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Abstract—Due to the ability of graphs to model diverse real-
world scenarios such as social networks, roads, or biological
networks, effective graph processing techniques are of critical
importance to a wide array of fields. As a consequence of the
growth of data volumes, some graphs have already outgrown
the memory capacities of single servers. In such cases, it is
desirable to partition and keep the entire graph in a distributed
memory space into order to bring the resources of a computing
cluster to bear on the problem. This approach introduces a
number of challenges, such as communication bottlenecks and
low hardware utilization. However, it is difficult to effectively
measure the impact of innovations addressing these challenges
due to a lack of standardization in the domain of distributed
graph processing. This research study was inspired by, and
builds off of, the widely-used GAP Benchmark Suite (GAPBS),
which was developed to provide an effective baseline and
consistent set of evaluation methodologies for shared memory
multiprocessor graph processing systems. We design and develop
a new benchmark suite called DMM-GAPBS, a distributed-
memory-model GAPBS. We adapt the GAPBS graph building
infrastructure and algorithms, but utilize OpenSHMEM to enable
a distributed memory environment, in the hope of providing a
modular, extensible baseline for the distributed graph processing
community. In order to showcase our design and implementation
for processing graphs that cannot fit within a single server, we
present the results of executing the DMM-GAPBS benchmark
kernels on two large synthetic graphs distributed across sixteen
nodes of an enterprise class system.

Index Terms—Benchmark, GAPBS, Graph, Distributed Mem-
ory, Performance

I. INTRODUCTION

Graphs, and similar data structures derived from them,
have formed a vital component of software infrastructures for
the greater part of the modern computing era. Based on the
mathematical concept of the same name, graphs provide an
easily comprehensible abstraction for modeling relationships.
Today, graphs are ubiquitous within fields such as data mining,
information retrieval, and scientific computing, where they are
used to solve complex problems. While many useful problems
can be modeled with relatively small graphs, modern computa-
tional workloads often require the construction and processing
of graphs whose memory footprint exceeds the resources
provided by a single node. The advent of the Big Data era has
further exacerbated this trend, while also expanding interest in
graph processing beyond traditional venues such as academia
and other scientific institutions.
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Unfortunately, challenges associated with graph processing
are further compounded when graphs are coupled to dis-
tributed memory and parallel processing models. The chal-
lenges include poor data locality and frequent irregular data
access [1]. In a distributed setting, it is desirable to distribute
graph vertices and/or edges across distributed resources such
that the principles of data locality can be effectively leveraged.
However, a practical, generalizable methodology for doing
so remains elusive. Similarly, execution of graph algorithms
in distributed, parallel environments necessitates the use of
some form of synchronization. These synchronization opera-
tions, which may constitute non-trivial portions of executed
instructions [2], are widely understood to be an impediment
to performance, regardless of implementation [3]. As such, it
is desirable, but often difficult, to minimize the use of these
operations. Moreover, the random memory access patterns that
graphs most often exhibit make efficient processing of large-
scale graphs difficult.

As we prepare to enter the post Moore’s Law era, system
architects have been forced to embrace an increasingly hetero-
geneous approach when designing future platforms. Given the
diverse nature of this new paradigm, the importance of hard-
ware/software co-design is paramount. Moreover, an effective
means for measuring the performance of this emerging class
of architectures with respect to graph workloads is crucial.
Motivated by the above observations, in this work we intro-
duce DMM-GAPBS, a graph benchmark suite for distributed
memory systems. DMM-GAPBS is a graph benchmark suite
that incorporates several kernels which exemplify the behavior
of common graph-related workloads. Adapted from the GAP
Benchmark Suite (GAPBS), we believe that DMM-GAPBS
represents an important step towards a portable, standardized,
benchmark for graphs in distributed memory environments.

The primary contributions of this work are an open source
prototype of DMM-GAPBS!, a detailed description of its
implementation and the design choices made, and a brief
experimental evaluation.

