
EVE: Environmental Adaptive Neural Network Models for
Low-power Energy Harvesting System

*Sahidul Islam1, *Shanglin Zhou2, Ran Ran3, Yu-Fang Jin1, Wujie Wen3, Caiwen Ding2, Mimi Xie1
1Department of Computer Science, The University of Texas at San Antonio

2Department of Computer Science, University of Connecticut
3Department of Electrical and Computer Engineering, Lehigh University

ABSTRACT
IoT devices are increasingly being implemented with neural net-
work models to enable smart applications. Energy harvesting (EH)
technology that harvests energy from ambient environment is a
promising alternative to batteries for powering those devices due
to the low maintenance cost and wide availability of the energy
sources. However, the power provided by the energy harvester is
low and has an intrinsic drawback of instability since it varies with
the ambient environment. This paper proposes EVE, an automated
machine learning (autoML) co-exploration framework to search
for desired multi-models with shared weights for energy harvest-
ing IoT devices. Those shared models incur significantly reduced
memory footprint with different levels of model sparsity, latency,
and accuracy to adapt to the environmental changes . An efficient
on-device implementation architecture is further developed to effi-
ciently execute each model on device. A run-time model extraction
algorithm is proposed that retrieves individual model with negligi-
ble overhead when a specific model mode is triggered. Experimental
results show that the neural networks models generated by EVE
is on average 2.5X times faster than the baseline models without
pruning and shared weights.

KEYWORDS
Energy Harvesting, DNN, Pruning, IoT, Memory Footprint
ACM Reference Format:
*Sahidul Islam1, *Shanglin Zhou2, Ran Ran3, Yu-Fang Jin1, Wujie Wen3,
Caiwen Ding2, Mimi Xie1. 2022. EVE: Environmental Adaptive Neural Net-
work Models for Low-power Energy Harvesting System. In Proceedings
of ACM Conference (ICCAD ’2022). ACM, New York, NY, USA, 9 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
In the wake of democratization of artificial intelligence, there are in-
creasing demands on executing deep neural network (DNN) models
on sensing devices for better accuracy and more efficient predic-
tion [1, 2] for various IoT applications [3, 4]. However, when DNN
∗Both authors contributed equally to the paper

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICCAD ’2022, 30 October - 3 November 2022, San Diego, California, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

models come to on-board, there is a grand challenge to accom-
modate the giant models to sensing devices with limited memory
and computing resources [5, 6], and how to satisfy the real-time
processing requirement. Particularly, first, embedded IoT devices
have limited computational units and low CPU frequency (e.g.,
1-16MHZ). Since DNNs are computationally expensive, DNN algo-
rithm takes long on-board execution time. Second, embedded IoT
devices are equipped with small memory (e.g., hundreds of KBs)
which can not even afford tiny DNN models (e.g., Tens of MBs). In
addition, these battery-powered devices naturally have a limited
battery stand-by time.

Energy harvesting technology that harvests energy from ambi-
ent environment is a promising alternative due to the low mainte-
nance cost and wide availability of the energy sources. However,
the power provided by the energy harvester is low and has an
intrinsic drawback of instability since it varies with the ambient en-
vironment. For example, solar cells can generate power of different
densities ranging from 0 to 15𝑚𝑊 /𝑐𝑚2 depending on the varying
light intensity. With an unstable low power supply, the DNN ex-
ecution will be interrupted frequently, resulting in significantly
increased execution time. As a result, a deployed model that has 1
second real-time performance when there is high power intensity
may execute for 10s when the power intensity is low, resulting in
dramatically degraded quality-of-service (QoS).

This paper proposes EVE, a novel pattern pruning based frame-
work that generates and implements multiple hardware-friendly
models with different sparsity but shared weights to adapt to the
varying environment of the energy harvesting devices. The multi-
ple shared weights models (SWM) can successfully fit within the
on-chip memory budget with slightly larger size than the sum of
multiple independent models. For example, if we consider three
energy levels as High, Medium, and Low, then SWM should consist
of three shared-weight models and holds almost the size of only
one model. Since our final objective is performing environment
adaptive inference, after we deploy the SWM, depending on the
availability of energy, a particular fit model inside the SWM needs
extraction. Hence, we further introduce bit-matrix, which expresses
the applied pattern with small overhead. With the help of the bit-
matrix, a novel model extraction algorithm is proposed that can
successfully reconstruct the required individual model from the
SWM during run-time.

To the best of our knowledge, this is the first hardware/software
co-design attempt to adaptively configure DNN models on resource
limited energy harvesting devices. The major contributions are
summarized as follows:

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

ICCAD ’2022, 30 October - 3 November 2022, San Diego, California, USA *Sahidul Islam1 , *Shanglin Zhou2 , Ran Ran3 , Yu-Fang Jin1 , Wujie Wen3 , Caiwen Ding2 , Mimi Xie1

• To satisfy real-time constraint under the varying harvesting
power, we propose a shared weight training method by gen-
erating three models, which maximally mitigates the writing
and reading energy consumption.
• We propose a AutoML-based framework to search for multi-
ple compressedmodels with sharedweights and best possible
accuracies. A hardware performance predictor is developed
to estimate the inference latency of models when applying
different pruning patterns with different sparsity.
• We propose a run-time model extraction algorithm to recon-
struct a particular model without any information loss or
any significant overhead. Our algorithm can instinctively se-
lects the candidate model for extraction, based on the energy
condition of the environment.

