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Abstract—Federated Learning (FL) has recently experienced
tremendous popularity due to its emphasis on user data privacy.
However, the distributed computations of FL can result in
constrained communication and drawn-out learning processes,
necessitating the client-server communication cost optimization.
The ratio of chosen clients and the quantity of local training
passes are two hyperparameters that have a significant impact
on the performance of FL. Due to different training preferences
across various applications, it can be difficult for FL practitioners
to manually select such hyperparameters. In this paper, we
introduce FedAVO, a novel FL algorithm that enhances com-
munication effectiveness by selecting the best hyperparameters
leveraging the African Vulture Optimizer (AVO). Our research
demonstrates that the communication costs associated with FL
operations can be substantially reduced by adopting AVO for
FL hyperparameter adjustment. Through extensive evaluations
of FedAVO on benchmark datasets, we identify the optimal
hyperparameters that are appropriately fitted for the benchmark
datasets, eventually increasing global model accuracy by 6% in
comparison to the state-of-the-art FL algorithms (such as FedAvg,
FedProx, FedPSO). The code, data, and experiments have been
made publicly available on our GitHub repository1.

Index Terms—Federated Learning, African Vulture Optimizer,
Communication efficiency, Local model, Global model, Conver-
gence.

I. INTRODUCTION

The proliferation of diverse consumer electronics, including

IoT devices, home appliances, smartphones, connected au-

tonomous vehicles (CAVs), drones, Virtual Reality (VR), and

Augmented Reality (AR) devices, has witnessed substantial

growth in recent years. These devices capture and store various

forms of data such as images, audio, and text.Image, audio,

and text are just a few of the different forms of data that

such devices acquire and store. Every day brings a slight

increase in the number of IoT-related applications, their users,

and the amount of data they produce. This phenomenon is

pioneering the scope of data-driven decision-making. Due

to the heterogeneous nature of these collected data, training

machine learning models comes with the following challenges:

widely distributed: data points are stored in a large number

of clients, which can be significantly higher than the average

number of training samples retained on a given client; non-
IID Data: each client’s data may not accurately represent the

entire distribution [1] of a dataset; unbalanced Data: clients

may hold different magnitudes of data points; communication

1https://github.com/speedlab-git/FedAVO
Corresponding author: Ahmed Imteaj (imteaj@cs.siu.edu)

constraints: Mobile or IoT devices frequently may experience

poor, expensive, or no internet connectivity; communication
cost: data collection from edge devices is significantly high.

Moreover, transferring the data to the central server for training

requires additional network bandwidth.

The study FL has made substantial progress in addressing

the aforementioned challenges. FL is a machine learning (ML)

paradigm that trains ML models utilizing decentralized data.

FL protects data privacy by preventing data transfer from local

machines to a centralized server. Each edge devices train the

model on its own data locally using its computation resources.

Instead of sending local data to the central server, only the

local updates are sent. By providing only the local updates, FL

cuts down the bandwidth overhead and also the communica-

tion cost. For these distinctive qualities, FL has been adopted

in a wide range of applications such as speech recognition

[2], [3], surveillance system [4], [5], health care system [6],

[7], Internet of Things (IoT)[8], human stroke prevention [9],

[10], and cybersecurity [11]. An FL paradigm includes local

training, client-server communication, and model aggregation

[1], [12]. Often communication overhead in FL comes from

model broadcast from the server to all clients and vice versa.

Furthermore, there is a feasibility risk in every communi-

cation round in terms of constrained network bandwidth,

packet transmission loss, and privacy invasion. Apart from

communication overhead and privacy invasion, training on

heterogeneous setups opposes some more challenges. After

the centralized server broadcasts its model, the clients train

the model while considering some hyperparameters such as

learning rate, batch dimension, and rounds per epoch. These

diversely trained client models are difficult to aggregate since

computational power and data attributes (complexity, ambigu-

ity) differ vastly between each edge device. In an idealistic

scenario of hundreds, even thousands of devices, the updated

global model may never converge to a global optimum due to

the heterogeneous behavior of the clients. Existing aggregation

techniques (e.g., FedAvg [1], FedMa [13]) only focus on

integrating weights of local models. To increase generalization

and convergence rate, some novel approaches suggested model

aggregation by using feature fusion [14] of global and local

models or using multiple global models [15].
Along with the typical hyperparameters of model training,

