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Abstract: This paper investigates the feasibility of detecting and estimating the rate of internal
hemorrhage based on continuous noninvasive hematocrit measurement. A unique challenge in
hematocrit-based hemorrhage detection is that hematocrit decreases in response to hemorrhage
and resuscitation with fluids, which makes hemorrhage detection during resuscitation challenging.
We developed two sequential inference algorithms for detection of internal hemorrhage based on
the Luenberger observer and the extended Kalman filter. The sequential inference algorithms use
fluid resuscitation dose and hematocrit measurement as inputs to generate signatures to enable
detection of internal hemorrhage. In the case of the extended Kalman filter, the signature is nothing
but inferred hemorrhage rate, which allows it to also estimate internal hemorrhage rate. We evaluated
the proof-of-concept of these algorithms based on in silico evaluation in 100 virtual patients subject
to diverse hemorrhage and resuscitation rates. The results showed that the sequential inference
algorithms outperformed naïve internal hemorrhage detection based on the decrease in hematocrit
when hematocrit noise level was 1% (average F1 score: Luenberger observer 0.80; extended Kalman
filter 0.76; hematocrit 0.59). Relative to the Luenberger observer, the extended Kalman filter demon-
strated comparable internal hemorrhage detection performance and superior accuracy in estimating
the hemorrhage rate. The analysis of the dependence of the sequential inference algorithms on
measurement noise and plant parametric uncertainty showed that small (≤1%) hematocrit noise level
and personalization of sequential inference algorithms may enable continuous noninvasive detection
of internal hemorrhage and estimation of its rate.

Keywords: hemorrhage; detection; sequential inference; observer; Kalman filter; virtual patient

1. Introduction

Hemorrhage is accountable for approximately 40% of mortality in the world [1]. In the
civilian sector, hemorrhage is the most common cause of deaths in young adults and juve-
niles [2]. In the military sector, >85% of mortality on the battlefield is attributed primarily
to hemorrhage, 25% of which may be survivable if timely treatment is provided [3].

Hemorrhage can be external or internal. External bleeding can be easily detected and
controlled. However, early detection of internal bleeding is not trivial. Rudimentary vital
signs used in patient monitoring (e.g., heart rate (HR), blood pressure (BP), and oxygen
saturation) do not reveal easily recognizable symptoms of bleeding and the resulting hypov-
olemia in the early stage of hemorrhage due to the body’s autonomic-cardiac compensation
mechanisms [4–6]. Heart rate variability (HRV) is known to decrease during hemorrhage.
But prior work showed that (i) it is a poor indicator of tolerance to hypovolemia [7] and
(ii) it does not add value to rudimentary vital signs in identifying hemorrhage in patients
receiving packed RBC transfusion [8]. Clinical efficacy of noninvasive measurements such
as thoracic electrical bioimpedance, serum lactate, and mucosal pH has yet to be estab-
lished [5]. Hence, early detection of internal hemorrhage before its recognition via obvious
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symptoms in rudimentary vital signs and other noninvasive measurements is important in
providing life-saving interventions to hemorrhaging patients.

Efforts to promptly detect internal hemorrhage and the resulting circulatory decom-
pensation have been made on both algorithmic and sensing fronts. Existing work on the
algorithmic front includes pulse wave analysis (PWA) [9] as well as machine-learning-based
methods to detect the depletion of blood volume (BV) [10] and compensatory reserve [4].
A potential weakness of these methods is that they are empiric and data-driven and, thus,
are not readily interpretable. Such weakness raises concerns regarding the efficacy of these
methods beyond the datasets used to develop them. In addition, these methods are often
concerned with the inference of margins to circulatory collapse rather than the detection of
hemorrhage itself, which is a disadvantage if the detection of hemorrhage itself is the main
goal. Existing work on the sensing front includes imaging-based techniques and continuous
blood hemoglobin (Hgb) monitoring (which is closely related to blood hematocrit (HCT),
i.e., HCT is approximately 3 times Hgb [11]). Ultrasound imaging of inferior vena cava
diameter and left ventricle thickness was ineffective in detecting hemorrhage [12], while
computed tomography imaging and diffuse optical techniques showed promise in early
detection of hemorrhage in pelvic injury [13]. But imaging-based techniques clearly have
weaknesses in terms of ubiquitous usability in low-resource environments (e.g., prehospital
settings as well as battlefield and mass casualty scenarios) due to the bulkiness of the equip-
ment and the operator requirements. In addition, some imaging techniques require a priori
knowledge of injury to accurately diagnose bleeding. Continuous Hgb monitoring based
on pulse co-oximetry [14] showed promise in trending blood Hgb (and, accordingly, HCT).
However, continuous Hgb monitoring is associated with substantial sensor noise [15]. In
addition, Hgb may be associated with limited effectiveness in detecting internal hemor-
rhage in the presence of resuscitation with fluids because hemorrhage and fluids both dilute
the blood and, thus, decrease Hgb. In sum, technology that can ubiquitously, promptly,
and accurately detect internal hemorrhage does not appear to exist.

To bridge this gap, this paper investigates the feasibility of detecting internal hemor-
rhage and estimating its rate based on continuous noninvasive hematocrit measurement.
Toward this goal, we developed two sequential inference algorithms for detection of inter-
nal hemorrhage based on the Luenberger observer (LO) and the extended Kalman filter
(EKF). These algorithms exploit fluid resuscitation dose and hematocrit measurement as
inputs to generate signatures to detect internal hemorrhage. In the case of the EKF, the
signature is nothing but inferred hemorrhage rate, which allows it to also estimate internal
hemorrhage rate. We evaluated the proof-of-concept of detecting internal hemorrhage
and estimating its rate via these sequential inference algorithms by conducting in silico
evaluation in 100 virtual patients subject to diverse hemorrhage and resuscitation rates.

