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Abstract—Due to the ability of graphs to model diverse real-
world scenarios such as social networks, roads, or biological
networks, effective graph processing techniques are of critical
importance to a wide array of fields. As a consequence of the
growth of data volumes, some graphs have already outgrown
the memory capacities of single servers. In such cases, it is
desirable to partition and keep the entire graph in a distributed
memory space into order to bring the resources of a computing
cluster to bear on the problem. This approach introduces a
number of challenges, such as communication bottlenecks and
low hardware utilization. However, it is difficult to effectively
measure the impact of innovations addressing these challenges
due to a lack of standardization in the domain of distributed
graph processing. This research study was inspired by, and
builds off of, the widely-used GAP Benchmark Suite (GAPBS),
which was developed to provide an effective baseline and
consistent set of evaluation methodologies for shared memory
multiprocessor graph processing systems. We design and develop
a new benchmark suite called DMM-GAPBS, a distributed-
memory-model GAPBS. We adapt the GAPBS graph building
infrastructure and algorithms, but utilize OpenSHMEM to enable
a distributed memory environment, in the hope of providing a
modular, extensible baseline for the distributed graph processing
community. In order to showcase our design and implementation
for processing graphs that cannot fit within a single server, we
present the results of executing the DMM-GAPBS benchmark
kernels on two large synthetic graphs distributed across sixteen
nodes of an enterprise class system.

Index Terms—Benchmark, GAPBS, Graph, Distributed Mem-
ory, Performance

I. INTRODUCTION

Graphs, and similar data structures derived from them,

have formed a vital component of software infrastructures for

the greater part of the modern computing era. Based on the

mathematical concept of the same name, graphs provide an

easily comprehensible abstraction for modeling relationships.

Today, graphs are ubiquitous within fields such as data mining,

information retrieval, and scientific computing, where they are

used to solve complex problems. While many useful problems

can be modeled with relatively small graphs, modern computa-

tional workloads often require the construction and processing

of graphs whose memory footprint exceeds the resources

provided by a single node. The advent of the Big Data era has

further exacerbated this trend, while also expanding interest in

graph processing beyond traditional venues such as academia

and other scientific institutions.

Unfortunately, challenges associated with graph processing

are further compounded when graphs are coupled to dis-

tributed memory and parallel processing models. The chal-

lenges include poor data locality and frequent irregular data

access [1]. In a distributed setting, it is desirable to distribute

graph vertices and/or edges across distributed resources such

that the principles of data locality can be effectively leveraged.

However, a practical, generalizable methodology for doing

so remains elusive. Similarly, execution of graph algorithms

in distributed, parallel environments necessitates the use of

some form of synchronization. These synchronization opera-

tions, which may constitute non-trivial portions of executed

instructions [2], are widely understood to be an impediment

to performance, regardless of implementation [3]. As such, it

is desirable, but often difficult, to minimize the use of these

operations. Moreover, the random memory access patterns that

graphs most often exhibit make efficient processing of large-

scale graphs difficult.

As we prepare to enter the post Moore’s Law era, system

architects have been forced to embrace an increasingly hetero-

geneous approach when designing future platforms. Given the

diverse nature of this new paradigm, the importance of hard-

ware/software co-design is paramount. Moreover, an effective

means for measuring the performance of this emerging class

of architectures with respect to graph workloads is crucial.

Motivated by the above observations, in this work we intro-

duce DMM-GAPBS, a graph benchmark suite for distributed

memory systems. DMM-GAPBS is a graph benchmark suite

that incorporates several kernels which exemplify the behavior

of common graph-related workloads. Adapted from the GAP

Benchmark Suite (GAPBS), we believe that DMM-GAPBS

represents an important step towards a portable, standardized,

benchmark for graphs in distributed memory environments.

The primary contributions of this work are an open source

prototype of DMM-GAPBS1, a detailed description of its

implementation and the design choices made, and a brief

experimental evaluation.