such as learning rates, optimizers, and mini-batch sizes, FL

also has particular hyperparameters, such as local epochs and

participant selection. The selection of these hyperparameters

can drastically affect the performance of FL. The impact
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of hyperparameter tuning is much higher in Non-IID data

distribution because data samples are radically different from

each other across the clients. Although hyperparameter tuning

optimization (HTO) has been widely explored in centralized

machine learning, several aspects of HTO in FL settings yet

need to be studied. In centralized machine learning, the model

often trains on the entire dataset, which is often not viable

in FL settings. In addition to that, models train on a wide

range of hyperparameter configurations, which is extremely

expensive in terms of communication and training time in FL

settings because each FL cycle consists of multiple phases and

communication rounds, and the model must complete each

communication round in order to evaluate or change any hy-

perparameters. Finally, the same hyperparameter configuration

functions less well as centralized machine learning due to

the heterogeneous behavior of the clients and their data in

FL settings. A few strategies for FL-HTO have recently been

put forth; however, they concentrate on handling HTO using

personalization techniques and neural networks, and they often

lack in optimizing the communication cost and convergence

rate. In this study, we optimize automated hyperparameter

tuning with the help of a meta-heuristic algorithm. We pro-

pose FedAVO, which can configure and tune hyperparameters

locally concerning the data distribution and their quality. To

summarize, our proposed work outlines three novel contribu-

tions, which are listed as follows:

• To the best of our knowledge, FedAVO is the first FL

hyperparameter tuning algorithm that reveals the potential of

AVO as an optimizer for automated hyperparameter tuning

during FL model training, specifically tailored for consumer

electronics functioning as edge devices.

• FedAVO can be employed to tune the hyperparameters

automatically for any state-of-the-art FL algorithm (such as

FedAvg [1], FedProx [16], and FedNova [12]). Moreover,

FedAVO can automatically configure and tune the hyperpa-

rameters locally on each communication rounds.

• We conduct an in-depth evaluation of FedAVO, comparing

its performance with the state-of-the-art FL algorithms. Our

findings reveal a notable decrease in communication overhead

and an increase in convergence rate. Compared to FedAvg,

FedAVO reduces the requirement of communication rounds

to reach convergence by 80 on average. In addition, Fe-

dAVO converges much faster and achieves better accuracy

than the state-of-the-art FL algorithms. For instance, FedAVO

achieves 99.47% accuracy with MNIST Non-IID distribution

and 72.64% accuracy with CIFAR-10 Non-IID distribution.

Moreover, for Fashion MNIST and LISA datasets, FedAVO

achieves consecutive global accuracies of 85.28% and 92.88%,

respectively. The rest of the paper is organized as follows:

Section II depicts the fundamental concepts of FL and the

key elements of our proposed method: AVO algorithm. Related

works are reviewed in Section III, while Section IV explains

the algorithm and operating procedure of FedAVO. Section V

presents the experimental analysis and highlights the signifi-

cant findings. Finally, the study is concluded with a discussion

of future directions to enhance our work in section VI.

II. BACKGROUND STUDY

African Vulture Optimization Algorithm (AVOA) is a nature

inspired population based metaheuristic algorithm proposed

in [17]. The algorithm was derived from the behavior and

characteristics of African vultures, leveraging their adaptive

and efficient foraging strategies observed in the natural world.

AVOA offers a promising method for addressing complex

optimization challenges across wide-range of domains. We

presented the steps of the AVOA in below:

1) Population Classification: African vultures are catego-

rized into three groups based on their living habits, as dis-

cussed in the cited references [18], [19]. The first group com-

prises vultures that represent optimal solutions when assessing

their fitness with respect to feasible solutions. The second

group includes vultures representing the second-best feasible

solutions, while the remaining vultures are placed in the third

group. Figure 1 illustrates the AVO architecture, with the right

vulture symbolizing the best vulture and the left one represent-

ing the second-best. The fitness of all vulture populations is

evaluated after establishing the initial population, and they are

categorized based on their fitness values using Equation 1.

