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Abstract—Federated Learning (FL) has recently experienced
tremendous popularity due to its emphasis on user data privacy.
However, the distributed computations of FL can result in
constrained communication and drawn-out learning processes,
necessitating the client-server communication cost optimization.
The ratio of chosen clients and the quantity of local training
passes are two hyperparameters that have a significant impact
on the performance of FL. Due to different training preferences
across various applications, it can be difficult for FL practitioners
to manually select such hyperparameters. In this paper, we
introduce FedAVO, a novel FL algorithm that enhances com-
munication effectiveness by selecting the best hyperparameters
leveraging the African Vulture Optimizer (AVO). Our research
demonstrates that the communication costs associated with FL
operations can be substantially reduced by adopting AVO for
FL hyperparameter adjustment. Through extensive evaluations
of FedAVO on benchmark datasets, we identify the optimal
hyperparameters that are appropriately fitted for the benchmark
datasets, eventually increasing global model accuracy by 6% in
comparison to the state-of-the-art FL algorithms (such as FedAvg,
FedProx, FedPSO). The code, data, and experiments have been
made publicly available on our GitHub repository'.

Index Terms—Federated Learning, African Vulture Optimizer,
Communication efficiency, Local model, Global model, Conver-
gence.

[. INTRODUCTION

The proliferation of diverse consumer electronics, including
IoT devices, home appliances, smartphones, connected au-
tonomous vehicles (CAVs), drones, Virtual Reality (VR), and
Augmented Reality (AR) devices, has witnessed substantial
growth in recent years. These devices capture and store various
forms of data such as images, audio, and text.Image, audio,
and text are just a few of the different forms of data that
such devices acquire and store. Every day brings a slight
increase in the number of loT-related applications, their users,
and the amount of data they produce. This phenomenon is
pioneering the scope of data-driven decision-making. Due
to the heterogeneous nature of these collected data, training
machine learning models comes with the following challenges:
widely distributed: data points are stored in a large number
of clients, which can be significantly higher than the average
number of training samples retained on a given client; non-
IID Data: each client’s data may not accurately represent the
entire distribution [1] of a dataset; unbalanced Data: clients
may hold different magnitudes of data points; communication
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constraints: Mobile or IoT devices frequently may experience
poor, expensive, or no internet connectivity; communication
cost: data collection from edge devices is significantly high.
Moreover, transferring the data to the central server for training
requires additional network bandwidth.

The study FL has made substantial progress in addressing
the aforementioned challenges. FL is a machine learning (ML)
paradigm that trains ML models utilizing decentralized data.
FL protects data privacy by preventing data transfer from local
machines to a centralized server. Each edge devices train the
model on its own data locally using its computation resources.
Instead of sending local data to the central server, only the
local updates are sent. By providing only the local updates, FL.
cuts down the bandwidth overhead and also the communica-
tion cost. For these distinctive qualities, FL. has been adopted
in a wide range of applications such as speech recognition
[2], [3], surveillance system [4], [5], health care system [6],
[7], Internet of Things (IoT)[8], human stroke prevention [9],
[10], and cybersecurity [11]. An FL paradigm includes local
training, client-server communication, and model aggregation
[1], [12]. Often communication overhead in FL comes from
model broadcast from the server to all clients and vice versa.
Furthermore, there is a feasibility risk in every communi-
cation round in terms of constrained network bandwidth,
packet transmission loss, and privacy invasion. Apart from
communication overhead and privacy invasion, training on
heterogeneous setups opposes some more challenges. After
the centralized server broadcasts its model, the clients train
the model while considering some hyperparameters such as
learning rate, batch dimension, and rounds per epoch. These
diversely trained client models are difficult to aggregate since
computational power and data attributes (complexity, ambigu-
ity) differ vastly between each edge device. In an idealistic
scenario of hundreds, even thousands of devices, the updated
global model may never converge to a global optimum due to
the heterogeneous behavior of the clients. Existing aggregation
techniques (e.g., FedAvg [1], FedMa [13]) only focus on
integrating weights of local models. To increase generalization
and convergence rate, some novel approaches suggested model
aggregation by using feature fusion [14] of global and local

models or using multiple global models [15].
Along with the typical hyperparameters of model training,

such as learning rates, optimizers, and mini-batch sizes, FL
also has particular hyperparameters, such as local epochs and
participant selection. The selection of these hyperparameters
can drastically affect the performance of FL. The impact