II. BACKGROUND

Related Work and Motivation. Shao et al. argue that,

due to irregular access patterns, distributed processing that

1Available at https://github.com/tactcomplabs/DMM-GAPBS.git
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keeps the entire graph in memory is the best approach for

processing large graphs [4]. Similarly, Buluc and Gilbert

conclude that out-of-core approaches are “infeasible” after

comparing experimental results from [5]–[7]. This requires

extending existing parallel algorithms from shared memory

models of computation such as the Parallel Random Access

Machine (PRAM) [8] into distributed memory models such

as a Partitioned Global Address Space (PGAS). However, this

approach is not without limitations. Many graph algorithms

experience communication bottlenecks and consequently make

poor use of the available hardware [9]. In a distributed setting,

these communication overheads often become an impediment.
Orthogonally, the versatility of graphs and the difficulties

associated with distributed graph processing has given rise to

several graph processing frameworks that vary greatly in de-

sign. Several notable efforts include PGBL [10], GAPDT [11],

Pregel [12], and Combinatorial Blas [5]. Parallel GBL is a flex-

ible, generic library written in C++ that provides distributed,

parallelized graph processing data structures and algorithms.

When this framework uses distributed adjacency lists for

representing the graph, communication occurs via MPI using

the Bulk Synchronous Parallel (BSP) model [13].
The Graph Algorithm and Pattern Discovery Toolbox

(known as KDT) provides MATLAB-based interactive pro-

cessing of large graphs (represented as sparse matrices). Pregel

is a distributed programming framework with an emphasis

on fault-tolerance and abstraction of distribution details. It

provides an API for programming graph algorithms with an

underlying message passing model. Finally, Combinatorial

BLAS exploits the relationship between graphs and sparse

matrices. Since many graph operations can be represented

as linear algebraic operations on sparse matrices, the authors

provide a set of linear algebra primitives to facilitate the rapid

implementation of scalable graph algorithms.
Our research study designs and develops a new benchmark

suite, inspired by the GAPBS graph building infrastructure and

algorithms, but uses OpenSHMEM for a distributed memory

environment. The objective of this research is to provide a

modular, extensible baseline for the distributed graph process-

ing community.
Our philosophy differs fundamentally from the previously

described frameworks in three core ways. First, whereas the

others are designed to abstract away the details of distribu-

tion and synchronization for the benefit of graph application

developers, we attempt to make these details as visible and

intelligible as possible. It is our hope that this visibility and

transparency will inspire others to modify selected pieces

of our infrastructure to test theoretical innovations. Second,

whereas KDT and Combinatorial BLAS represent graphs with

sparse matrices and PGBL and Pregel use message passing

models for communication, we utilize distributed adjacency

lists accessible in the OpenSHMEM symmetric heap for

asynchronous operations. Finally, we extend the well-known

GAPBS benchmarking methodology, graphs, and kernels to a

distributed memory setting.
GAP Benchmark Suite The GAP Benchmark Suite was

introduced to address the critical need for a set of standardized

graph application benchmarks [14], [15]. Designed to emulate

the behavior of several graph algorithms commonly utilized

across application domains, the GAPBS has proven to be an

invaluable tool for the community. Naturally, GAPBS has been

extensively utilized for studies related to graphs and graph

processing [16], [17]. More surprising is the fact that GAPBS

has also been utilized in dissimilar fields such as security [18],

[19]. Moreover, GAPBS has already been broadly leveraged in

the design of future architectures as discussed in the previous

section [20]–[22].

The GAPBS itself is composed of a set of evaluation

methodologies, input graphs, and graph kernel specifications

with corresponding implementations written in C++ and paral-

lelized with OpenMP. The Breadth-First Search (BFS) kernel

implements direction-optimizing BFS and tracks parents for

reachable vertices [23]. The Betweenness Centrality (BC)

kernel approximates betweenness centrality scores for every

vertex. That is, it computes the fraction of shortest paths

that pass through a given vertex by finding shortest paths

originating from a subset of vertices. The core algorithm is

the Brandes algorithm [24] with enhancements by Madduri

et al. [25]. Connected Components (CC) uses the Afforest

subgraph sampling algorithm to produce a component label for

each vertex [26] [27]. Two vertices should share a component

label if and only if they belong to the same (weakly) connected

component (an undirected path exists between the two). Let

N+(v) denote the outgoing neighborhood of vertex v (vertices

with an incoming edge from v) and let N−(v) denote the

incoming neighborhood of v. The PageRank (PR) score for a

vertex v and a damping factor d is defined as

PR(v) =
1− d

|V |
+ d

∑

u∈N−(v)

PR(u)

|N+(u)|

These scores are calculated using a common, (not state-of-the-

art) iterative approach that is similar to sparse-matrix vector

multiplication. The Triangle Counting (TC) kernel counts the

number of cliques of size three present in an undirected graph

by finding overlap between sorted neighbor lists [28]. As an

additional optimization, graphs where very few nodes have

very large degrees are relabeled according to their degree.

