Reinforcement Learning-Based Guidance of Autonomous Vehicles

Abstract

Reinforcement learning (RL) has attracted significant
research efforts to guide an autonomous vehicle (AV) for a
collision-free path due to its advantage of investigating
interactions among multiple vehicles and the dynamic
environment. This study deploys a Deep Q-Network (DQN)-
based RL algorithm with reward shaping to control an ego
AV in an environment with multiple vehicles. Specifically,
the state space of the RL algorithm depends on the desired
destination, the ego vehicle’s location and orientation, and the
location of other vehicles in the system. The training time of
the proposed RL algorithm is much shorter compared with
most current image-based algorithms. The RL algorithm also
provides an extendable framework to include different
numbers of vehicles in the environment and can be easily
adapted to different maps without changing the setup of the
RL algorithm. Three scenarios were simulated to validate the
effects of the proposed RL algorithm while guiding the ego
AV interacting with multiple vehicles on straight and curvy
roads. Our results showed that the ego AV could learn to
reach its destination within 5000 episodes for all scenarios
tested.
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1. Introduction

Over the past several years, control of autonomous vehicles
has been a rapidly growing field of research. The promise of
safer roads and more smooth traffic flow has transformed
AVs into a billion-dollar market. Progresses have been made
to guide AVs with model-based approaches.[1-3] However,
a fully autonomous vehicle is not right around the corner, as
the complex physical components involved in traffic systems
are difficult to model. To tackle this challenge different
model-free machine learning algorithms and guidance
strategies have been developed. Of these, Markov Decision
Process (MDP) has been one of the promising direction for
autonomous driving as a probability-based decision-making
strategy.[4-8] These results reported path planner for an AV
in different environment including driving of an AV in a
single lane, lane change of an AV in multiple lanes, and
intention of other human-drivers in the system. These MDP
based approaches still highly depend on the model of the
driving environment.

Recently, RL has shown great potential to derive the
appropriate decision-making strategy by AVs with little or no
knowledge of a mathematical model for the dynamical
environment.[9] Instead, an AV can observe its environment

in a given state, takes actions, and receives rewards for those
actions. Through “trial and error” iterations, these rewards
guide the AV towards its goal, allowing the AVs to perform
complex tasks.

Due to the wide adoption of cameras as an onboard sensor
for vehicles, one current trend in utilizing RL algorithms
for the decision-making of AVs is to represent the ego
vehicle’s observations of the environment with images
captured by the AV. These images were referred to as states
for RL algorithms. Significant strides in collision avoidance
and path guidance for an ego vehicle have been reported with
the image-based decision-making strategy.[10, 11]
The image-based state space has versatility in varying
environments because the ego vehicle’s observations are not
dependent on global variables, such as its absolute position in
the environment or the orientation of the road it is on. This
method can be effectively deployed in environments with
different factors, like road geometry, number of obstacles,
and map size. However, these RL algorithms often suffer
from sampling inefficiency, in which the ego vehicle learns
very little during each iteration it experiences. Image-based
state spaces compound this issue by requiring the process of
images, increasing the complexity of the problem to be solved
by the ego vehicle. This also results in a large number of
iterations being needed to develop a sufficient decision-
making policy. Commonly, images are processed with
convolutional neural networks (CNN) to highlight the
features in the images that are relevant to the ego vehicle’s
goal, and sophisticated RL algorithms such as Deep
Deterministic Policy Gradient (DDPG) and Proximal Policy
Optimization (PPO).[12, 13] Other proposed solutions
include imitation learning, in which an “expert vehicle” with
more information about the environment assists the ego
vehicle during training.[14]

Besides the image-based approaches, many other Q-
learning-based algorithms have been proposed with different
states, rewards, and action pairs.[15] These studies have been
focusing on different specific tasks such as collision-free path
planning, merging on to a highway, and lane changing for an
AV.[16-18]

In a Q-Learning algorithm for autonomous driving of an
ego vehicle, a finite set of all possible states, S, and actions,
A, can be defined and referred to as the state space and action
space, respectively. A Q-Value is given for each available
action, a € A4, in a state, s € S. These values are determined
by a Q-function, Q(s, a), which is often randomly initialized.
At each time step, ¢, a reward, r, is given for the ego vehicle
using a particular action, a,, to transit from the current state,
s, to the next state, s..;. To determine a,, a user defined
hyperparameter ¢ in the range of [0, 1] is used to determine



the probability of taking a random action or the action with
the highest Q-value for s. When ¢ is closer to 1, random
actions are more likely taken, representing the ego vehicle
exploring the environment to learn new paths. When ¢ is
closer to 0, the best action is taken, representing the vehicle
exploiting what it already knows about the environment.
Typically, this value starts close to 1 and decays to near 0 over
the learning process. The Q-value for the action-state pair
used in each time step, Q(s, a), is then updated as the
following equation:

O(si, a)) = Q(sy, ar) + Alri + ymaxa Q(se+1, @) — Q(s1, ay)], (1)

where the hyperparameters A and y are also user-defined
values in the range [0, 1], called the learning rate and discount
factor, respectively. The learning rate, A, represents how
much an update changes the current Q-value, while the
discount factor, y, determines the importance of future actions
in the update. During the ego vehicle’s training, this update
process is performed iteratively. With enough training, O,
a) begins to accurately reflect the actual value of the actions
taken in each state, concerning the goal of the ego vehicle.
Thus, the optimal policy for the ego vehicle becomes the
sequence of actions with the best Q-values.

However, a major drawback to Q-Learning is that there
must be a finite set of states in the state space, resulting in
inaccuracies due to the quantization errors of states in a
discrete system. The inaccuracy can begin to have an impact
when the ego vehicle tries to learn more complex policies.

To address this issue, the DQN algorithm approximates
0O(s, a) with two fully connected neural networks: an online
neural network with a set of parameters, 8, and a target neural
network with a set of parameters, 8-.[15] The online and
target neural networks have identical structure. At a given
time step, the online neural network takes s; as its input and
outputs the predicted Q-values for all actions available to that
state, Oo(s,, a). Either the action with the maximum Q-value,
or a random action, will be the selected as a; with the
following conditions:

best Q — value action,

— { n, > & (2)
¢ random action, n.< ¢

T
where 7, is a random number between [0, 1] generated at each
time step.

Parameter & in the online neural network will be updated
using back propagation with the difference between Qo (s, a:)
and Qv'(s, a,). The target neural network takes s.+, as its input
and outputs, Qs (s+;, a), the predicted Q-values for all
available actions in the next state. The target Q-value, O°(s,
a,), is obtained using (2) as follows:

O'(s, a) = re + ymaxa Qo (5141, a). 3)

The discount factor in (2) plays a similar role as in Q-
Learning. Parameters of the target network, 6 -, will be
replaced with the parameters, 0, from the online neural
network for every user-defined number of steps, C.

In a RL learning algorithm with DQN setup, observation
of the ego vehicle at a time point is defined as a tuple, e=(s,
Sw1, @, 1) and stored as part of the ego vehicle’s history. Input
to the online network also includes past observations, si. The
parameters, 0, are instead updated using a batch of uniformly
sampled past observations. The procedure is defined as
experience replay, which improves the learning efficiency
using prior experiences.

The ego vehicle will continue to take steps in the
environment until it reaches a terminal state, signifying the
end of an episode. When reaching a terminal state, the
simulation environment resets to its initial conditions and
training continues with a new episode. This allows for the ego
vehicle to experience similar states again and explore
different actions for those states. Since there is no state after
the terminal state, the target Q-value, Q*(s, a,), reduces to just
the reward gained for transitioning to the terminal state, 7, for
all actions.

This project seeks to develop a DQN algorithm to guide
an ego vehicle in a dynamic environment with multiple other
vehicles. The driving strategies of the vehicles are not shared
with each other while the ego vehicle can observe the position
of other nearby vehicles. The DQN algorithm is developed
with an image-free state space definition, whose state
variables are referenced locally. The state space in the DQN
can be easily deployed in different environments with
minimal adjustments. To further improve the training speed
of the vehicle, a reward function was developed using reward
shaping.[19, 20] The motion of the vehicles will be displayed
in Cars Learn Act (CARLA) simulator.[21] To test the
performance of the RL algorithm, training performances of
different scenarios were evaluated, and the accuracy of the
vehicle’s trajectory was observed. It was found that the
vehicle was able to learn a sufficient enough policy to reach
its destination in 5000 episodes, roughly 750,000 time step,
in all scenarios tested.

O e
/ PyTorch \ K Python

T, a,
nN - L5 CARLA Python API

carLa

\ Carla )

Observation
e=(sy S Ay 1)

Sampling Pool of Size, M m‘ s -
[: i\,
Batch of Past h*‘ w

Observations
&

o
Oa®;
Parameters, 0~ .‘ A {8 sizes

. J

Figure 1: Flow diagram used during training. Each step, the
action loop (red) is taken first, then the update loop (black)
is done for each sample, i, in the batch.