2836-3795/24/$31.00 ©2024 IEEE 455
DOI 10.1109/COMPSAC61105.2024.00069
Authorized licensed use limited to: Southern lllinois University Carbondale. Downloaded on March 08,2025 at 18:48:42 UTC from IEEE Xplore. Restrictions apply.



of hyperparameter tuning is much higher in Non-IID data
distribution because data samples are radically different from
each other across the clients. Although hyperparameter tuning
optimization (HTO) has been widely explored in centralized
machine learning, several aspects of HTO in FL settings yet
need to be studied. In centralized machine learning, the model
often trains on the entire dataset, which is often not viable
in FL settings. In addition to that, models train on a wide
range of hyperparameter configurations, which is extremely
expensive in terms of communication and training time in FL
settings because each FL cycle consists of multiple phases and
communication rounds, and the model must complete each
communication round in order to evaluate or change any hy-
perparameters. Finally, the same hyperparameter configuration
functions less well as centralized machine learning due to
the heterogeneous behavior of the clients and their data in
FL settings. A few strategies for FL-HTO have recently been
put forth; however, they concentrate on handling HTO using
personalization techniques and neural networks, and they often
lack in optimizing the communication cost and convergence
rate. In this study, we optimize automated hyperparameter
tuning with the help of a meta-heuristic algorithm. We pro-
pose FedAVO, which can configure and tune hyperparameters
locally concerning the data distribution and their quality. To
summarize, our proposed work outlines three novel contribu-
tions, which are listed as follows:

e To the best of our knowledge, FedAVO is the first FL
hyperparameter tuning algorithm that reveals the potential of
AVO as an optimizer for automated hyperparameter tuning
during FL model training, specifically tailored for consumer
electronics functioning as edge devices.

e FedAVO can be employed to tune the hyperparameters
automatically for any state-of-the-art FL algorithm (such as
FedAvg [1], FedProx [16], and FedNova [12]). Moreover,
FedAVO can automatically configure and tune the hyperpa-
rameters locally on each communication rounds.

e We conduct an in-depth evaluation of FedAVO, comparing
its performance with the state-of-the-art FL algorithms. Our
findings reveal a notable decrease in communication overhead
and an increase in convergence rate. Compared to FedAvg,
FedAVO reduces the requirement of communication rounds
to reach convergence by 80 on average. In addition, Fe-
dAVO converges much faster and achieves better accuracy
than the state-of-the-art FL algorithms. For instance, FedAVO
achieves 99.47% accuracy with MNIST Non-IID distribution
and 72.64% accuracy with CIFAR-10 Non-IID distribution.
Moreover, for Fashion MNIST and LISA datasets, FedAVO
achieves consecutive global accuracies of 85.28% and 92.88%,
respectively. The rest of the paper is organized as follows:
Section II depicts the fundamental concepts of FL and the
key elements of our proposed method: AVO algorithm. Related
works are reviewed in Section III, while Section IV explains
the algorithm and operating procedure of FedAVO. Section V
presents the experimental analysis and highlights the signifi-
cant findings. Finally, the study is concluded with a discussion
of future directions to enhance our work in section VI.
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II. BACKGROUND STUDY

African Vulture Optimization Algorithm (AVOA) is a nature
inspired population based metaheuristic algorithm proposed
in [17]. The algorithm was derived from the behavior and
characteristics of African vultures, leveraging their adaptive
and efficient foraging strategies observed in the natural world.
AVOA offers a promising method for addressing complex
optimization challenges across wide-range of domains. We
presented the steps of the AVOA in below:

1) Population Classification: African vultures are catego-
rized into three groups based on their living habits, as dis-
cussed in the cited references [18], [19]. The first group com-
prises vultures that represent optimal solutions when assessing
their fitness with respect to feasible solutions. The second
group includes vultures representing the second-best feasible
solutions, while the remaining vultures are placed in the third
group. Figure 1 illustrates the AVO architecture, with the right
vulture symbolizing the best vulture and the left one represent-
ing the second-best. The fitness of all vulture populations is
evaluated after establishing the initial population, and they are
categorized based on their fitness values using Equation 1.