This paper is organized as follows. Section 2 describes the plant dynamics, the design
of linear and nonlinear sequential inference algorithms for detection of internal hemorrhage
and estimation of its rate, an LO and an EKF, and the details of in silico evaluation of the
sequential inference algorithms. Section 3 summarizes results, which are discussed in
Section 4. Section 5 concludes the paper with possible future directions.

2. Methods

In Section 2.1, we present a lumped-parameter mathematical model of BV kinetics,
which is the basis of designing an LO and an EKF for internal hemorrhage detection. In
Section 2.2, we present novel internal hemorrhage detection algorithms based on an LO
(Section 2.2.1) and an EKF (Section 2.2.2). In Section 2.3, we present the in silico evaluation
method to evaluate the internal hemorrhage detection algorithms, including the virtual
patients and scenarios (Section 2.3.1), the application of the algorithms to the in silico
scenarios (Section 2.3.2), and the evaluation metrics (Section 2.3.3).
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2.1. Plant Dynamics

Most existing mathematical models of BV kinetics are extremely complex and involve a
large number of individual-specific parameters [16–20]. Hence, these mathematical models
may not be ideally suited to the design of observers and Kalman filters. For this reason,
we employed a lumped-parameter mathematical model of BV kinetics developed in our
prior work (Figure 1). A major strength of this mathematical model is that it can replicate
the change in BV and HCT in response to hemorrhage and resuscitation while abstracting
complex physiological details into simple phenomenological functions.

Diagnostics 2024, 14, x FOR PEER REVIEW 3 of 17 
 

 

2.1. Plant Dynamics 
Most existing mathematical models of BV kinetics are extremely complex and involve 

a large number of individual-specific parameters [16–20]. Hence, these mathematical 
models may not be ideally suited to the design of observers and Kalman filters. For this 
reason, we employed a lumped-parameter mathematical model of BV kinetics developed 
in our prior work (Figure 1). A major strength of this mathematical model is that it can 
replicate the change in BV and HCT in response to hemorrhage and resuscitation while 
abstracting complex physiological details into simple phenomenological functions. 

 
Figure 1. A lumped-parameter mathematical model of blood volume kinetics. 

The lumped-parameter mathematical model is given by [21]: 

൤𝑥ሶଵ(𝑡)𝑥ሶଶ(𝑡)൨ = ቂ−𝑘 𝑘0 0ቃ ൤𝑥ଵ(𝑡)𝑥ଶ(𝑡)൨ + ൥ 111 + 𝛼௨൩ 𝑢(𝑡) − ൥ 111 + 𝛼௛൩ ℎ(𝑡) (1) 

where 𝑥ଵ(𝑡) is the change in BV from its initial value 𝑉஻଴, 𝑥ଶ(𝑡) is the target change in 
BV, 𝑢(𝑡)  and ℎ(𝑡)  are resuscitation and hemorrhage rates, respectively, and 𝜎(𝑡)  is 
HCT. The lumped-parameter mathematical model contains four interpretable parameters 𝜃 = ሼ𝑉஻଴, 𝛼௨, 𝛼௛, 𝐾ሽ, (i) 𝑉஻଴ representing initial (i.e., pre-hemorrhage/resuscitation) BV; (ii) 𝛼௨  and 𝛼௛  representing the fraction of resuscitation and hemorrhage compensated by 
the interstitial fluid exchange (e.g., ଵଵାఈೠ  fraction of resuscitation volume expands BV, 
while the remaining ఈೠଵାఈೠ fraction is shifted to the interstitial space); and (iii) 𝑘 represent-
ing the rate of interstitial fluid exchange. 

In this work, we used two alternative output equations. For the LO, we used the fol-
lowing output equation: 𝑦(𝑡) = 𝜎(0) − 𝜎(𝑡)𝜎(𝑡) = 1𝑉஻଴ 𝑥ଵ(𝑡) + ׬ ℎ(𝜏)𝜎(𝜏)𝑑𝜏௧଴ 𝑉஻଴𝜎(𝑡)  (2) 

where HCT is assumed to be continuously measured, e.g., via continuous SpHb sensing 
[22,23]. Note that 𝑦(𝑡) includes the influence of both state (i.e., 𝑥ଵ(𝑡)) and hemorrhage ℎ(𝑡). In the absence of hemorrhage, ℎ(𝑡) = 0 and ׬ ௛(ఛ)ఙ(ఛ)ௗఛ೟బ ௏ಳబఙ(௧) = 0, which makes it possible 

to infer the fractional change in BV from 𝑦(𝑡): 𝑦(𝑡) = ఙ(଴)ିఙ(௧)ఙ(௧) = ଵ௏ಳబ 𝑥ଵ(𝑡). However, in the 

presence of hemorrhage, the term ׬ ௛(ఛ)ఙ(ఛ)ௗఛ೟బ ௏ಳబఙ(௧)   cannot be calculated because ℎ(𝑡)  is un-
known in real-world settings. Hence, 𝑦(𝑡) is not a measure of the fractional change in BV 
anymore when ℎ(𝑡) ≠ 0. For the EKF, we used the following output equation: 

Figure 1. A lumped-parameter mathematical model of blood volume kinetics.

