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Abstract—In today’s data-centric world, the synergy between
Meta Learning and Federated Learning (FL) signifies a new
era of technological advancement, driving rapid adaptation,
improved model generalization, and collaborative model training
across decentralized networks. This fusion, known as Federated
Meta-Learning (FML), emerges as a cutting-edge solution for
resource-constrained edge devices, enabling the production of
personalized models with limited training data. However, FML
navigates a complex terrain, balancing efficiency with security, as
adversarial attacks on edge devices pose significant threats. These
attacks risk introducing bias and undermining the integrity of
model training, a critical concern given the typically sparse data
on edge devices. This paper explores the intricate dynamics of
FML amidst such adversarial challenges, introducing a novel
algorithm, FLAMINGO. FLAMINGO is designed to conduct
adversarial meta-training coupling with data augmentation and
consistency regularization strategies, thereby strengthening the
meta-learner’s defenses against adversarial attacks. This strategic
approach not only protects meta-learners against adversarial
threats but also prevents overfitting, striving a balance between
privacy, security, and technological efficiency, all while optimizing
communication costs in the FML landscape. We have released
our code on GitHub', which is publicly accessible.

Index Terms—Federated meta-learning, Adversarial attack,
Meta training, Data augmentation, Consistency regularization.

[. INTRODUCTION

A. Motivation

The rapid advancement of IoT devices and their continuous
influx of data generation has led to new opportunities of Arti-
ficial Intelligence of Things (AloT), driving Al to the forefront
of edge computing. Tailoring edge intelligence can reduce
down time-to-action latency, conserve bandwidth and resource
costs, and offer privacy and security measures [1]. Neverthe-
less, a single edge device can hardly perform effective edge
intelligence mainly due to data scarcity, and computational
and memory constraints. Hence, collaborative edge learning
is gaining widespread popularity, enabling edge devices to
pool their resources to accomplish resource-intensive tasks.
Building upon the fusion of FL [2] and meta-learning [3], the
concept of Federated Meta-Learning (FML) has been intro-
duced, with a shared objective of fostering collaboration at
the edge. FML is particularly useful when resource-constraint
edge devices possess limited quantities of data samples and
aim to obtain personalized models through collaborative learn-
ing. In FML, the edge devices learn from a shared meta-
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model provided by the server, allowing all network edge
devices to quickly produce a model through just a few gradient
descent optimization steps with their respective local datasets.
However, alongside its remarkable advantages, Meta-learning
also presents certain pitfalls. One notable concern is meta-
learners’ susceptibility to overfitting issues. Additionally, when
meta-learners are subjected to adversarial attacks, it can lead to
substantial instability in model training, especially since each
edge device is exposed to a small set of data samples during
training. Furthermore, In centralized learning, if a portion of
the data gets attacked, the remaining clean data can still be
used to train the model. Conversely, in FML, such recovery
from attacks is not as feasible due to the scarcity of data,
rendering the impact of adversarial attacks far more severe. In
addition, traditional centralized defense mechanisms may not
suffice in the context of FL due to their distributive nature,
necessitating robust and decentralized defense strategies to
safeguard against adversarial incursions effectively.

To this end, we tailor a novel Adversarial Federated Meta
Training technique, called FLAMINGO for facilitating few-
shot learning scenarios while addressing the aforementioned
challenges of meta-learning. Our proposed approach leverages
Consistency Regularization (CR) and diverse Data Augmenta-
tion (DA) strategies to safeguard against adversarial attacks
and avert the meta-learner from overfitting.

B. Literature Reviews

1) FL-based Adversarial Attacks and Defense Strategies:
In a federated setting, malicious clients has the capacity
to influence the outcome of the global model [4]. Without
adequate security measures, adversaries can alter the data and
model in different phases of the intelligent system develop-
ment to craft adversarial models [5], [6]. Adversaries may
introduce backdoor in the model through malicious updates to
mislead the global model to behave incorrectly when triggered
by certain inputs (backdoor attack [7]), or manipulate input
data at inference time to cause the model to make wrong
predictions and decisions (evasion attack [8]). This active area
of research focuses on developing new attack strategies to
identify vulnerabilities of federated IoT systems and devise
efficient and effective defense mechanisms to make the system
secure against sophisticated attack vectors. For instance, in
PoisonGAN [9], authors proposed an approach to mimic
the training data distribution of benign clients and generate
poisoned data to compromise the global model by utilizing
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generative adversarial network (GAN) in the federated setting.
Kim et al. [8] analyzes a new threat model of “internal evasion
attacks” to highlight the vulnerability of FL due to model
similarity among the clients.

