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Abstract—In today’s data-centric world, the synergy between
Meta Learning and Federated Learning (FL) signifies a new
era of technological advancement, driving rapid adaptation,
improved model generalization, and collaborative model training
across decentralized networks. This fusion, known as Federated
Meta-Learning (FML), emerges as a cutting-edge solution for
resource-constrained edge devices, enabling the production of
personalized models with limited training data. However, FML
navigates a complex terrain, balancing efficiency with security, as
adversarial attacks on edge devices pose significant threats. These
attacks risk introducing bias and undermining the integrity of
model training, a critical concern given the typically sparse data
on edge devices. This paper explores the intricate dynamics of
FML amidst such adversarial challenges, introducing a novel
algorithm, FLAMINGO. FLAMINGO is designed to conduct
adversarial meta-training coupling with data augmentation and
consistency regularization strategies, thereby strengthening the
meta-learner’s defenses against adversarial attacks. This strategic
approach not only protects meta-learners against adversarial
threats but also prevents overfitting, striving a balance between
privacy, security, and technological efficiency, all while optimizing
communication costs in the FML landscape. We have released
our code on GitHub1, which is publicly accessible.

Index Terms—Federated meta-learning, Adversarial attack,
Meta training, Data augmentation, Consistency regularization.

I. INTRODUCTION

A. Motivation

The rapid advancement of IoT devices and their continuous

influx of data generation has led to new opportunities of Arti-

ficial Intelligence of Things (AIoT), driving AI to the forefront

of edge computing. Tailoring edge intelligence can reduce

down time-to-action latency, conserve bandwidth and resource

costs, and offer privacy and security measures [1]. Neverthe-

less, a single edge device can hardly perform effective edge

intelligence mainly due to data scarcity, and computational

and memory constraints. Hence, collaborative edge learning

is gaining widespread popularity, enabling edge devices to

pool their resources to accomplish resource-intensive tasks.

Building upon the fusion of FL [2] and meta-learning [3], the

concept of Federated Meta-Learning (FML) has been intro-

duced, with a shared objective of fostering collaboration at

the edge. FML is particularly useful when resource-constraint

edge devices possess limited quantities of data samples and

aim to obtain personalized models through collaborative learn-

ing. In FML, the edge devices learn from a shared meta-

1https://github.com/speedlab-git/Flamingo-Adversarial-FML.git
Corresponding author: Ahmed Imteaj (imteaj@cs.siu.edu)

model provided by the server, allowing all network edge

devices to quickly produce a model through just a few gradient

descent optimization steps with their respective local datasets.

However, alongside its remarkable advantages, Meta-learning

also presents certain pitfalls. One notable concern is meta-

learners’ susceptibility to overfitting issues. Additionally, when

meta-learners are subjected to adversarial attacks, it can lead to

substantial instability in model training, especially since each

edge device is exposed to a small set of data samples during

training. Furthermore, In centralized learning, if a portion of

the data gets attacked, the remaining clean data can still be

used to train the model. Conversely, in FML, such recovery

from attacks is not as feasible due to the scarcity of data,

rendering the impact of adversarial attacks far more severe. In

addition, traditional centralized defense mechanisms may not

suffice in the context of FL due to their distributive nature,

necessitating robust and decentralized defense strategies to

safeguard against adversarial incursions effectively.

To this end, we tailor a novel Adversarial Federated Meta

Training technique, called FLAMINGO for facilitating few-

shot learning scenarios while addressing the aforementioned

challenges of meta-learning. Our proposed approach leverages

Consistency Regularization (CR) and diverse Data Augmenta-

tion (DA) strategies to safeguard against adversarial attacks

and avert the meta-learner from overfitting.

B. Literature Reviews

1) FL-based Adversarial Attacks and Defense Strategies:

In a federated setting, malicious clients has the capacity

to influence the outcome of the global model [4]. Without

adequate security measures, adversaries can alter the data and

model in different phases of the intelligent system develop-

ment to craft adversarial models [5], [6]. Adversaries may

introduce backdoor in the model through malicious updates to

mislead the global model to behave incorrectly when triggered

by certain inputs (backdoor attack [7]), or manipulate input

data at inference time to cause the model to make wrong

predictions and decisions (evasion attack [8]). This active area

of research focuses on developing new attack strategies to

identify vulnerabilities of federated IoT systems and devise

efficient and effective defense mechanisms to make the system

secure against sophisticated attack vectors. For instance, in

PoisonGAN [9], authors proposed an approach to mimic

the training data distribution of benign clients and generate

poisoned data to compromise the global model by utilizing
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generative adversarial network (GAN) in the federated setting.