Finally, the Single Source Shortest Paths (SSSP) kernel im-

plements the δ-stepping algorithm [29] with a bucket fusion

optimization from Zhang et al. [30] to produce distances from

the source for each vertex.

One limitation of the GAPBS is its focus on relatively small

graphs. In its current form, GAPBS is capable of execution

using only graphs that will fit into a single physical memory

space. Although already immensely useful, this prevents the

GAPBS from being applied to the larger problems that drive

the design of future systems. As detailed in the next section,

we build DMM-GAPBS as an adaptation of the GAPBS,

using OpenSHMEM [31], [32] to expand to its applicability

to distributed memory systems and larger graphs.

III. DESIGN & IMPLEMENTATION

In this section, we detail the important design changes we

made to adapt the GAPBS reference code to a PGAS model.

Our goal is to enable the processing of larger graphs than

the original implementation could store, and, as such, we
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Fig. 1: Partitioned data structures in the symmetric heap

(Neighbors, Vertices, and Sliding Queue) and the local heap

(Queue Buffers and Edge Lists). PE 0 is flushing its Queue

Buffer contents to the incoming region of the Sliding Queue

following the visible window.

particularly emphasize how we divided memory requirements

across processing elements.

Let p be the ordinal of the processing element (PE) exe-

cuting the instruction, and let k be the number of processing

elements involved in the computation. In our implementation,

all PEs are part of the active set [32]. Let G = (V,E), where

V is the sequence of natural numbers 0, . . . , |V |−1. Let Adj[i]
be the adjacency list of vertex i.

A. Data Structures

a) Partitions: Partitioning of the graph occurs in

two ways: naively and round robin. Vertices are as-

signed naively to PEs such that vertices in the range
[⌊

|V |
k

⌋

∗ p,
⌊

|V |
k

⌋

∗ (p+ 1)
)

are assigned to PE p for all p ∈

{0, . . . , k−2} and vertices in the range
[⌊

|V |
k

⌋

∗ (k − 1), |V |
)

are assigned to PE k − 1. This is very similar to the parti-

tioning approach taken by PGBL for representing distributed

adjacency lists. The “partition width” of a naive partitioning

of n elements (denoted wn
p ) is

⌊

n
k

⌋

. The “max width” of a

naive partition (denoted wn
m) is n − (k − 1) ∗ wn

p . Equiva-

lently, it is the number of elements assigned to PE k − 1.

Unless otherwise specified, when we describe work as being

“naively divided between PEs” it means that PEs 0, . . . , k− 2
process wn

p elements and PE k − 1 processes wn
m elements.

Figure 1 provides an overview of this important data structure

partitioning scheme.

b) P-Vectors: The original implementation included a

custom vector class that provided the option to initialize the

internal array in parallel. We extended this class with an option

to allocate the internal array in the symmetric heap. Note that

typical usage has P-Vectors pushing back different elements

with no attempt to ensure the arrays have the same contents

across PEs.

c) Bitmaps: The custom Bitmap class was also extended

to support symmetric memory versions. Since Bitmaps are

such a compact representation, unlike the other data structures,

we do not partition the symmetric versions in our current

implementation. PEs can only get or set the values of bits

within their own copy of the bitmap. Bitmaps can be merged

when necessary to provide every PE with an up-to-date record

of all bits that were set in the preceding phase. For example,

during direction-optimizing breadth-first search, in the bottom-

up step children search the active frontier (represented as a

bitmap) for parents. Each PE scans the adjacency list of all

unvisited vertices assigned to it, and sets a vertices’ bit if it

has a visited parent. Thus, each PE only sets bits of vertices

assigned to it during a bottom-up step and the results can be

safely combined at the end with an OR-TO-ALL collective

call.

d) Sliding Queues: Kernels such as Breadth-First Search

and Betweenness Centrality utilize a Sliding Queue data struc-

ture for representing frontiers, which, in the original imple-

mentation, is a double-buffered queue to which parallel threads

append queue buffer contents in bulk. In our implementation,

the role of threads is replaced by OpenSHMEM PEs. The

sliding queue itself resides in the symmetric heap, and is

partitioned similarly to P-Vectors (each PE allocates room for

wn
m elements to partition a queue with maximum capacity n).