Rt
i =

{
Best vulture t

1, if P t
i = L1

Best vulture t
2, if P t

i = L2

(1)

Here, Best vulture1 represents the best optimal solution for

the population and Best vulture2 depicts the suboptimal

solution. L1 and L2 are both random values within the range

of 0 to 1, and their sum equals to 1. With the help of the

roulette-wheel technique, pi is calculated using equation 2:

pti =
F t
i∑n

i=1 F
t
i

(2)

Here, the fitness value of vultures is represented by Fi and n

represents the total vultures in the first and second groups.

Fig. 1: Illustration of African Vulture Optimization technique.

2) Rate of Starvation in Vultures: In FL with AVO, we can

liken vultures to computational entities or clients in the learn-

ing process. Well-fed vultures represent entities with ample re-

sources and energy, allowing them to explore the optimization

landscape extensively and perform resource-intensive compu-

tations. They handle complex tasks in Federated Learning.

Conversely, starving vultures symbolize resource-constrained

or energy-depleted entities, lacking capacity for prolonged and

resource-intensive computations, similar to hungry vultures

unable to sustain extended flights. In FL, these entities may
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face limitations like restricted resources or communication

bandwidth. Starvation rate among vultures significantly af-

fects the optimization process’s exploration and development

phases. Changes in this rate directly impact collaboration,

strategy adaptation, and computational allocation within the

FL ecosystem. Ultimately, these dynamics shape the optimiza-

tion process in FL with AVO The vulture starvation rate Si is

computed by the following equation 3:

Si = (2× randi +1)× h×
(
1− iteration i

maxiterations

)
+ t (3)

3) Exploration Stage: African vultures take some time to

locate other populations and food before making a long flight

searching for it. They might face a hard time locating food

since they spend a long time exploring their surroundings

before flying farther distances in the quest of food. In AVOA,

two distinct exploration strategies are discussed, and P1 in

the range of [0,1] is used to determine the strategy to be

adopted. A random number randp1 ranging between 0 and 1

is utilized to select one of the strategies during the exploration

phase. The random value gets compared to the value of P1;

if the random value is lesser than P1, equation 4 is utilized;

otherwise, equation 5 is utilized to determine the strategy:

P t+1
i = Rt

i −Dt
i × S if P1 ≥ randp1 (4)

P t+1
i = Rt

i−S+rand2× ((ub− lb)× rand3 + lb) if P1 < randp1

(5)

4) Development Stage: In this stage, the AVO starts the first

stage of exploitation, if |S| is between 0.5 and 1, the vultures

enter the initial development stage and during this stage, they

search for prey in two strategies. P2 ranging between 0 and

1, determines whether the vultures compete for food or spiral.

roundp2
, a random number between 0 and 1 gets generated

at the first stage of this phase. If roundp2 is greater than or

equal to parameter P2 the siege-fight strategy is applied slowly.

Otherwise, the rotational flying technique is utilized. equation

6 and 7 demonstrates this procedure:

P t+1
i = Dt

i × (Si + rand 4)−Rt
i − P t

i if P2 ≥ randp2

(6)

P t+1
i = Rt

i −
(
Qt

1 +Qt
2

)
if P2 < randp2 (7)

where, rand4 is a random number ranging between 0 and 1,

and the term (Rt
i − P t

i ) is used for calculating the distance

between the vulture and one of the two groups’ best vultures:

Qt
1 = Rt

i ×
(

rand 5 × P t
i

2π

)
× cos

(
P t
i

)
(8)

Qt
2 = Rt

i ×
(

rand 6 × P t
i

2π

)
× sin

(
P t
i

)
(9)

5) Final Stage (Second phase): The algorithm shifts to this

stage when the |Si| value is less than 0.5. It indicates all

vultures are full, but the best two types of vultures become

hungry and weak after a prolonged flying session. At this

moment, vultures attack their prey, and multiple vultures

congregate at the same food source. Parameter P3, ranging

between 0 and 1, is used to determine whether the vulture

shows aggregation behavior or aggressive behavior. When the

vulture enters the second phase of the final stage, randp3
gets initialized with a value between 0 and 1. When randp3
is less than P3, the vulture engages in aggressive behavior;

