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Abstract 
Reinforcement learning (RL) has attracted significant 

research efforts to guide an autonomous vehicle (AV) for a 
collision-free path due to its advantage of investigating 
interactions among multiple vehicles and the dynamic 
environment. This study deploys a Deep Q-Network (DQN)-
based RL algorithm with reward shaping to control an ego 
AV in an environment with multiple vehicles. Specifically, 
the state space of the RL algorithm depends on the desired 
destination, the ego vehicle’s location and orientation, and the 
location of other vehicles in the system. The training time of 
the proposed RL algorithm is much shorter compared with 
most current image-based algorithms. The RL algorithm also 
provides an extendable framework to include different 
numbers of vehicles in the environment and can be easily 
adapted to different maps without changing the setup of the 
RL algorithm. Three scenarios were simulated to validate the 
effects of the proposed RL algorithm while guiding the ego 
AV interacting with multiple vehicles on straight and curvy 
roads. Our results showed that the ego AV could learn to 
reach its destination within 5000 episodes for all scenarios 
tested.  
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1. Introduction 
Over the past several years, control of autonomous vehicles 
has been a rapidly growing field of research. The promise of 
safer roads and more smooth traffic flow has transformed 
AVs into a billion-dollar market. Progresses have been made 
to guide AVs with model-based approaches.[1-3] However, 
a fully autonomous vehicle is not right around the corner, as 
the complex physical components involved in traffic systems 
are difficult to model. To tackle this challenge different 
model-free machine learning algorithms and guidance 
strategies have been developed. Of these, Markov Decision 
Process (MDP) has been one of the promising direction for 
autonomous driving as a probability-based decision-making 
strategy.[4-8] These results reported path planner for an AV 
in different environment including driving of an AV in a 
single lane, lane change of an AV in multiple lanes, and 
intention of other human-drivers in the system. These MDP 
based approaches still highly depend on the model of the 
driving environment.  
Recently, RL has shown great potential to derive the 

appropriate decision-making strategy by AVs with little or no 
knowledge of a mathematical model for the dynamical 
environment.[9] Instead, an AV can observe its environment 

in a given state, takes actions, and receives rewards for those 
actions. Through “trial and error” iterations, these rewards 
guide the AV towards its goal, allowing the AVs to perform 
complex tasks. 
Due to the wide adoption of cameras as an onboard sensor 

for vehicles, one current trend in utilizing RL algorithms 
for the decision-making of AVs is to represent the ego 
vehicle’s observations of the environment with images 
captured by the AV. These images were referred to as states 
for RL algorithms. Significant strides in collision avoidance 
and path guidance for an ego vehicle have been reported with 
the image-based decision-making strategy.[10, 11] 
The image-based state space has versatility in varying 
environments because the ego vehicle’s observations are not 
dependent on global variables, such as its absolute position in 
the environment or the orientation of the road it is on. This 
method can be effectively deployed in environments with 
different factors, like road geometry, number of obstacles, 
and map size. However, these RL algorithms often suffer 
from sampling inefficiency, in which the ego vehicle learns 
very little during each iteration it experiences. Image-based 
state spaces compound this issue by requiring the process of 
images, increasing the complexity of the problem to be solved 
by the ego vehicle. This also results in a large number of 
iterations being needed to develop a sufficient decision-
making policy. Commonly, images are processed with 
convolutional neural networks (CNN) to highlight the 
features in the images that are relevant to the ego vehicle’s 
goal, and sophisticated RL algorithms such as Deep 
Deterministic Policy Gradient (DDPG) and Proximal Policy 
Optimization (PPO).[12, 13] Other proposed solutions 
include imitation learning, in which an “expert vehicle” with 
more information about the environment assists the ego 
vehicle during training.[14] 
Besides the image-based approaches, many other Q-

learning-based algorithms have been proposed with different 
states, rewards, and action pairs.[15] These studies have been 
focusing on different specific tasks such as collision-free path 
planning, merging on to a highway, and lane changing for an 
AV.[16-18] 
In a Q-Learning algorithm for autonomous driving of an 

ego vehicle, a finite set of all possible states, S, and actions, 
A, can be defined and referred to as the state space and action 
space, respectively. A Q-Value is given for each available 
action, a ∈ A, in a state, s ∈	S. These values are determined 
by a Q-function, Q(s, a), which is often randomly initialized. 
At each time step, t, a reward, rt, is given for the ego vehicle 
using a particular action, at, to transit from the current state, 
st, to the next state, st+1. To determine at , a user defined 
hyperparameter e in the range of [0, 1] is used to determine 



the probability of taking a random action or the action with 
the highest Q-value for st. When e is closer to 1, random 
actions are more likely taken, representing the ego vehicle 
exploring the environment to learn new paths. When e is 
closer to 0, the best action is taken, representing the vehicle 
exploiting what it already knows about the environment. 
Typically, this value starts close to 1 and decays to near 0 over 
the learning process. The Q-value for the action-state pair 
used in each time step, Q(st, at), is then updated as the 
following equation: 
 