2 MOTIVATION AND RELATED WORK
2.1 Motivation
Why multiple adaptive models matter? Energy harvesting (EH)
that harvests energy from ambient environment has an intrinsic
drawback: the harvesting power varies with the ambient environ-
ment. As a result, the same computation task may take different
time to complete under different harvesting environment. Figure 1
illustrates three different DNN inference scenarios when the energy
availability level is high, medium, and low respectively. During a
power cycle, an energy harvesting device has 4 states including
DNN inference, checkpoint, power off, and restore. Compared with
high available energy environment, it takes more power cycles for
the DNN inference to complete when there is low available energy
due to frequent power failures, high checkpoint/restore overhead,
and slow charging rate, resulting in degraded QoS and even failure
in meeting the time requirement. To meet the time requirement, a
promising solution is switching to a low latency model with slightly
lower prediction accuracy when there is low available energy. If
there are multiple models to choose from, then we can dynami-
cally switch the DNN models with different latency and energy
consumption according to the energy levels to accommodate the
varying environment during run-time.

Figure 1: Illustration of required power cycles under three
energy harvesting scenarios

To meet the time requirement, the accuracy can be slightly com-
promised to reduced the computation latency. As we know that
the lowest latency and highest accuracy is hard to achieve simul-
taneously, a trade-off point is needed to achieve the best possible
accuracy while satisfying the QoS for a specific environment.

Memory is a major concern for multiple models. Multiple mod-
els need to be deployed into the same resource limited device to
adapt to the environment. This is impractical for most of the energy

harvesting devices because of scarce resource where a single model
needs rigorous compression to deploy. Given aforementioned con-
ditions, the question of how to afford multiple model at a time in a
single EH devices arises. In this research, we explore pattern-based
pruning for designing 𝑆𝑊𝑀 architecture. This paper attempts to
achieve maximum commonality of multiple pruned DNN models
with different sparsities and the best possible accuracy.

2.2 Related work
For hardware-friendly weight pruning, PatDNN [7] proposed a real-
time DNN execution on mobile devices, which applied architecture-
aware optimizations to fine-grain pruning patterns for the neural
network. SMOF [8] put more effort into reducing kernel size and
the number of filter channels to overcome fixed-size width con-
straints in SIMD units. For AutoML framework on edge devices,
[9] combined hardware and software reconfiguration through rein-
forcement learning to explore a hybrid structured pruning for Trans-
former. Similarly, [10] designed an algorithm-hardware closed-loop
framework to efficiently find the best device to deploy the given
transformer model.

With the advancement of CNN and IoT, several works have
been proposed to implement CNN on IoT devices. SONIC is an
intermittence-aware software system with specialized support for
DNN inference [11]. ACE is the accelerator based fast intermit-
tent DNN inference on EH device [6]. NeuroZERO introduces a
co-processor architecture consisting of the main microcontroller
that executes scaled-down versions of a (DNN) inference task [12].
A software/hardware co-design technique that builds an energy-
efficient low bit trainable system is proposed in [13]. TF-Net pipeline
efficiently deploys sub-byte CNNs on microcontrollers [14]. Differ-
ernt from the existing works, this paper considers environmental
changes of harvesting power for the first time and configures mul-
tiple models at a time on energy harvesting (EH) devices. To the
best of our knowledge, this is the first work which deploys multiple
DNN models within a single-model budget while enabling adaptive
inference on EH devices.

3 HARDWARE-AWARE SHARED-WEIGHT
MODELS SEARCH FRAMEWORK

Fig. 2 shows the overview of the proposed co-design framework,
to satisfy real-time constraint under varying harvesting power.
Given the hardware resources and the latency (𝐿) and accuracy
(𝐴) constraints as inputs, the proposed AutoML search algorithm
uses a RNN-based reinforcement learning (RL) controller to guide
searching the best set of shared-weight compressed models starting
with a backbone model.

In the framework, the AutoML first generates 𝑁 pruning pattern
samples (𝑃) under different sparsity. We then abstract a hardware
performance predictor to estimate the inference latency of the 𝑁
models that applied the sampled pruning patterns on the given
hardware. Then a hierarchical shared weight training architecture
is designed to train these 𝑁 compressed models. These 𝑁 models
are under different compression ratios, which can be deployed to
the different energy levels of the low-power energy devices. The
𝑁 models with shared weights are then fine-tuned for resource

EVE: Environmental Adaptive Neural Network Models for Low-power Energy Harvesting System ICCAD ’2022, 30 October - 3 November 2022, San Diego, California, USA

Hardware

INPUT

Backbone
Model

(L) Latency
Constraints

(A) Accuracy
Constraints

RL Controller

Reward = f (A, L)

AutoML Search Algorithm

(SH , PH), (SM , PM), (SL , PL)

Search Space: Pruning Patterns under different sparsity (P)

Optimization
Fine-tune L on HW

LA

HW Performance Predictor: (L , S) = F (1!"#, 1$%&, 1'(#, P)
• Communication & Computation resource (DMA & CPU / LEA)
• Pruning Type or Pattern P1 P2 … PN

Shared Weight Training: Accuracy AH , AM , AL
AH ALAM

Highest
Sparsity

Middle
Sparsity

Lowest
Sparsity

Compressed Models with
Shared Weights

OUTPUT

Figure 2: Overview of the Proposed Framework

(a) CPU (b) LEA irregular (c) LEA regular

Figure 3: Latency Predictor Graph

allocation and are optimized for the latency under the given hard-
ware constraints and restrictions. Different rewards are given under
different constraints satisfaction situations. The controller is then
updated based on the feedback (reward) and predicts a better prun-
ing pattern set. In the following subsections, we will introduce each
component in Fig. 2.

3.1 Hardware Performance Predictor
We develop a hardware performance predictor to estimate the infer-
ence latency of models when applying different pruning patterns
with different sparsity. For each single DNN layer, we derive the
sparsity vs latency curve by implementing different combinations
of patterns that varies with sparsity and the hardware computation
resources. Figure 3 shows an example curve of the relation between
latency and sparsity when different computing units are utilized
for the DNN inference.