II. BACKGROUND

Related Work and Motivation. Shao et al. argue that,
due to irregular access patterns, distributed processing that

! Available at https:/github.com/tactcomplabs/DMM-GAPBS.git

Authorized licensed use limited to: Texas Tech University. Downloaded on January 04,2025 at 15:32:01 UTC from IEEE Xplore. Restrictions apply.



keeps the entire graph in memory is the best approach for
processing large graphs [4]. Similarly, Buluc and Gilbert
conclude that out-of-core approaches are “infeasible” after
comparing experimental results from [5]-[7]. This requires
extending existing parallel algorithms from shared memory
models of computation such as the Parallel Random Access
Machine (PRAM) [8] into distributed memory models such
as a Partitioned Global Address Space (PGAS). However, this
approach is not without limitations. Many graph algorithms
experience communication bottlenecks and consequently make
poor use of the available hardware [9]. In a distributed setting,
these communication overheads often become an impediment.

Orthogonally, the versatility of graphs and the difficulties
associated with distributed graph processing has given rise to
several graph processing frameworks that vary greatly in de-
sign. Several notable efforts include PGBL [10], GAPDT [11],
Pregel [12], and Combinatorial Blas [5]. Parallel GBL is a flex-
ible, generic library written in C++ that provides distributed,
parallelized graph processing data structures and algorithms.
When this framework uses distributed adjacency lists for
representing the graph, communication occurs via MPI using
the Bulk Synchronous Parallel (BSP) model [13].

The Graph Algorithm and Pattern Discovery Toolbox
(known as KDT) provides MATLAB-based interactive pro-
cessing of large graphs (represented as sparse matrices). Pregel
is a distributed programming framework with an emphasis
on fault-tolerance and abstraction of distribution details. It
provides an API for programming graph algorithms with an
underlying message passing model. Finally, Combinatorial
BLAS exploits the relationship between graphs and sparse
matrices. Since many graph operations can be represented
as linear algebraic operations on sparse matrices, the authors
provide a set of linear algebra primitives to facilitate the rapid
implementation of scalable graph algorithms.

Our research study designs and develops a new benchmark
suite, inspired by the GAPBS graph building infrastructure and
algorithms, but uses OpenSHMEM for a distributed memory
environment. The objective of this research is to provide a
modular, extensible baseline for the distributed graph process-
ing community.

Our philosophy differs fundamentally from the previously
described frameworks in three core ways. First, whereas the
others are designed to abstract away the details of distribu-
tion and synchronization for the benefit of graph application
developers, we attempt to make these details as visible and
intelligible as possible. It is our hope that this visibility and
transparency will inspire others to modify selected pieces
of our infrastructure to test theoretical innovations. Second,
whereas KDT and Combinatorial BLAS represent graphs with
sparse matrices and PGBL and Pregel use message passing
models for communication, we utilize distributed adjacency
lists accessible in the OpenSHMEM symmetric heap for
asynchronous operations. Finally, we extend the well-known
GAPBS benchmarking methodology, graphs, and kernels to a
distributed memory setting.

GAP Benchmark Suite The GAP Benchmark Suite was
introduced to address the critical need for a set of standardized
graph application benchmarks [14], [15]. Designed to emulate
the behavior of several graph algorithms commonly utilized
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across application domains, the GAPBS has proven to be an
invaluable tool for the community. Naturally, GAPBS has been
extensively utilized for studies related to graphs and graph
processing [16], [17]. More surprising is the fact that GAPBS
has also been utilized in dissimilar fields such as security [18],
[19]. Moreover, GAPBS has already been broadly leveraged in
the design of future architectures as discussed in the previous
section [20]-[22].

The GAPBS itself is composed of a set of evaluation
methodologies, input graphs, and graph kernel specifications
with corresponding implementations written in C++ and paral-
lelized with OpenMP. The Breadth-First Search (BFS) kernel
implements direction-optimizing BFS and tracks parents for
reachable vertices [23]. The Betweenness Centrality (BC)
kernel approximates betweenness centrality scores for every
vertex. That is, it computes the fraction of shortest paths
that pass through a given vertex by finding shortest paths
originating from a subset of vertices. The core algorithm is
the Brandes algorithm [24] with enhancements by Madduri
et al. [25]. Connected Components (CC) uses the Afforest
subgraph sampling algorithm to produce a component label for
each vertex [26] [27]. Two vertices should share a component
label if and only if they belong to the same (weakly) connected
component (an undirected path exists between the two). Let
N7 (v) denote the outgoing neighborhood of vertex v (vertices
with an incoming edge from v) and let N~ (v) denote the
incoming neighborhood of v. The PageRank (PR) score for a

vertex v and a damping factor d is defined as
1—-d PR(u)

PR(v) = —= +d L

2 [N (u)|

|V| uw€N~(v)

These scores are calculated using a common, (not state-of-the-
art) iterative approach that is similar to sparse-matrix vector
multiplication. The Triangle Counting (TC) kernel counts the
number of cliques of size three present in an undirected graph
by finding overlap between sorted neighbor lists [28]. As an
additional optimization, graphs where very few nodes have
very large degrees are relabeled according to their degree.
Finally, the Single Source Shortest Paths (SSSP) kernel im-
plements the §-stepping algorithm [29] with a bucket fusion
optimization from Zhang et al. [30] to produce distances from
the source for each vertex.