Otherwise, engages in aggregating behavior. This equation

governs their movement and behavior during this critical phase

of the optimization process. The vultures position can be

updated using following equations 10, 11 and 12:

P t+1
i =

At
1 +At

2

2
(10)

At
1 = Best Vulture t

1 −
Best Vulture t

1 × P t
i

Best Vulture t
1 − (P t

i )
2 × S (11)

At
2 = Best Vulture t

2 −
Best Vulture t

2 × P t
i

Best Vulture t
2 − (P t

i )
2 × S (12)

Here, BestV ulturet1 and BestV ulturet2 are the optimal and

suboptimal solutions and S is the starvation rate.

III. RELATED WORKS

The rising prevalence of smart and IoT devices in daily life

has amplified the need for FL, primarily due to its capability

to safeguard data privacy during the model training process.

Consequently, there has been a surge in the exploration of

efficient optimization techniques tailored to FL. Researchers

have directed their attention to various facets of FL, encom-

passing aspects such as communication efficiency [20], [21],

client selection [22], [23], the intricate dynamics of statistical

and system heterogeneity [24], [25] and cybersecurity [26].

One particular area of interest that aligns with our research

focus revolves around the reduction of communication rounds

in federated learning. Our approach to achieving this reduc-

tion centers on the optimization of hyperparameters. These

hyperparameters, pivotal components of a model, govern its

ability to glean insights from a specific dataset.In order to

achieve better performance, the hyperparameters need to be

fine-tuned with different datasets and different models. The

most straightforward automated approach for adjusting hyper-

parameters involves conducting random searches [27] within

the hyperparameter space to identify the best-performing set.

However, this method was surpassed by Bayesian techniques

[28], which leverage the performance of previously chosen

hyperparameters to inform the selection of new ones. Notably,

these methods demand substantial computational resources,

as the complete training process must be executed to as-

sess hyperparameter fitness. To mitigate the computational

burden, there is a shift toward employing partial training

[29], [30] with pre-selected hyperparameters. Nevertheless,

even with this approach, running full or partial training to

identify optimal hyperparameters within resource-constrained

FL environments, where communication budgets are limited,

remains prohibitively costly and cumbersome. While several

researchers have explored the optimization of machine learn-

ing (ML) models and their hyperparameters using evolutionary

algorithms [31], including techniques like whale optimization

[32] and genetic algorithms [33], the same level of attention

has not been given to FL. There have been only a few

attempts to address FL HTO problems. For instance, the
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FLoRA framework [34] introduces a novel HTO strategy

where global hyperparameters are determined by selecting

well-performing hyperparameters from local clients. FedEx

[35], on the other hand, optimizes hyperparameter tuning by

leveraging Neural Architecture Search (NAS) techniques with

a weight-sharing architecture. Nevertheless, several optimiza-

tion approaches encounter challenges in certain FL scenarios

by inadvertently introducing overhead during hyperparameter

tuning. Our proposed HTO method strives to bridge the

existing gaps, presenting an efficient approach to optimize

hyperparameters within the FL framework.

IV. PROPOSED FRAMEWORK: FEDAVO

Unlike FedAvg [1], which employs Stochastic Gradient De-

scent (SGD) as its optimizer, our proposed method introduces

a crucial modification aimed at automating the hyperparameter

tuning process for SGD. This adjustment has proven to yield

substantial improvements in empirical performance, enabling

faster convergence with a reduced number of communication

rounds. To facilitate a better understanding of the approach,

we have detailed the specific parameters and their notations

in Table I. Fig. 2 illustrates the distinct phases of FedAVO,

which consist of five key stages.

Local training on client devices: In the first phase, each

client performs independent local model training using the

initial parameters received from the central server. They update

their local model parameters by minimizing the loss function

described in Equation 13 using Stochastic Gradient Descent

(SGD) on their local data. Notably, this updating process

occurs in complete isolation, devoid of any communication

between clients or with the server. This strict isolation ensures

that clients preserve the privacy of their local data and refrain

from sharing it with others.

