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A Generative Approach to Testing
the Performance of Physiological
Control Algorithms
Physiological closed-loop control algorithms play an important role in the development of
autonomous medical care systems, a promising area of research that has the potential to
deliver healthcare therapies meeting each patient’s specific needs. Computational
approaches can support the evaluation of physiological closed-loop control algorithms con-
sidering various sources of patient variability that they may be presented with. In this
article, we present a generative approach to testing the performance of physiological
closed-loop control algorithms. This approach exploits a generative physiological model
(which consists of stochastic and dynamic components that represent diverse physiological
behaviors across a patient population) to generate a select group of virtual subjects. By
testing a physiological closed-loop control algorithm against this select group, the
approach estimates the distribution of relevant performance metrics in the represented pop-
ulation. We illustrate the promise of this approach by applying it to a practical case study on
testing a closed-loop fluid resuscitation control algorithm designed for hemodynamic man-
agement. In this context, we show that the proposed approach can test the algorithm against
virtual subjects equipped with a wide range of plausible physiological characteristics and
behavior and that the test results can be used to estimate the distribution of relevant perfor-
mance metrics in the represented population. In sum, the generative testing approach may
offer a practical, efficient solution for conducting preclinical tests on physiological closed-
loop control algorithms. [DOI: 10.1115/1.4065934]
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1 Introduction
Autonomous medical care is an emerging area of research that

has the potential to provide the care that a patient needs while reduc-
ing clinician’s workload. Central to this vision are the physiological
closed-loop control algorithms, encompassing facets of perception,
learning, and decision/control, that continuously monitor a patient’s
state and deploy treatments that are appropriate to the patient’s con-
dition. These algorithms are often constructed based on predefined
assumptions pertaining to patient physiology and equipment char-
acteristics. As a result, when the complexities of real-world situa-
tions diverge from these assumptions, the algorithms might face
challenges in their operation. Hence, extensive testing under a
wide range of scenarios can offer valuable insights into the behavior
of these algorithms, e.g., by highlighting potential vulnerabilities
and suggesting paths for further refinement.

Among available testing methods, in silico (using computer sim-
ulations) [1,2] and hardware-in-the-loop (HIL) [3,4] testing offer
opportunities to gain valuable insights into the behavior of a
given algorithm without imposing any direct risk to live animals
or human subjects. Pivotal in these testing setups are patient phys-
iology models capable of simulating various aspects of a patient’s
physiology that are relevant to the objectives of the test [5]. In
recent years, there have been advances in mathematical models
that represent patient physiology in a range of areas, including hem-
orrhage care [6], vasoplegia care [7], burn care [8,9], and diabetes
care [10,11], to name a few. Concurrently, considerations and meth-
odologies have emerged to enable credibility evaluation, verifica-
tion, and validation for such mathematical models [5,12–15].
Furthermore, methods have been proposed to leverage these math-
ematical patient physiology models for in silico trials and/or to com-
plement real-world trials with in silico results [1,2,12].
Generative physiological modeling is an emerging modeling

concept that employs stochastic and dynamic components to
emulate the physiological behaviors observed in a population of
patients [6]. Generative physiological models can create cohorts
of virtual patients, simulate the impact of physiological stimuli on
these cohorts, and produce virtual datasets that mirror the spectrum
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of physiological responses anticipated in the population. In this
article, we present a method to assess the performance of physiolog-
ical closed-loop control algorithms using a generative physiological
model. The presented method leverages the generative physiologi-
cal model to create a curated group of virtual subjects. Then, the
method offers estimates on the distribution of pertinent performance
metrics in the population by examining the algorithm’s performance
in this curated group and analyzing the outcomes. To demonstrate
this method, we apply it to a case study on HIL testing of a
closed-loop fluid resuscitation control algorithm for hemodynamic
management. In this context, we assess the method’s ability to test
a given control algorithm using virtual subjects that span varied phys-
iological traits and whether the outcomes can estimate the distribution
of relevant performance metrics in the represented population.