2. Methodology

Training and testing of the proposed DQN algorithms
have been performed in a framework shown in Figure 1. The
proposed DQN RL algorithm is developed in PyTorch which




interacts with CARLA through a CARLA Python API. The
structure of the neural networks used in the DQN algorithm
utilized two hidden layers, each with 64 nodes, implemented
using PyTorch 1.13.0. The CARLA Python API allows to
PyTorch programs to send commands and receive
observations about the environment in CARLA.

Training of the ego vehicle was performed episodically.
The episode ended if the ego vehicle reached its destination,
travelled past the destination, travelled into an oncoming lane,
left the road, or collided with an obstacle.

2.1. State and Action Space Definition

A state in the system, S = (5., Su, ..., Sw), is composed
of an ego vehicle’s state, s., and mobile vehicles’ states, 5., —
Sw, for m number of mobile vehicles existing in the
environment. To define the ego vehicle state, s. =(d., ¢, I,
¢, 1), a vector, v., can be drawn from the ego vehicle to the
destination, as shown in Figure 2(a). The magnitude of v.
determines the variable, d., which represents the distance
between the ego vehicle and the destination. The angle
difference between v. and the heading of the lane at the
destination is represented as ¢.. Since the destination position
and lane heading do not change during the episode, the two
variables, 0. and ¢., encode the localized position of the ego
vehicle. The variable, J,, is the distance between the ego
vehicle and the center of its current lane. The angle difference
between the heading of the ego vehicle’s current lane and the
ego vehicle’s orientation defines the variable, ¢.. Finally, the
variable, / € [0, 4], is an integer described in (4), representing
whether the ego vehicle is on a road and if there is a lane
present to the left or right of its current lane. These three
variables encode the relationship of the ego vehicle with its
current lane.

if not on road,
both lanes present,
only right lane , “4)
only left lane,
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Figure 2: Visualization of state space definition for a vehicle
with respect to destination (a, b), and other vehicles (c).

For each mobile vehicle, i, in the environment, a mobile
vehicle state, s.=(dv, ¢ ), is defined. A vector, v;, is created

such that the vector points directly from the ego vehicle to the
i mobile vehicle. The magnitude of v, determines the
variable, J., representing the distance from the ego vehicle to
the i vehicle. The variable ¢., is defined as the angle
difference between v: and the heading of the lane at the ego
vehicle’s position as shown in Figure 2(c). These two
variables encode the ego vehicle’s position relative to the
mobile vehicle, with respect to the lane the ego vehicle is in.

Five actions were defined to determine the motion of the
ego vehicle with the following quantifications: the left, slight
left, straight, slight right, and right actions were set to -0.5, -
0.25, 0, 0.25, and 0.5, respectively. Additionally, the throttle
of the ego vehicle was set at a constant 0.5 for all actions in
this study. These values are all relative to the range allowed
in CARLA’s API, which is [-1, 1] for the steering action and
[0, 1] for the throttle action.

2.2. Reward Function

To guide the ego vehicle towards learning a collision-free
path to reach its desired destination in a dynamic
environment, the reward function considers rewards related
to the ego vehicle’s deviation from its current lane as a lane
reward, distance to the destination as a destination reward,
and avoidance of mobile vehicles as a collision-free reward.

The lane reward, .= cos(¢,), assigns a reward close to | if
the ego vehicle’s orientation is similar to the heading of the
current lane, but the reward quickly reduces to 0 as the ego
vehicle’s orientation deviates. The angle ¢ represents the
angle difference between the heading of the ego vehicle’s
current lane and the ego vehicle’s orientation. As an even
function, the lane reward assigns the same value no matter the
sign of the variable ¢.. Scenarios in which ¢ is greater than 90
degrees end the episode, as discussed later.

A destination reward is calculated as, ., = (D — 6.,)/D. The
destination reward is given to encourage the ego vehicle to
move toward the destination. The constant, D, is defined as
the maximum distance between the ego vehicle and its
destination. This constant is fixed at the beginning of the
episode.

For each vehicle, i, in the environment, a collision-free
reward, .., was defined as:

8.
- - [R et cos (dm)] 8y < Rand |g,; < 90° (5)
vt 1 otherwise

The safety region, R, is a radius around the ego vehicle that
determines whether a mobile vehicle is close enough for a
potential collision. To guide the ego vehicle away from this
potential, the collision-free reward reduces with the distance
between the two vehicles but increases again as the ego
vehicle positions itself alongside the mobile vehicle in a
neighboring lane.