Based on the obtained curves, we produce latency-profiler func-
tions for regular pattern pruning and irregular pattern pruning
respectively. Execution with low energy accelerator(LEA) is faster
when the applied patterns are regular. However, in CPU based in-
ference, execution speed does not depend on pattern regularity
since CPU does not perform bulk computation as LEA. Regular
patterns lower the data movement cost resulting in reduced latency
compared with irregular patterns.

The reason we develop the latency-profiler function is because
there are too many patterns with different sparsity and shape com-
bination. Implementing all of these combination is extremely time
expensive and pointless since a simple linear regression can closely
predict the latency. Therefore, our performance predictor takes
pruning patterns as input, analyzes layers in the given backbone
model, and uses the latency-profiler functions to estimate latency
of the entire compressed model.

3.2 Shared Weight Training
We can dynamically switch the DNN models (with different spar-
sities but shared weights) according to different energy levels.
Different sparsities (e.g., high, medium, low) can always enable
energy devices to operate even when energy level is low, while the
shared weights can minimize the writing overhead when switching
to a different model. Overall, we prolong the "working efficiency"
of the self-powered devices on the intermediate power trace, shown
in Fig. 4.

Time (s)

En
er

gy
 le

ve
l

100 20 30 40 50 60 70 80 90

no energy

compu�ng

low sparsity
DNN model

medium sparsity
 DNN model

idle

idle
high sparsity
 DNN model

compu�ng

compu�ng

idle

Time (s)
(a) Low working efficiency without run-�me model reconfigura�on

(b) High working efficiency with run-�me model reconfigura�on

En
er

gy
 le

ve
l

100 20 30 40 50 60 70 80 90

no energy

compu�ng idleidle
compu�ng

Figure 4: Run-time dynamicmodel switch under Intermittent
power trace in energy harvesting devices.

Shared weights to mitigate writing overhead. An intuitive
solution is to directly train several DNN models with different
sparsities (e.g., high, medium, low). However, when we switch
different DNN models according to different energy level, there
will be a large amount overhead due to the weight re-written on
memory. For example, writing 1.3𝑀𝐵 weights consumes 1𝑠𝑒𝑐𝑜𝑛𝑑
and 1.51𝑚𝐽 energy. To address the overhead, we will generate
different models with shared weights, as illustrated in Fig. 5. The
white cells in the figure represent 0s or pruned weights. The grey
cells represent unpruned weights. Orange, green and blue cells
are remaining weights after pruning. The cells in the same green
or red color stand for shared weights. When switching between
models, we only need to update partial weights, and thus we reduce
the writing overhead caused by dynamic model switch under the
intermittent power trace.

In our shared-weights training (for demonstration, we use three
models), the weights of the pruned layer are:

• 𝐻𝑖𝑔ℎ𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 :𝑊ℎ =𝑊𝐼𝑛𝑖𝑡𝑖𝑎𝑙 ×𝑀ℎ

ICCAD ’2022, 30 October - 3 November 2022, San Diego, California, USA *Sahidul Islam1 , *Shanglin Zhou2 , Ran Ran3 , Yu-Fang Jin1 , Wujie Wen3 , Caiwen Ding2 , Mimi Xie1

• 𝑀𝑒𝑑𝑖𝑢𝑚𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 :𝑊𝑚 =𝑊𝐼𝑛𝑖𝑡𝑖𝑎𝑙 ×𝑀ℎ𝑚 +𝑊ℎ
• 𝐿𝑜𝑤𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 :𝑊𝑙 =𝑊𝐼𝑛𝑖𝑡𝑖𝑎𝑙 ×𝑀ℎ𝑚 +𝑊𝑚

In the equations shown above,𝑊 denotes the weight matrix,
𝑀 represents the mask. The 𝑓 𝑜𝑜𝑡𝑛𝑜𝑡𝑒 stands for the percentage of
sparsity. ℎ,𝑚, 𝑙 and ℎ𝑚 stand for ℎ𝑖𝑔ℎ,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤 and 𝑠𝑙𝑖𝑔ℎ𝑡𝑙𝑦
ℎ𝑖𝑔ℎ𝑒𝑟 𝑡ℎ𝑎𝑛 𝑚𝑒𝑑𝑖𝑢𝑚 sparsity, respectively. It will be illustrated
further in the Fig. 5, in which the shared-weights training workflow
is illustrated.

Initial Weight MaskH WeightH

​​ ​​ ​​
​​ ​​ ​​
​​ ​​ ​​

MaskM

A
dd

​​ ​​ ​​
​​ ​​ ​​
​​ ​​ ​​

​​ ​​ ​​
​​ ​​ ​​
​​ ​​ ​​

A
dd

​​ ​​ ​​
​​ ​​ ​​
​​ ​​ ​​

WeightLMaskL Pruned Weight

Initial Weight

Initial Weight

Pruned Weight WeightM

LEGENDS

Shared Weights

0s 1s

Figure 5: Shared-Weights Training Workflow

The shape of the pattern needs to be selected carefully. Since
the central elements of a kernel weighs more importance [7], to
guarantee accuracy, we try to keep the central elements as much
as possible. Besides, the number of applied patterns also need to be
selected carefully since it has to fit into small memory.

3.3 AutoML Search Algorithm
In our design, our search space includes three levels: sparsity level,
pruning type level, and pruning pattern level. The search space
is very big and it will contain many combinations if we simulta-
neously search for 𝑁 different pruning patterns. In this case, we
exploit reinforcement learning to guide the search. We use the RNN
from [15] to implement our RL controller and leverage the idea
from [10] to design our RL algorithm.