Access to the queue is controlled by a mutual exclusion lock.

PEs fill up local-memory queue buffers, then acquire the lock2

and distribute the contents of their buffer round robin to all

PEs. If the queue on the requested destination PE is full, the

calling PE searches linearly through ascending PEs until one

with space is found. Since the round robin distribution always

begins with PE 0, each of n elements will always find space in

one of the queues. This performs load balancing3 at the cost

of high communication overhead.

e) Tournament Trees: In order to support sorting in a

distributed environment, we added a tournament tree data

structure. Each PE contributes a leaf to a complete binary tree,

which is built in symmetric memory. One PE is designated as

the “leader”, and pops the root repeatedly, fetching data from

the PE that supplied the root to rebuild the tree. When a new

PE needs to lead (to fill its portion of the sorted list), the

current leader transfers the complete contents of the tree to

the new PE.

B. Graph Building

a) Reader: While reading in edge lists from a file, every

PE reads the entire file but selects only a subset of edges to

store in its local edge list in a round robin fashion. PE 0 takes

the first edge encountered edge, PE 1 takes the second edge,

and so on. This reduces the space required for the edge list

during graph construction by a factor of k. Currently only files

with the extension .el (edge list), .wel (weighted edge list) and

.gr (graph) are supported.

b) Generator: The generator supports generation of two

types of random graphs: the Uniform Random [33] and Kro-

necker graphs [34] using Graph 500 parameters [35]. For both

approaches, the RNG is seeded every B edges with a fixed

seed that is incremented by the block number, which divides

the generation of edges into b “blocks.” In order to remain

deterministic with the original implementation, we naively

2A lock-free version that uses atomic fetch and add instead is currently
under development.

3As long as k is less than the queue buffer size, which by default is 16,384.
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partitioned these b blocks between k PEs. Consequently,

when |E| < B, or if b < k, then PE k − 1 assumes all

responsibility for generating the edge list. For anything but

trivially small graphs this approach is approximately balanced,

but the balancing can always be improved by reducing B. The

Kronecker generation requires permuting the complete edge

list. Currently, the only way to maintain determinism with the

original implementation during this permutation involves an

array of length |V |. We included an alternative approach which

reduces this required space to w
|V |
m , but is not deterministic

(which inhibits verification). Including the verification flag

when running a kernel automatically makes the graph building

deterministic.

Single Source Shortest Path requires weighted graphs, but

the synthetic graphs and some input graphs are unweighted.

The Generator therefore supports the insertion of deterministic

weights. If the edge list was read in from a file, then the

generation of weights is distributed in the same manner as

before: b blocks are divided naively among k PEs, with the

remainder being assigned to PE k − 1. For normal quantities

of |E|, B, k, this requires each PE allocating an array of size
⌊

b
k

⌋

∗B on the symmetric heap. If the edge list was generated,

weights are directly inserted into the edge list with no extra

allocations required. In both cases, our implementation is

deterministic with the original.

c) Builder: Once an edge list is read or generated, the

Builder constructs the graph. The original implementation

stored all the adjacency lists in a single array (size |E|), with

an array of pointers to locations in that array to distinguish

between the outgoing neighborhoods of different vertices (size

|V |). We build the graphs in symmetric memory to enable PEs

to access the neighborhoods of vertices not assigned to them.

However, this requires all PEs to allocate the same amount of

space for their adjacency list. Thus, if sp is the first vertex

assigned to PE p and ep is the final vertex assigned to p, then

the amount of space on each PE required for the outgoing

neighbor CSR format is

max
p∈{0,...,k−1}

i≤ep
∑

i=sp

|Adj[i]|

The incoming neighborhoods are stored in the same manner.

Duplicate edges and self-loops are removed (each PE pro-

cesses its assigned vertices) and the neighborhoods are sorted

in non-descending order.

C. Kernels

In the following section we detail important changes to the

kernels. Explaining each algorithm in detail is beyond the

scope of this paper, so we refer the reader to the source code

of the GAPBS and DMM-GAPBS implementations, as well

as to the papers in which these algorithms were introduced.

