat steps b through d.
Picking up top popular items orst and termination based on existing Ans scores eliminate

any unnecessary processing and speed up the search signiocantly, as shown in our experiments.
Algorithm 3 gives the pseudocode for Fast ComCQ.

5.6 Approximate ComCQ

F-ComCQ assumes that data of all query time slices ot in main memory at once. When this
assumption is invalid, meaning that the available memory is not enough or the query time or
data size are too large to ot in main memory, we propose an approximate version of F-ComCQ,
called approximate ComCQ (A-ComCQ), which utilizes the available memory budget to provide
highly accurate query answer. A-ComCQ exploits the observation that users’ interactions obey

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 1, Article 6. Publication date: March 2024.



6:14 A. Almaslukh, et al.

the power-law distribution [8, 12, 55, 64–66, 76], so most of the interactions come from a small
number of users. Thus, loading only part of the data and ignoring the long tail still achieves
very high accuracy and reduces the computation overhead tremendously. Accordingly, A-ComCQ
retrieves only top items in every time slice.
A-ComCQ takes an input parameter α that represents the number of top items to retrieve from

each time slice.Whenα → ∞, all the time slice data is loaded tomemory andA-ComCQ acts similar
to F-ComCQ. With smaller values of α , less data is loaded to memory to adjust the query processor
for the limited system resources. For each time slice, only α top items are loaded from disk and
copied to the lists Lj that corresponds to time slice j. Then, all the ove steps of F-ComCQ are
applied on the loaded lists. As shown in our experiments, for practical values of query parameters,
the output accuracy of F-ComCQ and A-ComCQ are similar with very marginal inaccuracy, as
some items are missed due to data truncation. However, the query processing time is decreased
signiocantly, since a huge portion of data has been truncated.

6 COMPLEXITY ANALYSIS

This section presents time and space complexity analysis for the proposed indexing and query
processing algorithms.

6.1 Complexity of Indexing

We discuss the time and space complexity of indexing for both the user index and the community
index for a specioc communityC . Denote themaximum length of a post, i.e., the maximum number
of words from a post, as Lmax , the total number of interactions as N , and the number of temporal
slices as T .

6.1.1 Complexity of Community Index. In this section, we discuss the time and space complexity
of the community index proposed in Section 5.1.

Time Complexity: Consider an interaction generated by communityC , associated with a post
p. Identifying the presence of p in Hm requires O(1) time. Further, updating Hm , i.e., increasing
the count or creating a new entry, also takes time O(1). Similarly, for the keywords contained in
p.kw , identifying the presence of the correspondingHi index incurs a time complexity ofO(Lmax )

due to a maximum of Lmax keywords from a post. Similar to updatingHm , updating each involved
Hi takes time O(1). The cumulative time taken to update the Hi indices associated with all the
keywords of a post amounts toO(Lmax ). Therefore, the time complexity of indexing an interaction
takes O(1) +O(Lmax ) = O(Lmax ). Since there are N interactions, the time complexity of building
the Community Index isO(LmaxN ). Although hash collisions and the need for resizing may occur
as the size of the index increases, the amortized time complexity for accessing the hash structure
consistently remains at O(1) per interaction.
Space Complexity: For an interaction generated by communityC , associated with a post p. If p

is encountered for the orst time, then we record in Hm the attributes p.ID, p.count , and p.location,
all of which requireO(1) storage. Also, we record the same attributes in eachHi index correspond-
ing to diferent keywords in p, which takes O(Lmax ) storage, since p has at most Lmax keywords.
In cases where p has been previously observed, no additional space is required in either Hm or Hi

indices, since only an update to the interaction count is needed. Given N interactions, the maxi-
mum number of distinct posts is O(N ). Consequently, the upper bound for storage in Hm and Hi

is O(N ), and O(LmaxN ), respectively, which results in O(LmaxN ) space complexity to build the
Community Index.