The hyperparameter tuning phase operates concurrently

with the local training phase, as illustrated in Figure 2. To

obtain hyperparameter tuning with AVO, an initial population

of vultures is initialized to represent candidate solutions. Each

vulture explores the problem space through random movement

and evaluates its fitness based on an objective function. Here

a problem space for any parameter x can be denoted as

xp = {xu, xl}. Where xl and xu represent the lower and

upper bounds of the problem space, respectively. Vultures from

the population forage through the given problem spaces for an

optimal solution for a given problem. The vultures’ movement

is influenced by their individual experiences and interactions

with other vultures within the population. Furthermore, to

enhance foraging efficiency, vultures that repeatedly fail to

obtain optimal solutions after a predefined number of attempts

share their findings with other vultures. This iterative foraging

process continues until a predetermined number of iterations

or until a satisfactory solution is achieved, thereby optimizing

the hyperparameters for the FL system effectively.

AVO for hyperparameter tuning: In this study, we focus

on optimizing the tuning of the following SGD hyperparam-

eters: local epoch, which is denoted as E , learning rate (η),

momentum (β) and weight decay, which denoted as λ. The

local epoch (E), which is also an FL parameter plays an im-

portant role in convergence. Performing more local epochs on

Algorithm 1: FedAVO (Proposed Algorithm)
1 On Server Side
2 model parameter ωo initialized

3 for each training round i = 0, 1, 2, 3 . . . do
4 Ri ← random set of q clients

5 for each client k ∈ Ri do
6 ωk

i+1 ← ClientUpdate (ωi, k)

7 ωi+1 ← ∑K
k=1

nk

n ωk
i+1

8 ClientUpdate The local client data Pk is split into

batches of size B
9 Hyperparameters ρ for the client are defined

10 The algorithm enters a loop for hyperparameter tuning

(tuning epochs)

11 In each tuning epoch, AVO (African Vulture

Optimization) is performed to optimize

hyperparameters

12 A random population of vultures Zi is initialized

13 Vultures Zvulture1 and Zvulture2 are chosen

14 For each vulture Zi, algorithm selects a region Ri

based on equation (1), updates fitness value F using

equation (2), and updates vulture’s location using

equations (4), (5), (6), (7), or (10), depending on

conditions and probabilities (P1, P2, P3)

15 The best vulture’s hyperparameters ηi, Ei, λi, and βi

are selected

16 A loop for local training (local epochs) is initiated,

where in each local epoch, the model parameters ω
are updated using SGD

17 return ω to server

clients allows more local computation and potentially reduced

communication, resulting in overall global convergence. On

the contrary, a larger number of local epochs may lead each

device toward the optima of its local objective as opposed

to the global objective due to the heterogeneous nature of

clients. This may lead to slower convergence or even cause

the method to diverge and overfit. Finally, we employ objective

function Ek for which a problem space gets initialized with

hyperparameters. The vultures forage through the problem

space and search for optimal hyperparameters to solve the

objective function. The optimization can be written as follows:

Ek(y, p) = −
M∑
c=1

yo,c log(po,c) (13)

Here, ‘y’ represents the accurate classification for data point

‘o’, ‘p’ stands for the predicted probability for the same data

point, and ‘M’ represents the total number of classes.

Server aggregation: In this phase, the central server aggre-

gates the locally trained model and takes a weighted average

of the local updates from the selected clients. The process is

repeated until global model reaches the convergence.

Global model broadcast: Finally, the updated global model

again gets sent to all selected clients and updates the local

model. In the next iteration, the local data will train on the

updated local model and selected hyperparameter pool by the

458

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on March 08,2025 at 18:48:42 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2: System architecture of our proposed FedAVO Algorithm.

TABLE I: Key Parameters and their Notations for FedAVO

Parameter Notation
Momentum βi ∈ [β, β̄]
Local epoch Ei ∈ [E, Ē]
Learning Rate ηi ∈ [η, η̄]
Weight Decay λi ∈ [λ, λ̄]
Problem Space ρ
Population size α

AVO. This whole process will repeat itself until a predeter-

mined number of communication rounds or convergence is

reached. Our Proposed FedAVO is presented with a complete

pseudocode in algorithm 1.