m_{

Here, Best vulture; represents the best optimal solution for

the population and Best vultures depicts the suboptimal

solution. L,; and L, are both random values within the range

of 0 to 1, and their sum equals to 1. With the help of the
roulette-wheel technique, p; is calculated using equation 2:
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Here, the fitness value of vultures is represented by F; and n
represents the total vultures in the first and second groups.

if Pt =L,
if P! =L,

Best vulture ¢,
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Second best Vulture P(i) First best Vulture

Fig. 1: Illustration of African Vulture Optimization technique.

2) Rate of Starvation in Vultures: In FL with AVO, we can
liken vultures to computational entities or clients in the learn-
ing process. Well-fed vultures represent entities with ample re-
sources and energy, allowing them to explore the optimization
landscape extensively and perform resource-intensive compu-
tations. They handle complex tasks in Federated Learning.
Conversely, starving vultures symbolize resource-constrained
or energy-depleted entities, lacking capacity for prolonged and
resource-intensive computations, similar to hungry vultures
unable to sustain extended flights. In FL, these entities may
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face limitations like restricted resources or communication
bandwidth. Starvation rate among vultures significantly af-
fects the optimization process’s exploration and development
phases. Changes in this rate directly impact collaboration,
strategy adaptation, and computational allocation within the
FL ecosystem. Ultimately, these dynamics shape the optimiza-
tion process in FL with AVO The vulture starvation rate S; is
computed by the following equation 3:
)+t

3) Exploration Stage: African vultures take some time to
locate other populations and food before making a long flight
searching for it. They might face a hard time locating food
since they spend a long time exploring their surroundings
before flying farther distances in the quest of food. In AVOA,
two distinct exploration strategies are discussed, and P; in
the range of [0,1] is used to determine the strategy to be
adopted. A random number rand,; ranging between 0 and 1
is utilized to select one of the strategies during the exploration
phase. The random value gets compared to the value of Pi;
if the random value is lesser than P, equation 4 is utilized;
otherwise, equation 5 is utilized to determine the strategy:

P =R! - D! xS 4

P/ = Rl —S+4randa x ((ub — Ib) x rands + Ib) if Py < rand,
&)
4) Development Stage: In this stage, the AVO starts the first
stage of exploitation, if |S| is between 0.5 and 1, the vultures
enter the initial development stage and during this stage, they
search for prey in two strategies. P» ranging between 0 and
1, determines whether the vultures compete for food or spiral.
roundp,, a random number between 0 and 1 gets generated
at the first stage of this phase. If round,, is greater than or
equal to parameter P the siege-fight strategy is applied slowly.
Otherwise, the rotational flying technique is utilized. equation
6 and 7 demonstrates this procedure:

iteration ;

S; = (2 x rand; +1) X h X (1 — 3)

maxiterations

if P1 Z randpl

P =D} x (S; + rand 4) — R} — P} if Py > randp,
(6)

(Qf + Q%) 7
where, rand, is a random number ranging between 0 and 1,

and the term (R! — P}) is used for calculating the distance
between the vulture and one of the two groups’ best vultures:

P/t =Rl — if P» < rand,,

d - x Pt
Qtl = Rf X (%) X COS (Pit) (8)
Y3
pt
QL= B! x (”‘“%) <sin (P ©)
T

5) Final Stage (Second phase): The algorithm shifts to this
stage when the |S;| value is less than 0.5. It indicates all
vultures are full, but the best two types of vultures become
hungry and weak after a prolonged flying session. At this
moment, vultures attack their prey, and multiple vultures
congregate at the same food source. Parameter Ps, ranging
between 0 and 1, is used to determine whether the vulture
shows aggregation behavior or aggressive behavior. When the
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vulture enters the second phase of the final stage, rand,s
gets initialized with a value between 0 and 1. When rand,s
is less than P, the vulture engages in aggressive behavior;
Otherwise, engages in aggregating behavior. This equation
governs their movement and behavior during this critical phase
of the optimization process. The vultures position can be
updated using following equations 10, 11 and 12:

prt - A4 (10)
2
Best Vulture § x P}
AL = Best Vulture { — —— YEMEL XA g (g
Best Vulture { — (PY)
Best Vulture 4 x P}
Ab = Best Vulture § — ——n "M 2 X T 6 (19

Best Vulture & — (P})2

Here, BestVulture! and BestVulturel are the optimal and
suboptimal solutions and S is the starvation rate.