 Q(st, at) = Q(st, at) + l[rt + g maxa Q(st+1, a) - Q(st, at)], (1) 
 
where the hyperparameters l and g are also user-defined 
values in the range [0, 1], called the learning rate and discount 
factor, respectively. The learning rate, l, represents how 
much an update changes the current Q-value, while the 
discount factor, g, determines the importance of future actions 
in the update. During the ego vehicle’s training, this update 
process is performed iteratively. With enough training, Q(s, 
a) begins to accurately reflect the actual value of the actions 
taken in each state, concerning the goal of the ego vehicle. 
Thus, the optimal policy for the ego vehicle becomes the 
sequence of actions with the best Q-values.  
However, a major drawback to Q-Learning is that there 

must be a finite set of states in the state space, resulting in 
inaccuracies due to the quantization errors of states in a 
discrete system. The inaccuracy can begin to have an impact 
when the ego vehicle tries to learn more complex policies. 
To address this issue, the DQN algorithm approximates 

Q(s, a) with two fully connected neural networks: an online 
neural network with a set of parameters, q, and a target neural 
network with a set of parameters, q -.[15] The online and 
target neural networks have identical structure. At a given 
time step, the online neural network takes st as its input and 
outputs the predicted Q-values for all actions available to that 
state, Qq (st, a). Either the action with the maximum Q-value, 
or a random action, will be the selected as at with the 
following conditions: 
 

      (2) 
 

where nr is a random number between [0, 1] generated at each 
time step. 
 Parameter q  in the online neural network will be updated 

using back propagation with the difference between Qq (st, at) 
and Qq

*(st, at). The target neural network takes st+1  as its input 
and outputs, Qq

-
 (st+1, a), the predicted Q-values for all 

available actions in the next state. The target Q-value, Q*(st, 
at), is obtained using (2) as follows:  
 

 Q*(st, at) ≈ rt + g maxa Qq
-

 (st+1, a). (3) 
 
The discount factor in (2) plays a similar role as in Q-
Learning. Parameters of the target network, q -, will be 
replaced with the parameters, q, from the online neural 
network for every user-defined number of steps, C. 

In a RL learning algorithm with DQN setup, observation 
of the ego vehicle at a time point is defined as a tuple, et=(st, 
st+1, at, rt) and stored as part of the ego vehicle’s history. Input 
to the online network also includes past observations, si. The  
parameters, q, are instead updated using a batch of uniformly 
sampled past observations. The procedure is defined as 
experience replay, which improves the learning efficiency 
using prior experiences. 
The ego vehicle will continue to take steps in the 

environment until it reaches a terminal state, signifying the 
end of an episode. When reaching a terminal state, the 
simulation environment resets to its initial conditions and 
training continues with a new episode. This allows for the ego 
vehicle to experience similar states again and explore 
different actions for those states. Since there is no state after 
the terminal state, the target Q-value, Q*(st, at), reduces to just 
the reward gained for transitioning to the terminal state, rt, for 
all actions. 
This project seeks to develop a DQN algorithm to guide 

an ego vehicle in a dynamic environment with multiple other 
vehicles. The driving strategies of the vehicles are not shared 
with each other while the ego vehicle can observe the position 
of other nearby vehicles. The DQN algorithm is developed 
with an image-free state space definition, whose state 
variables are referenced locally. The state space in the DQN 
can be easily deployed in different environments with 
minimal adjustments. To further improve the training speed 
of the vehicle, a reward function was developed using reward 
shaping.[19, 20] The motion of the vehicles will be displayed 
in Cars Learn Act (CARLA) simulator.[21] To test the 
performance of the RL algorithm, training performances of 
different scenarios were evaluated, and the accuracy of the 
vehicle’s trajectory was observed. It was found that the 
vehicle was able to learn a sufficient enough policy to reach 
its destination in 5000 episodes, roughly 750,000 time step, 
in all scenarios tested. 
 