2) Adversarial Attacks in Meta Learning and Defense
Strategies: Recent studies [3], [10] have demonstrated that
meta-learners are more vulnerable to adversarial samples than
typical DNN models, due to the nature inherent to few-shot
learning. Particularly, meta-learners face substantial perfor-
mance drops when exposed to first-order attacks that employ
the £,, norm, such as Projected Gradient Descent (PGD) [11],
which are imperceptible to the human vision [12]. In response,
several defense strategies have been proposed to enhance the
adversarial resilience of meta-learners. One such approach
is Adversarial Training [13], which involves incorporating
adversarial samples to the training set to train the model or
learner. Another strategy is Defensive Distillation [14], focuses
on enhancing robustness through the use of model distillation.
However, a recent study [15] demonstrated that conventional
adversarial training methods frequently suffer from overfit-
ting. In contrast, distillation techniques are computationally
demanding and pose challenges in optimization. Furthermore,
widely adopted defense approaches for deep neural networks
(DNNs), such as semi-supervised robust training [16] do not
easily translate to the realm of meta-learning due to the
inherent bi-level optimization nature of meta-learners.

To the best of our knowledge, FML in the context of first-
order adversarial samples remained unexplored. We demon-
strate that a conventional approach is inadequate against
first-order adversary attacks such as PGD, prompting us to
introduce a new and successful technique called FLAMINGO.

C. Contributions

« Introduce a cutting-edge adversarial meta-training tech-
nique designed to enhance the robustness of FML models,
integrating consistency regularization with varied data
augmentation tactics for improved resilience.

e Employ a strategic mix of both weak and strong data
augmentations during the meta-training phase to enhance
the model’s defenses against adversarial attacks and to
prevent overfitting.

o Demonstrate how FLAMINGO excels beyond traditional
FL approaches in safeguarding against adversarial attacks,
while minimizing resource consumption.

II. ADVERSARIAL FEDERATED-META LEARNING

The high-level idea of adversarial federated meta-learning
is to train distributed edge devices by incorporating adver-
sarial examples directly into their training samples. Exposing
meta-learners to adversarially perturbed examples during their
training enhances their resilience against the subtle yet potent
adversarial attacks that have the potential to compromise their
performance. Our objective is to develop a robust meta-learner
for FL that takes local data samples from their respective
clients as input D = {D1, Ds...,D,} and returns a learner
with parameter 6 that optimizes the average classification
accuracy on the corresponding test sets D' = {D% DL... D! 1.
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During meta-testing phase, we assess the meta-learner’s ability
to generalize to new tasks, even when these tasks may involve
adversarial samples in both the training and testing datasets.
An ideal meta-learner should yield a learning model proficient
in handling new tasks exclusively with clean samples (with-
out perturbation) while exhibiting only marginal performance
decline with tasks including adversarial samples.

A. Federated Meta Learning

In this paper, we select Meta-SGD [10] as the baseline
meta-learner, attributing to its enhanced generalization and op-
timization capabilities over MAML [3]. Meta-training follows
an iterative approach, where each iteration involves sampling
a batch of tasks from a task distribution 7 across a meta-
training set. Within each iteration, a task T is randomly
sampled with a specified number of classes, referred to as
‘ways’, and their associated samples, known as ‘shots’. For
instance, in a scenario termed ‘5 way 1 shot learning’, each
task includes five randomly selected classes, with one data
sample available for each class. A sampled task 7' consists
of a support set, Sy = {(xm,ym)},l,‘:i‘l and a query set,
Qr = {(:c;n,y;n)}gf:l. Support and query sets are kept
disjoint to maximize the ability of generalization for the meta-
learner. During Meta-training, Meta-SGD maintains parameter
0 that acts as the initial value of the parameter model f
for each task T. Note that here § embodies the state of a
learner, serving as a basis for initializing the learner for any
new task. Initially, the model fy gets trained on the support
set Sp and generates an updated model fy,, using one or
multiple gradient descent steps with training loss Ls,. (0) =
ﬁ > (wyesy C (fo (x),y). This process is also referred to
as the inner update. The updated model fy,. is then evaluated
on the query set Qp and generates meta test loss Lo, (67) =
|Q71T‘ > (aryeqq £ (for (2') . y/). Finally, to minimize the test
loss, the meta-learners’ parameters go through an update
process, referred to as the outer update. Unlike MAML [3],
Meta-SGD incorporates «, an inner learning rate specific to
each task. This enables the meta-learner to simultaneously
learn the initialization parameter ¢ and inner learning rate «
from the given tasks, enhancing the optimization and speed of
the Meta-SGD algorithm. The optimization function of Meta-
SGD can be expressed as follows:

min &~y Loz (0 — a0 VLs,(0))] D
Here, « is a vector of the same size as 6 and o denotes element-
wise product. To incorporate meta-training with FL, an FL
server initializes parameter ¢ and transmits it to the selected
clients. Each client ¢ independently trains a meta-learner using
their own local support set, denoted as DL and then evaluates
the model’s performance on a query set, represented as D;‘S.
The resulting test loss £ (67) is subsequently utilized to
adjust the meta-learner’s parameters, and these updated pa-
rameters, denoted as ¢., are communicated back to the server.
The server retains the initialized parameters and updates them
by aggregating weights received from the subset of clients.
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B. Adversarial Meta Training

We introduce a novel adversarial meta-training technique for
strengthening the meta-learner against adversarial attacks. This
approach considers the inclusion of adversarial samples during
meta-training. Central to our approach is the optimization of
a Consistency Regularization (CR) loss, which encourages
the model to maintain consistent predictions across perturbed
versions of the same input, as illustrated in Fig. 1.
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Fig. 1: Proposed Adversarial Meta-Learning approach.

Our methodology involves two key augmentation strategies
for meta-training: weak augmentation and strong augmenta-
tion, aiming to minimize the discrepancy in the model’s pre-
dictions between these augmentations. The process begins with
the random selection of a task T from a task distribution 7
for baseline meta-learner, which itself is derived from the local
data samples D of the respective clients. For each task within
the support set Dg, we apply a weak augmentation strategy on
the data samples. Formally, for task T, we denote the weakly
augmented sample as x,, = x + p,, where p,, represents
the weak augmentation. Consider X = {z1, 2, ..., 2, } as the
original, unmodified data samples from the support set. Upon
applying a weak augmentation, these samples are transformed
into a set of weakly augmented samples, denoted by X,, =
{Zw, s Ty, -y Toy, - The meta-learner, represented as fy, is
then trained using both the original (clean) and the weakly
augmented samples, resulting in the updated parameters 6 for
the clean samples and 67, for the weakly augmented samples,
respectively. In this process, fy also generates the support set
loss L DT> which is defined as follows:

1 1
Lpr(0) =1z >, L(fa(@).y)+ DT
IDS] (, sor 5] e @

Dng(fe (zw) 7y)

In this equation, Dgw represents the weakly augmented
support set. During the inner update phase, our AMT strategy
calculates its initial CR training loss, Lo g, , by calculating the
Kullback-Leibler (KL) divergence between predictions from
the original model and its weakly augmented counterpart. The
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Fig. 2: Consistency Regularization for Query Set.
primary objective is to minimize this KL loss, fostering a
meta-learner that is both more robust and generalized. The
CR training loss for the inner update is expressed as follows:

Ler, = KL(f(507), f (501,)) 3)

We aggregate the CR training loss Lo, with support set loss
L DT to calculate combined loss,
1
T 2

Lo0) = 3 0(fo (@), )+
(zw,y)EDE

T
|Ds | (eeDT

£(fo () ,y) + Lcr,

Here, A is a hyperparameter that controls the strength of the
CR term. During the outer update phase, both weak and strong
augmentations are applied to the samples in the query set Dg.
For strong augmentation, we opt for RandAugment [17] strat-
egy, which applies a series of randomly selected augmentations
to the input images. These augmentations include operations
like rotation, scaling, shearing, translation, and color adjust-
ments. Formally, we can also represent strongly augmented
sample by m;, where x; =z + ps and p, denotes strong aug-
mentation. Additionally, clean data samples can be denoted as
X' ={a',2',...,2"}, with X's = {x;l,x 7;zr;n} denoting
strongly augmented samples and X,, = {z,, , 2, Ty }
representing weakly augmented samples.