III. RELATED WORKS

The rising prevalence of smart and IoT devices in daily life
has amplified the need for FL, primarily due to its capability
to safeguard data privacy during the model training process.
Consequently, there has been a surge in the exploration of
efficient optimization techniques tailored to FL. Researchers
have directed their attention to various facets of FL, encom-
passing aspects such as communication efficiency [20], [21],
client selection [22], [23], the intricate dynamics of statistical
and system heterogeneity [24], [25] and cybersecurity [26].
One particular area of interest that aligns with our research
focus revolves around the reduction of communication rounds
in federated learning. Our approach to achieving this reduc-
tion centers on the optimization of hyperparameters. These
hyperparameters, pivotal components of a model, govern its
ability to glean insights from a specific dataset.In order to
achieve better performance, the hyperparameters need to be
fine-tuned with different datasets and different models. The
most straightforward automated approach for adjusting hyper-
parameters involves conducting random searches [27] within
the hyperparameter space to identify the best-performing set.
However, this method was surpassed by Bayesian techniques
[28], which leverage the performance of previously chosen
hyperparameters to inform the selection of new ones. Notably,
these methods demand substantial computational resources,
as the complete training process must be executed to as-
sess hyperparameter fitness. To mitigate the computational
burden, there is a shift toward employing partial training
[29], [30] with pre-selected hyperparameters. Nevertheless,
even with this approach, running full or partial training to
identify optimal hyperparameters within resource-constrained
FL environments, where communication budgets are limited,
remains prohibitively costly and cumbersome. While several
researchers have explored the optimization of machine learn-
ing (ML) models and their hyperparameters using evolutionary
algorithms [31], including techniques like whale optimization
[32] and genetic algorithms [33], the same level of attention
has not been given to FL. There have been only a few
attempts to address FL. HTO problems. For instance, the
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FLoRA framework [34] introduces a novel HTO strategy
where global hyperparameters are determined by selecting
well-performing hyperparameters from local clients. FedEx
[35], on the other hand, optimizes hyperparameter tuning by
leveraging Neural Architecture Search (NAS) techniques with
a weight-sharing architecture. Nevertheless, several optimiza-
tion approaches encounter challenges in certain FL scenarios
by inadvertently introducing overhead during hyperparameter
tuning. Our proposed HTO method strives to bridge the
existing gaps, presenting an efficient approach to optimize
hyperparameters within the FL framework.

IV. PROPOSED FRAMEWORK: FEDAVO

Unlike FedAvg [1], which employs Stochastic Gradient De-

scent (SGD) as its optimizer, our proposed method introduces
a crucial modification aimed at automating the hyperparameter
tuning process for SGD. This adjustment has proven to yield
substantial improvements in empirical performance, enabling
faster convergence with a reduced number of communication
rounds. To facilitate a better understanding of the approach,
we have detailed the specific parameters and their notations
in Table I. Fig. 2 illustrates the distinct phases of FedAVO,
which consist of five key stages.
Local training on client devices: In the first phase, each
client performs independent local model training using the
initial parameters received from the central server. They update
their local model parameters by minimizing the loss function
described in Equation 13 using Stochastic Gradient Descent
(SGD) on their local data. Notably, this updating process
occurs in complete isolation, devoid of any communication
between clients or with the server. This strict isolation ensures
that clients preserve the privacy of their local data and refrain
from sharing it with others.

The hyperparameter tuning phase operates concurrently
with the local training phase, as illustrated in Figure 2. To
obtain hyperparameter tuning with AVO, an initial population
of vultures is initialized to represent candidate solutions. Each
vulture explores the problem space through random movement
and evaluates its fitness based on an objective function. Here
a problem space for any parameter x can be denoted as
2P = {xy,2;}. Where z; and z, represent the lower and
upper bounds of the problem space, respectively. Vultures from
the population forage through the given problem spaces for an
optimal solution for a given problem. The vultures’ movement
is influenced by their individual experiences and interactions
with other vultures within the population. Furthermore, to
enhance foraging efficiency, vultures that repeatedly fail to
obtain optimal solutions after a predefined number of attempts
share their findings with other vultures. This iterative foraging
process continues until a predetermined number of iterations
or until a satisfactory solution is achieved, thereby optimizing
the hyperparameters for the FL system effectively.