2 Generative Algorithm Testing
2.1 Generative Physiological Model. In this work, a genera-

tive physiological model [6] serves as the basis for testing the per-
formance of physiological closed-loop control algorithms. The
generative model used in this work consists of three main sub-
models:

θ ∼ G(ϕμ, ϕL) (1)

xk = H(xk−1, ûk−1, θ) (2)

yk = M(xk, θ, n) (3)

where G is the patient generator model and creates virtual patients
by producing random Gaussian vectors θ representing patient char-
acteristics and variations therein; H is the physiological dynamics
model and generates changes in each virtual patient’s state
through time in response to inputs and therapies; andM is the phys-
iological measurement model and represents the physiological mea-
surement processes with their inherent imperfections. In this model,
k is the time index, θ is the vector of patient characteristics, xk is the
vector of patient states, ûk is the vector of known inputs/therapies
given to the patient, and yk is the vector of generated measurements.
Additionally, ϕμ , ϕL, and n denote the adjustable parameters of G
andM, where ϕμ and ϕL are the mean and the Cholesky decompo-
sition of the covariance of the samples θ generated by the patient
generator model G, and n is the standard deviation (STD) of the
noise considered by the measurement model. Given physiological
data from a patient cohort, these adjustable parameters can be
inferred via the method presented in our prior work [6]. This
yields a generative physiological model capable of generating
virtual datasets that share a similar distribution with the real data.
Our objective in this work is to leverage this generative capability
to test the performance of physiological closed-loop control
algorithms.

2.2 Generative Algorithm Testing. In this section, we
describe a conceptual framework for testing the performance of a
given physiological closed-loop control algorithm using a genera-
tive physiological model. The control algorithm to be tested is for-
malized as

uk = C(∗, ŷk) (4)

where uk is the control input (i.e., a command to administer
therapy), ŷk is the control output (i.e., relevant physiological vari-
ables measured from the patient), C is the controller, and ∗ indicates
that the controller may be stateful. In real-world settings, the con-
troller would interact with the patient through appropriate monitor-
ing and therapy administration equipment. For testing purposes, we
formalize such equipment as

ŷk =Wy(∗, yk) (5)

ûk =Wu(∗, uk) (6)

where Wy denotes the monitoring equipment, Wu denotes the
therapy administration equipment, and ∗ indicates that the equip-
ment may be stateful. Eqs. (1)–(6) collectively outline a closed-loop
testing setup built to assess the efficacy of a physiological
closed-loop control algorithm by applying it to a virtual patient
created by the generative physiological model.
Operating the testing setup through time yields the recording of

time-series sequences, including inputs, outputs, and any relevant
internal physiological variables simulated by the generative physi-
ological model. These recordings serve as a basis to calculate per-
formance metrics relevant to the objectives of the study, which
can be formalized as follows:

m = P( y1:T , ŷ1:T , u1:T , û1:T , x1:T ) (7)

where P denotes the performance evaluation process, m is a vector
of performance metrics associated with the testing of the physiolog-
ical closed-loop control algorithm on a virtual patient, and the sub-
script 1:T indicates the time-series nature of the variables where T is
the end-of-test time index.
In pursuing the ultimate objective of generative algorithm

testing, we generate a distribution of relevant performance metrics.
This distribution represents the estimated values of the performance
metrics in the population. Hence, it can highlight any potential defi-
ciencies in the physiological closed-loop control algorithm that
could arise due to variations in patient characteristics and/or
nuances specific to the equipment. We formalize this distribution
as follows:

p(m) = Eθ∼G[δ(m|θ)] (8)

where δ is the Dirac delta distribution, E is the expectation operator,
and p(m) is the marginal probability density of the performance
metrics. Direct numerical computation of this distribution requires
the generation of a large number of virtual patients using the gener-
ative physiological model. The control algorithm is then tested to
obtain the vector of performance metrics for each virtual patient.
The individual results are then consolidated to form the distribution
of the performance metrics. However, this approach could prove to
be resource-intensive, particularly when implementing an HIL
testing setup, or when the physiological model is computationally
expensive to simulate. For example, it is not feasible to conduct
HIL testing of a study protocol with a duration of several hours
using a large number (tens of thousands [16]) of virtual patients.
To mitigate this, in the following section, we present an efficient
sampling approach aimed at estimating the distribution of the perfor-
mance metrics with fewer tests.