Kim et al. [8] analyzes a new threat model of “internal evasion

attacks” to highlight the vulnerability of FL due to model

similarity among the clients.

2) Adversarial Attacks in Meta Learning and Defense

Strategies: Recent studies [3], [10] have demonstrated that

meta-learners are more vulnerable to adversarial samples than

typical DNN models, due to the nature inherent to few-shot

learning. Particularly, meta-learners face substantial perfor-

mance drops when exposed to first-order attacks that employ

the �p norm, such as Projected Gradient Descent (PGD) [11],

which are imperceptible to the human vision [12]. In response,

several defense strategies have been proposed to enhance the

adversarial resilience of meta-learners. One such approach

is Adversarial Training [13], which involves incorporating

adversarial samples to the training set to train the model or

learner. Another strategy is Defensive Distillation [14], focuses

on enhancing robustness through the use of model distillation.

However, a recent study [15] demonstrated that conventional

adversarial training methods frequently suffer from overfit-

ting. In contrast, distillation techniques are computationally

demanding and pose challenges in optimization. Furthermore,

widely adopted defense approaches for deep neural networks

(DNNs), such as semi-supervised robust training [16] do not

easily translate to the realm of meta-learning due to the

inherent bi-level optimization nature of meta-learners.

To the best of our knowledge, FML in the context of first-

order adversarial samples remained unexplored. We demon-

strate that a conventional approach is inadequate against

first-order adversary attacks such as PGD, prompting us to

introduce a new and successful technique called FLAMINGO.

C. Contributions

• Introduce a cutting-edge adversarial meta-training tech-

nique designed to enhance the robustness of FML models,

integrating consistency regularization with varied data

augmentation tactics for improved resilience.

• Employ a strategic mix of both weak and strong data

augmentations during the meta-training phase to enhance

the model’s defenses against adversarial attacks and to

prevent overfitting.

• Demonstrate how FLAMINGO excels beyond traditional

FL approaches in safeguarding against adversarial attacks,

while minimizing resource consumption.

II. ADVERSARIAL FEDERATED-META LEARNING

The high-level idea of adversarial federated meta-learning

is to train distributed edge devices by incorporating adver-

sarial examples directly into their training samples. Exposing

meta-learners to adversarially perturbed examples during their

training enhances their resilience against the subtle yet potent

adversarial attacks that have the potential to compromise their

performance. Our objective is to develop a robust meta-learner

for FL that takes local data samples from their respective

clients as input D = {D1, D2..., Dn} and returns a learner

with parameter θ that optimizes the average classification

accuracy on the corresponding test sets Dt = {Dt
1, D

t
2..., D

t
n}.

During meta-testing phase, we assess the meta-learner’s ability

to generalize to new tasks, even when these tasks may involve

adversarial samples in both the training and testing datasets.

An ideal meta-learner should yield a learning model proficient

in handling new tasks exclusively with clean samples (with-

out perturbation) while exhibiting only marginal performance

decline with tasks including adversarial samples.

A. Federated Meta Learning

In this paper, we select Meta-SGD [10] as the baseline

meta-learner, attributing to its enhanced generalization and op-

timization capabilities over MAML [3]. Meta-training follows

an iterative approach, where each iteration involves sampling

a batch of tasks from a task distribution T across a meta-

training set. Within each iteration, a task T is randomly

sampled with a specified number of classes, referred to as

‘ways’, and their associated samples, known as ‘shots’. For

instance, in a scenario termed ‘5 way 1 shot learning’, each

task includes five randomly selected classes, with one data

sample available for each class. A sampled task T consists

of a support set, ST = {(xm, ym)}
|ST |
m=1 and a query set,

QT = {(x
′

m, y
′

m)}QT

m=1. Support and query sets are kept

disjoint to maximize the ability of generalization for the meta-

learner. During Meta-training, Meta-SGD maintains parameter

θ that acts as the initial value of the parameter model f
for each task T. Note that here θ embodies the state of a

learner, serving as a basis for initializing the learner for any

new task. Initially, the model fθ gets trained on the support

set ST and generates an updated model fθT , using one or

multiple gradient descent steps with training loss LST
(θ) =

1
|ST |

∑

(x,y)∈ST
� (fθ (x) , y). This process is also referred to

as the inner update. The updated model fθT is then evaluated

on the query set QT and generates meta test loss LQT
(θT ) =

1
|QT |

∑

(x′,y′)∈QT
� (fθT (x′) , y′). Finally, to minimize the test

loss, the meta-learners’ parameters go through an update

process, referred to as the outer update. Unlike MAML [3],

Meta-SGD incorporates α, an inner learning rate specific to

each task. This enables the meta-learner to simultaneously

learn the initialization parameter θ and inner learning rate α
from the given tasks, enhancing the optimization and speed of

the Meta-SGD algorithm. The optimization function of Meta-

SGD can be expressed as follows:

min
θ,α

ET∼T [LQT
(θ − α ◦ ∇LST

(θ))] (1)