Upon generating strongly augmented Dgs and weakly aug-
mented DTw versions of the query set DF, the updated model
fo. from inner update undergoes one or more gradient updates
using these augmented samples. This process leads to the
generation of updated parameters H/T for weakly augmented
samples and H/TS for strongly augmented samples. Moreover,
the function fy_ produces an updated query set loss, denoted
as Lpr. To reinforce CR, a comparison of the dissimilarity
between the newly updated parameters is made by calculating
the KL divergence. This CR process, aiming to maintain
consistent predictions by the model across different levels of
data augmentation, is presented in Fig. 2. We calculate the CR
loss, Lcr, for the query set as follows:

Lo, =KL (1507, f (507,)) )

After that, we aggregate the CR loss Lo g, with the query
set loss £ D that produces the combined loss,
Y e @) ) +
‘ Q| (=",y")eDE
1 (6)
> t(fe. (=) .¥) + Ler,

(z'w,y')eDgw

“

’
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Here, \' serves as a hyperparameter that controls the in-
fluence of the CR loss (Lcr,) on the query set. As a final
step for our AMT strategy, we combine support set loss (L)
and query set loss (£,). The final optimization objective, i.e.,
minimizing the combined loss using an inner learning rate
parameterized by «a, is represented as follows:

I]élian ErnT [Lq (0 — a0 VLs(0))] (7)
In our proposed AMT mechanism, the incorporation of both
strong and weak augmentation strategies plays a pivotal role
in fine-tuning the meta-learner to enhance its resilience against
unforeseen adversarial attacks and prevent overfitting. Our ex-
periments reveal that using strong augmentation on the support
set leads to early divergence of the model during training,
and consequently, strong augmentation is deliberately applied
only to the query set. We delve further into this observation
in later sections, providing evidence through empirical results.
The procedure for our adversarial meta-training approach, in
the context of FL, is outlined in Algorithm 1.

Algorithm 1: FLAMINGO: FL and Adversarial
Meta-Training with Consistency Regularization

1 Executes on Server

2 0 and « gets initialized

3 for each iteration i = 0,1,2,3... do

4 Sample random set of U, of n clients and distribute 0, «
5 for each client ¢ € U, do

6 L Query set loss g. < AdMetaTraining(0, o)

]

Update parameters (0, a) + (6,a) — £, qe
8 Executes on Client c
9 AdMetaTraining (¢, )
Sample support set DE and query set Dg from task
distribution 7~
Dgw, Dgw — WeakAugmentation(DT, Dg)
Dgs — StrongAugmentation(Dg)
1
Eng (0) < I] Z(Ly)epg C(fo(z),y)+
@ Z(zw,y)eDgw ¢ (fg (Iw) 7?/)
Lor, = KL(f(;07), f (67,))
Ls(0) + Lpr +ALcr,
Os 0 — o VL(H)
1 ! !
Lpz(0s) 7] Z(x/s,y/)epgs L (fo, (25),y") +
@ Z(x/w,y/)epgw £(fo, (z0w),y")

Lcor, = KL (f('%alTS)v / (';9;"“,>>
Lq(0s) + Lpg + NLcr,

qe < V(G,Q)LQ(HS)
return g. to server
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C. Launching Intrusion Attack in an FL Environment

To assess the resilience and effectiveness of FLAMINGO,
we employ an enhanced form of the “first-order adversary
attack”, PGD [I1]. Perturbations generated by PGD are
generally imperceptible to human vision as shown in Fig.
3, and have the capability to mislead deep learning mod-
els or meta-learners towards misclassification, often with a
high level of confidence in the resulting prediction. PGD
achieves adversarial perturbation by iteratively adjusting the
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pixel values of an input image based on the gradient of
the loss function. As it is challenging to establish a metric
quantifying the capacity of human vision, p-norms are com-
monly employed to regulate the magnitude and quantity of
perturbations introduced into an image. The p-norm, denoted
as £, calculates the distance ||z — 2’|, in the input space be-
tween an original input sample = and adversarial example z’.