Pruning Type
Patterns

Sparsity

Action Space

Predict an action

Reward
Environment

Accuracy
Latency

State

Patterns

RNN

Sparsity
Level

Pruning
Type

Irregular Pattern Set Regular Pattern Set

𝑆! …… 𝑆"𝑆# 𝑆$

Pruning
Pattern

𝑆#

...

𝑆$ 𝑆" 𝑆#

...

𝑆$ 𝑆"

Figure 6: RL Workflow. Action space includes pruning pat-
terns under different sparsity. The environment is composed
of a HW performance predictor and a shared weight training
as shown in Fig. 2

As shown in Fig. 6, in each episode, the controller firstly pre-
dicts 𝑁 pruning patterns from the search space for 𝑁 energy levels.
The predicted patterns can be regarded as actions. Then the 𝑁

pruning patterns are fed to the environment for evaluation. The
environment mainly contains three modules. The HW performance
predictor module takes the 𝑁 patterns as input, analysis the spar-
sity of each pattern, estimates the latency for models when being
compressed using the sampled patterns, and verifies whether the
latency constraints can be satisfied. The shared weight training
module takes the sparsity and patterns as input, train on the back-
bone model to obtain accuracy for all the 𝑁 patterns on a hold-out
dataset, and also estimate whether the accuracy constraints can be
satisfied. Reward will be calculated based on the feedback from the
environment. The parameters in the RNN will be updated using
the Monte Carlo policy gradient algorithm [16] during this period,
as follows Eq. 1.

∇𝐽 (𝜃) = 1
𝐾

𝐾∑︁
𝑘=1

𝑆∑︁
𝑠=1

𝛽𝑆−𝑠∇𝜃 log
(
𝑎𝑠 | 𝑎 (𝑠−1) :1, 𝜃

)
(𝑅 − 𝑟) (1)

Here, 𝜃 is the parameters in the RNN, 𝐾 is the batch size, 𝑆 is the
total number of steps in each episode. 𝛽 is the exponential factor to
adjust the reward 𝑅 at every step, and the baseline 𝑟 is the average
exponential moving of rewards. With the obtained information, we
can formulate the reward function as Eq. 2.

𝑅 =


𝐴 + 𝐿𝐶−𝐿

𝐿𝐶
𝐿 < 𝐿𝐶 , 𝐴 > 𝐴𝐶

−𝜙𝑃 𝑃 not satisfied
−𝜙𝐴 or − 𝜙𝐿 otherwise

(2)

Here, 𝐴 is the lowest accuracy and 𝐿 is the largest latency of the 𝑁
models for the 𝑁 energy levels, 𝐿𝐶 and 𝐴𝐶 are the given latency
and accuracy constraints respectively, 𝑃 is the predicted pruning
pattern, and 𝜙 are predefined numbers that represent constant
penalty. Three cases will occur when calculating the reward 𝑅. (1) if
𝐿 < 𝐿𝐶 and𝐴 > 𝐴𝐶 , it indicates that the performance of the models
with the sampled patterns can satisfy the constraints, then we sum
up the reward of hardware performance and accuracy; (2) if the
predicted patterns for the 𝑁 energy levels are the same or under
the same sparsity, then the pattern constraint is not satisfied, so we
return negative value −𝜙𝑃 to the controller; (3) in any other cases,
which means either latency constraint or accuracy constraint is
violated, we also return negative values to the controller. Different
penalty are given to guide the search: −𝜙𝐴 is set for 𝐿 < 𝐿𝐶 & 𝐴 <

𝐴𝐶 , −𝜙𝐿 is set for 𝐿 > 𝐿𝐶 & 𝐴 > 𝐴𝐶 .

4 ON-DEVICE ARCHITECTURE OF
SHARED-WEIGHTS MODELS

In this section, we will discuss on-device implementation of the
SWM. In pattern based pruning, the pruned information are un-
necessary to keep in the weight matrix. Therefore, the condensed
weight matrix, consisting only unpruned data can achieve signif-
icant memory cutback. Traditionally, sparse matrix and it’s con-
densation requires storing other information like (row, column,
stride, offset etc) [7]. Storing such information introduces extra
storage requirement except for the CNN weight matrix. In this
work, since we are working on pattern-based pruned CNN, we only
store the location-index of the applied pattern, which allow us to
significantly reduce the memory overhead required in the process
of reconstructing the patterns. As a result, the SWM found from the

EVE: Environmental Adaptive Neural Network Models for Low-power Energy Harvesting System ICCAD ’2022, 30 October - 3 November 2022, San Diego, California, USA

AutoML search and shared weight training is further compressed
and deployed on device. During inference, we perform the specific
model extraction by extracting the condensed weights from the
SWM. The condensed weights do not require reconstruction, since
we extract the corresponding input by applying the pattern associ-
ated with the kernel and perform convolution operations as shown
in figure 9. To accelerate the computation we used on-device LEA
accelerator and DMA data transfer.

4.1 Multi-model Inference
Pattern based pruning opens up the opportunity to deploy multiple
models which has uniform objective but differs only in sparsity. In
DNN, low sparsity and high sparsity corresponds to the low and
high pruning respectively. In Figure 7, green model has low sparsity
while blue model has high sparsity. Conventionally, the DNN has
the accuracy vs speed trade-off and which is why the sparsity
differences among those models is the key to speed up the inference
or improve the accuracy. For example, a low sparsity model provides
higher latency (slow speed) and higher accuracy. However, when
the sparsity increases, the latency (speedup) and accuracy decreases.
This relationship is a key for the adaptive inference.