One limitation of the GAPBS is its focus on relatively small
graphs. In its current form, GAPBS is capable of execution
using only graphs that will fit into a single physical memory
space. Although already immensely useful, this prevents the
GAPBS from being applied to the larger problems that drive
the design of future systems. As detailed in the next section,
we build DMM-GAPBS as an adaptation of the GAPBS,
using OpenSHMEM [31], [32] to expand to its applicability
to distributed memory systems and larger graphs.

III. DESIGN & IMPLEMENTATION

In this section, we detail the important design changes we
made to adapt the GAPBS reference code to a PGAS model.
Our goal is to enable the processing of larger graphs than
the original implementation could store, and, as such, we
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Fig. 1: Partitioned data structures in the symmetric heap
(Neighbors, Vertices, and Sliding Queue) and the local heap
(Queue Buffers and Edge Lists). PE 0 is flushing its Queue
Buffer contents to the incoming region of the Sliding Queue
following the visible window.

particularly emphasize how we divided memory requirements
across processing elements.

Let p be the ordinal of the processing element (PE) exe-
cuting the instruction, and let & be the number of processing
elements involved in the computation. In our implementation,
all PEs are part of the active set [32]. Let G = (V, E), where
V is the sequence of natural numbers 0, . .., |[V|—1. Let Adj[i]
be the adjacency list of vertex i.

A. Data Structures

a) Fartitions: Partitioning of the graph occurs in
two ways: naively and round robin. Vertices are as-
signed naively to PEs such that vertices in the range

H‘L’JJ * P, {%J * (p+ 1)) are assigned to PE p for all p €

{0,...,k—2} and vertices in the range H%J x (k—1), \V\)
are assigned to PE k£ — 1. This is very similar to the parti-
tioning approach taken by PGBL for representing distributed
adjacency lists. The “partition width” of a naive partitioning
of n elements (denoted w;‘) is L%J The “max width” of a
naive partition (denoted wy;,) is n — (k — 1) * wy. Equiva-
lently, it is the number of elements assigned to PE k — 1.
Unless otherwise specified, when we describe work as being
“naively divided between PEs” it means that PEs 0,...,k—2
process w;, elements and PE k — 1 processes wy,, elements.
Figure 1 provides an overview of this important data structure
partitioning scheme.

b) P-Vectors: The original implementation included a
custom vector class that provided the option to initialize the
internal array in parallel. We extended this class with an option
to allocate the internal array in the symmetric heap. Note that
typical usage has P-Vectors pushing back different elements
with no attempt to ensure the arrays have the same contents
across PEs.

c) Bitmaps: The custom Bitmap class was also extended
to support symmetric memory versions. Since Bitmaps are
such a compact representation, unlike the other data structures,
we do not partition the symmetric versions in our current
implementation. PEs can only get or set the values of bits

978-1-6654-2369-4/21/$31.00 ©2021 IEEE

within their own copy of the bitmap. Bitmaps can be merged
when necessary to provide every PE with an up-to-date record
of all bits that were set in the preceding phase. For example,
during direction-optimizing breadth-first search, in the bottom-
up step children search the active frontier (represented as a
bitmap) for parents. Each PE scans the adjacency list of all
unvisited vertices assigned to it, and sets a vertices’ bit if it
has a visited parent. Thus, each PE only sets bits of vertices
assigned to it during a bottom-up step and the results can be
safely combined at the end with an OR-TO-ALL collective
call.