The lumped-parameter mathematical model is given by [21]:[ .
x1(t).
x2(t)

]
=

[
−k k
0 0

][
x1(t)
x2(t)

]
+

[
1
1

1+αu

]
u(t)−

[
1
1

1+αh

]
h(t) (1)

where x1(t) is the change in BV from its initial value VB0, x2(t) is the target change
in BV, u(t) and h(t) are resuscitation and hemorrhage rates, respectively, and σ(t) is
HCT. The lumped-parameter mathematical model contains four interpretable parameters
θ = {VB0, αu, αh, K}, (i) VB0 representing initial (i.e., pre-hemorrhage/resuscitation) BV;
(ii) αu and αh representing the fraction of resuscitation and hemorrhage compensated by
the interstitial fluid exchange (e.g., 1

1+αu
fraction of resuscitation volume expands BV, while

the remaining αu
1+αu

fraction is shifted to the interstitial space); and (iii) k representing the
rate of interstitial fluid exchange.

In this work, we used two alternative output equations. For the LO, we used the
following output equation:

y(t) =
σ(0)− σ(t)

σ(t)
=

1
VB0

x1(t) +

∫ t
0 h(τ)σ(τ)dτ

VB0σ(t)
(2)

where HCT is assumed to be continuously measured, e.g., via continuous SpHb sensing [22,23].
Note that y(t) includes the influence of both state (i.e., x1(t)) and hemorrhage h(t). In the

absence of hemorrhage, h(t) = 0 and
∫ t

0 h(τ)σ(τ)dτ

VB0σ(t) = 0, which makes it possible to infer the

fractional change in BV from y(t): y(t) = σ(0)−σ(t)
σ(t) = 1

VB0
x1(t). However, in the presence

of hemorrhage, the term
∫ t

0 h(τ)σ(τ)dτ

VB0σ(t) cannot be calculated because h(t) is unknown in
real-world settings. Hence, y(t) is not a measure of the fractional change in BV anymore
when h(t) ̸= 0. For the EKF, we used the following output equation:
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y(t) = σ(t) (3)

2.2. Internal Hemorrhage Detection via Sequential Inference

We developed two alternative sequential inference algorithms based on the LO and
the EKF for detection of internal hemorrhage.

2.2.1. Luenberger Observer (LO)

To design an LO, we augmented h(t) as an additional slowly varying state to Equation (1).
Then, the resulting state–space representation is given by Equation (4):

.
x(t) = Ax(t) + Bu(t) =

−k k −1
0 0 − 1

1+αh
0 0 0

x1(t)
x2(t)
x3(t)

+

 1
1

1+αu
0

u(t)

y(t) = σ(0)−σ(t)
σ(t) = 1

VB0
x1(t) +

∫ t
0 h(τ)σ(τ)dτ

VB0σ(t)

(4)

where A = A +
∼
A and B = B +

∼
B, with the superscripts · and

∼· being nominal and
uncertain parts, respectively. Note that the output y(t) does not represent the fractional
change in BV when h(t) is not zero, as described in Section 2.1. As outlined below, the LO

neglects the integral term
∫ t

0 h(τ)σ(τ)dτ

VB0σ(t) in its output equation and exploits the error caused
by the neglected integral term to derive a signature of internal hemorrhage. The LO for the
above plant dynamics is given by:

.
x̂(t) = Ax̂(t) + Bu(t) + L[y(t)− ŷ(t)]

= Ax̂(t) + Bu(t) + L
[

σ(0)−σ(t)
σ(t) − 1

VB0
x̂1(t)

] (5)

where L is the LO gain matrix. Note that we assumed that ŷ(t) = 1
VB0

x̂1(t), i.e., we neglected

the integral term
∫ t

0 h(τ)σ(τ)dτ

VB0σ(t) in the output equation in Equation (4). The corresponding
LO error dynamics are given by:

.
e(t) =

.
x(t)−

.
x̂(t)

= Ae(t)−
L
[
1 0 0

]
VB0

e(t) +
∼
Ax(t) +

∼
Bu(t)− L

∼
VB0

x1(t)− L
∫ t

0 h(τ)σ(τ)dτ

VB0σ(t)

=
(

A − L
VB0

[
1 0 0

])
e(t) + η(t)

(6)

where η(t) =
∼
Ax(t) +

∼
Bu(t)− L

∼
VB0

x1(t)− L
∫ t

0 h(τ)σ(τ)dτ

VB0σ(t) (t) is unknown disturbance (note

that, here, we assumed that 1
VB0

= 1
VB0

+ 1
∼
VB0

).

To garner meaningful insights on how e1(t), e2(t), and e3(t) behave as well as to derive
a metric for the detection of internal hemorrhage, we assumed that parametric uncertainty

is small (i.e.,
∼
Ax(t) +

∼
Bu(t)− L

∼
VB0

x1(t) = 0), which leads to η(t) ≈ −L
∫ t

0 h(τ)σ(τ)dτ

VB0σ(t) (t) ≜

−Lηh(t). Expanding Equation (6) under this assumption yields the following expressions
for the dynamics of individual errors:

.
e1(t) = −

(
k + l1

VB0

)
e1(t) + e2(t)− e3(t)− l1ηh(t)

.
e2(t) = − l2

VB0
e1(t)− k

1+αh
e3(t)− l2ηh(t)

.
e3(t) = − l3

VB0
e1(t)− l3ηh(t)