4.1.1 Weight Sharing. To deploy multiple models with different
levels of sparsity, our framework ensures two things. First, the
autoML search and training process ensures that all the models
have shared weight, which is discussed in Section 3.2. Second, our
framework attempt to maximize the commonality or shared weight
among all the different sparsity models by approaching the idea
that high sparsity models are the subset of low sparsity model.
For instance, if we design three models (A,B,C) where the applied
patterns are (P,Q,R) such that P> Q > R in terms of sparsity. Our aim
is tomaximize the commonality among P,Q and R byminimizing the
symmetric difference such that𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑃⊖𝑄⊖𝑅), so that A> B >

C in terms of inference speed. Thus, in ideal scenarios, large sparsity
patterns becomes the subset of the small sparsity patterns such that
𝑃 ⊂ 𝑄 ⊂ 𝑅. The ideal scenario is preferable because it allow us
more compression and low extraction complexity. However, not
every kernel of the models can acquire such property since there is
an accuracy-pattern trade-off. Once such models are achieved after
the sequential shared-weight training, we compress and deploy the
SWM into the device.

4.1.2 Weight Compression. We compressed all the shared-weight
models by totally eliminating the pruned information from the
weight matrix as shown in Figure 7. We take the unified set of
weights and store them in a 1D array instead of a 2D matrix. Finally,
additional indexes (location-index) are also added with every kernel
from the condensed weight referring to the address of the applied
pattern.

Besides, the applied patterns are obtained from the pattern search
space during autoML search discussed in section 3.3. The number of
the applied patterns are small and constant to a given model (e.g., 3-
6). It takes only few bytes of memory since patterns can be encoded
with bit-matrix. A bit-matrix is the representation of the applied
patterns by 0 and 1. Here, 0 represents the pruned information
where 1 doesn’t. The bit-matrix are deployed on device with the
SWM. Thus, SWM can achieve approximately slightly larger than

single model memory space even though there are multiple models.

Figure 7 demonstrates the compression and extraction process
with three different sparsity models. Note that, this process also work
when there are more than three models. Here, green (C), orange (B)
and blue (A) represents low (R), medium (Q) and high (P) sparsity
model respectively. In this particular example, Q is a subset of R but
P is not the subset of Q or R since they do not share the weight 6.
Different kernel can also have different shape of sparsity patterns.

4.1.3 Weight extraction. To adapt to different environment, a par-
ticular model needs to be extracted from the SWM. Therefore, we
perform model reconstruction by extracting the model specific
weights from the SWM. Algorithm 1 and Figure 8 describes the
model specific weight extraction process. The extracted weights
are in condensed format (𝑊𝑅) as shown in Figure 7. The extrac-
tion process has three elements 1) SWM (𝑊𝑆) 2) Desired model
pattern (𝑃𝐷) 3) Other shared model pattern (𝑃𝑂). Figure 8 shows
that the algorithm includes three basic steps 1) Take 2) Skip and 3)
Do nothing.

Initial Setup: The algorithmwill operate those steps by iterating
through the desired model pattern first. A source pointer points to
the first element of the SWM.

Take: While iterating through the desired pattern 𝑃𝐷 , a value
of 1 means it will take the element that points to the SWM. Next,
the source pointer will move to the adjacent element. In Algorithm
1, line 4-7 perform this step.

Skip: However, if the value of the desired pattern, 𝑃𝐷 is 0, there
are two other cases. In first case, the algorithm will look into other
shared-model patterns, 𝑃𝑂 . If any of the other patterns has a value
of 1 within same spot, then the source pointer will move to the next
element but nothing will be taken from the SWM. In Algorithm 1,
line 9-12 perform this step.

Do Nothing: In last case, the value of the desired pattern, 𝑃𝐷
is 0 and all the other shared-model pattern, 𝑃𝑂 has a value of 0.
Therefore, the source pointer will not be moved and nothing will
be taken form the SWM.

Figure 8 shows an example where a high sparsity model is ex-
tracted from the SWM. In this particular example, the SWM is
comprised of three different sparsity models. Similarly, low and
medium sparsity model can also be extracted by selecting the low
sparsity pattern and medium sparsity pattern as desired pattern
(𝑃𝐷) respectively. The Algorithm 1 describe the whole process. Fig-
ure 7 shows the extracted condensed weights that represents the
individual sparsity model.

4.1.4 Convolution. We perform convolution operation with the
extracted condensed weight during inference. Since the weights
are condensed, we extract the corresponding input from the input
window by applying the same pattern associated to the condensed
weight as shown in Figure 9. Finally, the multiplication results are
accumulated to the output.

4.1.5 Computation. In on-device CPU based implementation, the
multiply and accumulation operation take place with single ele-
ment by checking the pattern value. However, the on-device low
energy accelerator (LEA) can expedite the computation by bulk
operation. For a particular CNN computation window, the extracted

ICCAD ’2022, 30 October - 3 November 2022, San Diego, California, USA *Sahidul Islam1 , *Shanglin Zhou2 , Ran Ran3 , Yu-Fang Jin1 , Wujie Wen3 , Caiwen Ding2 , Mimi Xie1

Figure 7: Shared weights Compression and Extraction

Figure 8: Weight Extraction Example

Algorithm 1 Weight Extraction Algorithm
1: Input:𝑊𝑆 , 𝑃𝐷 , [𝑃𝑂]
2: Output:𝑊𝑅

3: 𝑖, 𝑗 ← 0;
4: while 𝑝𝑑 ∈ 𝑃𝐷 do
5: if 𝑝𝑑 is 1 then
6: 𝑊𝑅 [𝑗] ←𝑊𝑆 [𝑖]
7: 𝑖 + +; 𝑗 + +;
8: else
9: while 𝑝𝑜 ∈ [𝑃𝑂] | 𝑝𝑜 , 𝑝𝑑 with same index, do
10: if 𝑝𝑜 is 1 then
11: 𝑖 + +;
12: break;
13: end if
14: end while
15: end if
16: end while

condensed weight and the corresponding input values are trans-
ferred for computation. Since direct memory access (DMA) is a
reliable and faster data transfer method, we use DMA to transfer
these data from non volatile memory (NVM) to volatile memory
(VM). Finally, we invoke the MAC API from DSPLIB to perform the
bulk computation. As the device is prone to frequent power failure,
we implemented the inference with index based checkpointing [6]
method so that the inference can resume when power restores.