Our main guiding principle while adapting these algorithms

was faithfulness to the behavior of the original GAPBS,

in this sense what follows is a “direct conversion” from

a shared memory implementation to a distributed memory

implementation. Alternative algorithms specifically designed

for distributed memory models certainly exist, and comparing

their performance with our implementation will be an inter-

esting direction for future work.

a) Breadth-First Search (BFS): We adapted direction-

optimizing BFS to a distributed memory setting by paralleliz-

ing the top-down (TD) and bottom-up (BU) steps. During

TD, each PE processes their local portion of the frontier (a

Sliding Queue), exploring outgoing neighborhoods and adding

discovered children to their local queue buffers. These buffers

are flushed when full and when the step ends, preparing the

Sliding Queue for the next iteration. During BU, each PE

searches for parents for all nodes assigned to that PE by the

naive vertex partitioning. When the frontier is converted from

a Sliding Queue to a Bitmap during the switch from TD to BU,

each PE sets the corresponding bit for each node in that PE’s

portion of the queue. Then the symmetric bitmaps are merged.

When converting from a Bitmap to a Sliding Queue, each PE

searches for set bits occurring within its vertex partition range

and pushes the associated node to the local queue buffer. The

frontier and parent array are both reduced from size |V | to

size w
|V |
m (on each PE).

b) Connected Components (CC): The algorithm begins

by approximating the components, then samples the resulting

component labels to determine the largest intermediate com-

ponent. Distributing the selection of nodes whose labels are

sampled approximately evenly across PEs would reduce the

randomness, and the original implementation only sampled

1024 elements. As such, we did not parallelize this step and

had PE 0 handle all the work. The Link(u,v) subroutine was

not parallelized either as its only purpose is to place two nodes

(u and v) in the same component, however each PE only calls

Link on a u within its own partition. When a PE calls the

Compress subroutine, it compresses the component labels of

the range of vertices assigned to that PE. The component label

array is partitioned into P-Vectors of size w
|V |
m on each PE.

The component label array (size |V |) is partitioned into arrays

of size w
|V |
m .

c) Triangle Counting (TC): The Triangle Counting al-

gorithm uses a heuristic to estimate if graphs are scale-free

with a sufficiently high average degree to warrant re-building

the graph with vertices relabeled by their degree. In order to

sort the vertices into non-ascending order by degree, each PE

sorts the nodes within their partition, then the partially sorted

lists are combined using k-way merge and a tournament tree.

This requires (at one time) three auxiliary arrays of size w
|V |
m .

During the actual triangle counting phase (OrderedCount), all

PEs attempt to find ordered triangles originating from their

assigned vertices.

d) Page Rank (PR): Unlike the other kernels, the original

implementation of the Page Rank kernel uses a very common,

naive algorithm instead of a state-of-the-art approach4. Our

adaptation is similarly simple: work is naively divided between

PEs during each iteration.

e) Single-Source Shortest Paths (SSSP): The Delta Step-

ping algorithm functions similarly to Dijkstra’s algorithm, but

it maintains an array of buckets of width ∆ instead of a

4The GAPBS was very recently updated to include an alternative PR
implementation. Note that we adapted the legacy version (the sparse-matrix
vector multiply version).
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priority queue of unsettled nodes. The frontier in this kernel is

represented by a P-Vector, originally of size |E|, but reduced

in our implementation to w
|E|
m . Each iteration of the main loop

(which iterates until all buckets are empty), PEs 0, . . . , k − 2
process wn

p of the n active nodes added to the frontier in

the prior iteration, while PE k − 1 processes wn
m nodes.

Edges emanating from nodes in the frontier are relaxed, and

any encountered vertices whose distances can be improved

are added to PE-local buckets. At the end of this phase of

the iteration, all PEs vote to determine the smallest non-

empty bucket. In the next phase, all threads (in the original

implementation) or PEs (in our implementation) copy their

local bucket contents into the shared frontier to prepare for the

next iteration. Since our frontier is partitioned, this introduces

some additional complexity. Let n be the number of nodes

in the current bucket summed across all PEs. Now the PEs

naively partition and distribute these n elements across the

frontier (wn
p elements in the frontier on PEs 0, . . . , k − 2,

wn
m elements on PE k − 1). This approximately balances the

work for the next iteration at the cost of high communication

overhead.
f) Betweenness Centrality (BC): The P-Vectors in BC are

reduced from |V | to w
|V |
m , as is the Sliding Queue representing

the BFS frontier. The Brandes algorithm performs a number of

parallel breadth-first searches from varying sources to estimate

the number of paths through each node. During a given BFS,

at each depth, each PE calculates path counts for nodes in its

portion of the partitioned frontier. During the main algorithm,

each PE converts these path counts into scores for the vertices

(nodes) assigned to it. Work for normalizing the scores is

divided naively in the same way: PEs normalize scores for

nodes in their vertex partition.