2. Methodology 
Training and testing of the proposed DQN algorithms 

have been performed in a framework shown in Figure 1. The 
proposed DQN RL algorithm is developed in PyTorch which 

Figure 1: Flow diagram used during training. Each step, the 
action loop (red) is taken first, then the update loop (black) 
is done for each sample, i, in the batch. 



interacts with CARLA through a CARLA Python API. The 
structure of the neural networks used in the DQN algorithm 
utilized two hidden layers, each with 64 nodes, implemented 
using PyTorch 1.13.0. The CARLA Python API allows to 
PyTorch programs to send commands and receive 
observations about the environment in CARLA.  
    Training of the ego vehicle was performed episodically. 

The episode ended if the ego vehicle reached its destination, 
travelled past the destination, travelled into an oncoming lane, 
left the road, or collided with an obstacle. 

2.1. State and Action Space Definition 
    A state in the system, S = (se, sv1, …, svn), is composed 

of an ego vehicle’s state, se, and mobile vehicles’ states, sv1 – 
svn, for n number of mobile vehicles existing in the 
environment. To define the ego vehicle state, se =(dw, fw, d l, 
fl, l), a vector, ve, can be drawn from the ego vehicle to the 
destination, as shown in Figure 2(a). The magnitude of ve 
determines the variable, dw, which represents the distance 
between the ego vehicle and the destination. The angle 
difference between ve and the heading of the lane at the 
destination is represented as fw. Since the destination position 
and lane heading do not change during the episode, the two 
variables, dw and  fw, encode the localized position of the ego 
vehicle. The variable, d l, is the distance between the ego 
vehicle and the center of its current lane. The angle difference 
between the heading of the ego vehicle’s current lane and the 
ego vehicle’s orientation defines the variable, fl. Finally, the 
variable, l ∈ [0, 4], is an integer described in (4), representing 
whether the ego vehicle is on a road and if there is a lane 
present to the left or right of its current lane. These three 
variables encode the relationship of the ego vehicle with its 
current lane.  

 
 

          (4) 
 

 
 

 
Figure 2: Visualization of state space definition for a vehicle 
with respect to destination (a, b), and other vehicles (c). 

For each mobile vehicle, i, in the environment, a mobile 
vehicle state, svi=(d vi, fvi ), is defined. A vector, vi, is created 

such that the vector points directly from the ego vehicle to the 
ith mobile vehicle. The magnitude of vi determines the 
variable, d vi, representing the distance from the ego vehicle to 
the ith vehicle. The variable fvi,  is defined as the angle 
difference between vi and the heading of the lane at the ego 
vehicle’s position as shown in Figure 2(c). These two 
variables encode the ego vehicle’s position relative to the 
mobile vehicle, with respect to the lane the ego vehicle is in.  
    Five actions were defined to determine the motion of the 
ego vehicle with the following quantifications: the left, slight 
left, straight, slight right, and right actions were set to -0.5, -
0.25, 0, 0.25, and 0.5, respectively. Additionally, the throttle 
of the ego vehicle was set at a constant 0.5 for all actions in 
this study. These values are all relative to the range allowed 
in CARLA’s API, which is [-1, 1] for the steering action and 
[0, 1] for the throttle action. 

2.2. Reward Function 
To guide the ego vehicle towards learning a collision-free 

path to reach its desired destination in a dynamic 
environment, the reward function considers rewards related 
to the ego vehicle’s deviation from its current lane as a lane 
reward, distance to the destination as a destination reward, 
and avoidance of mobile vehicles as a collision-free reward.  
The lane reward, rl = cos(fl), assigns a reward close to 1 if 

the ego vehicle’s orientation is similar to the heading of the 
current lane, but the reward quickly reduces to 0 as the ego 
vehicle’s orientation deviates. The angle fl represents the 
angle difference between the heading of the ego vehicle’s 
current lane and the ego vehicle’s orientation. As an even 
function, the lane reward assigns the same value no matter the 
sign of the variable fl. Scenarios in which fl is greater than 90 
degrees end the episode, as discussed later.  
A destination reward is calculated as, rw = (D – d w)/D. The 

destination reward is given to encourage the ego vehicle to 
move toward the destination. The constant, D, is defined as 
the maximum distance between the ego vehicle and its 
destination. This constant is fixed at the beginning of the 
episode.  
For each vehicle, i, in the environment, a collision-free 

reward, rvi, was defined as:  
 

(5) 
 