2.3 Efficient Sampling for Performance Metric Estimation.
To address the resource-intensive nature of the generative algorithm
testing, we introduce an approach to generate a small select cohort
of virtual patients and leverage this group to estimate the distribu-
tion of performance metrics. For this purpose, we focus on the
parameters ϕμ and ϕL of the patient generator model in Eq. (1).
Given ϕL, we compute its singular value decomposition (SVD) as

ϕUϕSϕ
T
V = SVD(ϕL) (9)

Upon examining the results of the SVD, it is clear that ϕUϕS
serves as an alternative square root of the covariance matrix
ϕΣ = ϕLϕ

T
L . The columns of ϕUϕS point to the principal axes of

the distribution of θ vectors produced by the patient generator
model, arranged in the descending order of magnitude. Hence,
these principal axes can be utilized to efficiently generate samples
from the patient generator model by applying the unscented trans-
formation formalism [17,18] as follows:

θ0 = ϕμ (10)
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θ1:l = ϕμ +
�����
l + κ

√
ϕUϕS (11)

θl+1:2l = ϕμ −
�����
l + κ

√
ϕUϕS (12)

where θ0, θ1:l, and θl+1:2l together denote 2l + 1 deterministic
samples from the patient generator model, l denotes the size of θ,
and κ is a tunable scaling factor. Given this array of virtual patients,
we can execute the closed-loop testing setup in Eqs. (2)–(6) for each
virtual patient. We can subsequently calculate a vector of perfor-
mance metrics associated with each test as formalized in Eq. (7).
The vectors generated by this process can be collectively utilized
to estimate the mean �m of the distribution pertaining to the perfor-
mance metrics as follows:

�m ≈
κ

l + κ
[m|θ0] +

∑2l

i=1

1
2(l + κ)

[m|θi] (13)

where [m|θi] denotes the value of m given the virtual patient char-
acterized by θi. The covariance �M of the distribution can likewise be
estimated as follows:

�M ≈
κ

l + κ
[m − �m|θ0][m − �m|θ0]T

+
∑2l

i=1

1
2(l + κ)

[m − �m|θi][m − �m|θi]T (14)

The efficient sampling approach outlined above facilitates the
estimation of performance metric means and covariances utilizing
only 2l + 1 algorithm tests. However, depending on the particulars
of the generative physiological model, this number may be reduced
even further. In fact, prior empirical research suggests that a signif-
icant number of mathematical models in the fields of biology and
physics possess parameterizations demonstrating sensitivities that
span vast orders of magnitude [19]. This characteristic enables the
formation of a “compressed” generative physiological model of
patient physiology as described in [6], creating variations that
align with the data distribution, while operating within a dimension-
ality less than l. This scenario implies that the elements of the diag-
onal matrix ϕS will span a broad range of values, where the first few
diagonal elements are significantly larger than the subsequent ele-
ments. In such cases, it would be feasible to further approximate
the metric distribution by generating deterministic samples associ-
ated with only the first lc diagonal elements of ϕS, where lc < l.
This can be achieved by substituting only the first lc columns of
ϕUϕS in Eqs. (11) and (12) with l ← lc throughout the calculations
in Eqs. (11)–(14). This adaptation allows us to approximately esti-
mate the mean and covariance of the metric distribution using only
2lc + 1 tests, thereby increasing the efficiency of the testing
procedure.

3 Methods
In Sec. 2, we established a novel conceptual framework for effi-

cient generative testing of physiological closed-loop control algo-
rithms. In this section, we demonstrate an application of this
framework to the testing of closed-loop fluid resuscitation control
algorithms, which are control algorithms that adjust the administra-
tion of fluids to treat hypovolemia (i.e., low circulating blood
volume) in critically ill patients [20]. This section provides
further details on the methods used for this application.

3.1 Generative Physiological Model of Hemodynamic
Responses to Hemorrhage and Fluid Resuscitation. For testing
physiological closed-loop control algorithms in the proposed frame-
work, a generative physiological model is a key element. In this
application, we utilize a generative model from our previous work
[6]. This generative model was created to mimic and capture the
physiological responses to hemorrhage and fluid resuscitation in a

population of large animal (sheep) subjects and possesses a structure
conforming to Eqs. (1)–(3). To represent a wide spectrum of physi-
ological characteristics across the subject population, we utilize the
efficient sampling approach described in Sec. 2.3 and create
nine virtual subjects. These virtual subjects were generated by
letting lc = 4 and κ = 10. Each one of these virtual subjects can
accept time-series hemorrhage and fluid infusion rate signals as
input to produce physiological responses to these signals, which
encompassmean arterial blood pressure (MAP; the primary endpoint
to be regulated by the fluid resuscitation control algorithm) and inter-
mediate physiological variables such as arterial/venous blood
volume, red blood cell volume, variables related to fluid exchange
between the blood and interstitial fluid, and variables tied to the reg-
ulation of systemic vascular resistance and cardiac output. These
virtual subjects therefore provide a platform to evaluate the perfor-
mance of a given fluid resuscitation control algorithm in the presence
of variations in subject characteristics.