(7)
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Deriving the transfer functions from ηh(t) to e1(t), e2(t), and e3(t) yields the following:

e1(s) = −
l1s2+(l2−l3)s− k

1+αh
l3

s3+

(
k+ l1

VB0

)
s2+

(
l2

VB0
− l3

VB0

)
s− k

1+αh

l3
VB0

ηh(s)

e2(s) = −
l2s2+

(
kl2− k

1+αh
l3
)

s− k2
1+αh

l3

s3+

(
k+ l1

VB0

)
s2+

(
l2

VB0
− l3

VB0

)
s− k

1+αh

l3
VB0

ηh(s)

e3(s) = − l3s2+kl3s

s3+

(
k+ l1

VB0

)
s2+

(
l2

VB0
− l3

VB0

)
s− k

1+αh

l3
VB0

ηh(s)

(8)

Note that, since h(t) ≥ 0 and σ(t) > 0, ∀t ≥ 0, ηh(t) ≥ 0, ∀t ≥ 0. In addition, ηh(t)
monotonically increases through time during hemorrhage (i.e., when h(t) > 0) as follows:

.
ηh(t) =

d
dt

[∫ t
0 h(τ)σ(τ)dτ

VB0σ(t)

]
=

1
VB0

(
h(t)−

.
σ
∫ t

0 h(τ)σ(τ)dτ

σ2

)
≥ 1

VB0
h(t) (9)

since
.
σ(t) ≤ 0 during hemorrhage (i.e., HCT monotonically decreases as red blood cells

lost due to hemorrhage are not replenished by the interstitial fluid exchange and/or re-
suscitation with fluid). Hence, ηh(t) ≥ 1

VB0

∫ t
0 h(τ)dτ. To derive a condition for detecting

internal hemorrhage, we also assumed that h(t) varies slowly: h(t) ≈ H, where H de-
notes a constant hemorrhage rate. Then, we inputted ηh(s) ≥ H

VB0s2 into Equation (8) to
derive the following terminal behaviors pertaining to e1(t), e2(t), and e3(t) using the final
value theorem:

lim
t→∞

e1(t) = lim
s→0

se1(s) = ∞

lim
t→∞

e2(t) = lim
s→0

se2(s) = ∞

lim
t→∞

e3(t) = lim
s→0

se3(s) ≥ (1 + αh)H
(10)

The last inequality in Equation (10) leads to the following condition:

e3(∞) = x3(∞)− x̂3(∞) ≥ (1 + αh)H → x̂3(∞) ≤ x3(∞)− (1 + αh)H (11)

In words, Equation (11) implies that, in the steady state, x̂3(t) is smaller than x3(t)
when hemorrhage is present. In the absence of internal hemorrhage, x3(t) = h(t) = 0.
Hence, when the parametric uncertainty is negligible, internal hemorrhage may be detected
if x̂3(t) ≤ 0. However, since the parametric uncertainty induces errors in x̂3(t), a conserva-
tive condition must be used to suppress false positives. Hence, we arrived at the following
condition for detecting internal hemorrhage:

x̂3(t) ≤ x3,LO(t) (12)

where x3,LO(t) is the lower bound of x3(t) when h(t) = 0, ∀t ≥ 0 (see Section 2.3.1 for the
details of how x3,LO(t) is derived).

Beyond the detection of internal hemorrhage, the LO can also infer an approximate
upper bound of its rate. Assuming that the rate of internal hemorrhage is constant (at H),
we reduced Equation (11) to H ≤ − x̂3(∞)

αH
. This inequality implies that the upper bound of

the internal hemorrhage rate can be estimated from x̂3(∞) as − x̂3(∞)
αH

.

2.2.2. Extended Kalman Filtering (EKF)

To design an EKF, we augmented two additional states to Equation (1): (i) h(t) as an
additional slowly varying state as x3(t) and (ii) the red blood cell volume as x4(t). Then,
the resulting state–space representation is given by Equation (13):
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.
x(t) = f (x(t), u(t)) =


−kx1(t) + kx2(t)− x3(t) + u(t)

− 1
1+αh

x3(t) + 1
1+αu

u(t)
0

− x3(t)x4(t)
x1(t)+VB0


y(t) = h(x(t)) = σ(t) = x4(t)

x1(t)+VB0

(13)

Remark 1. One can imagine that an EKF may be designed based on Equation (4), where the

output y(t) is a nonlinear function of x1(t), h(t), and σ(t): y(t) = 1
VB0

x1(t) +
∫ t

0 h(τ)σ(τ)dτ

VB0σ(t) .
However, this output equation is non-Markov, which presents challenges in designing an EKF.

In the design of an EKF, we considered the process noise w(t) and the sensor noise v(t):

.
x(t) = f (x(t), u(t), θ) + w(t)
y(t) = h(x(t)) + v(t)

(14)

where θ = {VB0, αu, αh, k}. Instead of optimizing the process noise covariance, we designed
the process noise w(t) as the uncertainty in the state due to the parametric uncertainty:

w(t) = Jθ(t)δθ(t), Qw(t) = Jθ(t)Qθ JT
θ (t) (15)

where Jθ(t) is the Jacobian matrix of f (x(t), u(t), θ) with respect to θ, while Qw(t) and
Qθ are the process noise covariance matrix and the covariance matrix pertaining to θ,
respectively (see Section 2.3.1 for the details of how Qθ is derived). On the other hand, we
designed the sensor noise v(t) and its covariance Qv based on the noise associated with
the measurement of σ(t). Then, we estimated the states using the standard EKF prediction
and correction procedure. At the time instant tk, when a new measurement σ(tk) becomes
available, the prediction procedure is given by:

x̂(tk|tk−1) = x̂(tk−1) +
∫ tk

tk−1
f (x̂(t), u(t), θ)dt

P(tk|tk−1) = P(tk−1) +
∫ tk

tk−1
F(t)PT(t) + P(t)FT(t) + Qw(t)dt

(16)

where F(t) = ∂ f (x(t),u(t),θ)
∂x

∣∣∣
x̂(t|tk−1),u(t)