d) Sliding Queues: Kernels such as Breadth-First Search
and Betweenness Centrality utilize a Sliding Queue data struc-
ture for representing frontiers, which, in the original imple-
mentation, is a double-buffered queue to which parallel threads
append queue buffer contents in bulk. In our implementation,
the role of threads is replaced by OpenSHMEM PEs. The
sliding queue itself resides in the symmetric heap, and is
partitioned similarly to P-Vectors (each PE allocates room for
w) elements to partition a queue with maximum capacity n).
Access to the queue is controlled by a mutual exclusion lock.
PEs fill up local-memory queue buffers, then acquire the lock?
and distribute the contents of their buffer round robin to all
PEs. If the queue on the requested destination PE is full, the
calling PE searches linearly through ascending PEs until one
with space is found. Since the round robin distribution always
begins with PE 0, each of n elements will always find space in
one of the queues. This performs load balancing® at the cost
of high communication overhead.

e) Tournament Trees: In order to support sorting in a
distributed environment, we added a tournament tree data
structure. Each PE contributes a leaf to a complete binary tree,
which is built in symmetric memory. One PE is designated as
the “leader”, and pops the root repeatedly, fetching data from
the PE that supplied the root to rebuild the tree. When a new
PE needs to lead (to fill its portion of the sorted list), the
current leader transfers the complete contents of the tree to
the new PE.

B. Graph Building

a) Reader: While reading in edge lists from a file, every
PE reads the entire file but selects only a subset of edges to
store in its local edge list in a round robin fashion. PE 0 takes
the first edge encountered edge, PE 1 takes the second edge,
and so on. This reduces the space required for the edge list
during graph construction by a factor of k. Currently only files
with the extension .el (edge list), .wel (weighted edge list) and
.gr (graph) are supported.

b) Generator: The generator supports generation of two
types of random graphs: the Uniform Random [33] and Kro-
necker graphs [34] using Graph 500 parameters [35]. For both
approaches, the RNG is seeded every B edges with a fixed
seed that is incremented by the block number, which divides
the generation of edges into b “blocks.” In order to remain
deterministic with the original implementation, we naively

2A lock-free version that uses atomic fetch and add instead is currently
under development.
3 As long as k is less than the queue buffer size, which by default is 16,384.
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partitioned these b blocks between k& PEs. Consequently,
when |E| < B, or if b < k, then PE k — 1 assumes all
responsibility for generating the edge list. For anything but
trivially small graphs this approach is approximately balanced,
but the balancing can always be improved by reducing B. The
Kronecker generation requires permuting the complete edge
list. Currently, the only way to maintain determinism with the
original implementation during this permutation involves an
array of length |V'|. We included an alternative approach which
reduces this required space to le l, but is not deterministic
(which inhibits verification). Including the verification flag
when running a kernel automatically makes the graph building
deterministic.

Single Source Shortest Path requires weighted graphs, but
the synthetic graphs and some input graphs are unweighted.
The Generator therefore supports the insertion of deterministic
weights. If the edge list was read in from a file, then the
generation of weights is distributed in the same manner as
before: b blocks are divided naively among k PEs, with the
remainder being assigned to PE k& — 1. For normal quantities
of |E|, B, k, this requires each PE allocating an array of size
L’—];J * B on the symmetric heap. If the edge list was generated,
weights are directly inserted into the edge list with no extra
allocations required. In both cases, our implementation is
deterministic with the original.

¢) Builder: Once an edge list is read or generated, the
Builder constructs the graph. The original implementation
stored all the adjacency lists in a single array (size | E|), with
an array of pointers to locations in that array to distinguish
between the outgoing neighborhoods of different vertices (size
|V]). We build the graphs in symmetric memory to enable PEs
to access the neighborhoods of vertices not assigned to them.
However, this requires all PEs to allocate the same amount of
space for their adjacency list. Thus, if s, is the first vertex
assigned to PE p and e, is the final vertex assigned to p, then
the amount of space on each PE required for the outgoing
neighbor CSR format is

i<ep

Adjli
e > 1Ad]

=Sp

The incoming neighborhoods are stored in the same manner.
Duplicate edges and self-loops are removed (each PE pro-
cesses its assigned vertices) and the neighborhoods are sorted
in non-descending order.