The parameter p ranges from

0 to oo, where /., quantifies
the maximum disparity across

all corresponding pixels be- | ei™ ¢Lefm.
tween the perturbed image SW;.\ ~ 1

and its original counterpart.
PGD operates in a sequential
manner, calculating the gradi-
ent of the loss function with
respect to the image’s pixel
values at each step. This cal-
culated gradient is multiplied
by a predetermined step size, €, and subsequently added to
the pixel values to produce a perturbed version of the image.
The resulting perturbed image is then clipped to ensure pixel
values remain within a valid range (e.g., [0, 255)).
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=i =
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Images
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Street
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Fig. 3: Adversarial attack
with PGD.

III. EXPERIMENTAL RESULTS

A. Datasets

The datasets chosen for this research are designed to ac-
commodate devices with limited resources, allowing the FL-
meta models to efficiently address challenges posed by limited
computational power. Experimental evaluations are conducted
the EuroSAT [18] and LISA [19] datasets to evaluate the
performance and robustness of the proposed FLAMINGO.

B. Performance Evaluation

We conducted all of our experiments with 5 FL clients
and executed up to 40 communication rounds of FL train-
ing. For our proposed method FLAMINGO and state-of-the-
art vanilla Meta-SGD, we additionally performed 50 meta-
training rounds in order to facilitate few-shot learning. In
addition to that, we conduct 5 way 1 shot and 5 way 5 shot
task classifications for proposed FLAMINGO and the vanilla
Meta-SGD. We used ResNet-50 as the baseline model and
to regulate the effect of CR, We set both of the CR terms,
A and ) to 1. Subsequently, we assess their performance
in comparison to conventional FL algorithms like FedProx
[20] and FedNova [21], both equipped with robust adversarial
learning method called FGSM [22] adversarial training. For
our attack model, we perform PGD attack on selected clients
with 10 iterations under ¢ = 2/255 with £ norm constraint.

Fig. 4 illustrates the performance of conventional FL. models
such as FedProx [20], FedNova [21], and Vanilla Meta-SGD
under the influence of a PGD attack. In the federated setting,
clients are randomly chosen for the PGD attack, while the
remaining clients are trained using clean samples. Fig. 4 (left)
demonstrates the instability observed in the server accuracy of
these FL models on the EuroSAT dataset when subjected to the
PGD attack. As anticipated, the same pattern of instability is
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observed in our experiment with Lisa dataset in Fig. 4 (right),
with a majority of the models exhibiting significant divergence
in the early stages of training due to the adversarial attack.
In both scenarios, Meta-SGD (5 way 5 shot) demonstrates
a degree of resilience against the PGD attack, although it
ultimately falls short of achieving the desired accuracy.
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Fig. 4: Performance of conventional FL. methods in the
presence of PGD attack under l, norm: Server accuracy on
EuroSAT dataset (left) and on LISA dataset (right).

From the above discussion, a natural question may arise:
how is it feasible to attain a server test accuracy of 50%
despite the impact of the PGD attack? To address this query,
we present our comprehensive experiment with Vanilla Meta-
SGD on the EuroSAT dataset in Fig. 5. It is evident from Fig.
5 (left) that even though 3 of the attacked clients are yielding
poor performance, with accuracy below 20%, the 2 clients
trained with clean samples are achieving over 90% accuracy.
In addition, Fig. 5 (right) depicts how attacked clients diverge
from loss minimization at an early stage. Given the federated
setting, all client updates are merged on the server. This
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—+4- Client 5

Loy A
—e— Client 1| W \'8 "%,

m- Client2

Accuracy

01234567 8 0.4 2 44 4 5 8 7.8
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Fig. 5: Accuracy (left) and loss (right) for individual training
client on the EuroSAT dataset utilizing Meta-SGD.
implies that the server model is created via contributions from
models trained on both clean and adversarial samples. The
server’s incorporation of updates from models trained on clean
samples generates the performance outcomes shown in Fig. 4.
Next, we explore the effectiveness of FLAMINGO, un-
der the PGD attack. We conduct an empirical analysis on
FLAMINGO using both the EuroSAT dataset (Fig. 6) and the
Lisa dataset (Fig. 7). In terms of server accuracy illustrated
in Fig. 6 (left) and Fig. 7 (left), FLAMINGO with a 5 way 5
shot task classification surpasses both FedProx and FedNova
employing the FGSM adversarial training method. Further-
more, it exhibits enhanced stability across both datasets.
Additionally, We can also observe that FLAMINGO with 5
way 5 shot classification task, exhibits much more stable
performance due to having more data samples per class during
training, in contrast to the 5 way 1 shot classification task. This
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Fig. 6: Performance comparison of different adversarial train-
ing methods on EuroSAT dataset in the presence of PGD
attack under /o norm: Server accuracy across multiple FL