Here, α is a vector of the same size as θ and ◦ denotes element-

wise product. To incorporate meta-training with FL, an FL

server initializes parameter θ and transmits it to the selected

clients. Each client c independently trains a meta-learner using

their own local support set, denoted as DT
S , and then evaluates

the model’s performance on a query set, represented as DT
Q.

The resulting test loss LDT
Q
(θT ) is subsequently utilized to

adjust the meta-learner’s parameters, and these updated pa-

rameters, denoted as qc, are communicated back to the server.

The server retains the initialized parameters and updates them

by aggregating weights received from the subset of clients.
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B. Adversarial Meta Training

We introduce a novel adversarial meta-training technique for

strengthening the meta-learner against adversarial attacks. This

approach considers the inclusion of adversarial samples during

meta-training. Central to our approach is the optimization of

a Consistency Regularization (CR) loss, which encourages

the model to maintain consistent predictions across perturbed

versions of the same input, as illustrated in Fig. 1.
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Fig. 1: Proposed Adversarial Meta-Learning approach.

Our methodology involves two key augmentation strategies

for meta-training: weak augmentation and strong augmenta-

tion, aiming to minimize the discrepancy in the model’s pre-

dictions between these augmentations. The process begins with

the random selection of a task T from a task distribution T
for baseline meta-learner, which itself is derived from the local

data samples D of the respective clients. For each task within

the support set DT
S , we apply a weak augmentation strategy on

the data samples. Formally, for task T, we denote the weakly

augmented sample as xw = x + pw, where pw represents

the weak augmentation. Consider X = {x1, x2, ..., xn} as the

original, unmodified data samples from the support set. Upon

applying a weak augmentation, these samples are transformed

into a set of weakly augmented samples, denoted by Xw =
{xw1

, xw2
, ..., xwn

}. The meta-learner, represented as fθ, is

then trained using both the original (clean) and the weakly

augmented samples, resulting in the updated parameters θT for

the clean samples and θTw
for the weakly augmented samples,

respectively. In this process, fθ also generates the support set

loss LDT
S

, which is defined as follows:

LDT
S
(θ) =

1
∣

∣DT
S

∣

∣

∑

(x,y)∈DT
S

� (fθ (x) , y) +
1

∣

∣DT
S

∣

∣

∑

(xw,y)∈

DT
Sw

� (fθ (xw) , y)

(2)

In this equation, DT
Sw

represents the weakly augmented

support set. During the inner update phase, our AMT strategy

calculates its initial CR training loss, LCRs
, by calculating the

Kullback-Leibler (KL) divergence between predictions from

the original model and its weakly augmented counterpart. The
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Fig. 2: Consistency Regularization for Query Set.

primary objective is to minimize this KL loss, fostering a

meta-learner that is both more robust and generalized. The

CR training loss for the inner update is expressed as follows:

LCRs = KL (f(·; θT ), f (·; θTw )) (3)

We aggregate the CR training loss LCRs
with support set loss

LDT
S

to calculate combined loss,

Ls(θ) =
1

|DT
S |

∑

(x,y)∈DT
S

� (fθ (x) , y) +
1

|DT
S |

∑

(xw,y)∈DT
Sw

�(fθ (xw) , y) + LCRs

(4)

Here, λ is a hyperparameter that controls the strength of the

CR term. During the outer update phase, both weak and strong

augmentations are applied to the samples in the query set DT
Q.

For strong augmentation, we opt for RandAugment [17] strat-

egy, which applies a series of randomly selected augmentations

to the input images. These augmentations include operations

like rotation, scaling, shearing, translation, and color adjust-

ments. Formally, we can also represent strongly augmented

sample by x
′

s, where x
′

s = x
′

+ps and ps denotes strong aug-

mentation. Additionally, clean data samples can be denoted as

X
′

= {x
′

, x
′

, ..., x
′

}, with X ′s = {x
′

s1
, x

′

s2
, ..., x

′

sn
} denoting

strongly augmented samples and X
′

w = {x
′

w1
, x

′

w2
, ..., x

′

wn
}

representing weakly augmented samples.