V. EXPERIMENTAL EVALUATION

Our study aims to improve the convergence rate and per-

formance of FL algorithms. In order to evaluate the proposed

algorithm (FedAVO), we conduct experiments and examine the

convergence speed and accuracy. Furthermore, we assess if the

model achieves acceptable convergence speed and accuracy

after the automated HTO with AVO compared to the baseline

algorithm Vanilla FedAvg [1]. In addition, we compare our

experimental results with other benchmark FL algorithms such

as FedProx [16] and FedEnsemble [36].

A. Experimental Setup

We employ a High-Performance Computing Cluster

(HPCC), which has two strong GPUs (each with 2,880 extra

cores) and 800 CPU cores and can process up to 34 Teraflops

of computations per second (one Teraflop is one million mil-

lion calculations per second). In the test code, Pytorch (stable

version 2.0.0) and Keras (version 2.12.0) are used. For the

evaluation of FedAVO, we considered four widely used image

classification datasets: CIFAR-10 [37], MNIST [38], Fashion

MNIST [39], and LISA [40]. These datasets are chosen for

their frequent usage in the field of image classification. For

FL training, we partition these datasets into Independent and

identically distributed (IID) and Non-IID settings. To tackle

experimental datasets involving image data, we employ three

distinct Convolutional Neural Network (CNN) models in our

initial experiment. For MNIST, we consider a simple two-layer

CNN model with 28 and 64 channels, each followed by 2 x 2

maximum pooling. This model aligns with the model used to

evaluate MNIST in FedAvg [1]. To ensure fairness, we match

the model and parameter numbers (1,663,370 total parame-

ters) to the FedAvg. However, for CIFAR-10 and Fashion-

MNIST, we opt for three convolution layers better results.

Subsequently, for training on the LISA dataset, we utilize

a combination of 5 convolution layers and 3 dense layers.

Since our primary focus lies in evaluating the effectiveness

of our proposed hyperparameter tuning optimization method

rather than achieving maximal accuracy, we find the standard

CIFAR-10 model well-suited for our purposes.

TABLE II: Hyperparameter Boundaries in IID AVO Problem Space

ID Hyperparameter Lower Bound Upper Bound
1 Learning Rate (η) 0.00001 0.01
2 Momentum (β) 0.1 0.9
3 Weight Decay (λ) 0.0001 0.01
4 Local epochs (E) 1 5

TABLE III: Hyperparameter Boundaries in Non-IID AVO Problem Space

ID Hyperparameter Lower Bound Upper Bound
1 Learning Rate (η) 0.01 0.1
2 Momentum (β) 1e−10 1e−9

3 Weight Decay (λ) 1e−10 1e−8

4 Local epochs (E) 1 5

In this study, all our baseline algorithms (e.g., FedAvg,

FedProx) and FedAVO employ the SGD optimizer. For the

baseline algorithms, we keep the hyperparameters unchanged

from their original study. For FedAVO, we initialize a problem

space with lower bounds and upper bounds of the hyperpa-

rameters as shown in table II and table III, and we initialize

the population size (α) with 50. In the training of baseline

algorithms and FedAVO, we configure the batch size as 16

and the number of clients as 10. The local epoch number

for baseline algorithms is standardized at 5 for each com-

munication round. However, for FedAVO, we define the local

epoch number within the problem space during the HTO. The

range of hyperparameters shown in Table II and III differs

based on the type of data distribution. In the case of Non-
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IID distribution, a higher learning rate combined with lower

momentum and weight decay proves to be more effective

compared to a lower learning rate with higher momentum

and weight decay. In the context of FedAVO, as discussed in

Section IV, the limit for local epochs is maintained between 1

and 5 to prevent model overfitting since using a significantly

higher number of local epochs would lead to overfitting of the

model.

B. Experimental Results

To assess the efficacy of our FedAVO algorithm, we bench-

mark its performance against other state-of-the-art algorithms

employing a Non-IID distribution. In our primary experiment,

we divide the aforementioned datasets into 10 clients, ensuring

that each client receives 500 data points containing training

images. For each of our experiments, we run upto 500 FL

communication rounds. Furthermore, To evaluate proposed

HTO, we also compare with two state-of-the-art population-

based optimizers, PSO [41] and GWO [42]. Note that, we

incorporate PSO and GWO instead of AVO as an HTO naming

them FedPSO and FedGWO. Subsequently, we conduct a

performance comparison with FedAVO, demonstrating that

AVO outperforms these population-based optimizers.