C. Kernels

In the following section we detail important changes to the
kernels. Explaining each algorithm in detail is beyond the
scope of this paper, so we refer the reader to the source code
of the GAPBS and DMM-GAPBS implementations, as well
as to the papers in which these algorithms were introduced.
Our main guiding principle while adapting these algorithms
was faithfulness to the behavior of the original GAPBS,
in this sense what follows is a “direct conversion” from
a shared memory implementation to a distributed memory
implementation. Alternative algorithms specifically designed
for distributed memory models certainly exist, and comparing
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their performance with our implementation will be an inter-
esting direction for future work.

a) Breadth-First Search (BFS): We adapted direction-
optimizing BFS to a distributed memory setting by paralleliz-
ing the top-down (TD) and bottom-up (BU) steps. During
TD, each PE processes their local portion of the frontier (a
Sliding Queue), exploring outgoing neighborhoods and adding
discovered children to their local queue buffers. These buffers
are flushed when full and when the step ends, preparing the
Sliding Queue for the next iteration. During BU, each PE
searches for parents for all nodes assigned to that PE by the
naive vertex partitioning. When the frontier is converted from
a Sliding Queue to a Bitmap during the switch from TD to BU,
each PE sets the corresponding bit for each node in that PE’s
portion of the queue. Then the symmetric bitmaps are merged.
When converting from a Bitmap to a Sliding Queue, each PE
searches for set bits occurring within its vertex partition range
and pushes the associated node to the local queue buffer. The
frontier and parent array are both reduced from size |V| to
size wJX | (on each PE).

b) Connected Components (CC): The algorithm begins
by approximating the components, then samples the resulting
component labels to determine the largest intermediate com-
ponent. Distributing the selection of nodes whose labels are
sampled approximately evenly across PEs would reduce the
randomness, and the original implementation only sampled
1024 elements. As such, we did not parallelize this step and
had PE 0 handle all the work. The Link(u,v) subroutine was
not parallelized either as its only purpose is to place two nodes
(u and v) in the same component, however each PE only calls
Link on a w within its own partition. When a PE calls the
Compress subroutine, it compresses the component labels of
the range of vertices assigned to that PE. The component label
array is partitioned into P-Vectors of size w'n‘f " on each PE.
The component label array (size |V]) is partitioned into arrays
of size wL‘{ )

c) Triangle Counting (TC): The Triangle Counting al-
gorithm uses a heuristic to estimate if graphs are scale-free
with a sufficiently high average degree to warrant re-building
the graph with vertices relabeled by their degree. In order to
sort the vertices into non-ascending order by degree, each PE
sorts the nodes within their partition, then the partially sorted
lists are combined using k-way merge and a tournament tree.
This requires (at one time) three auxiliary arrays of size wL‘f 3
During the actual triangle counting phase (OrderedCount), all
PEs attempt to find ordered triangles originating from their
assigned vertices.

d) Page Rank (PR): Unlike the other kernels, the original
implementation of the Page Rank kernel uses a very common,
naive algorithm instead of a state-of-the-art approach*. Our
adaptation is similarly simple: work is naively divided between
PEs during each iteration.

e) Single-Source Shortest Paths (SSSP): The Delta Step-
ping algorithm functions similarly to Dijkstra’s algorithm, but
it maintains an array of buckets of width A instead of a

4The GAPBS was very recently updated to include an alternative PR
implementation. Note that we adapted the legacy version (the sparse-matrix
vector multiply version).
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priority queue of unsettled nodes. The frontier in this kernel is
represented by a P-Vector, originally of size |E|, but reduced
in our implementation to wlf'. Each iteration of the main loop
(which iterates until all buckets are empty), PEs 0,...,k —2
process w,, of the n active nodes added to the frontier in
the prior iteration, while PE k — 1 processes w, nodes.
Edges emanating from nodes in the frontier are relaxed, and
any encountered vertices whose distances can be improved
are added to PE-local buckets. At the end of this phase of
the iteration, all PEs vote to determine the smallest non-
empty bucket. In the next phase, all threads (in the original
implementation) or PEs (in our implementation) copy their
local bucket contents into the shared frontier to prepare for the
next iteration. Since our frontier is partitioned, this introduces
some additional complexity. Let n be the number of nodes
in the current bucket summed across all PEs. Now the PEs
naively partition and distribute these n elements across the
frontier (w; elements in the frontier on PEs 0,...,k — 2,
w) elements on PE k£ — 1). This approximately balances the
work for the next iteration at the cost of high communication
overhead.

f) Betweenness Centrality (BC): The P-Vectors in BC are
reduced from |V| to wL‘f I, as is the Sliding Queue representing
the BFS frontier. The Brandes algorithm performs a number of
parallel breadth-first searches from varying sources to estimate
the number of paths through each node. During a given BFS,
at each depth, each PE calculates path counts for nodes in its
portion of the partitioned frontier. During the main algorithm,
each PE converts these path counts into scores for the vertices
(nodes) assigned to it. Work for normalizing the scores is
divided naively in the same way: PEs normalize scores for
nodes in their vertex partition.