6.1.2 Complexity of User Index. In this section, we discuss the time and space complexity of
the user index proposed in Section 5.2.
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Time Complexity: When a user u makes an interaction with a post p, we utilize Hu , with the
user ID as the key, to identify the list of posts with which this user has previously interacted. This
process takes at an amortized time complexity ofO(1), as explained above. Subsequently, the post
involved in the current interaction is appended to the end of this list, a procedure also requiring
O(1) time. Given that there are N total interactions, the overall time complexity of building the
User Index is O(N ).

Space Complexity: Every time a user u makes an interaction with a post p, the ID of post p
along with its geographical coordinate is stored in the corresponding list, which takesO(1) storage.
Since there are N interactions, the total space complexity is O(N ).

6.2 Complexity of uery Processing

We discuss the time and space complexity of running diferent query processing algorithms on
a specioc community index. Similar to the above, we assume the query spans T temporal slices,
involves N interactions, and returns the top-k posts.

6.2.1 Complexity of Baseline ComCQ. This section gives the time and space complexity of the
Baseline ComCQ algorithm proposed in Section 5.4.

Time Complexity: Baseline ComCQ aggregates interactions among diferent temporal slices,
which ends up having O(N ) posts in the hash structure, taking O(N ) time. Sorting and identify-
ing the top-k entries takes O(NloдN ) time, which gives a time complexity of O(N + NloдN ) =

O(NloдN ). Consequently, the time complexity of Baseline ComCQ is O(NloдN ).
Space Complexity: Baseline ComCQ aggregates post interactions using hash structure Ha ,

taking spaceO(N ) for up to N posts, which leads to a space complexity ofO(N ). Sorting and iden-
tifying the top-k entries takes alsoO(N ). Consequently, the space complexity of Baseline ComCQ
is O(N ).

6.2.2 Complexity of Fast ComCQ. This section gives the time and space complexity of the Fast
ComCQ algorithm proposed in Section 5.5.

Time Complexity: Fast ComCQ employs Fagin’s Threshold Algorithm (TA) for incremen-
tal best-orst search. Its worst-case time complexity isO(N (logk +T )) due to a maximum ofO(N )

iterations. Within each iteration, the process of updating the priority queue incurs a time com-
plexity ofO(logk). Computing the temporal aggregation (step (c)) takesO(T ) amongT time slices
using the hashing property. The evaluation of the terminating condition, i.e., calculating the up-
per bound score from each time slice, requires O(T ) time. Therefore, the overall time complexity
of Fast ComCQ is O(N (loдk +T )).

Space Complexity: Fast ComCQ requires storing the entries from each time slice in the mem-
ory during query processing, which takes O(N ) storage. Additionally, Fast ComCQ maintains a
priority queue for the best-orst search, which takes O(k). In reality, N >> k . Thus, the time com-
plexity of Fast ComCQ is O(N ).

6.2.3 Complexity of Approximate ComCQ. This section gives the time and space complexity
of the Fast ComCQ algorithm proposed in Section 5.6. The complexity analysis of Approximate
ComCQ is similar to that of Fast ComCQ.
Time Complexity: The time complexity of Approximate ComCQ is O(αN (logk + T )) due to

a maximum of O(αN ) iterations. The complexity from iteration is logk + T , for the same reason
explained in Fast ComCQ.
Space Complexity: Approximate ComCQ takes O(αN ) storage to store all the entries from

the shortened time slices. Additionally, Approximate ComCQ maintains a priority queue for the
best-orst search, which takes O(k), which is the same as Fast ComCQ. In reality, αN >> k . Thus,
the time complexity of Fast ComCQ is O(αN ).
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Table 3. Parameter Values

Parameter Settings

Community Size 10k, 100k, 500k, 1M, 2M

Data Size (millions) 20, 40, 60, 80

k 10, 50, 100, 500, 1,000

Time Interval (days) 1, 7, 14, 28, 56, 84

α 10, 50, 100, 500, 1,000, 10,000

Keywords 1, 2, 3, 4, 5, 6

Bufer Size (days) 0, 10, 20, 40

∆ Users 1k, 10k, 50k, 100k

Spatial Range (kilometer) 10, 20 , 40, 80

Table 4. Evaluation Dataset Statistics

Dataset 20M 40M 60M 80M

Interactions 492M 930M 1,428M 1,904M

7 EXPERIMENTAL EVALUATION

This section presents the experimental evaluation of the indexing framework and the ComCQ
algorithms as discussed in the previous sections. Section 7.1 explains the experimental settings
and the evaluation datasets. Sections 7.2– 7.5 evaluate query latency, indexing scalability, storage
overhead, and community dynamism, respectively.