AVO for hyperparameter tuning: In this study, we focus
on optimizing the tuning of the following SGD hyperparam-
eters: local epoch, which is denoted as &, learning rate (),
momentum () and weight decay, which denoted as A. The
local epoch (£), which is also an FL parameter plays an im-
portant role in convergence. Performing more local epochs on
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Algorithm 1: FedAVO (Proposed Algorithm)

On Server Side
model parameter w, initialized
for each training round 1 = 0,1,2,3... do
R; < random set of ¢ clients
for each client k € R; do
wF, | « ClientUpdate (w;, k)
k

Wit1 < Zk’c=1 n i+l

ClientUpdate The local client data Py, is split into
batches of size B

Hyperparameters p for the client are defined

The algorithm enters a loop for hyperparameter tuning
(tuning epochs)

In each tuning epoch, AVO (African Vulture
Optimization) is performed to optimize
hyperparameters

A random population of vultures Z; is initialized

Vultures Zyuiture1r and Zyyiiures are chosen

For each vulture Z;, algorithm selects a region R;
based on equation (1), updates fitness value F' using
equation (2), and updates vulture’s location using
equations (4), (5), (6), (7), or (10), depending on
conditions and probabilities (P, Ps, Ps)

The best vulture’s hyperparameters 7;, &, \;, and 3;
are selected

A loop for local training (local epochs) is initiated,
where in each local epoch, the model parameters w
are updated using SGD

return w to server
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clients allows more local computation and potentially reduced
communication, resulting in overall global convergence. On
the contrary, a larger number of local epochs may lead each
device toward the optima of its local objective as opposed
to the global objective due to the heterogeneous nature of
clients. This may lead to slower convergence or even cause
the method to diverge and overfit. Finally, we employ objective
function Ej, for which a problem space gets initialized with
hyperparameters. The vultures forage through the problem
space and search for optimal hyperparameters to solve the
objective function. The optimization can be written as follows:

M

Ex(y,0) = = > Yo.c 108(Po.c) (13)
c=1

Here, ‘y’ represents the accurate classification for data point

‘0’, ‘p’ stands for the predicted probability for the same data

point, and ‘M’ represents the total number of classes.

Server aggregation: In this phase, the central server aggre-
gates the locally trained model and takes a weighted average
of the local updates from the selected clients. The process is
repeated until global model reaches the convergence.

Global model broadcast: Finally, the updated global model
again gets sent to all selected clients and updates the local
model. In the next iteration, the local data will train on the
updated local model and selected hyperparameter pool by the
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Fig. 2: System architecture of our proposed FedAVO Algorithm.

TABLE I: Key Parameters and their Notations for FedAVO

_Parameter  Notation
Momentum Bi €18, 0]
Local epoch & €€
Learning Rate n; € [n,7]
Weight Decay ~ A; € [\, )]

Problem Space p
Population size «

AVO. This whole process will repeat itself until a predeter-
mined number of communication rounds or convergence is
reached. Our Proposed FedAVO is presented with a complete
pseudocode in algorithm 1.

V. EXPERIMENTAL EVALUATION

Our study aims to improve the convergence rate and per-
formance of FL algorithms. In order to evaluate the proposed
algorithm (FedAVO), we conduct experiments and examine the
convergence speed and accuracy. Furthermore, we assess if the
model achieves acceptable convergence speed and accuracy
after the automated HTO with AVO compared to the baseline
algorithm Vanilla FedAvg [1]. In addition, we compare our
experimental results with other benchmark FL algorithms such
as FedProx [16] and FedEnsemble [36].