Figure 9: Convolution with Compressed Weight

4.1.6 Fully Connected Layer. In fully connected (FC) layer the
weight-sharing and extraction process is almost similar to Convolu-
tional layer except the fact that FC layer weights are usually large
2D matrix where convolutional weights are 3D. However, the same
shapes of patterns are applied to the large 2D weight. Thus, we
divide the large 2Dweight matrix into several blocks and performed
similar process on these blocks as discussed above. For instances,
in a FC layer if a weight matrix shape is m*n and applied pattern
shape is x*y, then there will be m/x*n/y number of blocks and every
block of matrix will follow the similar compression, extraction and
computation process.

4.2 Adaptive Inference
Our framework is capable of switching instantly between different
sparsity models on run-time. The model switching is performed
instinctively by understanding the environment and executing the
model that is designed for that specific environment. To understand
the environment we designed 𝑒𝑛𝑒𝑟𝑔𝑦𝑇𝑟𝑎𝑘𝑒𝑟 , a simple software so-
lution to track the energy availability. This is implemented with
a timer that recurrently checks the voltage level of the device in
parallel with the computation. A very low voltage level is recog-
nized as a possible power outage, thus, calculates the current power
cycle time. Similarly, we detect the last three power cycle time and
based on the pre-defined threshold value, we classify the current
environment as high, medium, low and adapt with the suitable
model for the next inference.

4.3 Generality
Although we demonstrated our work with three different sparsity
models, our proposed framework can achieve an arbitrary number
of shared-weights models. However, it is important to consider
that increased shared-weight models will worsen the overhead
since the escalating pattern information (Applied Pattern, Pattern-
Index) will require more memory footprint and also exacerbate
the model extraction complexity. Even though our experiment is
conducted with convolutional neural network (CNN), this approach
can be applied to other network such as RNN, transformer or any
attention based network. Since these network consist of large 2D
weight matrix, similar process can be followed as for FC layer.

EVE: Environmental Adaptive Neural Network Models for Low-power Energy Harvesting System ICCAD ’2022, 30 October - 3 November 2022, San Diego, California, USA

(a) (b)

Figure 10: (a) Latency and (b) Energy under continuous power.

(a) (b) (c)

Figure 11: (a) Latency under 3mW (b) Latency under 4mW.
(c) Latency under 5mW

5 EXPERIMENTAL EVALUATION
5.1 Hardware Setup
The experiments are conducted with TI’s MSP430FR5994 ultra-low-
power evaluation board, consisting of a 16MHzMCU, a 8KB volatile
SRAM, a 256KB nonvolatile FRAM memory, and a low-energy Ac-
celerator (LEA) that supports independent vector operations such
as FFT, IFFT, MAC, etc. The board is powered by a energy harvesting
module composed of a function generator SIGLENT SDG1032X [17],
a power regulator Bq25570, and an energy buffer (100µF capaci-
tor). The function generator is used to simulate different energy
harvesting power sources, which are insufficient for completing a
single inference while causing frequent power failures. The power
regulator provides a constant voltage of 3.3V for the normal opera-
tion of the board. TI EnergyTrace tool is used to measure energy
consumption [18].
DNN Models: This paper considers four DNN models as shown
in Table 1. They are Image Classification (MNIST [19] and Ima-
geNet [20]), Human Activity Recognition (HAR [21]), and Google
Keyword Recognition (OKG [22]) to represent image-based appli-
cations, wearable applications, and audio applications respectively.

5.2 Experimental Results
5.2.1 Comparison of Shared Weight Training and AutoML Search:
In Table 1, the row SW-Train shows the accuracy of different spar-
sities after shared-weights training. We can tell from the table that
shared-weights training can help retain weights among different
sparsities to have them shared with a comparable accuracy. The
patterns applied on the weight matrix are selected manually from
the pattern searching space according to the rule proposed in the
PCONVpaper[25]. As for LeNet5, the high sparsity is 60.24% and the
corresponding accuracy is 98.94%. The medium Sparsity is 20.093%
and its accuracy is 98.96%. The low sparsity is 8.47% and its accuracy

is 99.02%. In order to ensure “shared weight" as illustrated in Fig-
ure 5, we try to ensure that there is no overlap of rows or columns
between patterns for models under different sparsity level when
manually selecting those patterns. Apart from image classification
tasks, our shared-weights training shows satisfying accuracy on
recognition tasks as well. For example, as for the HAR-Net model,
the high, medium and low sparsities are 24.13%, 5.31% and 2.69%,
respectively, and their corresponding accuracy are 90.19%, 89.78%
and 87.21%. Comparably, the accuracy and sparsity of the OKG-
Net show the same trend as HAR-Net. Thus, with sacrificing little
accuracy drop, the shared-weights training algorithm could keep
weights unchanged, and further benefit the inference process on
energy harvesting devices.

The second row (EVE) in Table 1 shows the accuracy and model
latency under three different sparsisties after shared-weights train-
ing, with the three pruning patterns are automatically selected by
the AutoML search algorithm. For LeNet-5 and OKG-Net, as there
are totally 44 patterns in the pattern space, the total dimension
of the search space for the three models is 44 × 44 × 44 = 85184.
For HAR-Net, as there are totally 21 patterns in the pattern space,
the total dimension of the search space for the three models is
21 × 21 × 21 = 9261. For SqNxt-23, as there are 36 patterns in the
pattern space, the total dimension and the total of the search space
is 36 × 36 × 36 = 46659.

