L)

Check for
updates

Scalable Spatio-temporal Top-k Interaction Queries on
Dynamic Communities

ABDULAZIZ ALMASLUKH, College of Computer and Information Sciences, King Saud University,
Riyadh, Saudi Arabia

YONGYI LIU, Department of Computer Science and Engineering, Center for Geospatial Sciences,
University of California, Riverside, United States

AMR MAGDY, Department of Computer Science and Engineering, Center for Geospatial Sciences,

University of California, Riverside, United States

Social media platforms generate massive amounts of data that reveal valuable insights about users and com-
munities at large. Existing techniques have not fully exploited such data to help practitioners perform a deep
analysis of large online communities. Lack of scalability hinders analyzing communities of large sizes and re-
quires tremendous system resources and unacceptable runtime. This article proposes a new analytical query
that identifies the top-k posts that a given user community has interacted with during a specific time interval
and within a spatial range. We propose a novel indexing framework that captures the interactions of users
and communities to provide a low query latency. Moreover, we propose exact and approximate algorithms
to process the query efficiently and utilize the index content to prune the search space. The extensive exper-
imental evaluation on real data has shown the superiority of our techniques and their scalability to support
large online communities.

CCS Concepts: « Information systems — Information retrieval query processing;
Additional Key Words and Phrases: Community, query processing, users interactions, spatio-temporal query

ACM Reference Format:

Abdulaziz Almaslukh, Yongyi Liu, and Amr Magdy. 2024. Scalable Spatio-temporal Top-k Interaction Queries
on Dynamic Communities. ACM Trans. Spatial Algorithms Syst. 10, 1, Article 6 (March 2024), 25 pages.
https://doi.org/10.1145/3648374

1 INTRODUCTION

Online communities have become more popular with the advancement of user-generated data
platforms. They are rich with useful and important data. Users are naturally forming communities
similar to the communities in the real world based on common interests, ideas, and locations.
These communities can be extremely useful in rescue missions [18, 39, 54], disease prevention [19],
urban planning [45], and public safety [11, 37]. Additionally, the research community has paid
significant attention to detecting [43] and searching communities [30] that are homogeneous and

The work started while A. Almaslukh was at the University of California, Riverside.

Authors’ addresses: A. Almaslukh, College of Computer and Information Sciences, King Saud University, Riyadh 11362,
Saudi Arabia; e-mail: aalmaslukh@ksu.edu.sa; Y. Liu and A. Magdy, Department of Computer Science and Engineering,
University of California, Riverside, CA 92521, USA; e-mails: yliu786@ucr.edu, amr@cs.ucr.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2374-0353/2024/03-ART6

https://doi.org/10.1145/3648374

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 1, Article 6. Publication date: March 2024.

6:2 A. Almaslukh, et al.

have shared characteristics in common. Nevertheless, analyzing a single community has received
very little attention. For example, a social scientist might analyze the US teenagers on Facebook
(representing 5.2 millions users [26]) or on Instagram (representing 57 millions users [40, 41])
to find out what they interacted with during the past week on different topics such as bullying,
youth suicide, and COVID-19 pandemic. This kind of analysis is very crucial in understanding,
making the right decisions and offering better services to the target community. In fact, there
are hundreds of online communities with multi-million users [4], each of them has lots of large
sub-communities, and it is recognized that analyzing these communities is of high importance
in various applications [13, 31, 32, 53, 59, 60, 62]. However, existing querying techniques are not
scalable to perform such analysis on large online communities that involve millions of users.

Queries on online communities come in various forms, e.g., finding top-k influential users
[5, 14, 70, 73] and top-k experts in knowledge communities [74]. However, direct queries such
as “finding top-k posts on which teenagers in the US interacted the most during the past day” are not
currently supported on large communities. These queries are useful in studying various types of
online communities during different events, such as underrepresented communities during polit-
ical events or pandemic responses. To support this query using existing techniques, we need to
traverse millions of users to filter out their interactions temporally and based on the context of the
posts. This requires very expensive computations and unacceptable query latency due to the huge
number of users. Therefore, existing techniques are limited to reveal the full potential of online
user-generated data.

In this article, we propose a spatio-temporal community query that finds top-k posts with which
the given community has interacted during a given time and within a given spatial range. The na-
ture of the community is dynamic over time; some individuals join and others leave. Thus, this
work mitigates this problem to help the query capturing the dynamism of the community with
the support of the user index to process the query more efficiently when the community is evolv-
ing. The proposed query helps practitioners to understand the interests of different communities
over different temporal and spatial ranges. However, processing this query using traditional in-
dexing techniques, e.g., classical RDBMS, requires a tremendous amount of system resources and
CPU time. In specific, there are two main challenges: (1)The users’ interactions with the posts are
very huge in number and constantly increasing. For instance, Facebook users upload on average
240k photos/min and generate 4M likes/min [25]. Therefore, digesting this information is a major
challenge to reduce the query latency and minimize the system resources overhead. (2)The com-
munity nature is dynamic over time; so users join or leave communities all the time. Thus, the
system must account for this dynamism to support evolving communities in practice.

To address these challenges, we devise novel scalable indexing and query processing that deals
with communities as whole units instead of processing individual users’ data. Our index efficiently
supports established communities to process efficient queries on them with limited system re-
sources. Established communities are formed by users or system administrators based on arbitrary
criteria that connect all community users, e.g., users of common interest, geographic location, or
demographic groups. The proposed index shares the same spirit of database indexes where admins
create and drop indexes on demand on any user-defined community that is frequently queried to
tune the system performance. Every community interaction is being indexed temporally through
time slicing with temporal resolution T. Each community is predefined by a set of users, and every
user interaction is indexed to the corresponding community index. Whenever a user interaction
occurs, it is indexed to the most recent time slice to all communities to which she belongs. The
proposed index stores aggregated information that reflects the total interactions of the commu-
nity with various posts. However, the community index does not index any interactions from
non-member users. Therefore, dynamic communities, where users join and leave communities

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 1, Article 6. Publication date: March 2024.

Scalable Spatio-Temporal Top-k Interaction Queries on Dynamic Communities 6:3

over time, have no pre-built index in the system. To support community dynamism, we comple-
ment the community index with a new indexing component to index all users’ interactions based
on time slices that correspond to the community index slicing. This component is utilized dur-
ing query processing to handle newly joined or left users, which seamlessly supports community
dynamism. Combining the two indexing components, community index and user index, makes it
easy to avoid expensive restructuring for the community index frequently and enables efficient
support for large and dynamic communities.

The query processor smartly exploits the index content to provide low query latency. We pro-
pose three query processing techniques, two exact algorithms, baseline ComCQ and fast ComCQ,
and one approximate algorithm, approximate ComCQ. The query processor locates parts of both
community and user indexes that intersect with different query predicates, temporal, spatial, and
user predicates. Then, corresponding index contents are aggregated to find top-k posts for the
community. Depending on how large the query predicates, processing the index aggregates could
still be highly expensive. Thus, the approximate query processing techniques smartly select the
most important content to process. This enables querying large communities and extended spatial
areas and temporal ranges using limited system resources.

This work is a significant extension for our work in Reference [9] to enable data practitioners to
analyze dynamic online communities where users join and leave over time. To support community
dynamism, we significantly extend both indexing and query processing to facilitate joining and
leaving communities for users at scale while still providing efficient performance. For indexing, we
added a new user index, in addition to the community index. The user index organizes aggregate
data from all individual users based on temporal slices. Then, it is used to compute a community
delta component that represents newly joined or left users to be used in providing accurate query
answers on the changing community. For query processing, we added a new approximate query
processing technique, approximate ComCQ, that supports efficient aggregation on large commu-
nities. Instead of aggregating all data in main-memory, approximate ComCQ smartly selects the
most important parts of the data to enable efficient queries on large highly dynamic communities
that encounter large numbers of joining or leaving users.

The extensive experimental evaluation of our proposed techniques on real data has shown the
efficiency of our indexing framework and query processing techniques. Our contributions are sum-
marized as follows:

— We introduce a new analytical query over large online communities that returns the top-k
posts that a community has interacted with.

— We propose a novel indexing paradigm with multiple components to efficiently support both
established and dynamic communities.

— We develop different query processing techniques to efficiently process the query even when
the system resources are limited.

— We provide an extensive experimental evaluation on real data to show the superiority of our
proposed techniques.

The rest of this article is organized as follows: Section 2 presents the related work. Section 3
presents the problem definition. Sections 4 and 5 detail the proposed community and users index-
ing and query processing techniques, respectively. Section 7 provides an extensive experimental
evaluation. Section 8 concludes the article.

2 RELATED WORK

Existing related work mostly focuses on community search and detection, in addition to other
problems. There is no current research work that addresses efficient querying for large online

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 1, Article 6. Publication date: March 2024.

6:4 A. Almaslukh, et al.

communities, to the best of our knowledge. This section covers notable works that address the
community problems in different contexts.

Community Search and Detection. The community search problem was first proposed in
Reference [68]. The problem refers to finding a sub-graph of cohesive community with respect
to a set of query nodes such as users. Different community search models have been proposed,
including k-core [21, 68], k-truss[38], k-clique [20], location-aware community search [48], and
degree-based label propagation algorithm for detecting community search [24]. Some techniques
focus on improving the quality of the cohesion [29] or output accuracy [52] on attributed graphs,
while other techniques introduce a new dimension such as spatial-aware community search [16,
28]. We refer the reader to this survey for a detailed evaluation of the existing techniques [30].

However, finding communities in a large graph is a fundamental and well-studied problem in the
data-mining domain known as community detection. In contrast to community search, community
detection tries to find all the communities in a graph rather than a single specific community. There
are many proposed techniques for community detection [7, 23, 57, 72, 77]. Some techniques focus
on optimizing the modularity measure, which is widely used for the goodness of the community
[17]. Other techniques work on scalability [51] and provide search strategies that are faster than the
traditional modularity-based search. Comprehensive surveys on community detection techniques
are presented in References [34, 44, 58].