3.2 Fluid Resuscitation Control Algorithm. Fluid resuscita-
tion control algorithms are an emerging category of medical care
algorithms intended to automate the treatment of hypovolemia in
critically ill patients. A fluid resuscitation control algorithm oper-
ates by monitoring a patient’s state via physiological measurements,
e.g., MAP. Then, based on these measurements, it executes neces-
sary therapies, e.g., crystalloid, or colloid infusions, so as to restore
and maintain the patient’s circulating blood volume. To demon-
strate the generative algorithm testing approach proposed in this
work, we employ a prototype closed-loop fluid resuscitation
control algorithm. This algorithm consists of a two degrees-of-
freedom proportional-integral (2DOF PI) control scheme to regulate
the patient’s MAP response, and an antiwindup mechanism to
prevent excessive overshoot in the MAP response. Figure 1 pro-
vides a schematic representation of this control algorithm. In addi-
tion, the equations describing the algorithm are presented in
discrete-time form below:

[zc]k = [zc]k−1 + δtKI (rk−1 − ŷk−1) + δtKW [zw]k−1 (15)

[zu]k = KPb(rk − ŷ0) − KP( ŷk − ŷ0) + [zc]k (16)

[zw]k = sat([zu]k) − [zu]k (17)

uk = sat([zu]k) (18)

In these equations, ŷk denotes the control output, which is MAP; ŷ0
denotes MAP at the time of controller engagement; rk is the set-point,
which is the target MAP; and uk is the control input, which is the fluid
infusion rate command. Moreover, Kp is the proportional gain, KI is
the integral gain, KW is the antiwindup gain, b is the set-point weight
on the proportional term, zc is the integrator output, zw is the anti-
windup feedback, zu is the unbounded infusion rate, and sat(·)
denotes the saturation function. As these equations are expressed in
discrete-time form, δt is the sampling time, and [ · ]k denotes the
value of the variable inside brackets at time index k. To tune the
parameters of the controller, we considered a second-order model
of MAP response to fluid infusion as the plant. We then tuned the
parameters of the 2-DOF PI controller to achieve a prespecified
target value for the 0 dB gain crossover frequency pertaining to the
open-loop frequency response. The closed-loop fluid resuscitation
control algorithm, as described in Eqs. (15)–(18), serves as an
example to illustrate our generative approach to testing the perfor-
mance of physiological control algorithms.

3.3 Hardware-in-the-Loop Setup for Generative Testing.To
account for the effects of equipment on the performance of the con-
troller, we created an HIL setup for generative testing (Fig. 2),
which is an extension of the HIL setup presented in our previous
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work [4]. This setup includes physical sensors and actuators in the
control loop while simulating the mathematical models of patient
physiology (i.e., virtual subjects) described in Sec. 3.1 as test subjects.
Executing this setup involves a real-time iterative process, where: (i)
the control algorithm suggests a fluid infusion rate; (ii) this rate is
transmitted to an infusion pump; (iii) the actual amount of fluid
infused by the pump is quantified and relayed to the virtual subject;
(iv) the virtual subject is incrementally simulated using the actual
quantity of the infused fluid; (v) the virtual subject’s blood pressure
waveform is generated and transferred to a physical pressure pulse
generator and subsequently measured with a pressure transducer;
and (vi) the transducer signal is processed by a patient monitor and
channeled back to the control algorithm, thereby completing one iter-
ative loop. By executing this iterative loop through time, we obtain a
collection of time-series recordings from each virtual subject in the
HIL setup. These recordings include relevant time-series data pertain-
ing to both the control algorithm and the virtual subjects, which are
then used to assess the performance of the control algorithm.
Within eachHIL experiment, we adhered to a specific study proto-

col consisting of four stages: (i) first, each virtual subject experiences
hemorrhage until its MAP decreases to 45 mmHg; (ii) a controlled
hemorrhage is then applied, maintaining the subject’s MAP at
45 mmHg for a duration of 15 min; (iii) after this maintenance
period, the controller is engaged with a set-point of 70 mmHg. This
allows us to test the controller’s performance in restoring blood pres-
sure to a target level; (iv)finally, 30 min after the controller’s engage-
ment, an additional episode of hemorrhage proportional to the
subject’s body weight is applied. This step further tests the control-
ler’s ability to maintain MAP against unknown disturbances.