7.1 Experimental Setup

We evaluate the proposed indexing framework and query processing for diferent performance
measures, namely, indexing scalability, storage overhead, query latency, and query accuracy (in
case of the approximate algorithmA-ComCQ). Table 3 summarizes the evaluation parameters with
default values marked as bold. The community size is the number of community users, and data
size is the number of posts that the users can interact with. The bufer size is the maximum number
of time slices that are bufered inmainmemory. ∆ users are the number of users who join or leave a
established community. The rest are the query parameters, except α , which is an A-ComCQ query
processor parameter. All experiments are based on Java 14 implementation and using an Intel
Xeon(R) server with CPU E5-2637 v4 (3.50 GHz) and 128 GB RAM running Ubuntu 16.04. Each
index time slice represents 1 day.
Evaluation data. We have collected historical tweets from public Twitter APIs. Then, four
datasets, of sizes 20, 40, 60, and 80 million tweets, are composed for our evaluation. These tweets
are posted by 5.5M unique users and distributed equally to cover a 12-week period (84 days). Each
Tweet is represented with ID, keywords, and the number of interactions based on the number of
likes, retweets, replies, and quotes. Table 4 summarizes the number of total interactions in each
dataset. A randomword from the tweet text is attached as a keyword. A synthetic location for each
tweet is generated uniformly as a random point within the bounding rectangle of New York City
to simulate a compact community spatial proximity. To simulate the community interactions with
the tweets, a portion of the interactions is being randomly distributed to the community users cal-
culated based on its size to total number of users. Thus, bigger communities get a bigger portion
of interactions.
Query workloads. We generate the query set based on the time interval size. For example, if
the time interval size is 7 days, then we randomly generate all the possible queries which their
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, ,

Fig. 6. Varying k .

time intervals are 7 continuous days from day 1 to day 84. Then, we generate keywords query
list randomly chosen from the inverted index in each time slice; these keywords must appear in
at least 5,000 tweets to avoid rare keywords that are rarely searched. The query center location
is generated as a random point within the bounding rectangle of New York City, similar to the
evaluation data, with query spatial range indicated in Table 3.

7.2 uery Evaluation

This section evaluates the proposed algorithms to process the CSTIQ queries with varying query
settings. B-ComCQ and F-ComCQ algorithms return exact answers, while A-ComCQ returns ap-
proximate answers. Thus, we report the accuracy of the approximate answers compared to the
exact algorithms results. The query latency includes the I/O time to load the data from disk and
the query processing in main memory.
Efect of varying k . Figure 6 shows the efect of varying k on CSTIQ queries. Figure 6(a) de-

picts the query latency with varying k for the proposed algorithms. B-ComCQ performs the worst
among the proposed alternatives, which is 7 times slower than F-ComCQ and 2,700 times slower
than A-ComCQ. A-ComCQ provides 385 times faster runtime compared to F-ComCQ, while still
providing pretty accurate results for practical values of k up to 100. The efect of changing k on
query latency is slight, since for a specioc time interval, the number of I/O needed is oxed, regard-
less of k . When k takes a larger value, the query processor takes more to rank the top-k entries.
However, the I/O time dominates the query time. Consequently, the query latency is less likely
afected by k . Figure 6(b) shows the accuracy of A-ComCQ compared to the ground truth of B-
ComCQ and F-ComCQ. Indeed, A-ComCQ is very accurate for k up to 100, but not that accurate for
larger k values. Given that the default α value is 1,000, this is interpreted that for large k value, the
bottom item in the top-k might not be retrieved by A-ComCQ within the orst 1,000 items of the
time slice. This low accuracy signiocantly improves with changing the value of α to be a multiple
of the k value as discussed below.