Communication Rounds Communication Rounds

(a) (b)

Fig. 3: Comparison of model accuracy [on left] and model loss minimization
[on right] considering MNIST Non-IID setting.

Communication Rounds

(a) (b)

Fig. 4: Comparison of model accuracy [on left] and model loss minimization
[on right] considering CIFAR-10 Non-IID setting.

In Figure 3, we evaluate our proposed FedAVO along-

side the baseline methods Vanilla FedAvg [1], FedPSO, and

FedGWO employing the MNIST dataset. From the compar-

ison, the following inferences can be drawn: (1) Illustrated

in Figure 3(a) and Figure 3(b), FedAVO consistently exhibits

remarkable performance in terms of both global model accu-

racy and loss minimization in Non-IID distribution. (2) In our

experiments, We explore different numbers of hyperparameter

Communication Rounds Communication Rounds

(a) (b)

Fig. 5: Comparison of model accuracy [on left] and model loss minimization
[on right] considering LISA Non-IID setting.

tuning epoch denoted as t to evaluate their respective perfor-

mance. FedAVO outperforms other baseline algorithms by a

considerable margin with tuning epoch 3 in terms of global

model accuracy, Which demonstrates FedAVO performs better

with a higher number of training epoch. However, even with

1 tuning epoch, our proposed method performs notably better

than other FL algorithms as shown in Figure 3(a). Likewise, in

terms of loss minimization, FedAVO with 3 epochs shows bet-

ter performance compared to Vanilla FedAVG and FedGWO

shown in Figure 3(b).

Communication Rounds Communication Rounds

(a) (b)

Fig. 6: Comparison of model accuracy [on left] and model loss minimization
[on right] considering Fashion MNIST Non-IID setting.

Figure 4 depicts the performance comparison of FedAVO

and other baseline FL algorithms on the CIFAR-10 dataset.

From Figure 4(a), we perceive that FedAVO with 3 tuning

epochs performs better in terms of achieving higher global

model accuracy. Due to the advantage of having both local and

global search techniques, FedAVO consistently performs better

than FedPSO and FedGWO. As shown in Figure 4(b), Vanilla

FedAvg performs poorly in terms of loss minimization. On

the contrary, FedAVO minimizes loss faster than the baseline

algorithms, e.g., FedPSO, FedGWO.

We also conduct empirical analysis on the LISA non-IID

dataset, depicted in Figure 5(a) and 5(b). In this scenario,

FedAVO and the baseline algorithms demonstrate comparable

performance in terms of minimizing the loss function. How-

ever, regarding global model accuracy, FedAVO outperformed

the other baseline algorithms, achieving superior results with

only three hyperparameter tuning epochs. Finally, Figures

6(a) and 6(b) illustrate the performance of FedAVO on the

Fashion MNIST dataset in Non-IID distribution. Notably, Both

FedPSO and FedGWO show performance par with FedAVO

with 3 tuning epoch. However, FedAVO shows marginal

improvement in terms of loss minimization illustrated in 6(b).
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(a) (b)

Fig. 7: Comparison of model accuracy considering (a) MNIST Non-IID and (b) CIFAR10 Non-IID setting.

TABLE IV: Global accuracy (%) of models trained by different FL algorithms on various datasets.

Dataset Data Distribution FEDAVG FEDPROX FEDENSEMBLE FEDAVO (HP. Tuning 3 epochs)
MNIST IID 97.70± 2.07 87.49± 2.05 95.85± 0.68 99.67 ± 0.15

Non-IID 95.16± 0.59 90.10± 0.39 90.78± 0.39 99.47 ± 0.25
CIFAR-10 IID 67.48± 0.39 76.77± 0.11 77.99 ± 0.23 76.34± 0.45

Non-IID 65.13± 0.25 66.62± 0.24 71.18± 0.4 72.64 ± 0.39
Fashion-MNIST IID 84.37± 0.9 84.77± 0.31 83.89± 0.33 89.34 ± 0.35