. The correction procedure is given by:

K(tk) = P(tk|tk−1)HT(tk)
[
H(tk)P(tk|tk−1)HT(tk) + Qv(tk)

]−1

x̂(tk) = x̂(tk|tk−1) + K(tk)[y(tk)− h(x̂(tk|tk−1))]
P(tk) = [I − K(tk)H(tk)]P(tk|tk−1)

[
I − HT(tk)KT(tk)

]
+ K(tk)Qv(tk)KT(tk)

(17)

where H(tk) =
∂h(x)

∂x

∣∣∣
x̂(tk |tk−1)

.

In the EKF, x̂3(t) is the estimate of internal hemorrhage. In the absence of internal
hemorrhage, x3(t) = h(t) = 0. Hence, when the parametric uncertainty is negligible, inter-
nal hemorrhage may be detected if x̂3(t) ≥ 0. However, since the parametric uncertainty
induces errors in x̂3(t), a conservative condition must be used to suppress false positives.
Hence, we arrived at the following condition for detecting internal hemorrhage:

x̂3(t) ≥ x3,EKF(t) (18)

where x3,EKF(t) is the upper bound of x3(t) when h(t) = 0, ∀t ≥ 0 (see Section 2.3.1 for the
details of how x3,EKF(t) is derived).
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2.3. In Silico Evaluation

We conducted an array of extensive in silico investigations to evaluate and compare
the efficacy of the two alternative sequential inference algorithms for the detection of
internal hemorrhage and the estimation of its rate.

2.3.1. Virtual Patients and Scenarios

As a basis to perform in silico evaluation, we used a mathematical model to replicate
physiological responses to hemorrhage and resuscitation and its corresponding virtual
patient generator (VPG) developed in our prior work [24]. In brief, we derived the mathe-
matical model using 28 sheep, which underwent acute hemorrhage and resuscitation of
fluids [25–27]. Then, we derived the VPG to be used in this work using the subset of the
sheep resuscitated with colloid (n = 5) based on a collective variational inference (C-VI)
method developed by us [24]. The VPG can generate random samples containing the
parameters of the mathematical model (called the VPs), which allow the mathematical
model to simulate physiologically plausible behaviors.

In this work, we conducted the in silico evaluation by sampling random VPs from the
VPG and simulating the LO and the EKF on the VPs (as described in detail in Section 2.3.2).
In each simulation, each VP was subject to a constant rate of internal hemorrhage and
another constant rate of resuscitation with fluid after a brief period to settle down transients
due to initial conditions. We considered the internal hemorrhage rate ranging 0.01–0.1 lpm
and the resuscitation rate ranging 10–190% of the given internal hemorrhage rate in each
VP. To examine the impact of the HCT error on the performance of detecting internal
hemorrhage and estimating its rate, we considered the HCT error levels of 0%, 1%, 2%,
and 3% in the form of Gaussian noise. Noting that the existing literature indicates that the
current technology may achieve the HCT error of up to 3% [28], our investigation intends to
garner insights on the performance of our sequential inference algorithms now and in the
future when the measurement technology is further advanced. In sum, these combinations
of hemorrhage rate, resuscitation rate, and HCT noise provided us with a total of 400 in
silico evaluation scenarios: 10 (internal hemorrhage rates, from 0.01 lpm to 0.1 lpm in an
increment of 0.01 lpm) × 10 (resuscitation rates, from 10% of hemorrhage rate to 190% of
hemorrhage rate in an increment of 20%) × 4 (HCT noise levels) = 400. To balance true
and false events in the in silico evaluation, we augmented to these 400 scenarios the same
400 scenarios but without hemorrhage. All in all, each VP underwent these 800 in silico
evaluation scenarios, resulting in a total of 80,000 in silico evaluations. In each simulation,
we ran the LO in Section 2.2.1 and the EKF in Section 2.2.2 to detect internal hemorrhage
and estimate its rate (if any) as explained in Section 2.3.2.

2.3.2. Internal Hemorrhage Detection and Hemorrhage Rate Estimation Based on
Continuous Hematocrit Measurement

We implemented the LO and the EKF using the most likely (i.e., population average)
parameter values in the VPG. In the case of the EKF, we used the covariance matrix
pertaining to the VPG (which is derived by the C-VI method to represent the uncertainty
associated with the VPs [24]) as Qθ in Equation (15). We designed Qv as the HCT noise
variance used in the in silico evaluation.

We specified the threshold values x3,LO(t) in Equation (12) and x3,EKF(t) in Equation (18)
before conducting the in silico evaluations. For this purpose, we sampled 100 random
VPs and simulated the LO and the EKF on them under all the 800 scenarios described in
Section 2.3.1. Considering that the threshold values represent the lower bound of x3(t)
estimated by the LO and the upper bound of x3(t) estimated by the EKF in the absence of
internal hemorrhage, we conducted the simulations by applying the resuscitation input
in the scenarios alone (i.e., we set the hemorrhage rate to zero in all these simulations).
Then, we specified x3,LO(t) as the minimum value of x̂3(t) inferred by the LO across
80,000 simulations and we likewise specified x3,EKF(t) as the maximum value of x̂3(t)
inferred by the EKF across 80,000 simulations.