Upon generating strongly augmented DT
Qs

and weakly aug-

mented DT
Qw

versions of the query set DT
Q, the updated model

fθs from inner update undergoes one or more gradient updates

using these augmented samples. This process leads to the

generation of updated parameters θ
′

Tw
for weakly augmented

samples and θ
′

Ts
for strongly augmented samples. Moreover,

the function fθs produces an updated query set loss, denoted

as LDT
Q

. To reinforce CR, a comparison of the dissimilarity

between the newly updated parameters is made by calculating

the KL divergence. This CR process, aiming to maintain

consistent predictions by the model across different levels of

data augmentation, is presented in Fig. 2. We calculate the CR

loss, LCRq
for the query set as follows:

LCRq = KL
(

f(·; θ
′

Ts
), f

(

·; θ
′

Tw

))

(5)

After that, we aggregate the CR loss LCRq
with the query

set loss LDT
Q

that produces the combined loss,

Lq(θs) =
1

∣

∣

∣
DT

Q

∣

∣

∣

∑

(x′,y′)∈DT
Qs

�
(

fθs
(

x′
s

)

, y′
)

+

1
∣

∣

∣
DT

Q

∣

∣

∣

∑

(x′

w,y′)∈DT
Qw

�
(

fθs
(

x′
w

)

, y′
)

+ LCRq

(6)
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Here, λ′ serves as a hyperparameter that controls the in-

fluence of the CR loss (LCRq
) on the query set. As a final

step for our AMT strategy, we combine support set loss (Ls)

and query set loss (Lq). The final optimization objective, i.e.,

minimizing the combined loss using an inner learning rate

parameterized by α, is represented as follows:

min
θ,α

ET∼T [Lq (θ − α ◦ ∇Ls(θ))] (7)

In our proposed AMT mechanism, the incorporation of both

strong and weak augmentation strategies plays a pivotal role

in fine-tuning the meta-learner to enhance its resilience against

unforeseen adversarial attacks and prevent overfitting. Our ex-

periments reveal that using strong augmentation on the support

set leads to early divergence of the model during training,

and consequently, strong augmentation is deliberately applied

only to the query set. We delve further into this observation

in later sections, providing evidence through empirical results.

The procedure for our adversarial meta-training approach, in

the context of FL, is outlined in Algorithm 1.

Algorithm 1: FLAMINGO: FL and Adversarial

Meta-Training with Consistency Regularization

1 Executes on Server
2 θ and α gets initialized
3 for each iteration i = 0, 1, 2, 3 . . . do
4 Sample random set of Uc of n clients and distribute θ, α
5 for each client c ∈ Uc do
6 Query set loss qc ← AdMetaTraining(θ, α)

7 Update parameters (θ, α) ← (θ, α)− β

n

∑

c∈Uc
qc

8 Executes on Client c
9 AdMetaTraining (θ, α)

10 Sample support set DT
S and query set DT

Q from task
distribution T

11 DT
Sw

, DT
Qw

← WeakAugmentation(DT
S , DT

Q)

12 DT
Qs

← StrongAugmentation(DT
Q)

13 LDT
S
(θ) ← 1

|DT
S |

∑

(x,y)∈DT
S
� (fθ (x) , y)+

1

|DT
S |

∑

(xw,y)∈DT
Sw

� (fθ (xw) , y)

14 LCRs ← KL (f(·; θT ), f (·; θTw ))
15 Ls(θ) ← LDT

S
+ λLCRs

16 θs ← θ − α ◦ ∇Ls(θ)
17 LDT

Q
(θs) ←

1

|DT
Q|

∑

(x′

s,y
′)∈DT

Qs

� (fθs (x
′
s) , y

′)+

1

|DT
Q|

∑

(x′

w,y′)∈DT
Qw

� (fθs (x
′
w) , y

′)

18 LCRq = KL
(

f(·; θ
′

Ts
), f

(

·; θ
′

Tw

))

19 Lq(θs) ← LDT
Q
+ λ′LCRq

20 qc ← ∇(θ,α)Lq(θs)
21 return qc to server

C. Launching Intrusion Attack in an FL Environment

To assess the resilience and effectiveness of FLAMINGO,

we employ an enhanced form of the “first-order adversary

attack”, PGD [11]. Perturbations generated by PGD are

generally imperceptible to human vision as shown in Fig.