D. Verification

Our current verification process across kernels is rudimen-
tary. Since we kept the generation of graphs and weights
deterministic, we can rely on the verifiers from the original
implementation. Including the verification flag in our imple-
mentation prints the result to a file. With the exception of BC
and PR, calling a slightly modified version of the original im-
plementation with the same graph parameters builds the same
graph in shared memory, but runs the verifier on the saved
output instead of executing the original implementation’s
kernel. In order to avoid precision issues in BC and PR, we
compare each of the scores produced by our implementation
to the range of values of the corresponding original kernel
score plus/minus 0.00001. (This comparison is in keeping
with the recommendations of the GAPBS specification with
regards to numerical noise [14]). Since the verifier does not
run on a distributed graph, it allows us to confirm that the
graph building infrastructure as well as the kernels are working

properly.

IV. EVALUATION

In comparison to shared memory multiprocessor systems,
distributed graph processing is notoriously inefficient - the
main use-cases are graphs that are too large to fit within
the memory of a single node [9]. For this reason, we focus
our evaluation on large synthetic graphs whose edge lists
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Fig. 2: Timing results for Uniform Random graph of scale 28.

600

Kernel
-~ BC
400 -A- BFS
& CC
- PR
+-oC = SSSP

Trial Time (Minutes)

200

Processes

Fig. 3: Timing results for Uniform Random graph of scale 29.

require memory footprints that often exceed the capacity of
a single node within a cluster. In the following, vertex IDs
are represented by 32-bit unsigned integers. The number of
vertices is |V| = 2%, where s is the scale of the graph. The
number of edges is |F| = |V|*d, where d is the degree of the
graph. In our evaluation, we fix the degree to 64 and execute
graphs of scale 28 and 29. An unweighted edge (2 vertex IDs)
is 8 bytes, consequently these graphs have unweighted edge
lists of size (approximately) 137 and 274 GB. SSSP requires
weighted edges (12 bytes per edge), thus the corresponding
edge list sizes are 206 and 412 GB.

In keeping with our motivation of benchmarking emerging
distributed memory architectures, we perform our evaluation
of DMM-GAPBS on a Cray Advanced RISC Machine (ARM)
platform. Details of the configuration of this system are shown
in Table I. Sixteen nodes were used in each trial. The execution
times of each kernel for varying Processes Per Node are
recorded in Table II. Note that while the kernels all were
verified to be functional as detailed in Section III-D, all the
execution times of the TC kernel, as well as one BC trial
(denoted by -), exceeding the scheduler limits on our test
platform. We used small numbers for Processes Per Node
(PPN) to ensure that the cumulative size of the non-partitioned
data structures (the Bitmaps) did not exceed the available
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memory of a single node. One difficulty we encountered was
determining the amount of symmetric heap space required
prior to executing a given kernel. For Uniform Random graphs,
we could approximate the heap space required for each PE to
represent their portion of the distributed adjacency list with
reasonable accuracy. Appropriate parameters for Kronecker
graphs were more difficult to discern. As such, our evaluation
focuses on trials using Uniform Random graphs.

TABLE I: Evaluation Platform: Per node configuration

[ Parameter [ Configuration ]
ISA ARMVS.1
CPU 2x Cavium ThunderX2 9975, 28 cores
Memory 256GiB DDR4

Network Interconnect
Operating System
Compiler
OpenSHMEM

Cray Aries, Dragonfly Topology
CLE SLES 15.1
GCC 10.2.0
OSHMEM 4.1.1 + UCX 1.10.1