A. Experimental Setup

We employ a High-Performance Computing Cluster
(HPCC), which has two strong GPUs (each with 2,880 extra
cores) and 800 CPU cores and can process up to 34 Teraflops
of computations per second (one Teraflop is one million mil-
lion calculations per second). In the test code, Pytorch (stable
version 2.0.0) and Keras (version 2.12.0) are used. For the
evaluation of FedAVO, we considered four widely used image
classification datasets: CIFAR-10 [37], MNIST [38], Fashion
MNIST [39], and LISA [40]. These datasets are chosen for
their frequent usage in the field of image classification. For
FL training, we partition these datasets into Independent and
identically distributed (IID) and Non-IID settings. To tackle
experimental datasets involving image data, we employ three
distinct Convolutional Neural Network (CNN) models in our
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initial experiment. For MNIST, we consider a simple two-layer
CNN model with 28 and 64 channels, each followed by 2 x 2
maximum pooling. This model aligns with the model used to
evaluate MNIST in FedAvg [1]. To ensure fairness, we match
the model and parameter numbers (1,663,370 total parame-
ters) to the FedAvg. However, for CIFAR-10 and Fashion-
MNIST, we opt for three convolution layers better results.
Subsequently, for training on the LISA dataset, we utilize
a combination of 5 convolution layers and 3 dense layers.
Since our primary focus lies in evaluating the effectiveness
of our proposed hyperparameter tuning optimization method
rather than achieving maximal accuracy, we find the standard
CIFAR-10 model well-suited for our purposes.

TABLE II: Hyperparameter Boundaries in IID AVO Problem Space

1 Learning Rate (1) 0.00001 0.01
2 Momentum (3) 0.1 0.9
3 Weight Decay () 0.0001 0.01
4 Local epochs (£) 1 5

1 Learning Rate (1) 0.01 0.1
2 Momentum (3) 1e—10 1le—9
3 Weight Decay () le—10 le~8
4 Local epochs (£) 1 5

In this study, all our baseline algorithms (e.g., FedAvg,
FedProx) and FedAVO employ the SGD optimizer. For the
baseline algorithms, we keep the hyperparameters unchanged
from their original study. For FedAVO, we initialize a problem
space with lower bounds and upper bounds of the hyperpa-
rameters as shown in table II and table III, and we initialize
the population size («) with 50. In the training of baseline
algorithms and FedAVO, we configure the batch size as 16
and the number of clients as 10. The local epoch number
for baseline algorithms is standardized at 5 for each com-
munication round. However, for FedAVO, we define the local
epoch number within the problem space during the HTO. The
range of hyperparameters shown in Table II and III differs
based on the type of data distribution. In the case of Non-
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IID distribution, a higher learning rate combined with lower
momentum and weight decay proves to be more effective
compared to a lower learning rate with higher momentum
and weight decay. In the context of FedAVO, as discussed in
Section IV, the limit for local epochs is maintained between 1
and 5 to prevent model overfitting since using a significantly
higher number of local epochs would lead to overfitting of the
model.

B. Experimental Results

To assess the efficacy of our FedAVO algorithm, we bench-
mark its performance against other state-of-the-art algorithms
employing a Non-IID distribution. In our primary experiment,
we divide the aforementioned datasets into 10 clients, ensuring
that each client receives 500 data points containing training
images. For each of our experiments, we run upto 500 FL
communication rounds. Furthermore, To evaluate proposed
HTO, we also compare with two state-of-the-art population-
based optimizers, PSO [41] and GWO [42]. Note that, we
incorporate PSO and GWO instead of AVO as an HTO naming
them FedPSO and FedGWO. Subsequently, we conduct a
performance comparison with FedAVO, demonstrating that
AVO outperforms these population-based optimizers.

i Non-IID MNIST 555 Non-IID MNIST
] & : =
A 200 -+ FedAVO(t=1)
08 g FedAVO(t=3)
- . \ Vanilla FedAvg
Sos 1501 ¢ FedPSO(t=3)
5 FedAVO(t=1) 8125 FedGWO(t=3)
804 FedAVO(t=3) —1.00
< Vanilla FedAvg 0.75
0.2 FedPSO(t=3)
FedGWO(t=3) —
0.0 0.25
* 100 200 300 400 500 100 200 300 400 500

Communication Rounds Communication Rounds

(a) (b)

Fig. 3: Comparison of model accuracy [on left] and model loss minimization
[on right] considering MNIST Non-IID setting.
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1.0
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L 100 200 300 400 500
Communication Rounds 0 0
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Fig. 4: Comparison of model accuracy [on left] and model loss minimization
[on right] considering CIFAR-10 Non-IID setting.