3, and have the capability to mislead deep learning mod-

els or meta-learners towards misclassification, often with a

high level of confidence in the resulting prediction. PGD

achieves adversarial perturbation by iteratively adjusting the

pixel values of an input image based on the gradient of

the loss function. As it is challenging to establish a metric

quantifying the capacity of human vision, p-norms are com-

monly employed to regulate the magnitude and quantity of

perturbations introduced into an image. The p-norm, denoted

as �p, calculates the distance ‖x− x′‖p in the input space be-

tween an original input sample x and adversarial example x′.
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Fig. 3: Adversarial attack

with PGD.

The parameter p ranges from

0 to ∞, where �∞ quantifies

the maximum disparity across

all corresponding pixels be-

tween the perturbed image

and its original counterpart.

PGD operates in a sequential

manner, calculating the gradi-

ent of the loss function with

respect to the image’s pixel

values at each step. This cal-

culated gradient is multiplied

by a predetermined step size, ε, and subsequently added to

the pixel values to produce a perturbed version of the image.

The resulting perturbed image is then clipped to ensure pixel

values remain within a valid range (e.g., [0, 255]).

III. EXPERIMENTAL RESULTS

A. Datasets

The datasets chosen for this research are designed to ac-

commodate devices with limited resources, allowing the FL-

meta models to efficiently address challenges posed by limited

computational power. Experimental evaluations are conducted

the EuroSAT [18] and LISA [19] datasets to evaluate the

performance and robustness of the proposed FLAMINGO.

B. Performance Evaluation

We conducted all of our experiments with 5 FL clients

and executed up to 40 communication rounds of FL train-

ing. For our proposed method FLAMINGO and state-of-the-

art vanilla Meta-SGD, we additionally performed 50 meta-

training rounds in order to facilitate few-shot learning. In

addition to that, we conduct 5 way 1 shot and 5 way 5 shot

task classifications for proposed FLAMINGO and the vanilla

Meta-SGD. We used ResNet-50 as the baseline model and

to regulate the effect of CR, We set both of the CR terms,

λ and λ′ to 1. Subsequently, we assess their performance

in comparison to conventional FL algorithms like FedProx

[20] and FedNova [21], both equipped with robust adversarial

learning method called FGSM [22] adversarial training. For

our attack model, we perform PGD attack on selected clients

with 10 iterations under ε = 2/255 with �2 norm constraint.

Fig. 4 illustrates the performance of conventional FL models

such as FedProx [20], FedNova [21], and Vanilla Meta-SGD

under the influence of a PGD attack. In the federated setting,

clients are randomly chosen for the PGD attack, while the

remaining clients are trained using clean samples. Fig. 4 (left)

demonstrates the instability observed in the server accuracy of

these FL models on the EuroSAT dataset when subjected to the

PGD attack. As anticipated, the same pattern of instability is
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observed in our experiment with Lisa dataset in Fig. 4 (right),

with a majority of the models exhibiting significant divergence

in the early stages of training due to the adversarial attack.

In both scenarios, Meta-SGD (5 way 5 shot) demonstrates

a degree of resilience against the PGD attack, although it

ultimately falls short of achieving the desired accuracy.

Fig. 4: Performance of conventional FL methods in the

presence of PGD attack under l2 norm: Server accuracy on

EuroSAT dataset (left) and on LISA dataset (right).

From the above discussion, a natural question may arise:

how is it feasible to attain a server test accuracy of 50%
despite the impact of the PGD attack? To address this query,

we present our comprehensive experiment with Vanilla Meta-

SGD on the EuroSAT dataset in Fig. 5. It is evident from Fig.

5 (left) that even though 3 of the attacked clients are yielding

poor performance, with accuracy below 20%, the 2 clients

trained with clean samples are achieving over 90% accuracy.

In addition, Fig. 5 (right) depicts how attacked clients diverge

from loss minimization at an early stage. Given the federated

setting, all client updates are merged on the server. This

Fig. 5: Accuracy (left) and loss (right) for individual training

client on the EuroSAT dataset utilizing Meta-SGD.

implies that the server model is created via contributions from

models trained on both clean and adversarial samples. The

server’s incorporation of updates from models trained on clean

samples generates the performance outcomes shown in Fig. 4.