These action spaces are too large for human selection. That is
why we use a Reinforcement Learning algorithm to design the Au-
toML search. Our RNN-based agent has one layer with 35 hidden
units and a fully-connected layer with dimension-width size, then
finally after a softmax function. The agent can choose the corre-
sponding pattern with the highest probability. The batch size for
updating the RNN-agent is 1. Thus, after the agent gives an output
action, the RNN agent would be updated by the policy gradient
algorithm. When the models with selected three patterns satisfy the
constraints of both accuracy and latency, the searching algorithm
will return the models and the selected three pruning patterns. If
not, the agent will continue exploring until 300 episodes.

5.2.2 Inference Time under Continuous Power Supply: To fairly
evaluate the performance of the proposed methods demonstrate
the performance of having 3 models with shared weights on the
device. Since to the best of our knowledge, shared weight training
is a new idea that has not been implemented before on energy
harvesting (EH) device, we first compared the inference latency
of executing 3 generated models with shared weights of the two
proposed methods (SW-train and EVE) in a sequence with two
baselines for each benchmark. Baseline 1 is named as N-prune,
where each backbone model without pruning are stored on the
off-chip memory and have to be loaded into the on-chip memory
for execution. Baseline 2 is named Y-prune, where we can only
fit one pruned backbone model into the on-chip memory. We can
observe from the Figure 10 that without using any pruning method,
executing a DNN backbone model costs extremely long latency of
4s, 2.5s ,8s respectively. Y-prune generates three pruned models but
cannot fit them all into the on-chip memory, and thus require less
time than SW-train but more time than SW-train and EVE. We can
observe from the Figure 10(a) that SW-train and EVE run 2.5× and
2.2× faster than the two baselines.

ICCAD ’2022, 30 October - 3 November 2022, San Diego, California, USA *Sahidul Islam1 , *Shanglin Zhou2 , Ran Ran3 , Yu-Fang Jin1 , Wujie Wen3 , Caiwen Ding2 , Mimi Xie1

Dataset/Task MNIST (Image Classification) HAR (Human Activity Recognition) OKG (Speech Recognition) ImageNet (Image Classification)

Models
LeNet-5 [23] HAR-Net [21] OKG-Net [22] SqNxt-23 [24]

M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3

SW-Train
Sparsity 60.24% 40.50% 20.70% 24.13% 5.31% 2.69% 33.33% 5.88% 5.02% 55.39% 54.30% 54.07%
Accuracy 98.94% 98.96% 99.02% 87.21% 89.78% 90.19% 71.99% 73.82% 75.20% 73.80% 75.02% 77.36%
Latency (s) 1.1 1.3 1.5 0.66 0.83 0.85 2.26 3.19 3.23 3.4 3.6 3.7

EVE
Sparsity 60.24% 48.00% 35.76% 24.19% 5.37% 2.69% 55.56% 25.85% 4.17% 57.15% 35.24% 1.41%
Accuracy 99.04% 99.14% 99.11% 92.4% 92.39% 89.03% 72.34% 73.17% 74.73% 77.13% 77.87% 79.34%
Latency (s) 1.1 1.23 1.45 0.65 0.81 0.85 1.51 2.59 3.31 3.4 3.5 3.6

Accuracy gap 0.1% 0.98% 0.09% 2.21% 2.61% 1.82% 0.52% 0.24% 0.6% 3.33% 2.85% 1.98%
Latency gap (s) 0.00 0.07 0.05 0.01 0.02 0.00 0.01 0.00 0.00 0.00 0.10 0.10

Table 1: Results and Comparison between Shared Weight Training and EVE

5.2.3 Energy Consumption under Continuous Power Supply: In
terms of energy consumption evaluation, SW-train and EVE also
outperform the two baselines. As shown in Figure 10(b) that, SW-
train and EVE achieve 2.5× and 2.77× energy-saving on MNIST;
2.8× and 3.1× energy-saving on HAR. And finally, 3.2× and 3.3× en-
ergy is saved on OKG. Having shared models significantly reduced
the energy for switching models from the off-chip memory.

5.2.4 Inference Time under Intermittent Power Supply: To evaluate
the performance of 3 models with shared weights generated with
the proposed SW-Train and EVE methods, we use the function
generator SIGLENT SDG1032X to generate different levels of har-
vesting power including 5mW, 4mW, 3mW as the high, medium,
and low energy levels. The three harvesting power are smaller than
the working power of the energy harvesting device. Thus the de-
vice has to accumulate energy first before starting each working
cycle of inference. Figure 11 shows the inference latency when the
harvesting is 5mW, 4mW, 3mW respectively for each of the three
models with shared weights. From the three figures, we observe
that, when the harvesting power is low, the execution time is signif-
icantly increased. Therefore, in order to meet the QoS requirement,
the energy harvesting device needs to automatically switch to the
low-accuracy model which takes much less time.

5.2.5 Evaluation of Weight Reconstruction and Memory Overhead.
The weight reconstruction from the shared three models stored in
on-chip memory brings 1 to 3% overhead to the overall inference for
each benchmark which is negligible considering the significantly
improved overall performance.