Our work is orthogonal from, yet complementary to, these works. In fact, the output communi-
ties in this work are valid as input to our querying module. Thus, we enable efficient querying on
large communities that is not addressed by these works.

Graph Data Management. With the rapid advancement of social networks and their ap-
plications, researchers have paid tremendous attention to big graph data management systems
[1, 50, 67, 75] in terms of modeling [46], storing [71], accessing [6], and querying [10, 61] graph
data. We refer the reader to this survey for detailed approaches and techniques on graph data man-
agement [42]. Although graph data management systems are very suitable to be adopted by many
community problems due to the flexible representation of these data, they are not very efficient
for community-centric queries. Graph-based techniques are well-suited for users-centric queries
such as finding top-k users who are expert in certain subjects based on the given user social net-
work. However, community-based queries are more complex and require aggregated results and
auxiliary indexes to capture and maintain the structure of a community to respond efficiently to
the queries, especially for the large-size communities where the graph-based techniques do not
scale due to the inherently query complexity. Moreover, these systems process communities as a
set of individual users, leading to unacceptable query latency on a large number of users. Our work
addresses this limitation by introducing community-centric data management structures that deal
with a community as a whole unit rather than a bag of users. This enables efficient data manage-
ment and provides a low query latency.

Other Community Problems. Several scattered problems have been studied on online commu-
nities, such as community-based question answering [56, 69] and multi-dimensional communities
[33]. Our work is orthogonal from all these works, focusing on identifying the top interactions
within a large community of users over spatial and temporal dimensions.

Top-k Spatial Queries. There has been a variety of research work that focused on spatial
queries with different predicates, including top-k spatial keyword queries [15, 63], top-k spatial
temporal queries [35, 49], and top-k spatial temporal keyword queries [22, 36, 47]. In the context
of user interactions, interactive top-k spatial keyword query [78] has been proposed by learning
user preferences at each round of interaction to improve the quality of top-k results. However,
these works are inherently user-centric queries, while this work focuses on the community as
a whole.

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 1, Article 6. Publication date: March 2024.

Scalable Spatio-Temporal Top-k Interaction Queries on Dynamic Communities 6:5

3 PROBLEM DEFINITION

Before we define the problem formally, we first define the terminologies used throughout this
work:

— Post: is a piece of content that is generated by a user and usually associated with text, times-
tamp, and geo-location.

— Interaction: is an event triggered by the users such as liking, commenting, or sharing posts.

— Established Community: is a community that has been around for a long time with a fixed
users base.

— Dynamic Community: is a community that is constantly changing and evolving where new
users join and existing users leave.

— Ad hoc Community: is a community that is formed to respond to an urgent event or formed
for a specific purpose.

— User Index: is a data structure that stores information about users’ interactions partitioned
into subsets based on the time intervals.

— Community Index: is a data structure that stores aggregated information about community
interactions partitioned into subsets based on the time intervals.

The existing work on community detection and search is orthogonal and could serve as a prepro-
cessing phase to generate our established communities. However, our work focuses on scalable
indexing and processing complex queries on such detected communities, especially when they in-
volve a substantial number of users. A community could be a social media group where individuals
can join and leave or could be as simple as followers of a public figure or a company. In the former
case, an administrator of the group, which is usually appointed upon the group creation, manages
the enrollment process or the group could be open where any individual can join and leave any-
time. In the latter case, the users choose to follow or unfollow, which is the common practice on
all major social media platforms such as Facebook [2] and LinkedIn [3].

We evaluate community queries on a dataset D that consists of posts P generated by the users.
Each post p € P is represented with four main attributes (oid, kw, timestamp, location), where oid
is a unique identifier of the object, kw is a set of keywords that represent the textual description of
the object, timestamp is the time when the object is posted, and location is a tuple that represents
the geographical location, i.e., latitude and longitude coordinates, of the object when it is posted.
Table 1 shows a sample of posts. In this work, we use the terms post and object interchangeably. A
virtual community (C) is defined as a set of users {uy, uy, us, ..., u,} as members of the community
where |C| = n is the community size. An interaction is a specific action that a user u performs on a
post p, such as like, reply, or share. Table 2 shows a sample of interactions between the users and
the posts with different type of interactions. We formally define our community query as follows:

Community Spatio-Temporal Interaction Query (CSTIQ): given a virtual community C ,
a time interval Tq:[tl,tz], an integer k, an optional point location ¢ and a spatial range r, and an
optional set of keywords W, CSTIQ query finds a set of k posts P, so each post p € P, satisfies the
following: (1) p.location lies within a spatial range centered at ¢ with radius r, (2) p.kw "W # 0,
i.e., p contains one or more of the query keywords, and (3) p is ranked top with respect to a ranking
function F(C, p, T,) that is defined as follows:

F(C,p.Ty) = Z Interaction(u, p, Ty),
YueC

where Interaction(u, p, Ty) is the total number of interactions that a user u makes with a post
p during a time interval T,. F ranks posts based on total interaction from the given community
C, so the query outputs the top-k posts that have been most popular in C during the query time

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 1, Article 6. Publication date: March 2024.

6:6 A. Almaslukh, et al.

Table 1. Sample of Objects

OID Keywords Timestamp Object Location
ol NBA, Lakers, Kobe, Bryant | 05-05-2022 01:20:58 | 34.05° N, 118.24° W
02 | Coronavirus, Wuhan, China | 05-05-2022 03:17:27 | 37.77° N, 122.41° W
03 Election, GOP, Caucus 05-05-2022 05:55:23 | 40.71° N, 74.00° W
04 Stocks, Tesla, Electric, Cars | 05-05-2022 05:56:19 | 33.98° N, 117.37° W
05 Windy, Weather, Wildfires | 05-05-2022 15:46:17 | 32.77°N, 96.79° W
06 Tokyo, Olympics 05-05-2022 18:06:14 | 35.67° N, 139.65° E
o7 Beaches, Summer, Surfing | 05-05-2022 19:17:09 | 25.76°N, 80.19° W
08 Sunny, Sport, Marathon 05-05-2022 19:33:06 | 42.36° N, 71.05° W

Table 2. Sample of Users’ Interactions with Objects

UID | CID | OID Location Action Timestamp
ul cl ol | 34.05,-118.24 Like 5-5-2022 20:18:50
u2 | cl,e3 | 02 |37.77,-122.41 | Reply | 5-5-2022 20:18:27
u3 - 03 | 40.71, -74.00 Share | 5-5-2021 20:18:23
ul cl 03 | 40.71, —74.00 Like 5-5-2022 20:18:19
u4 cl ol | 34.05,-118.24 Like 5-5-2022 20:18:17
u2 c3 05 32.77, =96.79 Reply | 5-5-2022 20:18:14
u5 - 04 | 33.98,-117.37 | Mention | 5-5-2022 20:18:09
u6 c2 ol | 34.05,-118.24 Like 5-5-2022 20:18:06

period. Both keywords and locations are optional, which enables the query to be flexible in different
aspects. First, providing keywords W enables the query to search for popular posts related to
a specific topic, while omitting W allows discovering any popular topics within the community
C. Second, providing or omitting a query location allows flexibility to pose either pure spatio-
temporal or temporal queries. This is important due to several reasons. It facilitates supporting
virtual communities that are not tied to a physical location, e.g., data-mining research community,
and it enables to query global-scale communities, e.g., animal rights activists.

4 CSTIQ INDEXING

Indexing user interactions in large online communities faces two main challenges. First, user
interactions are huge in number, up to an order of magnitude larger than the posts. For instance,
our evaluation real dataset has 80 million posts with over 1.9 billion interactions. With the high
arrival rates of such data, the index needs a light and efficient digestion mechanism. Second, the
community nature is dynamic over time, so users join and leave. The index should avoid expensive
rebuilding and restructuring operations.

To address these challenges, while serving our query as defined in Section 3, we introduce Com-
munity Spatio-Temporal Indexing Query (CSTIQ) framework. Figure 1 shows an overview
of CSTIQ framework. It consists of multiple indexing components. The first component is the
community index that indexes interactions in established communities where the community
users are already known in advance. This index aggregates the interactions of all users within
the community. Thus, it will expedite the query processing by dealing with the whole community
as one unit instead of millions of individual users. This index is light and temporally sliced to
handle an excessive volume of interactions efficiently. However, the community index helps the

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 1, Article 6. Publication date: March 2024.

Scalable Spatio-Temporal Top-k Interaction Queries on Dynamic Communities 6:7

Interactions
® 00
Users)
Community User
Index Index
Posts | — System
Answer_ User
aa‘ vy Query "
Users Master . Processor [« Duery
Index P |
Fig. 1. CSTIQ framework.

query processor only when querying an established community. Thus, this index cannot serve
any query that targets either a new community or even a slight variant of an existing community.
To support dynamic communities, CSTIQ introduces the second component, the user index, to
index all users’ interactions regardless of their community memberships. The user index stores
any user interactions aggregated by user IDs. This index stores more detailed information than
the community index and can serve any query, including the ad hoc communities that have never
been seen before. The two indexing components store only post ids and locations. These ids are
used to retrieve data from a third indexing component, called the master index, that stores all
available information about posts, e.g., user profile or keywords.

CSTIQ index always includes one user index, but it might include more than one community
index. The proposed community index is created and dropped on demand to tune the system
performance for frequently queried communities, just like database indexes where admins create
and drop indexes on demand to tune performance. CSTIQ index organizes data based on temporal
and keyword dimensions while storing raw location information, enabling the query processor to
serve CSTIQ query with all its three-dimensional parameters, time, location, and keywords. Both
user and community index have two sub-components: an in-disk component and an in-memory
buffer to swap the data between memory and disk. The buffer adopts the famous least recently
used (LRU) policy to evict the old data. The query processor blends data from different indexing
components to provide low query latency, as detailed in the following sections. The rest of this
section details both the community index and user index. The pseudocode for the index update is
presented in Algorithm 1.