Next, we explore the effectiveness of FLAMINGO, un-

der the PGD attack. We conduct an empirical analysis on

FLAMINGO using both the EuroSAT dataset (Fig. 6) and the

Lisa dataset (Fig. 7). In terms of server accuracy illustrated

in Fig. 6 (left) and Fig. 7 (left), FLAMINGO with a 5 way 5

shot task classification surpasses both FedProx and FedNova

employing the FGSM adversarial training method. Further-

more, it exhibits enhanced stability across both datasets.

Additionally, We can also observe that FLAMINGO with 5

way 5 shot classification task, exhibits much more stable

performance due to having more data samples per class during

training, in contrast to the 5 way 1 shot classification task. This

Fig. 6: Performance comparison of different adversarial train-

ing methods on EuroSAT dataset in the presence of PGD

attack under l2 norm: Server accuracy across multiple FL

communication rounds (left) and loss minimization (right).

Fig. 7: Server accuracy (left) and loss of various adversarial

training methods (right) on LISA dataset in the presence of

PGD attack under l2 norm.

stability is reflected in the loss minimization performance, as

depicted in Fig. 6 (right) and Fig. 7 (right), where FLAMINGO

exhibits superior and more stable results compared to FedProx

and FedNova [21] with FGSM. Furthermore, the difference

between the best accuracy and final accuracy achieved using

FLAMINGO on both datasets is marginally low (below 3%),

which indicates FLAMINGO effectively mitigates overfitting.

Fig. 8: Server accuracy (left) and loss (right) of FLAMINGO

on EuroSAT with PGD adversarial images.

Now, we demonstrate the reasoning behind exclusively

applying strong augmentation in the query set rather than

the support set. Our empirical analysis, illustrated in Fig.

8 for EuroSAT, involving 5 way 5 shot classification tasks

and step size ε = 2/255, provides additional validation for

our initial hypothesis. Fig. 8 (left) reveals that FLAMINGO’s

server accuracy decreases when strong augmentation is ap-

plied to the support set, as opposed to its application in

the query set. This trend is consistently reflected in loss

minimization, as shown in Fig. 8 (right). The incorporation of

strong augmentation leads to premature divergence during the

training process in FLAMINGO, resulting in notable decline in

accuracy performance, as depicted in Fig. 8 (left). Moreover,

the findings presented in Fig. 9 further corroborate our initial
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claim that FLAMINGO is more resource-efficient compared

to conventional FL with FGSM adversarial training [22].

Fig. 9: Analyzing Resource Consumption of Adversarial Train-

ing Methods on EuroSAT Dataset with �2 PGD Attacks: Server

Accuracy vs. Completion Time (left) and Communication

Rounds for Target Accuracy (right).

FLAMINGO achieves the desired accuracy swiftly com-

pared to other methods, surpassing 80% within just 60 minutes

(presented in Fig. 9 (left)). Although it takes a slightly higher

duration to complete 40 communication rounds, FLAMINGO

shows potential for early termination once the desired ac-

curacy is reached. Furthermore, Fig. 9 (right) underscores

FLAMINGO’s effectiveness in requiring fewer communica-

tion rounds to achieve the target accuracy. It surpasses 75%

accuracy within just 5 communication rounds, while other

FL methods with FGSM adversarial training require up to 50

rounds to achieve the same 75% accuracy threshold.

IV. CONCLUSION

In this paper, we introduced FLAMINGO, a novel AMT

method, designed to enhance the robustness of FML achieved

through the integration of adversarial training and consis-

tency regularization. Within FLAMINGO, we employ diverse

augmentation strategies during the meta-training process to

enhance the model’s resilience against adversarial attacks as

well as prevent overfitting. An extensive series of ablation

studies validate our design choices, particularly the utilization

of strong augmentation exclusively on query sets to prevent

premature divergence. Through comprehensive experiments

conducted on image classification datasets, including EuroSAT

and LISA, underscore the effectiveness of FLAMINGO. In the

face of PGD attacks employing 10 iterations, FLAMINGO

demonstrates remarkable performance, reaching faster con-

vergence in such demanding setting. This achievement is in

stark contrast to vanilla Meta-SGD (approximately 50%) and

FedNova with FGSM (about 65%) for EuroSAT and achieves

over 20% increase in accuracy on LISA dataset compared

to other models. Additionally, it delivers a notable 50%

increase in accuracy on the LISA dataset when compared to

other models. Furthermore, FLAMINGO exhibits accelerated

convergence, achieving 80% accuracy on EuroSAT in less than

half the time compared to alternative methods.
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