communication rounds (left) and loss minimization (right).
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Fig. 7: Server accuracy (left) and loss of various adversarial
training methods (right) on LISA dataset in the presence of
PGD attack under 5 norm.

stability is reflected in the loss minimization performance, as
depicted in Fig. 6 (right) and Fig. 7 (right), where FLAMINGO
exhibits superior and more stable results compared to FedProx
and FedNova [21] with FGSM. Furthermore, the difference
between the best accuracy and final accuracy achieved using
FLAMINGO on both datasets is marginally low (below 3%),
which indicates FLAMINGO effectively mitigates overfitting.
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Fig. 8: Server accuracy (left) and loss (right) of FLAMINGO
on EuroSAT with PGD adversarial images.

Now, we demonstrate the reasoning behind exclusively
applying strong augmentation in the query set rather than
the support set. Our empirical analysis, illustrated in Fig.
8 for EuroSAT, involving 5 way 5 shot classification tasks
and step size ¢ = 2/255, provides additional validation for
our initial hypothesis. Fig. 8 (left) reveals that FLAMINGO’s
server accuracy decreases when strong augmentation is ap-
plied to the support set, as opposed to its application in
the query set. This trend is consistently reflected in loss
minimization, as shown in Fig. 8 (right). The incorporation of
strong augmentation leads to premature divergence during the
training process in FLAMINGO, resulting in notable decline in
accuracy performance, as depicted in Fig. 8 (left). Moreover,
the findings presented in Fig. 9 further corroborate our initial
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claim that FLAMINGO is more resource-efficient compared
to conventional FL. with FGSM adversarial training [22].
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Fig. 9: Analyzing Resource Consumption of Adversarial Train-
ing Methods on EuroSAT Dataset with /5 PGD Attacks: Server
Accuracy vs. Completion Time (left) and Communication
Rounds for Target Accuracy (right).

FLAMINGO achieves the desired accuracy swiftly com-
pared to other methods, surpassing 80% within just 60 minutes
(presented in Fig. 9 (left)). Although it takes a slightly higher
duration to complete 40 communication rounds, FLAMINGO
shows potential for early termination once the desired ac-
curacy is reached. Furthermore, Fig. 9 (right) underscores
FLAMINGO’s effectiveness in requiring fewer communica-
tion rounds to achieve the target accuracy. It surpasses 75%
accuracy within just 5 communication rounds, while other
FL methods with FGSM adversarial training require up to 50
rounds to achieve the same 75% accuracy threshold.
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90

IV. CONCLUSION

In this paper, we introduced FLAMINGO, a novel AMT
method, designed to enhance the robustness of FML achieved
through the integration of adversarial training and consis-
tency regularization. Within FLAMINGO, we employ diverse
augmentation strategies during the meta-training process to
enhance the model’s resilience against adversarial attacks as
well as prevent overfitting. An extensive series of ablation
studies validate our design choices, particularly the utilization
of strong augmentation exclusively on query sets to prevent
premature divergence. Through comprehensive experiments
conducted on image classification datasets, including EuroSAT
and LISA, underscore the effectiveness of FLAMINGO. In the
face of PGD attacks employing 10 iterations, FLAMINGO
demonstrates remarkable performance, reaching faster con-
vergence in such demanding setting. This achievement is in
stark contrast to vanilla Meta-SGD (approximately 50%) and
FedNova with FGSM (about 65%) for EuroSAT and achieves
over 20% increase in accuracy on LISA dataset compared
to other models. Additionally, it delivers a notable 50%
increase in accuracy on the LISA dataset when compared to
other models. Furthermore, FLAMINGO exhibits accelerated
convergence, achieving 80% accuracy on EuroSAT in less than
half the time compared to alternative methods.
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