Diagnostics 2024, 14, 1970 8 of 16

Using the values of x3,LO(t) and x3,EKF(t) thus specified, we conducted the in silico
evaluation. In this context, we sampled an additional 100 random VPs and simulated
the LO and the EKF on them under all the 800 scenarios described in Section 2.3.1. The
simulation was performed until (i) the VP lost >25% BV or (ii) the HCT of the VP was
<10%. In each in silico evaluation (pertaining to a scenario and a VP), the LO and the EKF
estimated their respective x3(t). In the case of LO, x̂3(t) was compared with x3,LO(t). In the
case of EKF, x̂3(t) was compared with x3,EKF(t). Then, at each sampling time instant, the
LO declared the detection of internal hemorrhage if Equation (12) was satisfied in >50% of
the comparisons within the past 10 min window. Similarly, at each sampling time instant,
the EKF declared the detection of internal hemorrhage if Equation (18) was satisfied in
>50% of the comparisons within the past 10 min window. The 10 min window was used
to mitigate the misdetection of internal hemorrhage due to fluctuations in x̂3(t) caused by
parametric uncertainty and measurement noise. Note that the use of the 10 min window
may compromise the speed of detection. Hence, it can be viewed as the reconciliation
between performance and robustness associated with the detection of internal hemorrhage.
The LO and the EKF also estimated the rate of internal hemorrhage. In the case of LO,
the upper bound of the rate of internal hemorrhage was estimated as H ≤ − x̂3(t)

αH
(see

Section 2.2.1). In the case of EKF, the rate of internal hemorrhage was estimated simply
as x̂3(t).

For both the LO and the EKF, we classified a detection declaration as “positive” if
the internal hemorrhage was detected before (i) >25% of initial BV was lost or (ii) HCT
was <10%. Otherwise, we classified the detection declaration as “negative”. The rationale
behind this classification was to penalize the detections that were too late to save the lives
of hemorrhaging patients.

To evaluate the performance of the sequential inference algorithms in comparison
with the direct detection of internal hemorrhage based on the change in HCT, we evaluated
the performance of a naïve algorithm, which declared the detection of internal hemorrhage
if HCT decreased by >10% from its initial value:

σ(t) ≤ 0.9 × σ(0) (19)

2.3.3. Evaluation Metrics

To measure the accuracy of hemorrhage detection, we used the F1 score and the
custom-defined corrected F1 score as primary metrics. The F1 score and the corrected
F1 score differ in terms of how positives (i.e., hemorrhage detected) and negatives (i.e.,
hemorrhage not detected) are defined. In calculating the F1 score, we used the definitions
of positive vs. negative detection described in Section 2.3.2; we defined a positive detection
if, at any time instant in the evaluation, (i) the detection condition (Equation (12) for the LO
and Equation (18) for the EKF) was satisfied in >50% of the comparisons within the past
10 min window and (ii) BV loss was ≤25% and HCT was ≥10%. We defined a negative
detection otherwise if the detection condition was never satisfied until the evaluation ended
or, equivalently, if the detection was too delayed (i.e., after >25% BV loss or <10% HCT).
In this way, a positive detection can be obtained if its two requisite criteria are met at any
time instant regardless of whether or not they are met afterwards. On the other hand, in
calculating the corrected F1 score, we defined a positive detection if, at a sampling time
instant, (i) the detection condition (Equation (12) for the LO and Equation (18) for the EKF)
was satisfied in >50% of the comparisons within the past 10 min window, (ii) BV loss was
≤25% and HCT was ≥10%, and (iii) the detection condition remained satisfied till the end
of the evaluation. We defined a negative detection otherwise. In this way, the corrected
F1 score used a more stringent notion of positive detection than its F1 counterpart. We
calculated the F1 score and the corrected F1 score on a VP-by-VP basis (note that each BP
was evaluated under 800 scenarios as described in Section 2.3.1). Then, we calculated the
descriptive statistics of these metrics.
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In addition to F1 score and corrected F1 score, we used (uncorrected and corrected)
precision, recall, sensitivity, and specificity as secondary metrics. To measure the speed of
hemorrhage detection, we devised the normalized detection time (NDT), which is defined
as the time to detect hemorrhage divided by the time to lose 25% of BV (considering that
30% blood loss is known to be associated with the occurrence of decompensation [29]) or
the time to reach 10% HCT, whichever occurs first.

We determined the statistical significance in the differences in all the aforementioned
metrics using the paired t-test with Bonferroni correction for multiple comparisons.

To measure the accuracy of estimating the rate of internal hemorrhage, we used the
normalized absolute error (NAE) between true vs. estimated hemorrhage rates. For a
given evaluation, the NAE was calculated as the average value of the absolute differences
between true vs. estimated hemorrhage rates during the last 10% of the evaluation (to
exclude the artifacts due to the transient behaviors in the estimated hemorrhage rate)
divided by true hemorrhage rate.