5 QUERY PROCESSING

5.1 Community Index
This section presents the community index. This index summarizes interactions of an established
community as one whole unit. The section details index structure and update operations.

Index Structure. The community index has two identical indexing components: memory-based
index and disk-based index. The former is mainly for the most recent community interactions to
enable light and efficient digestion for excessive recent data. The latter is for the relatively old
interactions that are evicted from the main memory and usually receive much fewer updates. Both
components are divided into non-overlapping time slices [Ty, T, T2, ..., Thow]. These time slices
are equal in size and of user-defined length. They can be set to cover any period of time, e.g., 24 hrs,

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 1, Article 6. Publication date: March 2024.

6:8 A. Almaslukh, et al.

ALGORITHM 1: CSTIQ Index Update

1 Input: Posts (P), Interaction (IR)

2 for each p € P do

3 Update Master Index:

4 Index p in the Master Index

5 for each (u,p) € IR (user u interacts with post p) do
6 Update User Index:

7 if u € Hy, .key then

8 ‘ Hy[ul.append(p.oid, p.location)

9 else

10 ‘ Hy[u] = [(p.oid, p.location)]

1 Update Community Index:

12 CI = the community index of the community u belongs to
13 H,,, = master hash structure in CI

14 if p.oid € Hp[ID] then

15 ‘ Hy, ID[p.oid][Count] = Hp,.ID[p.oid][Count] + 1
16 else

17 ‘ Hy, ID[p.oid][Count] = 1

18 I = the inverted index in CI

19 for each keyword kwd € p.kw do

20 if kwd € I then

21 Hj = the hash structure associated with kwd

22 H;[p.oid][Count] = H;[p.oid][Count] + 1

23 else

24 add kwd to I and create H; associated with kwd
H;[p.oid][Count] = 1

26 Return Updated Master Index, Community Index, User Index

25

12 hrs, or 1 hr, based on available system resources and data size. Whenever the current time slice
has passed, a new time slice is created and marked to be T},,,,. All interactions happening within the
current time interval are indexed into the T,,,,, slice. Each time slice includes two data structures:
(1) a master hash structure (H,,), where the post ID is a key and the value is the post location
and total interactions; (2) an inverted index (I), where every entry represents a keyword, and each
keyword points to a hash structure (H;) similar to the master hash structure. Any query that does
not have a keyword, H,, data structure will be utilized. However, the query that specifies keyword
parameter, I will be used to process the query efficiently. The Community Index is constructed
and updated incrementally. Initially. both the master hash structure H,, and the inverted index
are empty. As interactions occur between users and posts, these changes are reflected within the
community index, as discussed as follows:

Figure 2 shows the structure of an example community index. The figure shows three time
slices, labeled as Ty, Ty, and T,,. Ty has H,,, which stores object ids, locations, and the counts of
interaction from this community such as o1 has 66 community interactions and location coordi-
nates (30.26, —97.74). In addition, Ty has I, which stores Pizza keyword, which points to H; that has
two posts, 03 and 04, and their count values are 40 and 15 community interactions and locations
(41.87,—87.62) and (33.98, —117.37), respectively.

Index Update. Whenever a user who belongs to a community C interacts with an object oid,
C’s corresponding index is updated accordingly. The in-memory index updates two data structures:

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 1, Article 6. Publication date: March 2024.

Scalable Spatio-Temporal Top-k Interaction Queries on Dynamic Communities 6:9

| To] | T]| Tn]

| Hem |/ | Hem] | He]

ID | Count | Location IPizzaIKobe I ID | Count | Location Covid ID | Count | Location IEIection IUSA I
o1 66 [30.26,-97.74 I Hi o2 98 |37 2241 I Hi o2l &5 7712241 I Hi
o5 50 32.77,-96.79 ID | Count | Location 03 25 41.87, -87.62 ID | Count | Location o5 43 32.77,-96.79 ID | Count | Location
03 40 41.87, -87.62 o3 40 41.87, -87.62 05 67 32.77,-96.79 o1 94 30.26,-97.74 03 22 41.87, -87.62 o5 43 32.77,-96.79
o4 15 33.98, -117.37 o4 15 33.98, -117.37

Fig. 2. Community index structure.

(T)

Hm I
ID | Count| Location IOIympicsl Tokyo IBasketbaIII
06 2 35.67, 139.65
= ; o ID_| Count] Locati ID | Count | Location
06 2 35.67, 139.65 10 . YTV
010 1 34.69,136.50

010: Basketball Olympics .b Liked by u1

N —
GEO: (34.69, 135.50)

Fig. 3. Community index update example.

the master hash index H,, and the inverted index I. First, oid is looked up in Hy,. If 0id is found,
then its count is incremented by one; otherwise, it is inserted with count set to one and location
set to oid.location, marking the first interaction from C’s users to oid. Then, the inverted index I
will index o0id’s keywords. For a specific post p, p.kw is a set of keywords that represent the textual
description of the post. We extract each keyword from p.kw and apply necessary preprocessing
techniques. In the inverted index I, every keyword kw; is also associated with a hash structure
Hj, which is similar to Hy,. During the processing of a keyword kw, if kw is not already present
in I, then it gets added to I and an associated hash structure for it is created. Conversely, if I does
include kw, then the relevant hash structure linked to kw is identified and the corresponding count
value is subsequently updated.

Figure 3 shows an example of updating the community index at temporal slice T. Consider a
user from the community, denoted as u;, who interacts with a post 019, which is characterized
by the textual description “Basketball Olympics” with a geographical location 34.69, 135.50. Both
the indices H,, and H; associated with the terms “Olympics” and “Basketball” are to be updated
in response to this interaction. Since 0y is not in the ID column of H,,, a new entry with ID oy
and an initialized count of 1, together with the geographical location of the post, is added to H,,.
Further, the keywords from 01, i.e., “Olympics” and “Basketball” are extracted and used to update
I. Since “Olympics” is already in I, the corresponding H; is retrieved and a new entry is added at
the bottom. The word “Basketball” is not in I, so it is added to I and a new H; associated with
“Basketball” is created and initialized.

Once the current time slice expires, both Hy,, and I are concluded, and a new time slice is initiated
with empty structures. H,, and each H; of the concluded time slice are sorted based on the number
of interactions in descending order. The sorted time slices enable efficient query processing, as
detailed in the following sections. After the total designated memory budget is consumed, the least
recently used time slices are evicted from the in-main index to the corresponding in-disk index.

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 1, Article 6. Publication date: March 2024.

6:10 A. Almaslukh, et al.

[To] [T1] [Tn]

02 |37.77, -122.41 f==d 01 [30.26, -97.74 |

|02]37.77, -122.41

03]41.87, -87.62

01]30.26, -97.74

02 |37.77, -122.41) 05 [32.77, -96.79 =402]37.77, -122.41

Ju5 =03 J41.87, -87.62

o1 §30.26, -97.74

02 §37.77, -122.41 03]41.87, -87.62

o1 §30.26, -97.74 03 §41.87, -87.62

|04 |33.98, -117.37

04 §33.98, -117.37

Fig. 4. User index structure.

|02 |37.77, -122.41
02 |37.77, -122.41

03 41.87, -87.62 =101 |30.26, -97.74 |

|01]30.26, -97.74

o1 §30.26, -97.74 010]34.69, 135.50

010: Basketball Olympics .b Liked by u1

GEO: (34.69, 135.50)

Fig. 5. User index update example.

5.2 User Index

The user index organizes all users’ interactions regardless of their affiliations to communities. This
enables the query processor to efficiently support community dynamism as users join and leave
established communities. The index has two identical components, an in-memory index and an
in-disk index. Each of them is divided into disjoint time slices of length T, which are corresponding
to the ones of the community index. To efficiently index the huge number of interactions, a hash
structure H,, is used where the user ID serves as a key and the value is a list of posts that includes
ids and locations that the users interacted with. This hash structure H, is light and provides a very
effective search and insertion. When the time slice Tj is expired, a new time slice T is created.
After consuming all designated memory budgets, the least recently used time slices are evicted
from the main memory and stored in the disk-based index to free up space for new time slices in
memory.

Figure 4 shows the user index structure. The figure shows three time slices, Ty, Ty, and T,,. Ty
points to a hash structure H,, that stores user ids u1, u3, u5, and u8. ul, for example, points to a list
of objects with ids 02 and 01 and locations (37.77, —122.41) and (30.26, —97.74), respectively, with
which u1 has interacted during Tj.

Figure 5 illustrates the update of the user index. In this case, the user u; interacts with the post
010; consequently, an entry (019, (34.69, 135.50)) is added to end of the list corresponding to u; in
the user index.

This section describes the query processing of CSTIQ query, which is defined in Section 3 utiliz-
ing the indexing framework that is introduced in Section 4. The query processor employs different
techniques to minimize the overhead on system resources and provide efficient query latency. More
specifically, we propose three algorithms to process CSTIQ query, namely, baseline ComCQ, fast
ComCQ, and approximate ComCQ algorithms. The rest of this section introduces a high-level query
processing framework that is utilized for the three algorithms, and then we detail the specifics for
each algorithm.

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 1, Article 6. Publication date: March 2024.

Scalable Spatio-Temporal Top-k Interaction Queries on Dynamic Communities 6:11

5.3 Query Processing Framework

This section introduces a three-step query processing framework. The first two steps are shared
among all our proposed algorithms, while the third step differs based on the algorithm. Every
CSTIQ query takes a community C parameter as an input, and there are three different cases for
the community C parameter: Case 1: C has been previously established and an index for C has
been already built and being maintained. Case 2: C is not established but it is a variation of an
established community C,, where C=C, + Ua. Thus, the list of user changes Ux must be considered
in the query processing. Case 3: Neither C has been established nor the index for C has been built.
Our query processor consists of three steps:

(1) Step 1: Index retrieval. Given a community C, as an input of CSTIQ query, in this step,
we check which case the community C falls into. If C falls into Case 1, then the index of C is
retrieved and fed to Step 2. If C falls into Case 2, then another auxiliary community in-memory
index is being built utilizing the index of users interactions for only Up users within the given
query time interval; we call this auxiliary community index Uy index. The index for C, and the
newly generated auxiliary Uy index are retrieved and fed to Step 2. If C falls into Case 3, then a
new index is being built utilizing the index of users interactions for community C within the given
query time intervals. Then, the new index is fed to Step 2.