D. Verification

Our current verification process across kernels is rudimen-

tary. Since we kept the generation of graphs and weights

deterministic, we can rely on the verifiers from the original

implementation. Including the verification flag in our imple-

mentation prints the result to a file. With the exception of BC

and PR, calling a slightly modified version of the original im-

plementation with the same graph parameters builds the same

graph in shared memory, but runs the verifier on the saved

output instead of executing the original implementation’s

kernel. In order to avoid precision issues in BC and PR, we

compare each of the scores produced by our implementation

to the range of values of the corresponding original kernel

score plus/minus 0.00001. (This comparison is in keeping

with the recommendations of the GAPBS specification with

regards to numerical noise [14]). Since the verifier does not

run on a distributed graph, it allows us to confirm that the

graph building infrastructure as well as the kernels are working

properly.

IV. EVALUATION

In comparison to shared memory multiprocessor systems,

distributed graph processing is notoriously inefficient - the

main use-cases are graphs that are too large to fit within

the memory of a single node [9]. For this reason, we focus

our evaluation on large synthetic graphs whose edge lists
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Fig. 2: Timing results for Uniform Random graph of scale 28.
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Fig. 3: Timing results for Uniform Random graph of scale 29.

require memory footprints that often exceed the capacity of

a single node within a cluster. In the following, vertex IDs

are represented by 32-bit unsigned integers. The number of

vertices is |V | = 2s, where s is the scale of the graph. The

number of edges is |E| = |V | ∗d, where d is the degree of the

graph. In our evaluation, we fix the degree to 64 and execute

graphs of scale 28 and 29. An unweighted edge (2 vertex IDs)

is 8 bytes, consequently these graphs have unweighted edge

lists of size (approximately) 137 and 274 GB. SSSP requires

weighted edges (12 bytes per edge), thus the corresponding

edge list sizes are 206 and 412 GB.

In keeping with our motivation of benchmarking emerging

distributed memory architectures, we perform our evaluation

of DMM-GAPBS on a Cray Advanced RISC Machine (ARM)

platform. Details of the configuration of this system are shown

in Table I. Sixteen nodes were used in each trial. The execution

times of each kernel for varying Processes Per Node are

recorded in Table II. Note that while the kernels all were

verified to be functional as detailed in Section III-D, all the

execution times of the TC kernel, as well as one BC trial

(denoted by -), exceeding the scheduler limits on our test

platform. We used small numbers for Processes Per Node

(PPN) to ensure that the cumulative size of the non-partitioned

data structures (the Bitmaps) did not exceed the available
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memory of a single node. One difficulty we encountered was

determining the amount of symmetric heap space required

prior to executing a given kernel. For Uniform Random graphs,

we could approximate the heap space required for each PE to

represent their portion of the distributed adjacency list with

reasonable accuracy. Appropriate parameters for Kronecker

graphs were more difficult to discern. As such, our evaluation

focuses on trials using Uniform Random graphs.

TABLE I: Evaluation Platform: Per node configuration

Parameter Configuration

ISA ARMv8.1
CPU 2x Cavium ThunderX2 9975, 28 cores

Memory 256GiB DDR4
Network Interconnect Cray Aries, Dragonfly Topology

Operating System CLE SLES 15.1
Compiler GCC 10.2.0

OpenSHMEM OSHMEM 4.1.1 + UCX 1.10.1

Our evaluation made two things evident. First, the difficulty

of setting an appropriate heap size makes vertex partitioning

schemes that distribute the adjacency list evenly more appeal-

ing. While other partitioning schemes may be simpler (such

as our naive baseline) or exploit data locality better (such

as minimum-cut or community based approaches), variability

in adjacency list size across PEs is very damaging to our

PGAS-based approach. The wasted memory on PEs that must

overallocate symmetric heap space to match the PE with the

largest edge list adds up quickly, limiting the size of the graphs

that can be processed. Uneven partitioning also limits the

usability of the suite by forcing users to tune the symmetric

heap size through trial and error. Second, the low hardware

utilization (PPN) was primarily necessary to accommodate the

Bitmaps. However, Figure 3 demonstrates that most kernels

benefit substantially from increased PPN. CC, for instance,

experienced a 3.04× speedup when PPN tripled (4 to 12)