Efect of varying α . The number of processed items in each time slice, α , afects the perfor-
mance of A-ComCQ and trades of query latency with query accuracy. Figure 7 shows the efect
of α on both query latency and accuracy for k values 100, 500, and 1,000. Figure 7(a) shows that
the query latency of A-ComCQ is increasing linearly when the α value is increased. Figure 7(b)
depicts the accuracy with varying α values. k and α are correlated. When α value is signiocantly
less than k , for example α=10 and k=1,000, the accuracy score is expected to be worse with low
latency, while increasing α improves accuracy while increasing latency. The best tradeof is when
α value is set as three times k , which provides high accuracy with reasonable latency. For practical
values of k , up to 100, all experiments show eocient query latency with high accuracy.

Efect of varying k with keywords. Figure 8 shows the efect of varying k on CSTIQ queries
with keywords. Figure 8(a) shows the latency of the three algorithms. The query latency of both
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Fig. 7. Varying α .
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Fig. 8. Varying k with keywords.

F-ComCQ and A-ComCQ is increasing linearly with increasing k . However, the query latency is
signiocantly less for the same queries without keywords, as shown in Figure 6, because of the
power of keyword pruning that is equipped in the community index. Therefore, the query proces-
sor utilizes the inverted index to reduce the search space to only tweets that contain the query
keywords. Figure 8(b) shows the accuracy scores for A-ComQ. A-ComCQ is accurate for k values
up to 100. The accuracy reduces when default value of α is less than three times k , as discussed
before. However, the reduction in accuracy when querying keywords is noticeably less than the
reduction in Figure 6(b).

Efect of varying time interval length. Figure 9 shows the performance of the three algo-
rithms with diferent time interval lengths measured by days. Each day represents a single time
slice. Figure 9(a) depicts the query latency. All algorithms encounter longer query latency when
the query time interval increases. This is because a longer time interval incurs more I/Os and more
number of entries to process in the ranking of the query. Relatively, F-ComCQ performs 5–8 times
faster, while A-ComCQ performs 152–2,693 times faster than B-ComCQ. Thus, A-ComCQ performs
steady with the lowest query latency, and it is up to 400 times faster than F-ComCQ, with better
scalability over large time periods. Figure 9(b) shows the accuracy of A-ComQ. A-ComCQ has in-
creasing accuracy with increasing the time interval length, with the default values of k and α . This
is because a popular item tends to appear frequently in a continuous time period. An item from the
top-k that is not fetched by A-ComCQ in one time slice is probably fetched by in another time slice.
A-ComCQ is primarily designed for long time periods, as the time slices are many and it is an over-
head to load the whole lists in memory. So, the accuracy performance of A-ComCQ is compliant
with this design goal and it works efectively on long periods. From another perspective, querying
small- and medium-length time periods calls for increasing the value of α to provide acceptable
accuracy, which does not cause a problem, as the number of time slices is small for these queries.
Efect of varying time interval length with keywords. Figure 10 shows the efect of time

interval length on CSTIQ queries with keywords. Clearly, the query latency is much less than the
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Fig. 9. Varying time intervals.

Fig. 10. Varying time intervals with keywords.

,

,

,

Fig. 11. Varying query range.

same query without keywords, as shown in Figure 9; the reason is utilizing the equipped inverted
index, which olters out the objects based on the existence of the query keywords. A-ComCQ still
achieves the lowest query latency with all diferent time intervals with similar latency versus
accuracy tradeof to Figure 9.

Efect of varying spatial range. Figures 11 and 12 show the performance of the three algo-
rithms versus diferent query spatial range with and without keywords, respectively. All algo-
rithms show steady query latency as the query spatial range varies; this is because changing the
spatial range does not afect the number of I/Os, which is the dominating factor in the query
processing. Queries with keywords have much less latency due to the inverted index pruning. B-
ComCQ performs worse than the other alternatives. Figures 11(b) and 12(b) show thatA-ComCQ is
more accurate for large spatial ranges; this is because under small spatial range, the top items that
A-ComCQ retrieves from each time slice might not have that many items that satisfy the query
range. This calls for increasing α value for small spatial ranges.