(2) Step 2: Temporal and keyword filtering. Given the community C index from Step 1, the
query processor retrieves the time slices that overlap with the query time interval T=[t1,t2] and
stores a copy of each slice in in-memory list L; that corresponds to interval j. A list L; stores the
entries of its time slice in descending order of their total interactions. These entries are already
ordered as part of the indexing process, so it adds no sorting overhead. The exception to this is the
most recent slice T,,0,, that is not ordered, so it is copied and the corresponding list L., is sorted
on the spot if it lies within the query time. If the query has keywords, then the query processor
retrieves H; hash structures that are corresponding to every query keyword and merges them
in one list L; ordered by total interactions. The merged list holds the union of the posts and the
total interactions of each post. If the query does not have any keywords, then the query processor
just copies the master hash structure H,,. To reduce the overhead of reading back-and-forth from
the disk, all lists are stored in an in-memory buffer. When the in-memory buffer is full, the least
recently used (LRU) policy is adopted to evict data to continue serving incoming queries.

If Up index exists, then the copied lists are updated to reflect Up’s users changes, whether adding
their interactions or subtracting them. For each time slice in Up index, we iterate over all posts
and update corresponding list ;. Finally, the updated list is reordered based on the new total
interactions. The updates affect only the copied lists in the main-memory. Thus, the original copy
of community time slices, either in memory or in disk, is not affected. Finally, the lists L; are fed
to Step 3.

(3) Step 3: Spatio-temporal aggregation. Given the lists of posts that are retrieved in Step 2,
these lists are processed to return top-k posts that the community C interacted with during the
query time interval and within the query spatial range. Due to variations in query parameters,
data sizes, and system resources, we have three different variations of our query processing tech-
nique that accommodate different needs. Each of these variations perform Step 3 differently. The
following sections detail each of them.

5.4 Baseline ComCQ

In case of small data sizes, we provide a baseline algorithm, called baseline ComCQ (B-ComCQ),
that performs straightforward aggregation to process CSTIQ query and returns exact results. B-
ComCQ’s input is the lists L; that are retrieved in Step 2. B-ComCQ creates a new hash structure

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 1, Article 6. Publication date: March 2024.

6:12 A. Almaslukh, et al.

ALGORITHM 2: Baseline ComCQ

1 Input: A CSTIQ query q
Initialization:

)

w

Retrieve the community index C and construct its variation based on the user index if needed
Filter the entries from each time slice and obtain the filtered lists of entries L = [L1,...,Lp]
Top-k Aggregation:
6 Ha={}
for eachL; € L do

for each entry e = (id, count,loc) € L; do

'

@«

® N

9 if distance(loc, g.c) < q.r then
10 if id € H,.keys then

11 | Halid] = Hq[id] + 1

12 else

13 | Halid] =1

14 ans = rank the top-q.k entries from H, according the count
15 Return ans

H, that is similar in structure to H,, and H;. The purpose of H, is aggregating the total of in-
teractions for each post. For each list L;, B-ComCQ iterates over all entries in its corresponding
hash structure. For each entry, it checks if the post p lies within the query ¢’s spatial range, i.e.,
distance(p.location, q.c) < q.r.If so, then its total interactions are added to H,. After processing
all lists, H, has all the aggregated entries. Finally, B-ComCQ sorts H,, and the top-k entries of the
sorted H, are returned as the final answer. Algorithm 2 gives the pseudocode for Baseline ComCQ.

5.5 Fast ComCQ

B-ComCQ performs exhaustive search to find the top-k posts. This is inefficient when the number
of time slices or the number of entries is even moderate. Therefore, we develop an efficient, yet
exact, algorithm that is inspired by Fagin’s TA algorithm [27] called fast ComCQ (F-ComCQ).
F-ComCQ assumes that all time slices can fit in main memory. F-ComCQ does not need to access
every entry in every list L;. Instead, it smartly prunes entries that surely have no chance to be in
the top-k posts. Thus, this will save many unnecessary searches. For each list L; that is fed from
Step 2, F-ComCQ performs five steps:

(a) Initialization with spatial filtering. F-ComCQ iterates items of L; in order until the first
item that lies within the query spatial range is found. This item is then inserted into a priority
queue Q with priority score equal to the number of interactions of the item. This repeats to every
list Lj, so Q is initialized with the most popular post from each time slice. An ordered list Ans
is initialized to keep track of the top-k items found so far in every iteration. A variable SumQ is
initialized with the sum of priority scores in Q.

(b) Top item pickup with spatial filtering. If the priority queue is not empty, then remove
the top entry eg of the queue Q and insert into Q the next entry that lies within the query spatial
range from the same time slice of ey and update SumQ accordingly. We maintain a pointer in each
list L; that always points to the first entry that has not been visited so far to facilitate iterating
over items of the same time slice.

(c) Temporal aggregation. Using the hash structures H,, and H; of each time slice, this step
calculates the total interactions of ep in all time slices. We check if ep exists in H,, or H;, and
we add its interactions to the summation variable. After iterating over all hash structures, the
summation variable includes the total interactions of eg in all time slices.

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 1, Article 6. Publication date: March 2024.

Scalable Spatio-Temporal Top-k Interaction Queries on Dynamic Communities 6:13

ALGORITHM 3: Fast ComCQ

1 Input: A CSTIQ query q
Initialization:

&)

Retrieve the community index C and construct its variation based on the user index if needed
Filter the entries from each time slice and obtain the filtered lists of entries L = [L1,..., L]
Top-k Aggregation:
pq = () //priority queue
for each L; € L do

for each e = (id, count, loc) € L; do

w

N

«

=N

® N

9 if distance(loc, g.c) < g.r then
10 pq.add(e)

11 break

12 ans = ()

13 sumQ = sum of priority scores in pq
14 while pq is not empty do

15 e = pq.dequeue()

16 (id, count,loc) = e

17 L = the list e comes from

18 add the next entry that satsifies the distance constraint to pq from L
19 update sumQ

20 count_total = e.count+ interactions with this post from other time slices
21 if ans.size < k then

22 ‘ put (id, count_total) in ans

23 else

24 if count_total > kth score from pq then

25 remove the kth item in ans

26 put (id, count_total) in ans

27 if ans > k AND kth score in ans < sumQ then

28 ‘ break

29 Return ans

(d) Top-k answer update. If size of Ans list < k, then insert ep into the ordered list Ans. Once
the size of Ans grows to k and larger, we maintain lower_bound as the kth, i.e., lowest, score in Ans.
If total interactions of eg > lower_bound, then we remove the kth item in Ans and insert ep in
order, otherwise, e is discarded. Then lower_bound is updated with the new lowest score in Ans.

(e) Search termination. If Ans size > k and lower_bound > Sum(Q, then the search stops and
Ans is the final answer. Otherwise, we repeat steps b through d.

Picking up top popular items first and termination based on existing Ans scores eliminate
any unnecessary processing and speed up the search significantly, as shown in our experiments.
Algorithm 3 gives the pseudocode for Fast ComCQ.

5.6 Approximate ComCQ

F-ComCQ assumes that data of all query time slices fit in main memory at once. When this
assumption is invalid, meaning that the available memory is not enough or the query time or
data size are too large to fit in main memory, we propose an approximate version of F-ComCQ,
called approximate ComCQ (A-ComCQ), which utilizes the available memory budget to provide
highly accurate query answer. A-ComCQ exploits the observation that users’ interactions obey

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 1, Article 6. Publication date: March 2024.

6:14 A. Almaslukh, et al.

the power-law distribution [8, 12, 55, 64-66, 76], so most of the interactions come from a small
number of users. Thus, loading only part of the data and ignoring the long tail still achieves
very high accuracy and reduces the computation overhead tremendously. Accordingly, A-ComCQ
retrieves only top items in every time slice.

A-ComCQ takes an input parameter a that represents the number of top items to retrieve from
each time slice. When a — oo, all the time slice data is loaded to memory and A-ComCQ acts similar
to F-ComCQ. With smaller values of «, less data is loaded to memory to adjust the query processor
for the limited system resources. For each time slice, only « top items are loaded from disk and
copied to the lists L; that corresponds to time slice j. Then, all the five steps of F-ComCQ are
applied on the loaded lists. As shown in our experiments, for practical values of query parameters,
the output accuracy of F-ComCQ and A-ComCQ are similar with very marginal inaccuracy, as
some items are missed due to data truncation. However, the query processing time is decreased
significantly, since a huge portion of data has been truncated.

6 COMPLEXITY ANALYSIS

This section presents time and space complexity analysis for the proposed indexing and query
processing algorithms.

6.1 Complexity of Indexing

We discuss the time and space complexity of indexing for both the user index and the community
index for a specific community C. Denote the maximum length of a post, i.e., the maximum number
of words from a post, as L4y, the total number of interactions as N, and the number of temporal
slices as T.

6.1.1 Complexity of Community Index. In this section, we discuss the time and space complexity
of the community index proposed in Section 5.1.

Time Complexity: Consider an interaction generated by community C, associated with a post
p. Identifying the presence of p in H,, requires O(1) time. Further, updating H,,, i.e., increasing
the count or creating a new entry, also takes time O(1). Similarly, for the keywords contained in
p.kw, identifying the presence of the corresponding H; index incurs a time complexity of O(L,4x)
due to a maximum of L, ,x keywords from a post. Similar to updating H,,, updating each involved
H; takes time O(1). The cumulative time taken to update the H; indices associated with all the
keywords of a post amounts to O(L 4y). Therefore, the time complexity of indexing an interaction
takes O(1) + O(Lmax) = O(Lmayx)- Since there are N interactions, the time complexity of building
the Community Index is O(L,4xN). Although hash collisions and the need for resizing may occur
as the size of the index increases, the amortized time complexity for accessing the hash structure
consistently remains at O(1) per interaction.