and a 1.27× speedup when PPN was increased by 1.33× (12

to 16). BC, PR, and SSSP also demonstrated approximately

linear speedups as PPN increased for graphs of scale 28 and

295. BFS is the only kernel which demonstrated negligible

improvement in execution time as PPN increased. It is possible

that increased communication requirements mostly nullified

the benefits of additional parallelism for this particular kernel.

On the whole, however, the suite scales well with PPN. This

further underscores the need to partition the Bitmaps to obtain

optimal execution times and to make more efficient use of the

available hardware.

Graph PPN BC BFS CC PR SSSP
U-28 16 7303.5 177.0 543.8 2063.5 1616.9

12 8425.4 167.3 692.4 2694.8 2105.5
4 24566.3 156.9 2107.9 7732.5 5997.9

U-29 12 – 210.4 1390.2 5284.2 4822.2
4 44002.9 198.1 3907.7 15747.3 12004.2

TABLE II: Timing results for processing Uniform Random

(U) graphs of scale 28-29, degree 64, for each kernel. PPN is

processes per node. Timing results are in seconds.

5An exception is SSSP on U-29, which only experienced a speedup of
2.5× when PPN tripled.

V. CONCLUSION & FUTURE WORK

Our prototype implementation of the DMM-GAPBS pre-

sented in this paper provides ample space for further optimiza-

tions and improvements. We anticipate a number of enhance-

ments will be made in the future, enhancements which will

hopefully be guided by community utilization and feedback.

For the time being, we have identified several ways in which

the suite can be further improved, some of which are described

here. 1) Rebuilding the graph during the execution of the

Triangle Counting kernel is a communication-intensive process

that requires distributed sorting and re-distribution of node

assignments across PEs. A new heuristic needs to be tuned to

determine when re-building the graph will actually improve

performance in a distributed memory setting. In a similar

vein, the direction-optimizing BFS uses heuristically chosen

parameters to determine when to switch between TD and BU

directions. We use the default parameters in our evaluation, but

a more comprehensive search for optimal parameters would

likely accelerate this kernel. 2) When we converted the graph

building infrastructure, the Builder would construct a graph

from the edge list, then allocate space for a compressed

version of the graph and rebuild it (removing redundant edges

and self-loops). A more recent modification to the GAPBS

reference code enables the construction of graphs in-place.

Adapting this approach to a distributed setting will be more

complicated, but the space savings should be worthwhile. 3)

Currently verification is limited to graphs that the GAPBS can

also process. Writing reliable distributed memory verifiers will

enable us to confirm the successful execution of the kernels

on larger graphs. 4) Since one of the primary goals of the

DMM-GAPBS is to divide the memory requirements across

computing resources, partitioning the vertices into ranges

such that the complete adjacency list is evenly distributed

will likely be worth the additional pre-processing required

to calculate neighborhood sizes. Consistent with one of the

primary motivations for this work, we also intend to leverage

DMM-GAPBS in our ongoing work on the novel xBGAS

microarchitecture extension to the RISC-V instruction set

architecture [36].

The breadth and complexity of the topic of distributed

graph processing makes consistent baselines and evaluation

methodologies essential. With DMM-GAPBS, we have taken

preliminary steps towards extending the standardizing effect

of the GAP Benchmark Suite to a distributed memory setting.

We hope that the transparency of our implementation will

enable members of the graph processing community to easily

adapt, extend, and modify the kernels and graph building

infrastructure. The empirical results in the Evaluation section

demonstrate the ability of our implementation to store and

process graphs whose memory footprints exceed the capacity

of a typical commodity server. They also suggest that the

speed of most kernels scales well with increased processes per

node, although a more comprehensive evaluation with varied

numbers of nodes is in order.
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