The safety region, R, is a radius around the ego vehicle that 
determines whether a mobile vehicle is close enough for a 
potential collision. To guide the ego vehicle away from this 
potential, the collision-free reward reduces with the distance 
between the two vehicles but increases again as the ego 
vehicle positions itself alongside the mobile vehicle in a 
neighboring lane.  
      It was observed that the vehicle preferred staying in its 
current lane over changing lanes to avoid vehicles or turning 
at an intersection to reach the destination. To resolve this, the 
destination reward and the collision-free rewards were 
weighted more heavily by multiplying both by a factor of 2.  
The reward obtained for a given time step before the 

ending of the episode is then given by, rt = (rl + rw + rvi) / rm, 
where rm is the maximum reward that could be achieved. This 



is done so that the reward is normalized to a value between 0 
and 1. A reward is given if the following reward conditions 
are met. Otherwise, the reward given is 0.  
The reward conditions are: 1) The distance to the 

destination must be less than the distance in the previous time 
step. This condition guarantees that the vehicle is always 
moving toward the destination without the need for a negative 
reward. 2) The vehicle must be in a driving lane. This 
condition is used, rather than ending the episode, to encourage 
the ego vehicle to learn to return to the road when entering a 
shoulder lane. 
An episode ends if the ego vehicle reaches the destination, 

collides with an obstacle, drives past the destination, or is 
oriented opposing the current lane heading. The ego vehicle 
is oriented opposing the current lane heading if the absolute 
value of the relative angle between the ego vehicle’s 
orientation and the current lane heading, fl, is greater than 90 
degrees.  
If the ego vehicle reaches the destination, an additional 

reward of 1 is added to the reward already gained. For the 
other episodes ending scenarios, the reward is set to -2. Thus, 
the reward gained in each time step has a range of [-2, 2]. 

2.3. Hyperparameters 
 The hyperparameters used were determined 

experimentally. A list of the hyper parameters used is shown 
in Table 1. The value of e was used to determine the action to 
be taken and was initialized as 1 and decreased linearly to 
0.01 by episode 100. At each step, a random value between 0 
and 1 was generated. If the random value is greater than e, the 
best action based on the Q-value will be taken, otherwise, a 
random action will be taken. If e=1, a random action is always 
taken. The parameters of the online NN, q, were copied over 
to the parameters of the target NN, q-, every C=5,000 steps. 
To store the observations obtained in each time step, a buffer 
of size 250,000 was used. Every time step, a batch of 32 
observations was used to update the parameters of the online 
neural network. 
 

 
2.4. Simulation 
A CARLA 9.13 was installed and run on a Lambda 

workstation with an AMD Ryzen threadripper pro 3995wx 
and two Nvidia RTX A5000s. Three different scenarios were 
established. Scenario 1 was set up in “Town07” environment 
in CARLA on a curving single lane road. The RL algorithm 
will guide the ego vehicle to reach the destination 140 (D = 
140) meters away while staying on the road. Scenarios 2 and 

3 were set up in “Town 05” in Carla, where the ego vehicle 
had a collision-free path to reach the destination 70 (D=70) 
meters away with 1 and 2 other mobile vehicles on a straight 
2-lane road.  In Scenario 2, one mobile vehicle was placed in 
front of the ego vehicle in the same lane. Compared to 
Scenario 2, Scenario 3 has a 3rd vehicle which was 
placed ahead of the 2nd vehicle in the other lane. All 
mobile vehicles stayed in their lane during each episode and 
moved in a straight line at 0.2 throttle. The ego vehicle only 
knew the distance between itself and other vehicles and did 
not know the decision-making strategy of other vehicles. 
 

 
Figure 3: Rolling average reward and distance of ego vehicle 
to a destination during training for 5000 episodes in each 
scenario. The green curve represents the rolling average 
reward of the past 100 episodes while the blue curve 
represents the average distance. 
 

3. Results 
For all three scenarios, the vehicle was trained for 10,000 

episodes. For Scenarios 2 and 3, it took approximately 150 
steps for the agent to reach the destination. For Scenario 1, it 
took twice the number of steps, as the distance to the 
destination was further. Due to the inherent randomness of 
the initial exploration actions, 3 trials were performed to 
confirm consistency of the results. During training, the 

Table 1: Hyperparameters used when conducting 
training and testing. 
Loss Function Mean Square Error (MSE) 
Optimizer Adam 
Learning rate, l 0.0001 
Final e Value 0.01 
Target Update, C 5000 
Observation History Size, 
M 250000 



CARLA simulator was set in synchronous mode, in which the 
physics of the world paused each to time step to allow the 
algorithm to train and provide the next action to take. When 
performing testing, this was set to asynchronous mode, where 
the physics of the world would continue to run, and actions 
were taken by the ego vehicle as quickly as the algorithm 
could provide them. 
 