In Figure 3, we evaluate our proposed FedAVO along-
side the baseline methods Vanilla FedAvg [1], FedPSO, and
FedGWO employing the MNIST dataset. From the compar-
ison, the following inferences can be drawn: (1) Illustrated
in Figure 3(a) and Figure 3(b), FedAVO consistently exhibits
remarkable performance in terms of both global model accu-
racy and loss minimization in Non-IID distribution. (2) In our
experiments, We explore different numbers of hyperparameter
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Fig. 5: Comparison of model accuracy [on left] and model loss minimization
[on right] considering LISA Non-1ID setting.

tuning epoch denoted as t to evaluate their respective perfor-
mance. FedAVO outperforms other baseline algorithms by a
considerable margin with tuning epoch 3 in terms of global
model accuracy, Which demonstrates FedAVO performs better
with a higher number of training epoch. However, even with
1 tuning epoch, our proposed method performs notably better
than other FL algorithms as shown in Figure 3(a). Likewise, in
terms of loss minimization, FedAVO with 3 epochs shows bet-
ter performance compared to Vanilla FedAVG and FedGWO
shown in Figure 3(b).

Non-IID Fashion MNIST

FedAVO(t=1)
FedAVO(t=3)
Vanilla FedAvg
FedPSO(t=3)
FedGWO(t=3)

Non-IID Fashion MNIST

 FedAVO(t=1)
FedAVO(t=3)
Vanilla FedAvg
FedPSO(t=3)
FedGWO(t=3)

Accuracy

. \“ﬁ—-*-—‘_r.*. -
500 100 200 300 400 500
Communication Rounds

100 200 300 400
Communication Rounds

(a) (b)

Fig. 6: Comparison of model accuracy [on left] and model loss minimization
[on right] considering Fashion MNIST Non-IID setting.

Figure 4 depicts the performance comparison of FedAVO
and other baseline FL algorithms on the CIFAR-10 dataset.
From Figure 4(a), we perceive that FedAVO with 3 tuning
epochs performs better in terms of achieving higher global
model accuracy. Due to the advantage of having both local and
global search techniques, FedAVO consistently performs better
than FedPSO and FedGWO. As shown in Figure 4(b), Vanilla
FedAvg performs poorly in terms of loss minimization. On
the contrary, FedAVO minimizes loss faster than the baseline
algorithms, e.g., FedPSO, FedGWO.

We also conduct empirical analysis on the LISA non-IID
dataset, depicted in Figure 5(a) and 5(b). In this scenario,
FedAVO and the baseline algorithms demonstrate comparable
performance in terms of minimizing the loss function. How-
ever, regarding global model accuracy, FedAVO outperformed
the other baseline algorithms, achieving superior results with
only three hyperparameter tuning epochs. Finally, Figures
6(a) and 6(b) illustrate the performance of FedAVO on the
Fashion MNIST dataset in Non-IID distribution. Notably, Both
FedPSO and FedGWO show performance par with FedAVO
with 3 tuning epoch. However, FedAVO shows marginal
improvement in terms of loss minimization illustrated in 6(b).
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Fig. 7: Comparison of model accuracy considering (a) MNIST Non-IID and (b) CIFAR10 Non-IID setting.
TABLE IV: Global accuracy (%) of models trained by different FL algorithms on various datasets.
MNIST 11D 97.70 £2.07 | 87.49 £ 2.05 95.85 £ 0.68 99.67 + 0.15
Non-1ID 95.16 £ 0.59 | 90.10 £ 0.39 90.78 £+ 0.39 99.47 + 0.25
CIFAR-10 1ID 67.48+£0.39 | 76.77 £0.11 77.99 + 0.23 76.34 £0.45
Non-1ID 65.13 +£0.25 | 66.62 £ 0.24 71.18 £0.4 72.64 = 0.39
Fashion-MNIST 11D 84.37£0.9 84.77 £0.31 83.89 £0.33 89.34 + 0.35
Non-1ID 82.00 £0.43 | 83.62+0.77 85.28 £ 0.35 87.01 + 0.5
LISA 1ID 92.48 £0.39 94.24 £ 0.5 93.43 £0.25 96.34 + 0.4
Non-1ID 88.34 £ 0.34 89.5 £+ 0.45 92.88 +£0.4 94.00 = 0.45