It was observed that the vehicle preferred staying in its
current lane over changing lanes to avoid vehicles or turning
at an intersection to reach the destination. To resolve this, the
destination reward and the collision-free rewards were
weighted more heavily by multiplying both by a factor of 2.

The reward obtained for a given time step before the
ending of the episode is then given by, . = (r, + rv. + rv) / v,
where 7, is the maximum reward that could be achieved. This



is done so that the reward is normalized to a value between 0
and 1. A reward is given if the following reward conditions
are met. Otherwise, the reward given is 0.

The reward conditions are: 1) The distance to the
destination must be less than the distance in the previous time
step. This condition guarantees that the vehicle is always
moving toward the destination without the need for a negative
reward. 2) The vehicle must be in a driving lane. This
condition is used, rather than ending the episode, to encourage
the ego vehicle to learn to return to the road when entering a
shoulder lane.

An episode ends if the ego vehicle reaches the destination,
collides with an obstacle, drives past the destination, or is
oriented opposing the current lane heading. The ego vehicle
is oriented opposing the current lane heading if the absolute
value of the relative angle between the ego vehicle’s
orientation and the current lane heading, ¢, is greater than 90
degrees.

If the ego vehicle reaches the destination, an additional
reward of 1 is added to the reward already gained. For the
other episodes ending scenarios, the reward is set to -2. Thus,
the reward gained in each time step has a range of [-2, 2].

2.3. Hyperparameters

The  hyperparameters used were  determined
experimentally. A list of the hyper parameters used is shown
in Table 1. The value of € was used to determine the action to
be taken and was initialized as 1 and decreased linearly to
0.01 by episode 100. At each step, a random value between 0
and 1 was generated. If the random value is greater than ¢, the
best action based on the Q-value will be taken, otherwise, a
random action will be taken. If e=1, a random action is always
taken. The parameters of the online NN, 6, were copied over
to the parameters of the target NN, 0-, every C=35,000 steps.
To store the observations obtained in each time step, a buffer
of size 250,000 was used. Every time step, a batch of 32
observations was used to update the parameters of the online
neural network.

Table 1: Hyperparameters used when conducting
training and testing.

Loss Function Mean Square Error (MSE)
Optimizer Adam

Learning rate, A 0.0001

Final ¢ Value 0.01

Target Update, C 5000

Observation History Size,

M 250000

2.4. Simulation

A CARLA 9.13 was installed and run on a Lambda
workstation with an AMD Ryzen threadripper pro 3995wx
and two Nvidia RTX A5000s. Three different scenarios were
established. Scenario 1 was set up in “Town(07” environment
in CARLA on a curving single lane road. The RL algorithm
will guide the ego vehicle to reach the destination 140 (D =
140) meters away while staying on the road. Scenarios 2 and

3 were set up in “Town 05” in Carla, where the ego vehicle
had a collision-free path to reach the destination 70 (D=70)
meters away with 1 and 2 other mobile vehicles on a straight
2-lane road. In Scenario 2, one mobile vehicle was placed in
front of the ego vehicle in the same lane. Compared to
Scenario 2, Scenario 3 has a 3"vehicle which was
placed ahead ofthe 2" vehicle in the other lane. All
mobile vehicles stayed in their lane during each episode and
moved in a straight line at 0.2 throttle. The ego vehicle only
knew the distance between itself and other vehicles and did
not know the decision-making strategy of other vehicles.
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Figure 3: Rolling average reward and distance of ego vehicle
to a destination during training for 5000 episodes in each
scenario. The green curve represents the rolling average
reward of the past 100 episodes while the blue curve
represents the average distance.

3. Results

For all three scenarios, the vehicle was trained for 10,000
episodes. For Scenarios 2 and 3, it took approximately 150
steps for the agent to reach the destination. For Scenario 1, it
took twice the number of steps, as the distance to the
destination was further. Due to the inherent randomness of
the initial exploration actions, 3 trials were performed to
confirm consistency of the results. During training, the



CARLA simulator was set in synchronous mode, in which the
physics of the world paused each to time step to allow the
algorithm to train and provide the next action to take. When
performing testing, this was set to asynchronous mode, where
the physics of the world would continue to run, and actions
were taken by the ego vehicle as quickly as the algorithm
could provide them.
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Figure 4: Rolling average rewards of three sets of training for
scenario 1 (top), scenario 2 (middle), and scenario 3 (bottom).
The RL algorithms all converge with similar best rewards.