Our evaluation made two things evident. First, the difficulty
of setting an appropriate heap size makes vertex partitioning
schemes that distribute the adjacency list evenly more appeal-
ing. While other partitioning schemes may be simpler (such
as our naive baseline) or exploit data locality better (such
as minimum-cut or community based approaches), variability
in adjacency list size across PEs is very damaging to our
PGAS-based approach. The wasted memory on PEs that must
overallocate symmetric heap space to match the PE with the
largest edge list adds up quickly, limiting the size of the graphs
that can be processed. Uneven partitioning also limits the
usability of the suite by forcing users to tune the symmetric
heap size through trial and error. Second, the low hardware
utilization (PPN) was primarily necessary to accommodate the
Bitmaps. However, Figure 3 demonstrates that most kernels
benefit substantially from increased PPN. CC, for instance,
experienced a 3.04x speedup when PPN tripled (4 to 12)
and a 1.27x speedup when PPN was increased by 1.33x (12
to 16). BC, PR, and SSSP also demonstrated approximately
linear speedups as PPN increased for graphs of scale 28 and
293, BFS is the only kernel which demonstrated negligible
improvement in execution time as PPN increased. It is possible
that increased communication requirements mostly nullified
the benefits of additional parallelism for this particular kernel.
On the whole, however, the suite scales well with PPN. This
further underscores the need to partition the Bitmaps to obtain
optimal execution times and to make more efficient use of the
available hardware.

Graph | PPN | BC BFS | CC PR SSSP
U-28 |16 |7303.5 |177.0|543.8 |2063.5 |1616.9
12 | 84254 |167.3 6924 |2694.8 |2105.5
4 24566.3 | 156.9 | 2107.9 | 7732.5 | 5997.9
U-29 |12 |- 210.4 | 1390.2 | 5284.2 | 4822.2
4 44002.9 | 198.1 | 3907.7 | 15747.3 | 12004.2

TABLE II: Timing results for processing Uniform Random
(U) graphs of scale 28-29, degree 64, for each kernel. PPN is
processes per node. Timing results are in seconds.

5An exception is SSSP on U-29, which only experienced a speedup of
2.5x when PPN tripled.
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V. CONCLUSION & FUTURE WORK

Our prototype implementation of the DMM-GAPBS pre-
sented in this paper provides ample space for further optimiza-
tions and improvements. We anticipate a number of enhance-
ments will be made in the future, enhancements which will
hopefully be guided by community utilization and feedback.
For the time being, we have identified several ways in which
the suite can be further improved, some of which are described
here. 1) Rebuilding the graph during the execution of the
Triangle Counting kernel is a communication-intensive process
that requires distributed sorting and re-distribution of node
assignments across PEs. A new heuristic needs to be tuned to
determine when re-building the graph will actually improve
performance in a distributed memory setting. In a similar
vein, the direction-optimizing BFS uses heuristically chosen
parameters to determine when to switch between TD and BU
directions. We use the default parameters in our evaluation, but
a more comprehensive search for optimal parameters would
likely accelerate this kernel. 2) When we converted the graph
building infrastructure, the Builder would construct a graph
from the edge list, then allocate space for a compressed
version of the graph and rebuild it (removing redundant edges
and self-loops). A more recent modification to the GAPBS
reference code enables the construction of graphs in-place.
Adapting this approach to a distributed setting will be more
complicated, but the space savings should be worthwhile. 3)
Currently verification is limited to graphs that the GAPBS can
also process. Writing reliable distributed memory verifiers will
enable us to confirm the successful execution of the kernels
on larger graphs. 4) Since one of the primary goals of the
DMM-GAPBS is to divide the memory requirements across
computing resources, partitioning the vertices into ranges
such that the complete adjacency list is evenly distributed
will likely be worth the additional pre-processing required
to calculate neighborhood sizes. Consistent with one of the
primary motivations for this work, we also intend to leverage
DMM-GAPBS in our ongoing work on the novel xBGAS
microarchitecture extension to the RISC-V instruction set
architecture [36].

The breadth and complexity of the topic of distributed
graph processing makes consistent baselines and evaluation
methodologies essential. With DMM-GAPBS, we have taken
preliminary steps towards extending the standardizing effect
of the GAP Benchmark Suite to a distributed memory setting.
We hope that the transparency of our implementation will
enable members of the graph processing community to easily
adapt, extend, and modify the kernels and graph building
infrastructure. The empirical results in the Evaluation section
demonstrate the ability of our implementation to store and
process graphs whose memory footprints exceed the capacity
of a typical commodity server. They also suggest that the
speed of most kernels scales well with increased processes per
node, although a more comprehensive evaluation with varied
numbers of nodes is in order.
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