In Figure 7, we set a 90% accuracy threshold to compare
FedAVO against state-of-the-art FL. methods, measuring the
accuracy gain over multiple communication rounds. Algo-
rithms that surpass the threshold in fewer communication
rounds are deemed to have a higher convergence rate. For
the MNIST dataset, under Non-IID distribution FedAVO out-
performs FedAvg by reducing communication rounds by 80.
Remarkably, FedAVO achieves the specified threshold within
100 communication rounds. Furthermore, on the CIFAR-10
dataset, as depicted in Figure 7(b), FedAVO demonstrates
expedited convergence. To further evaluate FedAVO, we set a
60% threshold for CIFAR-10. In contrast to FedAvg, FedAVO
exhibits robust performance in CIFAR-10 Non-IID scenarios,
reaching the threshold within 300 communication rounds
compared to FedAvg’s 450 rounds. For the CIFAR-10 dataset,
FedAVO effectively reduces communication rounds by up to
150. Based on our extensive result analysis, we can conclude
that the implementation of FedAVO within FL techniques can
halve or even more the communication round requirements,
showcasing its efficacy in enhancing the convergence rate.

We compare our proposed FedAVO’s performance in terms
of global accuracy with other state-of-the-art FL algorithms
and summarize the empirical analysis in Table IV. Addition-
ally, we showcase our empirical analysis in IID settings to
provide a comprehensive overview of FedAVO’s performance.
For CIFAR-10 dataset, FedAVO increases the performance
gain compared to FedAvg from 67.48% to 76.34% on IID
data and 65.13% to 72.64% on non-IID data. With MNIST
dataset FedAVO shows a 6% increase in global accuracy
compared to FedAvg. Although with CIFAR-10 IID distribu-
tion, FEDENSEMBLE shows slightly better performance by
leveraging the benefit of having ensemble predictions from the
user models, FedAVO shows substantially better performance
on the Non-IID distribution of CIFAR-10. From the mentioned
table, we can also observe that for MNIST and CIFAR-10
Non-IID distribution, FedAVO achieves 99.47% and 72.64%
accuracy, respectively. Our experimentation on the Fashion-

461

MNIST and LISA datasets offers additional evidence sup-
porting our claim that FedAVO consistently yields enhanced
performance in terms of global accuracy. In heterogeneous
systems for both of the aforementioned datasets, FedAVO
shows a 5.5% increase on average in terms of global accuracy.

VI. CONCLUSION

This research focuses on reducing communication overhead
in federated learning (FL) by fine-tuning the hyperparameters
of consumer electronics devices involved in edge learning.
FedAVO, our advanced FL algorithm, optimizes hyperparam-
eter adjustments to significantly enhance FL performance.
We conducted a thorough assessment on benchmark datasets,
comparing FedAVO against state-of-the-art FL algorithms.
The results unequivocally establish FedAVO’s superiority over
widely adopted FL algorithms like FedAvg, FedPSO, Fe-
dEnsemble, and FedGWO, showcasing an average global
accuracy improvement of up to 6%. Notably, FedAVO exhibits
exceptional capabilities in reducing communication rounds,
achieving an average reduction of 30 rounds for the MNIST
dataset compared to FedAvg and a substantial reduction of
around 150 rounds for the CIFAR-10 dataset. Even when
compared to FedGWO and FedPSO, FedAVO significantly
reduces communication rounds by up to 50 for CIFAR-10
and an average reduction of 20 for MNIST. Moreover, Fe-
dAVO’s adaptability extends to various FL contexts and time-
sensitive systems, promising performance enhancements and
reduced round requirements in practical real-world scenarios.
Future research will explore further improvements in network
communication performance by addressing challenges like the
risk of local minima and facilitating P2P-AVO communication
among clients, potentially through the implementation of dy-
namic multi-vulture AVO.
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