Non-IID 82.00± 0.43 83.62± 0.77 85.28± 0.35 87.01 ± 0.5
LISA IID 92.48± 0.39 94.24± 0.5 93.43± 0.25 96.34 ± 0.4

Non-IID 88.34± 0.34 89.5± 0.45 92.88± 0.4 94.00 ± 0.45

In Figure 7, we set a 90% accuracy threshold to compare

FedAVO against state-of-the-art FL methods, measuring the

accuracy gain over multiple communication rounds. Algo-

rithms that surpass the threshold in fewer communication

rounds are deemed to have a higher convergence rate. For

the MNIST dataset, under Non-IID distribution FedAVO out-

performs FedAvg by reducing communication rounds by 80.

Remarkably, FedAVO achieves the specified threshold within

100 communication rounds. Furthermore, on the CIFAR-10

dataset, as depicted in Figure 7(b), FedAVO demonstrates

expedited convergence. To further evaluate FedAVO, we set a

60% threshold for CIFAR-10. In contrast to FedAvg, FedAVO

exhibits robust performance in CIFAR-10 Non-IID scenarios,

reaching the threshold within 300 communication rounds

compared to FedAvg’s 450 rounds. For the CIFAR-10 dataset,

FedAVO effectively reduces communication rounds by up to

150. Based on our extensive result analysis, we can conclude

that the implementation of FedAVO within FL techniques can

halve or even more the communication round requirements,

showcasing its efficacy in enhancing the convergence rate.

We compare our proposed FedAVO’s performance in terms

of global accuracy with other state-of-the-art FL algorithms

and summarize the empirical analysis in Table IV. Addition-

ally, we showcase our empirical analysis in IID settings to

provide a comprehensive overview of FedAVO’s performance.

For CIFAR-10 dataset, FedAVO increases the performance

gain compared to FedAvg from 67.48% to 76.34% on IID

data and 65.13% to 72.64% on non-IID data. With MNIST

dataset FedAVO shows a 6% increase in global accuracy

compared to FedAvg. Although with CIFAR-10 IID distribu-

tion, FEDENSEMBLE shows slightly better performance by

leveraging the benefit of having ensemble predictions from the

user models, FedAVO shows substantially better performance

on the Non-IID distribution of CIFAR-10. From the mentioned

table, we can also observe that for MNIST and CIFAR-10

Non-IID distribution, FedAVO achieves 99.47% and 72.64%

accuracy, respectively. Our experimentation on the Fashion-

MNIST and LISA datasets offers additional evidence sup-

porting our claim that FedAVO consistently yields enhanced

performance in terms of global accuracy. In heterogeneous

systems for both of the aforementioned datasets, FedAVO

shows a 5.5% increase on average in terms of global accuracy.

VI. CONCLUSION

This research focuses on reducing communication overhead

in federated learning (FL) by fine-tuning the hyperparameters

of consumer electronics devices involved in edge learning.

FedAVO, our advanced FL algorithm, optimizes hyperparam-

eter adjustments to significantly enhance FL performance.

We conducted a thorough assessment on benchmark datasets,

comparing FedAVO against state-of-the-art FL algorithms.

The results unequivocally establish FedAVO’s superiority over

widely adopted FL algorithms like FedAvg, FedPSO, Fe-

dEnsemble, and FedGWO, showcasing an average global

accuracy improvement of up to 6%. Notably, FedAVO exhibits

exceptional capabilities in reducing communication rounds,

achieving an average reduction of 30 rounds for the MNIST

dataset compared to FedAvg and a substantial reduction of

around 150 rounds for the CIFAR-10 dataset. Even when

compared to FedGWO and FedPSO, FedAVO significantly

reduces communication rounds by up to 50 for CIFAR-10

and an average reduction of 20 for MNIST. Moreover, Fe-

dAVO’s adaptability extends to various FL contexts and time-

sensitive systems, promising performance enhancements and

reduced round requirements in practical real-world scenarios.

Future research will explore further improvements in network

communication performance by addressing challenges like the

risk of local minima and facilitating P2P-AVO communication

among clients, potentially through the implementation of dy-

namic multi-vulture AVO.
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