Space Complexity: For an interaction generated by community C, associated with a post p. If p
is encountered for the first time, then we record in H,, the attributes p.ID, p.count, and p.location,
all of which require O(1) storage. Also, we record the same attributes in each H; index correspond-
ing to different keywords in p, which takes O(L,,4x) storage, since p has at most L, 4, keywords.
In cases where p has been previously observed, no additional space is required in either H,, or H;
indices, since only an update to the interaction count is needed. Given N interactions, the maxi-
mum number of distinct posts is O(N). Consequently, the upper bound for storage in H,,, and H;
is O(N), and O(L,qxN), respectively, which results in O(L,,,xN) space complexity to build the
Community Index.

6.1.2 Complexity of User Index. In this section, we discuss the time and space complexity of
the user index proposed in Section 5.2.

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 1, Article 6. Publication date: March 2024.

Scalable Spatio-Temporal Top-k Interaction Queries on Dynamic Communities 6:15

Time Complexity: When a user u makes an interaction with a post p, we utilize H,,, with the
user ID as the key, to identify the list of posts with which this user has previously interacted. This
process takes at an amortized time complexity of O(1), as explained above. Subsequently, the post
involved in the current interaction is appended to the end of this list, a procedure also requiring
O(1) time. Given that there are N total interactions, the overall time complexity of building the
User Index is O(N).

Space Complexity: Every time a user u makes an interaction with a post p, the ID of post p
along with its geographical coordinate is stored in the corresponding list, which takes O(1) storage.
Since there are N interactions, the total space complexity is O(N).

6.2 Complexity of Query Processing

We discuss the time and space complexity of running different query processing algorithms on
a specific community index. Similar to the above, we assume the query spans T temporal slices,
involves N interactions, and returns the top-k posts.

6.2.1 Complexity of Baseline ComCQ. This section gives the time and space complexity of the
Baseline ComCQ algorithm proposed in Section 5.4.

Time Complexity: Baseline ComCQ aggregates interactions among different temporal slices,
which ends up having O(N) posts in the hash structure, taking O(N) time. Sorting and identify-
ing the top-k entries takes O(NlogN) time, which gives a time complexity of O(N + NlogN) =
O(NlogN). Consequently, the time complexity of Baseline ComCQ is O(NlogN).

Space Complexity: Baseline ComCQ aggregates post interactions using hash structure Hg,
taking space O(N) for up to N posts, which leads to a space complexity of O(N). Sorting and iden-
tifying the top-k entries takes also O(N). Consequently, the space complexity of Baseline ComCQ
is O(N).

6.2.2 Complexity of Fast ComCQ. This section gives the time and space complexity of the Fast
ComCQ algorithm proposed in Section 5.5.

Time Complexity: Fast ComCQ employs Fagin’s Threshold Algorithm (TA) for incremen-
tal best-first search. Its worst-case time complexity is O(N(log k + T)) due to a maximum of O(N)
iterations. Within each iteration, the process of updating the priority queue incurs a time com-
plexity of O(log k). Computing the temporal aggregation (step (c)) takes O(T) among T time slices
using the hashing property. The evaluation of the terminating condition, i.e., calculating the up-
per bound score from each time slice, requires O(T) time. Therefore, the overall time complexity
of Fast ComCQ is O(N(logk + T)).

Space Complexity: Fast ComCQ requires storing the entries from each time slice in the mem-
ory during query processing, which takes O(N) storage. Additionally, Fast ComCQ maintains a
priority queue for the best-first search, which takes O(k). In reality, N >> k. Thus, the time com-
plexity of Fast ComCQ is O(N).

6.2.3 Complexity of Approximate ComCQ. This section gives the time and space complexity
of the Fast ComCQ algorithm proposed in Section 5.6. The complexity analysis of Approximate
ComCQ is similar to that of Fast ComCQ.

Time Complexity: The time complexity of Approximate ComCQ is O(aN(logk + T)) due to
a maximum of O(aN) iterations. The complexity from iteration is log k + T, for the same reason
explained in Fast ComCQ.

Space Complexity: Approximate ComCQ takes O(aN) storage to store all the entries from
the shortened time slices. Additionally, Approximate ComCQ maintains a priority queue for the
best-first search, which takes O(k), which is the same as Fast ComCQ. In reality, «N >> k. Thus,
the time complexity of Fast ComCQ is O(aN).

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 1, Article 6. Publication date: March 2024.

6:16 A. Almaslukh, et al.

Table 3. Parameter Values

Parameter Settings
Community Size 10k, 100k, 500k, 1M, 2M
Data Size (millions) 20, 40, 60, 80
k 10, 50, 100, 500, 1,000
Time Interval (days) 1,7, 14, 28, 56, 84
14 10, 50, 100, 500, 1,000, 10,000
Keywords 1,2,3,4,5,6
Buffer Size (days) 0, 10, 20, 40
A Users 1k, 10k, 50k, 100k
Spatial Range (kilometer) 10, 20, 40, 80
Table 4. Evaluation Dataset Statistics
Dataset 20M | 40M 60M 80M
Interactions | 492M | 930M | 1,428M | 1,904M

7 EXPERIMENTAL EVALUATION

This section presents the experimental evaluation of the indexing framework and the ComCQ
algorithms as discussed in the previous sections. Section 7.1 explains the experimental settings
and the evaluation datasets. Sections 7.2— 7.5 evaluate query latency, indexing scalability, storage
overhead, and community dynamism, respectively.

7.1 Experimental Setup

We evaluate the proposed indexing framework and query processing for different performance
measures, namely, indexing scalability, storage overhead, query latency, and query accuracy (in
case of the approximate algorithm A-ComCQ). Table 3 summarizes the evaluation parameters with
default values marked as bold. The community size is the number of community users, and data
size is the number of posts that the users can interact with. The buffer size is the maximum number
of time slices that are buffered in main memory. A users are the number of users who join or leave a
established community. The rest are the query parameters, except «, which is an A-ComCQ query
processor parameter. All experiments are based on Java 14 implementation and using an Intel
Xeon(R) server with CPU E5-2637 v4 (3.50 GHz) and 128 GB RAM running Ubuntu 16.04. Each
index time slice represents 1 day.

Evaluation data. We have collected historical tweets from public Twitter APIs. Then, four
datasets, of sizes 20, 40, 60, and 80 million tweets, are composed for our evaluation. These tweets
are posted by 5.5M unique users and distributed equally to cover a 12-week period (84 days). Each
Tweet is represented with ID, keywords, and the number of interactions based on the number of
likes, retweets, replies, and quotes. Table 4 summarizes the number of total interactions in each
dataset. A random word from the tweet text is attached as a keyword. A synthetic location for each
tweet is generated uniformly as a random point within the bounding rectangle of New York City
to simulate a compact community spatial proximity. To simulate the community interactions with
the tweets, a portion of the interactions is being randomly distributed to the community users cal-
culated based on its size to total number of users. Thus, bigger communities get a bigger portion
of interactions.

Query workloads. We generate the query set based on the time interval size. For example, if
the time interval size is 7 days, then we randomly generate all the possible queries which their

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 1, Article 6. Publication date: March 2024.

Scalable Spatio-Temporal Top-k Interaction Queries on Dynamic Communities 6:17

~ - —o—8 100
§ % 80
%20 &
2 B-ComCQ —@— % 60 | B-ComCQ —@—
815 F-ComCQ —X— 8 F-ComCQ —X—
= 10 A-ComCQ —©— 3 40 | A-ComCcQ —6—
u:? 5 . % < 20
AN) 0
10 50 100 500 1,000 10 50 100 500 1,000
k k
(a) Query Latency (b) Accuracy

Fig. 6. Varying k.

time intervals are 7 continuous days from day 1 to day 84. Then, we generate keywords query
list randomly chosen from the inverted index in each time slice; these keywords must appear in
at least 5,000 tweets to avoid rare keywords that are rarely searched. The query center location
is generated as a random point within the bounding rectangle of New York City, similar to the
evaluation data, with query spatial range indicated in Table 3.

7.2 Query Evaluation

This section evaluates the proposed algorithms to process the CSTIQ queries with varying query
settings. B-ComCQ and F-ComCQ algorithms return exact answers, while A-ComCQ returns ap-
proximate answers. Thus, we report the accuracy of the approximate answers compared to the
exact algorithms results. The query latency includes the I/O time to load the data from disk and
the query processing in main memory.

Effect of varying k. Figure 6 shows the effect of varying k on CSTIQ queries. Figure 6(a) de-
picts the query latency with varying k for the proposed algorithms. B-ComCQ performs the worst
among the proposed alternatives, which is 7 times slower than F-ComCQ and 2,700 times slower
than A-ComCQ. A-ComCQ provides 385 times faster runtime compared to F-ComCQ, while still
providing pretty accurate results for practical values of k up to 100. The effect of changing k on
query latency is slight, since for a specific time interval, the number of I/O needed is fixed, regard-
less of k. When k takes a larger value, the query processor takes more to rank the top-k entries.
However, the I/O time dominates the query time. Consequently, the query latency is less likely
affected by k. Figure 6(b) shows the accuracy of A-ComCQ compared to the ground truth of B-
ComCQ and F-ComCQ. Indeed, A-ComCQ is very accurate for k up to 100, but not that accurate for
larger k values. Given that the default & value is 1,000, this is interpreted that for large k value, the
bottom item in the top-k might not be retrieved by A-ComCQ within the first 1,000 items of the
time slice. This low accuracy significantly improves with changing the value of « to be a multiple
of the k value as discussed below.