6 CONCLUSION
In this work, we propose EVE, a novel pattern pruning based
framework that generate multiple hardware friendly models with
shared weights, to dynamically satisfy the real-time requirement
on the energy harvesting devices. We develop an AutoML-based
co-exploration framework to search the desired multi models with
shared weights meanwhile satisfying both the accuracy and la-
tency constraints. The generated models can successfully fit within
the on-chip memory budget of slightly larger than one model in-
stead of three multiple models. We develop an efficient on-device
implementation architecture to efficiently execute each model on
device. Experimental results show that our design is on average 2.5×
time faster than the baseline model without pruning and shared
weights. The EVE can further achieve 1.2% higher accuracy with
higher sparsity compared to human based shared weight search. It

is worth noting that, the proposed EVE model can be easily adapted
to generate more than thee shared models to adapt to more energy
harvesting power levels.

ACKNOWLEDGEMENT
The authors would like to acknowledge the USDOT Transportation
Consortium of the South-Central States (TRAN-SET) (# 21-034 to
YFJ and MX, and #21-049 to YFJ and MX), National Science Founda-
tion (EEC-2051113 to YFJ, CCF-2011236 toWW, and CCF-2006748 to
WW), USDA-NIFA Agriculture and Food Research Initiative (Award
No.: 2022-67023-36399 to CD) for the funding and necessary sup-
port in completing the research. The funding sources had no role
in the design of the study; collection, analysis, and interpretation
of data; or in writing the manuscript.

REFERENCES
[1] C. Garvey, “A framework for evaluating barriers to the democratization of artifi-

cial intelligence,” in AAAI, 2018.
[2] E. Li and et.al., “Edge ai: On-demand accelerating deep neural network inference

via edge computing,” IEEE-TWC, vol. 19, no. 1, pp. 447–457, 2019.
[3] K. He and et.al, “Deep residual learning for image recognition,” in CVPR, pp. 770–

778, 2016.
[4] J. Devlin and et.al., “Bert: Pre-training of deep bidirectional transformers for

language understanding,” arXiv preprint arXiv:1810.04805, 2018.
[5] J. Banerjee, S. Islam, W. Wei, C. Pan, D. Zhu, and M. Xie, “Memory-aware effi-

cient deep learning mechanism for iot devices,” in 2021 IEEE 32nd International
Conference on Application-specific Systems, Architectures and Processors (ASAP),
pp. 187–194, IEEE, 2021.

[6] S. Islam, J. Deng, S. Zhou, C. Pan, C. Ding, andM. Xie, “Enabling fast deep learning
on tiny energy-harvesting iot devices,” in 2022 Design, Automation Test in Europe
Conference Exhibition (DATE), pp. 921–926, 2022.

[7] W. Niu, X. Ma, S. Lin, S. Wang, X. Qian, X. Lin, Y. Wang, and B. Ren, “Patdnn:
Achieving real-time dnn execution on mobile devices with pattern-based weight
pruning,” in Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS),
pp. 907–922, 2020.

[8] Y. Liu and et.al, “Smof: Squeezing more out of filters yields hardware-friendly
cnn pruning,” arXiv preprint arXiv:2110.10842, 2021.

[9] Y. Song and el.al., “Dancing along battery: Enabling transformer with run-time
reconfigurability on mobile devices,” arXiv, 2021.

[10] P. Qi and et.al, “Accelerating framework of transformer by hardware design and
model compression co-optimization,” arXiv, 2021.

[11] G. Gobieski and et.al., “Intelligence beyond the edge: Inference on intermittent
embedded systems,” in ASPLOS, pp. 199–213, 2019.

[12] S. Lee and S. Nirjon, “Neuro. zero: a zero-energy neural network accelerator for
embedded sensing and inference systems,” in ENSS, pp. 138–152, 2019.

[13] S. Choi et al., “An optimized design technique of low-bit neural network training
for personalization on iot devices,” in DAC, pp. 1–6, 2019.

[14] J. Yu and et.al., “Tf-net: Deploying sub-byte deep neural networks on microcon-
trollers,” ACM TECS, vol. 18, no. 5s, pp. 1–21, 2019.

[15] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement learning,”
arXiv preprint arXiv:1611.01578, 2016.

[16] L. Yang and et.al., “Co-exploration of neural architectures and heterogeneous
asic accelerator designs targeting multiple tasks,” in DAC, pp. 1–6, IEEE, 2020.

[17] “Sdg1032x.” http://siglentna.com/product/sdg1032x/, 2021.

http://siglentna.com/product/sdg1032x/

EVE: Environmental Adaptive Neural Network Models for Low-power Energy Harvesting System ICCAD ’2022, 30 October - 3 November 2022, San Diego, California, USA

[18] TI, “Energy trace,” 2021. https://www.ti.com/tool/ENERGYTRACE.
[19] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[20] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale

hierarchical image database,” in 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 248–255, 2009.

[21] D. Anguita and et.al., “A public domain dataset for human activity recognition
using smartphones.,” in Esann, vol. 3, p. 3, 2013.

[22] P. Warden, “Speech commands: A dataset for limited-vocabulary speech recogni-
tion,” ArXiv, vol. abs/1804.03209, 2018.

[23] Y. LeCun and et.al, “Gradient-based learning applied to document recognition,”
Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[24] A. Gholami and et. al., “Squeezenext: Hardware-aware neural network design,”
in CVPR, pp. 1638–1647, 2018.

[25] X. Ma and et.al., “Pconv: The missing but desirable sparsity in dnn weight pruning
for real-time execution on mobile devices,” ArXiv, 2020.

	Abstract
	1 Introduction
	2 Motivation and Related Work
	2.1 Motivation
	2.2 Related work

	3 Hardware-aware shared-weight models search framework
	3.1 Hardware Performance Predictor
	3.2 Shared Weight Training
	3.3 AutoML Search Algorithm

	4 On-device architecture of shared-weights models
	4.1 Multi-model Inference
	4.2 Adaptive Inference
	4.3 Generality

	5 Experimental Evaluation
	5.1 Hardware Setup
	5.2 Experimental Results

	6 Conclusion
	References