3.1. Training Evaluation

The rolling average over the last 100 episodes for the
reward gained and the distance from the center of the vehicle
to the destination is displayed in Figure 3. It was determined,
due to the of the size of the vehicle and a radius around the
waypoint ending the episode, that a distance of about 10
meters indicates that the vehicle reached the waypoint. Figure
3 shows the downward trend of the distance to the waypoint
for all scenarios, on average reaching the destination by
episode 5000. It also shows that a rolling average reward to
reach the destination is about 250 for Scenario 1, 130 for
Scenario 2, and 140 for Scenario 3.

The training results for the 3 trials of each scenario are
shown in Figure 4. It can be seen that the ego vehicle begins

to learn successful paths to the destination by episode 4000.
This is supported by the general plateau seen at that point in
training. Beyond that, the ego vehicle attempts to optimize its
pathing according to the reward function. However, the ego
vehicle still experiences instability while training, as seen by
dips in the average reward. One potential cause for this is a
phenomenon known as catastrophic forgetting, where a
neural network forgets what it has learned from training when
it experiences new information. For Scenario 3, it seems that
it can recover from this, as indicated by the reduction in the
size of the dips as training progressed. Scenario 1 is
particularly affected by these stability issues, as compared to
the other scenarios, oscillating between 150 and 250 rolling
average rewards. This is likely due tothe destination
being set further away.

3.2 Test Results

After the training evaluation was completed, the trial with
the best performance in each environment was chosen. These
were then tested on their respective environments by having
the vehicle’s path traced out over five episodes. Only the best
action, determined by the Q-values produced from the trained
online NN, was taken by setting € to 0. Figure 5 shows an
overlay of the motion of the vehicles in each test at various
time points in an episode. For clarity, the points in time are
labelled.

Since the reward function incentivizes the agent to stay in
the episode, the optimal path becomes the longest one. This
does not seem to pose too much of an issue for Scenarios 2
and 3, but it is believed to be a source of the instability seen
in training for Scenario 1. It can be observed in Figure 5 that
the ego vehicle’s optimal policy for Scenario 1 involves
hugging the edge of the lane to maximize the time it is in the
episode. It is believed that this is the main source of the
instability seen in the training evaluation of Scenario 1.
Because the ego vehicle is so close to the edge of the road,
minor steering actions taken can result in the ego vehicle
leaving the lane and ending the episode early. This then
negatively affects the g-values for the sequence of actions
that lead to that result, despite many of them being good.
Scenarios 2 and 3 are less affected by this because they have
additional guidance in the form of a reward from mobile
vehicles and because the distance to the destination is closer.

4. Discussion

In this paper, a DQN-based reinforcement learning
algorithm was proposed to guide an ego vehicle to a
destination with a collision-free trajectory. This algorithm
was then implemented, trained, and tested with a framework
integrating the PyTorch package and CARLA simulator.
Autonomous driving for three scenarios were trained and
compared to assess the viability of this RL algorithm. Our
results showed that the RL algorithm did guide the vehicle in
a dynamic environment to its destination. Though the
simulations only show the collision-free trajectory within a
limited distance from the ego vehicle to the destination,
multiple destinations can be assigned continuously to guide
the vehicle to any desired destination. One advantage of the
proposed RL algorithm lies in the fact that the decision-



making strategies of vehicles are not shared. The state of the
system is defined based on the relative distance between the
ego vehicles and the destination, the orientation of the ego
vehicle and the roads on the map, and the positions of other
vehicles near the ego vehicle. Though we only showed the
scenario with two mobile vehicles in the training, more
mobile vehicles could be included in the system and the
training process is prolonged with the increased number of
mobile vehicles.

Figure 5: Testing Results of Scenario 1 (top), Scenario 2
(middle) and Scenario 3 (bottom). The motion of the ego
vehicle (green) and mobile vehicles (red) are numbered 1-5
as time progressed with 1 as initial time and 5 as the latest
time point.

Though the method learned quickly, it struggled with
stability when the destination was placed further from the ego
agent. To address the observed instability seen when the
destination is placed further away from the agent, the reward
function will be revisited and the use of more complex
reinforcement learning algorithms will be explored.

We are aware that the ego vehicle was trained in the same
environmental conditions in each episode and that the choice
of actions was relatively simple. Future works will focus on

varying the initial conditions of the environment, such as the
starting position of the ego and mobile vehicles so that the
ego vehicle learns a more generalized policy.

Additionally, more subtle control of the ego vehicle’s
motion could be reached by introducing more actions, which
can be further optimized in future studies concerning
constraints on jerk and fuel efficiency.
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