  
 

 

3.1. Training Evaluation 
The rolling average over the last 100 episodes for the 

reward gained and the distance from the center of the vehicle 
to the destination is displayed in Figure 3. It was determined, 
due to the of the size of the vehicle and a radius around the 
waypoint ending the episode, that a distance of about 10 
meters indicates that the vehicle reached the waypoint. Figure 
3 shows the downward trend of the distance to the waypoint 
for all scenarios, on average reaching the destination by 
episode 5000. It also shows that a rolling average reward to 
reach the destination is about 250 for Scenario 1, 130 for 
Scenario 2, and 140 for Scenario 3. 
The training results for the 3 trials of each scenario are 

shown in Figure 4. It can be seen that the ego vehicle begins 

to learn successful paths to the destination by episode 4000. 
This is supported by the general plateau seen at that point in 
training. Beyond that, the ego vehicle attempts to optimize its 
pathing according to the reward function. However, the ego 
vehicle still experiences instability while training, as seen by 
dips in the average reward. One potential cause for this is a 
phenomenon known as catastrophic forgetting, where a 
neural network forgets what it has learned from training when 
it experiences new information. For Scenario 3, it seems that 
it can recover from this, as indicated by the reduction in the 
size of the dips as training progressed. Scenario 1 is 
particularly affected by these stability issues, as compared to 
the other scenarios, oscillating between 150 and 250 rolling 
average rewards. This is likely due to the destination 
being set further away. 
 

3.2 Test Results 
After the training evaluation was completed, the trial with 

the best performance in each environment was chosen. These 
were then tested on their respective environments by having 
the vehicle’s path traced out over five episodes. Only the best 
action, determined by the Q-values produced from the trained 
online NN, was taken by setting e to 0. Figure 5 shows an 
overlay of the motion of the vehicles in each test at various 
time points in an episode. For clarity, the points in time are 
labelled. 
Since the reward function incentivizes the agent to stay in 

the episode, the optimal path becomes the longest one. This 
does not seem to pose too much of an issue for Scenarios 2 
and 3, but it is believed to be a source of the instability seen 
in training for Scenario 1. It can be observed in Figure 5 that 
the ego vehicle’s optimal policy for Scenario 1 involves 
hugging the edge of the lane to maximize the time it is in the 
episode. It is believed that this is the main source of the 
instability seen in the training evaluation of Scenario 1. 
Because the ego vehicle is so close to the edge of the road, 
minor steering actions taken can result in the ego vehicle 
leaving the lane and ending the episode early. This then 
negatively affects the q-values for the sequence of actions 
that lead to that result, despite many of them being good. 
Scenarios 2 and 3 are less affected by this because they have 
additional guidance in the form of a reward from mobile 
vehicles and because the distance to the destination is closer.  

4. Discussion  
In this paper, a DQN-based reinforcement learning 

algorithm was proposed to guide an ego vehicle to a 
destination with a collision-free trajectory. This algorithm 
was then implemented, trained, and tested with a framework 
integrating the PyTorch package and CARLA simulator. 
Autonomous driving for three scenarios were trained and 
compared to assess the viability of this RL algorithm. Our 
results showed that the RL algorithm did guide the vehicle in 
a dynamic environment to its destination. Though the 
simulations only show the collision-free trajectory within a 
limited distance from the ego vehicle to the destination, 
multiple destinations can be assigned continuously to guide 
the vehicle to any desired destination. One advantage of the 
proposed RL algorithm lies in the fact that the decision-

Figure 4: Rolling average rewards of three sets of training for 
scenario 1 (top), scenario 2 (middle), and scenario 3 (bottom). 
The RL algorithms all converge with similar best rewards. 



making strategies of vehicles are not shared. The state of the 
system is defined based on the relative distance between the 
ego vehicles and the destination, the orientation of the ego 
vehicle and the roads on the map, and the positions of other 
vehicles near the ego vehicle. Though we only showed the 
scenario with two mobile vehicles in the training, more 
mobile vehicles could be included in the system and the 
training process is prolonged with the increased number of 
mobile vehicles.  
 

 
 
 
 
 

 
Though the method learned quickly, it struggled with 

stability when the destination was placed further from the ego 
agent. To address the observed instability seen when the 
destination is placed further away from the agent, the reward 
function will be revisited and the use of more complex 
reinforcement learning algorithms will be explored.  
We are aware that the ego vehicle was trained in the same 

environmental conditions in each episode and that the choice 
of actions was relatively simple. Future works will focus on 

varying the initial conditions of the environment, such as the 
starting position of the ego and mobile vehicles so that the 
ego vehicle learns a more generalized policy.  
Additionally, more subtle control of the ego vehicle’s 

motion could be reached by introducing more actions, which 
can be further optimized in future studies concerning 
constraints on jerk and fuel efficiency.  
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