Efect of varying keywords. Figure 13 shows the performance of the three algorithms under
diferent number of keywords. The query latency of all algorithms increases as the number of
keywords increases; this is because when the number of keyword increases, we access more on
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Fig. 12. Varying query range with keywords.
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Fig. 13. Varying keywords.

Fig. 14. Varying Bufer Sizes.

the inverted index, which takesmore time. Figure 13(b) shows thatA-ComCQ is more accuratewith
large number of keywords; this is because under multiple keywords, the marginal error brought
by A-ComCQ is minimized.
Efect of varying bufer sizes. Figure 14 shows the efect of the size of the bufer on the CSTIQ

queries performance in terms of I/O time. Clearly, B-ComCQ and F-ComCQ algorithms take the
most advantage of the bufer and avoid retrieving the data from the disk if the data exists in the
bufer due to their high latency compared to A-ComCQ. If the size of the bufer increases, then the
I/O time decreases signiocantly.

7.3 Indexing Scalability

This section evaluates the scalability of the proposed indexes in terms of time required to build
the index. We evaluate the three main indexing components: the community index for index-
ing community interactions (ICI ), the user index for indexing user interactions (IUI ), and
the master data index (MDI ). Figure 15(a) shows the index scalability with diferent number of
objects. All indexes require more time to build the index when the number of objects increases.
However, IUI and ICI need additional processing for the interactions while MDI only processes
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Fig. 15. Indexing scalability.

Fig. 16. Storage overhead with varying datasets.

the objects and indexes them in batching. The indexing time includes the I/O time to store the
expired time slices to the disk for IUI and ICI in addition to the I/O time of MDI to store the ob-
jects when the bufer reaches its capacity. Figure 15(b) shows the impact of the community size on
the indexing time. When the number of users is increased, the indexing time is increasing due to
the increasing number of interactions per user. Thus, when community size is 10k, the number of
interaction is tremendously less than when the community size is 1M.

7.4 Storage Overhead

This section evaluates the storage overhead for the proposed indexes. Figure 16 shows the storage
overhead in GB for the indexes IUI, ICI, and MDI. The interaction indexes (IUI and ICI ) are stable
even when the number of objects is increased. The interaction indexes depend on the number of
users and the number of interactions; thus, the overall storage overhead is not afected by the
number of objects. However, MDI is increasing linearly when the number of objects is increased,
as the number of objects heavily afects MDI.

7.5 Community Dynamism

In this section, we evaluate the overhead of community dynamism where users join and leave the
community. U∆ represents the list of users with changing community membership.
Efect of indexing U∆ users. Figure 17 shows the indexing time with varying U∆ users’ sizes.

Figure 17(a) shows the efect of the U∆ users in case the CSTIQ query does not include any key-
words. The indexing time for small U∆ users is dominant by the I/O time, as we need to retrieve
all the time slices of IUI from the disk to build the index for the new U∆ users. However, when
theU∆ users is signiocantly bigger, the CPU time is increased accordingly. Figure 17(b) depicts the
indexing time for the U∆ users when CSTIQ query includes keywords. The efect of keywords is
minimal when the size of U∆ users is relatively small. However, the efect is very obvious when
the size ofU∆ users is very large. For example, indexing time forU∆ users size equal 100k is double
the indexing time without keywords. The additional overhead comes from the I/O of retrieving
the data from disk utilizing the MDI index.
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, ,

Fig. 17. Indexing ∆ users.

8 CONCLUSION

This article has introduced community-centric query, which returns top-k objects that a specioc
community interacted with the most given a time interval, an optional spatial range, and a set of
keywords. We proposed a novel indexing framework that provides eocient resource management
and scalable query processing. Moreover, we propose three algorithms, exact and approximate,
that eociently process the queries by utilizing the underling indexing framework. Our techniques
support community dynamism, which allows users to join and leave communities over time. We
avoid rebuilding the community index when users change their community memberships. We
evaluated the proposed techniques on a real Twitter dataset and have shown their eociency to
handle large communities.
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