4 Results and Discussion
4.1 Hardware-in-the-Loop Generative Testing. Figure 3

illustrates the data obtained from HIL controller tests executed on
the virtual subjects, specifically focusing on the fluid infusion
rate, hemorrhage rate, and MAP. Figure 4 presents the internal
physiological variables corresponding to the virtual subjects pre-
sented in Fig. 3 (we refer the readers to Ref. [6] for a more detailed
description of these physiological variables). These results show
that the virtual subjects exhibit diverse physiological responses to
the infusion rates applied by the controller. Specifically, the gener-
ated set includes virtual subjects that demand relatively modest

volumes of fluid infusion to restore MAP to adequate levels, as
well as subjects that require larger volumes, even saturating the
infusion pump during certain periods. Further, the virtual subjects
exhibit large variability even in terms of internal physiological var-
iables, including arterial and venous blood volumes, red blood cell
volume, parameters pertaining to the fluid exchange between the
blood and interstitial fluid, and those related to the regulation of sys-
temic vascular resistance and cardiac output. On the other hand,
these responses, while varied, remain realistic and plausible.
Examination of Fig. 3 also suggests that the specific controller

tested effectively manages the task of MAP regulation despite var-
iations in the characteristics of the virtual subjects. It does so by
applying a customized infusion rate profile to each virtual subject
based on the subject’s unique fluid infusion sensitivity, leading to
a consistent MAP response across different virtual subjects. These
results point to the potential of the proposed generative testing
approach in efficiently evaluating a given control algorithm
against a realistic spectrum of variations in subject characteristics.

4.2 Performance Metric Estimation. Building upon the
approach outlined in Sec. 2.3, we utilize the collected results
from nine individual HIL tests to estimate means and covariances
associated with performance metrics in the population represented
by the generative physiological model. To illustrate this, we use
the procedure from Sec. 2.3 to estimate the means and covariances
associated with five performance metrics relevant to fluid resuscita-
tion control. To assess the controller’s ability to regulate MAP to a
target value when first engaged, we evaluate the rise time and the
settling time of the MAP response (using data from 0–30 min in
Fig. 3). To assess the controller’s ability to reject the effect of dis-
turbances (i.e., hemorrhage) on MAP while engaged, we evaluate
the MAP drop during disturbance rejection and any subsequent
overshoot associated with the rejection (using data from 30 min
onwards in Fig. 3). To assess the controller’s tendency to use up
fluids toward its goals, we evaluate the total amount of fluid
infused (using data from the entire timespan shown in Fig. 3).
Figure 5 visualizes the mean and STD estimates associated with

the performance metrics described above. The MAP control rise
time is estimated at 561 s with an STD of 34 s, and the MAP
control settling time is estimated at 1316 s with an STD of 50 s.
The MAP disturbance rejection overshoot is estimated at
2.3 mmHg with STD of 0.6 mmHg and the MAP drop during

Fig. 1 Schematic representation of the fluid resuscitation control algorithm used to demon-
strate the generative algorithm testing approach in this work

Fig. 2 Schematic representation of generative testing as applied to the hardware-in-the-loop
testing of fluid resuscitation control algorithms
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disturbance rejection is estimated at 5 mmHg with STD of
1.7 mmHg. Finally, the total amount of fluid infused is estimated
at 696 mL with an STD of 317 mL. As these estimates provide
most-likely values and expected ranges for the performance
metrics of interest, they underscore the benefits of the proposed gen-
erative testing framework in efficiently testing physiological
closed-loop control algorithms and delivering estimates of metrics
of interest in the population represented by the generative physio-
logical model.

5 Conclusion
In this work, we introduced a method for testing physiological

closed-loop control algorithms with a generative physiological
model. Using a case study on HIL testing of closed-loop fluid resus-
citation control algorithms, we showed the method’s ability to test a
given control algorithm against a diverse set of virtual subjects. The
results from these tests provided insights into the algorithm’s per-
formance and offered an estimation of its performance across the
population represented by the generative physiological model. As
such, the proposed generative testing method offers a promising
avenue for practical and efficient preclinical testing of physiological
closed-loop control algorithms. Moving forward, it will be benefi-
cial to prospectively validate the metric estimates produced by the
method using new studies, demonstrate the effectiveness of this
method in a wider range of algorithm testing scenarios, and
expand the metric estimation techniques to a broader class of gen-
erative modeling frameworks.
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