3. Results

Figure 2 shows representative examples of internal hemorrhage detection pertaining
to the LO (by Equation (12)), the EKF (by Equation (18)), and naïve HCT (by Equation
(19)) under 0.03 lpm hemorrhage rate, 0.015 lpm resuscitation rate, and 1% HCT noise.
Figures 3 and 4 show the average F1 score and the average corrected F1 score, respectively,
pertaining to the LO, the EKF, and the naïve HCT across a wide range of internal hemor-
rhage and resuscitation rates (note that the average was taken over all the VPs). Figure 5
shows the average NDT pertaining to the LO, the EKF, and naïve HCT across a wide
range of internal hemorrhage and resuscitation rates (note that the average was likewise
taken over all the VPs). Table 1 summarizes the statistics (in terms of mean and standard
deviation) of precision, corrected precision, recall, sensitivity, specificity, accuracy, F1 score,
corrected F1 score, and NDT pertaining to internal hemorrhage detection. Figure 6 shows
the probability distributions of errors associated with hemorrhage estimation pertaining
to the LO and the EKF. Figures 7 and 8 show the impact of HCT measurement noise on the
F1 scores and the corrected F1 scores pertaining to the LO and the EKF, respectively, while
Figure 9 shows the impact of HCT measurement noise on hemorrhage estimation error
pertaining to the EKF.
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Figure 2. Representative examples of internal hemorrhage detection pertaining to (a) the LO (by
Equation (12)), (b) the EKF (by Equation (18)), and (c) the naïve HCT (by Equation (19)) under
0.03 lpm hemorrhage rate, 0.015 lpm resuscitation rate, and 1% HCT noise.
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Table 1. Descriptive statistics (in mean and standard deviation) of precision, corrected precision,
recall, sensitivity, specificity, accuracy, F1 score, corrected F1 score, and NDT pertaining to internal
hemorrhage detection associated with the LO, the EKF, and naïve HCT-based detection, averaged
over all the in silico evaluation scenarios (i.e., hemorrhage and resuscitation rates) under 1% HCT
noise level. *: p < 0.016 with respect to naïve HCT-based detection. †: p < 0.016 with respect to LO.

LO EKF HCT

Precision 68 ± 13 * 63 ± 09 *† 45 ± 14
Corrected Precision 77 ± 14 * 85 ± 15 *† 45 ± 14

Recall 99 ± 03 * 98 ± 07 * 89 ± 29
Sensitivity 99 ± 03 * 99 ± 07 * 89 ± 29
Specificity 48 ± 24 * 39 ± 19 *† 0 ± 0
F1 Score 80 ± 08 * 76 ± 07 *† 60 ± 19

Corrected F1 Score 85 ± 08 * 90 ± 09 *† 59 ± 19
NDT 0.23 ± 0.14 * 0.26 ± 0.17 *† 0.33 ± 0.24

4. Discussion

Hemorrhage must be detected and treated promptly to save lives. However, prompt
and accurate detection of internal hemorrhage is not feasible. Existing work to facilitate
the detection of internal hemorrhage is often associated with a lack of interpretability,
the detection of the decompensation threshold rather than hemorrhage itself, and/or the
requirement for bulky equipment and trained operators. In this work, we investigated the
proof-of-concept of detecting and estimating the rate of internal hemorrhage based on the
sequential inference-enabled analysis of continuous noninvasive hematocrit measurement.
In this context, we developed and evaluated two alternative sequential inference algorithms
to detect internal hemorrhage and estimate its rate in an array of rigorous in silico evalua-
tions. Primary goals of our work included (i) to investigate the potential of the sequential
inference algorithms to enable continuous detection of internal hemorrhage, (ii) to garner
in-depth insights on the behaviors (and, accordingly, strengths and weaknesses) of the
sequential inference algorithms with respect to hemorrhage rate fluid resuscitation rates,
(iii) to investigate the potential of the sequential inference algorithms to estimate the rate of
internal hemorrhage, and (iv) to determine the impact of HCT measurement noise on the
efficacy of the sequential inference algorithms. Details follow.

4.1. Sequential Inference Based on Continuous HCT for Detection of Internal Hemorrhage:
Potential and Feasibility

The sequential inference has the potential to enable noninvasive hemorrhage detection
superior to naïve HCT-based detection (Figures 2–5, Table 1). The sequential inference
(both the LO and the EKF) showed an F1 score of >0.7 and a corrected F1 score of >0.8 in
many cases evaluated in this work, whereas both the F1 score and the corrected F1 score of
naïve HCT-based detection were <0.5 (Figures 3 and 4). In addition, the NDT pertaining to
sequential inference was consistently smaller than NDT pertaining to naïve HCT-based
detection (Figure 5).

In regards to hemorrhage detection, nonlinear (i.e., EKF) and linear (i.e., LO) sequential
inference algorithms showed comparable performance (Figures 2–5, Table 1). In many cases,
both the LO and the EKF could detect hemorrhage promptly after hemorrhage occurred
(Figure 2). As far as the F1 score and the corrected F1 score are concerned, the LO modestly
outperformed the EKF in terms of the F1 score, while the EKF outperformed the LO in
terms of the corrected F1 score. Scrutinizing the in silico evaluation results showed that
the EKF was more prone to false detection (false positive) due to the transient fluctuations
in the state estimates than the LO when internal hemorrhage and/or resuscitation started.
However, most of the transient false detection events were associated with reasonably short
durations (approximately <10% of the simulation time pertaining to the in silico evaluation
scenario). Hence, such transient false alerts may not be too problematic. Further, transient
false alerts due to resuscitation may be avoided by disabling the sequential inference
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algorithms for a brief period after resuscitation rate is adjusted. As far as the NDT is
concerned, the LO and the EKF exhibited comparable performance. There was statistical
significance in the difference in the NDT between them. But the absolute difference was
small (3% on average; Table 1). All in all, internal hemorrhage detection performance was
remarkable in both the LO and the EKF; the corrected F1 score was mostly >0.8 and, in
the case of the EKF, >0.9 in approximately >50% of the scenarios investigated (Figure 4).
The NDT was mostly <0.5, except in the region where hemorrhage rate is very high but
resuscitation rate is very low (Figure 5).