Effect of varying a. The number of processed items in each time slice, @, affects the perfor-
mance of A-ComCQ and trades off query latency with query accuracy. Figure 7 shows the effect
of @ on both query latency and accuracy for k values 100, 500, and 1,000. Figure 7(a) shows that
the query latency of A-ComCQ is increasing linearly when the « value is increased. Figure 7(b)
depicts the accuracy with varying « values. k and « are correlated. When « value is significantly
less than k, for example =10 and k=1,000, the accuracy score is expected to be worse with low
latency, while increasing « improves accuracy while increasing latency. The best tradeoff is when
a value is set as three times k, which provides high accuracy with reasonable latency. For practical
values of k, up to 100, all experiments show efficient query latency with high accuracy.

Effect of varying k with keywords. Figure 8 shows the effect of varying k on CSTIQ queries
with keywords. Figure 8(a) shows the latency of the three algorithms. The query latency of both

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 1, Article 6. Publication date: March 2024.

6:18 A. Almaslukh, et al.

100 A A\
. 80
X
> 60 4
s
3 40
2 A-ComCQ, -
20 A-ComCGiresg
OE A-ComCQy100 X
100 500 1,000 5,000 10,000 100 500 1,000 5,000 10,000
o o
(a) Query Latency (b) Accuracy

Fig. 7. Varying a.

o 300 100
o} <
£250 '\.—H’—" < 80
5200 I 5 comco —e— > 60 | B-ComCQ —@—
$ 150 | F~ComCQ —X— 8 F-ComCQ —X—
© 1 A-ComCQ —©— 3 40 ; A-comcQ —6—
—1 100 3
2 50 < 20
P AN
g o0¢ 0
10 50 100 500 1,000 10 50 100 500 1,000
k k
(a) Query Latency (b) Accuracy

Fig. 8. Varying k with keywords.

F-ComCQ and A-ComCQ is increasing linearly with increasing k. However, the query latency is
significantly less for the same queries without keywords, as shown in Figure 6, because of the
power of keyword pruning that is equipped in the community index. Therefore, the query proces-
sor utilizes the inverted index to reduce the search space to only tweets that contain the query
keywords. Figure 8(b) shows the accuracy scores for A-ComQ. A-ComCQ is accurate for k values
up to 100. The accuracy reduces when default value of « is less than three times k, as discussed
before. However, the reduction in accuracy when querying keywords is noticeably less than the
reduction in Figure 6(b).

Effect of varying time interval length. Figure 9 shows the performance of the three algo-
rithms with different time interval lengths measured by days. Each day represents a single time
slice. Figure 9(a) depicts the query latency. All algorithms encounter longer query latency when
the query time interval increases. This is because a longer time interval incurs more I/Os and more
number of entries to process in the ranking of the query. Relatively, F-ComCQ performs 5-8 times
faster, while A-ComCQ performs 152-2,693 times faster than B-ComCQ. Thus, A-ComCQ performs
steady with the lowest query latency, and it is up to 400 times faster than F-ComCQ, with better
scalability over large time periods. Figure 9(b) shows the accuracy of A-ComQ. A-ComCQ has in-
creasing accuracy with increasing the time interval length, with the default values of k and «. This
is because a popular item tends to appear frequently in a continuous time period. An item from the
top-k that is not fetched by A-ComCQ in one time slice is probably fetched by in another time slice.
A-ComCQ is primarily designed for long time periods, as the time slices are many and it is an over-
head to load the whole lists in memory. So, the accuracy performance of A-ComCQ is compliant
with this design goal and it works effectively on long periods. From another perspective, querying
small- and medium-length time periods calls for increasing the value of « to provide acceptable
accuracy, which does not cause a problem, as the number of time slices is small for these queries.

Effect of varying time interval length with keywords. Figure 10 shows the effect of time
interval length on CSTIQ queries with keywords. Clearly, the query latency is much less than the

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 1, Article 6. Publication date: March 2024.

Scalable Spatio-Temporal Top-k Interaction Queries on Dynamic Communities 6:19

—~ 250 100

8 B-ComCQ —@— B-ComCQ —@—
$.200 | F-ComCQ —X— D = 80 | F-ComCQ —%—
A-ComCQ —6— s A-ComCQ —6—
2150 > 60 4
©
T 100 5 40
§ 50 < 20
A 0e
1 7 14 21 28 54 84 1 7 14 21 28 54 84
Days Days
a) Query Latenc b) Accurac
y y y

Fig. 9. Varying time intervals.

§ 3,000 B-Comt0 b 100

€ 2500 F F-comcQ —%— = 80

<2000 | A-ComCQ —6— <

o % 60

§ 1,500 g .

© 3

21,000 38 B-ComCQ —@—
2 500 < 20 F-ComCQ —X%—
5 o D 0 A-ComCQ —O—

1 7 14 21 28 54 84 1 7 14 21 28 54 84
Days Days
(a) Query Latency (b) Accuracy

Fig. 10. Varying time intervals with keywords.

B
e F-ComCQ —X— < 80
< 1,000 [a-ComcQ —6— s
2 800) 60
& 600 5 40
- 400 S B-ComCQ —@—
S 2009 < 20 F-ComCQ —X—
=) A-ComCQ —O—
g 0& D 0
1 2 3 4 5 6 1 2 3 4 5 6
Keyword Keyword
(a) Query Latency (b) Accuracy

Fig. 11. Varying query range.

same query without keywords, as shown in Figure 9; the reason is utilizing the equipped inverted
index, which filters out the objects based on the existence of the query keywords. A-ComCQ still
achieves the lowest query latency with all different time intervals with similar latency versus
accuracy tradeoff to Figure 9.

Effect of varying spatial range. Figures 11 and 12 show the performance of the three algo-
rithms versus different query spatial range with and without keywords, respectively. All algo-
rithms show steady query latency as the query spatial range varies; this is because changing the
spatial range does not affect the number of I/Os, which is the dominating factor in the query
processing. Queries with keywords have much less latency due to the inverted index pruning. B-
ComCQ performs worse than the other alternatives. Figures 11(b) and 12(b) show that A-ComCQ is
more accurate for large spatial ranges; this is because under small spatial range, the top items that
A-ComCQ retrieves from each time slice might not have that many items that satisfy the query
range. This calls for increasing « value for small spatial ranges.

Effect of varying keywords. Figure 13 shows the performance of the three algorithms under
different number of keywords. The query latency of all algorithms increases as the number of
keywords increases; this is because when the number of keyword increases, we access more on

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 1, Article 6. Publication date: March 2024.

6:20 A. Almaslukh, et al.

§400 100
@ 350
E 3009 g8
& 250 B-Comcov—e— ¢ % 60 B-ComCQ —@—
$ 200 F-ComCQ —X— ® F-ComCQ —X—
§ 150 A-ComCQ —O6— 3 40 A-ComCQ —OS—
> 100 < 20
R AR —
&g od 0

10 20 40 80 10 20 40 80

Range (km) Range (km)
(a) Query Latency (b) Accuracy

Fig. 12. Varying query range with keywords.

R o
IS F-ComCQ —X— < 80
< 1,000 [A-ComCQ —6— s
2 800) 60
& 600 5 40
- 400 8 B-ComCQ —@—
$ 2009 < 20 F-ComCQ —X—
=) A-ComCQ —6—
&g 0& D 0
1 2 3 4 5 6 1 2 3 4 5 6
Keyword Keyword
(a) Query Latency (b) Accuracy

Fig. 13. Varying keywords.

25
5206
&
‘515
£ 10 | B-ComcQ —o— i
o F-ComCQ —X—
= A-ComCQ —6—
06 9]
0 10 20 40

Buffer Size (days)

Fig. 14. Varying Buffer Sizes.

the inverted index, which takes more time. Figure 13(b) shows that A-ComCQ is more accurate with
large number of keywords; this is because under multiple keywords, the marginal error brought
by A-ComCQ is minimized.

Effect of varying buffer sizes. Figure 14 shows the effect of the size of the buffer on the CSTIQ
queries performance in terms of I/O time. Clearly, B-ComCQ and F-ComCQ algorithms take the
most advantage of the buffer and avoid retrieving the data from the disk if the data exists in the
buffer due to their high latency compared to A-ComCQ. If the size of the buffer increases, then the
I/O time decreases significantly.

7.3 Indexing Scalability

This section evaluates the scalability of the proposed indexes in terms of time required to build
the index. We evaluate the three main indexing components: the community index for index-
ing community interactions (ICI), the user index for indexing user interactions (IUI), and
the master data index (MDI). Figure 15(a) shows the index scalability with different number of
objects. All indexes require more time to build the index when the number of objects increases.
However, [UI and ICI need additional processing for the interactions while MDI only processes

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 1, Article 6. Publication date: March 2024.

Scalable Spatio-Temporal Top-k Interaction Queries on Dynamic Communities 6:21

- 30

2 IUI —0— > @%‘21 cT —6—
‘€25 [MDT —%— €20
20 | ICT —©— o 18
= £ 16
=S -
210 4 240
3 5 3 8
° T 6
£ 0 = 4
20M 40M 60M 80M 10k 100k 500k 1M 2M
Number of Objects Community Size
(a) Varying Dataset (b) Varying Community Sizes

Fig. 15. Indexing scalability.

@35 ¢
930 F——*— o
£25
S0 | IUT —@—
S MDI —X%—
215

=10 ICI —©—

s}

£ 5? D
0

20M 40M 60M 80M
Number of Objects

Me

Fig. 16. Storage overhead with varying datasets.

the objects and indexes them in batching. The indexing time includes the I/O time to store the
expired time slices to the disk for IUI and ICI in addition to the I/O time of MDI to store the ob-
jects when the buffer reaches its capacity. Figure 15(b) shows the impact of the community size on
the indexing time. When the number of users is increased, the indexing time is increasing due to
the increasing number of interactions per user. Thus, when community size is 10k, the number of
interaction is tremendously less than when the community size is 1M.