4.2. Efficacy of Sequential Inference Algorithms with Respect to Hemorrhage and Fluid
Resuscitation Rates

At the level of details, we note several interesting hemorrhage detection behaviors
pertaining to sequential inference algorithms and naïve HCT-based detection. First, both
the F1 score and the corrected F1 score pertaining to both the LO and the EKF tended
to deteriorate as hemorrhage rate and resuscitation rate increased, although they were
still good in the absolute sense (Figures 3 and 4). This behavior may be attributed to the
reasoning that the time available to detect internal hemorrhage decreases as hemorrhage
rate and/or resuscitation rate increase(s) in most cases; BV is quickly lost if hemorrhage
rate is high, while HCT quickly decreases if hemorrhage and/or resuscitation rates are high.
However, also note that resuscitation restores the BV lost by internal hemorrhage and may
improve the detection performance (and, accordingly, the F1 score and the corrected F1
score). Such a complex influence of resuscitation on the detection performance may explain
the biphasic behavior of the corrected F1 score pertaining to the EKF, where it improved and
then deteriorated as the resuscitation rate increased in the vicinity of 0.08 lpm hemorrhage
rate (Figure 4). Second, both the F1 score and the corrected F1 score pertaining to naïve
HCT-based detection were primarily governed by the resuscitation rate, although they
were modestly governed by the internal hemorrhage rate as well; both the F1 score and
the corrected F1 score tended to improve as resuscitation rate increased and hemorrhage
rate decreased (Figures 3 and 4). However, both the F1 score and the corrected F1 score
tended to saturate when the resuscitation rate reached 40–60% of the hemorrhage rate. This
behavior may be attributed to the reasoning that HCT quickly decreases as the resuscitation
rate increases, which increases both true positives and false positives pertaining to naïve
HCT-based detection (given that it declares detection due to the decrease in HCT regardless
of the existence of internal hemorrhage). It appeared that both the F1 score and the corrected
F1 score improved as true positives and false positives increased, after which they saturated
when true positives and false positives (and, thus, true negatives) saturated. Third, the
NDT pertaining to both the LO and the EKF as well as naïve HCT-based detection tended
to improve as the resuscitation rate increased (Figure 5). This behavior may be attributed
to the reasoning that resuscitation restores BV lost by hemorrhage, which extends the time
to reach 25% BV loss.

4.3. Sequential Inference Based on Continuous HCT for Estimation of Internal Hemorrhage Rate:
Potential and Feasibility

In contrast to hemorrhage detection, in regards to hemorrhage estimation, nonlinear
sequential inference (i.e., EKF) significantly outperformed its linear counterpart (i.e., LO)
(Figure 6). This observation is reasonable and anticipated because the EKF directly estimates
hemorrhage rate, whereas the LO can only estimate the upper bound of hemorrhage rate
(see Equation (11)). The hemorrhage estimation accuracy pertaining to the EKF may be
practically useful: top 75% of NAE was <12%, top 50% of NAE was <7%, and top 25% of
NAE was <3%.

4.4. Impact of HCT Measurement Noise on the Efficacy of Sequential Inference Algorithms

The analysis of the influence of sensor noise and plant parametric uncertainty on the de-
tection and estimation of internal hemorrhage provided meaningful insights (Figures 7–9).
In regards to detection, parametric uncertainty dominated the detection performance when



Diagnostics 2024, 14, 1970 15 of 16

HCT measurement noise was small (<2%), while sensor noise dominated the detection
performance when HCT measurement noise was large (≥2%) (Figures 7 and 8). In regards
to estimation of hemorrhage rate pertaining to the EKF, sensor noise but not parametric
uncertainty dominated the estimation accuracy, and the trend appeared to be stronger as
sensor noise level increased (Figure 9). Our analysis predicted that the corrected F1 score
of ≥85% and ≥90% pertaining to the detection of internal hemorrhage may be achieved
by the LO and the EKF, respectively, if sensor noise can be reduced to 1% level (from the
currently available 3% level [28]). Our analysis also predicted that the accuracy of <30%
pertaining to the estimation of the rate of internal hemorrhage may be achieved by the EKF
if sensor noise can likewise be reduced to a 1% level. In addition, our analysis predicted
that an additional 5–10% improvement may be achieved in the efficacy of both detect-
ing and estimating the rate of internal hemorrhage if the sequential inference algorithms
can be equipped with the ability to adapt to individual patients, e.g., by co-inferring the
patient-specific mathematical model parameters together with the states. In this way, our
analysis indicated that improving sensor accuracy and sequential inference algorithms may
be equally important to improve hemorrhage detection and estimation performance.

5. Conclusions

We developed two alternative sequential inference algorithms based on continuous
HCT sensing to enable prompt detection of internal hemorrhage. We showed that both
the LO and the EKF can promptly detect internal hemorrhage across a wide range of
hemorrhage and resuscitation rates. We also showed that the EKF can adequately estimate
the rate of internal hemorrhage. The comparison of the sequential inference algorithms
against a naïve HCT-based detection showed the superior performance of the sequential
inference algorithms. All in all, our results provide supporting evidences to foster the future
development of novel physics-based sequential inference analytics and high-accuracy high-
precision continuous HCT sensing to mature internal hemorrhage monitoring capabilities.
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