7.4 Storage Overhead

This section evaluates the storage overhead for the proposed indexes. Figure 16 shows the storage
overhead in GB for the indexes IUL ICI, and MDI The interaction indexes (IUI and ICI) are stable
even when the number of objects is increased. The interaction indexes depend on the number of
users and the number of interactions; thus, the overall storage overhead is not affected by the
number of objects. However, MDI is increasing linearly when the number of objects is increased,
as the number of objects heavily affects MDL

7.5 Community Dynamism

In this section, we evaluate the overhead of community dynamism where users join and leave the
community. Up represents the list of users with changing community membership.

Effect of indexing Uy users. Figure 17 shows the indexing time with varying Up users’ sizes.
Figure 17(a) shows the effect of the Uy users in case the CSTIQ query does not include any key-
words. The indexing time for small Uy users is dominant by the I/O time, as we need to retrieve
all the time slices of IUI from the disk to build the index for the new Uj users. However, when
the U users is significantly bigger, the CPU time is increased accordingly. Figure 17(b) depicts the
indexing time for the Ux users when CSTIQ query includes keywords. The effect of keywords is
minimal when the size of Uy users is relatively small. However, the effect is very obvious when
the size of Uy users is very large. For example, indexing time for Uy users size equal 100k is double
the indexing time without keywords. The additional overhead comes from the I/O of retrieving
the data from disk utilizing the MDI index.

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 1, Article 6. Publication date: March 2024.

6:22 A. Almaslukh, et al.

20 > 45
A 3 40 A Index —6— D
2159 2
© o 35
€ £30
=10 | A Index —©— = 2
2 22
£ 5 £20
[} [}
° © 15¢
= C
-0 - 10
100 1,000 10,000 100,000 100 1,000 10,000 100,000
A Users A Users
(a) Varying A (b) Varying A with keywords

Fig. 17. Indexing A users.

8 CONCLUSION

This article has introduced community-centric query, which returns top-k objects that a specific
community interacted with the most given a time interval, an optional spatial range, and a set of
keywords. We proposed a novel indexing framework that provides efficient resource management
and scalable query processing. Moreover, we propose three algorithms, exact and approximate,
that efficiently process the queries by utilizing the underling indexing framework. Our techniques
support community dynamism, which allows users to join and leave communities over time. We
avoid rebuilding the community index when users change their community memberships. We
evaluated the proposed techniques on a real Twitter dataset and have shown their efficiency to
handle large communities.

REFERENCES

[1] [n.d.]. Retrieved from http://neo4j.org/

[2] [n.d.]. Facebook. Retrieved from https://www.facebook.com/

[3] [n.d.]. LinkedIn. Retrieved from https://www.linkedin.com/

[4] 2019. List of Virtual Communities with More Than 1 Million Users. Retrieved from http://www.worldheritage.org/

articles

[5] Nitin Agarwal, Huan Liu, Lei Tang, and Philip S. Yu. 2008. Identifying the influential bloggers in a community. In

Proceedings of the ACM International Conference on Web Search and Data Mining. 207-218.

Nesreen K. Ahmed, Nick Dufield, Jennifer Neville, and Ramana Kompella. 2014. Graph sample and hold: A framework

for big-graph analytics. In Proceedings of the SIGKDD Conference. 1446—1455.

Christopher Aicher, Abigail Z. Jacobs, and Aaron Clauset. 2015. Learning latent block structure in weighted networks.

J. Complex Netw. 3, 2 (2015), 221-248.

Abdullah Almaatouq, Ahmad Alabdulkareem, Mariam Nouh, Erez Shmueli, Mansour Alsaleh, Vivek K. Singh, Abdul-

rahman Alarifi, Anas Alfaris, and Alex Pentland. 2014. Twitter: Who gets caught? Observed trends in social micro-

blogging spam. In Proceedings of the ACM Conference on Web Science. 33-41.

Abdulaziz Almaslukh, Yongyi Liu, and Amr Magdy. 2021. Scalable spatio-temporal top-k community interactions

query. In Proceedings of the 29th International Conference on Advances in Geographic Information Systems. 293-296.

[10] Abdulaziz Almaslukh and Amr Magdy. 2019. Temporal geo-social personalized search over streaming data. In Pro-
ceedings of the SIGSPATIAL Conference. 189-198.

[11] Nicky Antonius and L. Rich. 2013. Discovering collection and analysis techniques for social media to improve public
safety. Int. Technol. Manag. Rev. 3, 1 (2013), 42-53.

[12] P. Bahl, R. Chancre, and]. Dungeon. 2016. GraphJet: Real-time content recommendations at Twitter. In VLDB
Endowment, VLDB Endowment, 1281-1292.

[13] Radoslav Baltezarevic, Borivoje Baltezarevic, Piotr Kwiatek, and Vesna Baltezarevic. 2019. The impact of virtual
communities on cultural identity. Symposion 6, 1 (2019), 7-22.

[14] Hamid Ahmadi Beni and Asgarali Bouyer. 2020. TI-SC: Top-k influential nodes selection based on community
detection and scoring criteria in social networks. J. Amb. Intell. Hum. Comput. 11 (2020), 1-20.

[15] Lisi Chen, Gao Cong, Christian S. Jensen, and Dingming Wu. 2013. Spatial keyword query processing: An experimental
evaluation. Proc. VLDB Endow. 6, 3 (2013), 217-228.

[16] Lu Chen, Chengfei Liu, Rui Zhou, Jianxin Li, Xiaochun Yang, and Bin Wang. 2018. Maximum co-located community
search in large scale social networks. Proc. VLDB Endow. 11, 10 (2018), 1233-1246.

[6

—

[7

—

8

—

[9

—

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 1, Article 6. Publication date: March 2024.

Scalable Spatio-Temporal Top-k Interaction Queries on Dynamic Communities 6:23

[17] Mingming Chen, Konstantin Kuzmin, and Boleslaw K. Szymanski. 2014. Community detection via maximization of
modularity and its variants. IEEE Trans. Computat. Soc. Syst. 1, 1 (2014), 46—-65.

[18] Chennai Floods 2017. How Twitter, Facebook, WhatsApp and Other Social Networks Are Saving Lives During Dis-
asters. Retrieved from http://www.huffingtonpost.in/2017/01/31/how-twitter-facebook-whatsapp-and-other-social-
networks-are-sa_a_21703026/

[19] Coronavirus 2020. Here’s How Social Media Can Combat the Coronavirus Infodemic. Retrieved from https://www.
technologyreview.com/s/615368/facebook-twitter-social-media-infodemic-misinformation/

[20] Wanyun Cui, Yanghua Xiao, Haixun Wang, Yiqi Lu, and Wei Wang. 2013. Online search of overlapping communities.
In Proceedings of the SIGMOD Conference. 277-288.

[21] Wanyun Cui, Yanghua Xiao, Haixun Wang, and Wei Wang. 2014. Local search of communities in large graphs. In
Proceedings of the SIGMOD Conference. 991-1002.

[22] Thu-Lan Dam, Sean Chester, Kjetil Norvag, and Quang-Huy Duong. 2021. Efficient top-k recently-frequent term
querying over spatio-temporal textual streams. Inf. Syst. 97 (2021), 101687.

[23] Daniel J. DiTursi, Gaurav Ghosh, and Petko Bogdanov. 2017. Local community detection in dynamic networks. In
Proceedings of the International Conference on Data Mining. 847-852.

[24] Jian Dong, Bin Chen, Chuan Ai, Liang Liu, and Fang Zhang. 2018. A degree-based distributed label propagation
algorithm for community detection in networks. In Proceedings of the 4th ACM SIGSPATIAL International Workshop
on Safety and Resilience. 1-5.

[25] Facebook Stats 2019. 53 Incredible Facebook Statistics and Facts. Retrieved from https://www.brandwatch.com/blog/
facebook-statistics/

[26] Facebook Stats Teen 2020. Distribution of Facebook Users in the United States. Retrieved from https://www.statista.
com/statistics/187549/facebook-distribution- of-users-age- group-usa/

[27] Ronald Fagin, Amnon Lotem, and Moni Naor. 2003. Optimal aggregation algorithms for middleware. J. Comput. Syst.
Sci. 66, 4 (2003), 614-656.

[28] Yixiang Fang, Reynold Cheng, Xiaodong Li, Sigiang Luo, and Jiafeng Hu. 2017. Effective community search over large
spatial graphs. Proc. VLDB Endow. 10, 6 (2017), 709-720.

[29] Yixiang Fang, Reynold Cheng, Sigiang Luo, and Jiafeng Hu. 2016. Effective community search for large attributed
graphs. Proc. VLDB Endow. 9, 12 (2016), 1233-1244.

[30] Yixiang Fang, Xin Huang, Lu Qin, Ying Zhang, Wenjie Zhang, Reynold Cheng, and Xuemin Lin. 2020. A survey of
community search over big graphs. VLDB 7. 29, 1 (2020), 353-392.

[31] Greg Fisher. 2019. Online communities and firm advantages. Acad. Manag. Rev. 44, 2 (2019), 279-298.

[32] Nick Fox and Chris Roberts. 1999. GPs in cyberspace: The sociology of a “virtual community”” Sociolog Rev 47, 4 (1999),
643-671.

[33] Theodore Georgiou, Amr El Abbadi, and Xifeng Yan. 2017. Extracting topics with focused communities for social
content recommendation. In Proceedings of the ACM Conference on Computer Supported Cooperative Work and Social
Computing. 1432-1443.

[34] Steve Harenberg, Gonzalo Bello, La Gjeltema, Stephen Ranshous, Jitendra Harlalka, Ramona Seay, Kanchana Padman-
abhan, and Nagiza Samatova. 2014. Community detection in large-scale networks: A survey and empirical evaluation.
Wiley Interdiscip. Rev.: Computat. Stat. 6, 6 (2014), 426-439.

[35] Abdeltawab M. Hendawi and Mohamed F. Mokbel. 2012. Predictive spatio-temporal queries: A comprehensive sur-
vey and future directions. In Proceedings of the 1st ACM SIGSPATIAL International Workshop on Mobile Geographic
Information Systems. 97-104.

[36] Tuan-Anh Hoang-Vu, Huy T. Vo, and Juliana Freire. 2016. A unified index for spatio-temporal keyword queries. In
Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. 135-144.

[37] Han Hu, NhatHai Phan, Xinyue Ye, Ruoming Jin, Kele Ding, Dejing Dou, and Huy T. Vo. 2019. DrugTracker: A
community-focused drug abuse monitoring and supporting system using social media and geospatial data (demo
paper). In Proceedings of the SIGSPATIAL Conference. 564-567.

[38] Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu. 2014. Querying k-truss community in large and
dynamic graphs. In Proceedings of the SIGMOD Conference. 1311-1322.

[39] Hurricane Dorian 2019. How Social Media Is Helping Survivors of Hurricane Dorian in the Bahamas.
Retrieved from https://www.newyorker.com/news/news-desk/how-social-media-is- helping-survivors- of-hurricane-
dorian-in-the-bahamas

[40] IG Stats Teen 2021. Instagram by the Numbers: Stats, Demographics & Fun Facts. Retrieved from https://www.
omnicoreagency.com/instagram-statistics/

[41] IG Stats Teen 2021. Most Popular Social Networks of Teenagers in the United States from Fall 2012 to Fall 2020.
Retrieved from https://www.statista.com/statistics/250172/social-network-usage- of-us-teens-and-young-adults/

—

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 1, Article 6. Publication date: March 2024.

6:24 A. Almaslukh, et al.

[42] Martin Junghanns, André Petermann, Martin Neumann, and Erhard Rahm. 2017. Management and analysis of big
graph data: Current systems and open challenges. In Handbook of Big Data Technologies, Springer, 457-505.

[43] Bisma S. Khan and Muaz A. Niazi. 2017. Network community detection: A review and visual survey. arXiv preprint
arXiv:1708.00977 (2017).

[44] Jungeun Kim and Jae-Gil Lee. 2015. Community detection in multi-layer graphs: A survey. ACM SIGMOD Rec. 44,
3 (2015), 37-48.

[45] Reinout Kleinhans, Maarten Van Ham, and Jennifer Evans-Cowley. 2015. Using social media and mobile technologies
to foster engagement and self-organization in participatory urban planning and neighbourhood governance. Planning
Practice & Research (2015).

[46] Jimmy Lin and Michael Schatz. 2010. Design patterns for efficient graph algorithms in MapReduce. In Proceedings of
the 8th Workshop on Mining and Learning with Graphs.

[47] Xiping Liu, Changxuan Wan, Neal N. Xiong, Dexi Liu, Guogiong Liao, and Song Deng. 2018. What happened then
and there: Top-k spatio-temporal keyword query. Inf. Sci. 453 (2018), 281-301.

[48] ZhiLiu and Yan Huang. 2014. Community detection from location-tagged networks. In Proceedings of the SIGSPATIAL
Conference. 525-528.

[49] Ahmed R. Mahmood, Sri Punni, and Walid G. Aref. 2019. Spatio-temporal access methods: A survey (2010-2017).
Geolnformatica 23 (2019), 1-36.

[50] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz
Czajkowski. 2010. Pregel: A system for large-scale graph processing. In Proceedings of the SIGMOD Conference.
135-146.

[51] Deepanshu Malhotra. 2021. Community detection in complex networks using link strength-based hybrid genetic
algorithm. SN Comput. Sci. 2, 1 (2021), 1-16.

[52] Shohei Matsugu, Hiroaki Shiokawa, and Hiroyuki Kitagawa. 2021. Fast algorithm for attributed community search.
Journal of Information Processing 29 (2021), 188-196.

[53] Daniel Memmi. 2008. The nature of virtual communities. In Cognition, Communication and Interaction, Springer, 70—
82.

[54] Robert Munro. 2013. Crowdsourcing and the crisis-affected community. Inf. Retriev. 16, 2 (2013), 210-266.

[55] Seth A. Myers, Aneesh Sharma, Pankaj Gupta, and Jimmy Lin. 2014. Information network or social network?
The structure of the Twitter follow graph. In Proceedings of the 23rd International Conference on World Wide Web.
493-498.

[56] Preslav Nakov, Doris Hoogeveen, Lluis Marquez, Alessandro Moschitti, Hamdy Mubarak, Timothy Baldwin, and Karin
Verspoor. 2019. SemEval-2017 task 3: Community question answering. arXiv preprint arXiv:1912.00730 (2019).

[57] Symeon Papadopoulos, Yiannis Kompatsiaris, Athena Vakali, and Ploutarchos Spyridonos. 2012. Community detec-
tion in social media. Data Min. Knowl. Discov. 24, 3 (2012), 515-554.

[58] Michel Plantié and Michel Crampes. 2013. Survey on social community detection. In Social Media Retrieval, Springer,
65-85.

[59] Constance Elise Porter. 2004. A typology of virtual communities: A multi-disciplinary foundation for future research.
J. Comput.-mediat. Commun. 10, 1 (2004), JCMC1011.

[60] Jenny Preece and Diane Maloney-Krichmar. 2005. Online communities: Design, theory, and practice. J. Comput.-
mediat. Commun. 10, 4 (2005), JCMC10410.

[61] Lu Qin, Jeffrey Xu Yu, Lijun Chang, Hong Cheng, Chengqi Zhang, and Xuemin Lin. 2014. Scalable big graph processing
in MapReduce. In Proceedings of the SIGMOD Conference. 827-838.

[62] Anjum Razzaque and Tillal Eldabi. 2018. Assessing the impact of physicians’ virtual communities on their medical
decision making quality. In Proceedings of the 51st Hawaii International Conference on System Sciences.

[63] Joao B. Rocha-Junior, Orestis Gkorgkas, Simon Jonassen, and Kjetil Norvag. 2011. Efficient processing of top-k spatial
keyword queries. In Proceedings of the 12th International Symposium on Advances in Spatial and Temporal Databases
(SSTD’11). Springer, 205-222.

[64] Arif Mohaimin Sadri, Samiul Hasan, Satish V. Ukkusuri, and Manuel Cebrian. 2017. Understanding information spread-
ing in social media during Hurricane Sandy: User activity and network properties. arXiv preprint arXiv:1706.03019
(2017).

[65] Arif Mohaimin Sadri, Samiul Hasan, Satish V. Ukkusuri, and Manuel Cebrian. 2020. Exploring network properties of
social media interactions and activities during Hurricane Sandy. Transport. Res. Interdiscip. Perspect. 6 (2020), 100143.

[66] Arif Mohaimin Sadri, Samiul Hasan, Satish V. Ukkusuri, and Juan Esteban Suarez Lopez. 2018. Analysis of social
interaction network properties and growth on Twitter. Soc. Netw. Anal. Min. 8 (2018), 1-13.

[67] Bin Shao, Haixun Wang, and Yatao Li. 2012. The trinity graph engine. Microsoft Res. 54 (2012), 4.

[68] Mauro Sozio and Aristides Gionis. 2010. The community-search problem and how to plan a successful cocktail party.
In Proceedings of the SIGKDD Conference. 939-948.

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 1, Article 6. Publication date: March 2024.

Scalable Spatio-Temporal Top-k Interaction Queries on Dynamic Communities 6:25

[69] Ivan Srbaand Maria Bielikova. 2016. A comprehensive survey and classification of approaches for community question

answering. ACM Trans. Web 10, 3 (2016), 1-63.

Beiming Sun and Vincent T. Y. Ng. 2012. Identifying influential users by their postings in social networks. In Ubiquitous

Social Media Analysis. 128-151.

[71] Wen Sun, Achille Fokoue, Kavitha Srinivas, Anastasios Kementsietsidis, Gang Hu, and Guotong Xie. 2015. SQLGraph:

An efficient relational-based property graph store. In Proceedings of the SIGMOD Conference. 1887-1901.

Lei Tang and Huan Liu. 2010. Community detection and mining in social media. Synthes. Lect. Data Min. Knowl. Discov.

2,1(2010), 1-137.

Xuning Tang and Christopher C. Yang. 2010. Identifying influential users in an online healthcare social network. In

Proceedings of the IEEE International Conference on Intelligence and Security Informatics. 43-48.

[74] G. Alan Wang, Jian Jiao, Alan S. Abrahams, Weiguo Fan, and Zhongju Zhang. 2013. ExpertRank: A topic-aware expert
finding algorithm for online knowledge communities. Decis. Supp. Syst. 54, 3 (2013), 1442-1451.

[75] Hongzhi Wang, Zhixin Qi, Lei Zheng, Yun Feng, Junfei Ouyang, Haoqi Zhang, Xiangxi Zhang, Ziming Shen, and Shi-

rong Liu. 2020. April: An automatic graph data management system based on reinforcement learning. In Proceedings

of the ACM International on Conference on Information and Knowledge Management. 3465-3468.

Michael J. Welch, Uri Schonfeld, Dan He, and Junghoo Cho. 2011. Topical semantics of Twitter links. In Proceedings

of the 4th ACM International Conference on Web Search and Data Mining. 327-336.

[77] Joyce Jiyoung Whang, David F. Gleich, and Inderjit S. Dhillon. 2013. Overlapping community detection using seed

set expansion. In Proceedings of the ACM International on Conference on Information and Knowledge Management.

2099-2108.

Kai Zheng, Han Su, Bolong Zheng, Shuo Shang, Jiajie Xu, Jiajun Liu, and Xiaofang Zhou. 2015. Interactive top-k spatial

keyword queries. In Proceedings of the IEEE 31st International Conference on Data Engineering. IEEE, 423-434.

(70

-

(72

—

(73

[t

(76

—

(78

[

Received 1 March 2023; revised 11 December 2023; accepted 1 February 2024

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 1, Article 6. Publication date: March 2024.

