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Abstract— Feedback control typically relies on an estimate
of the system state provided by an estimation scheme. These
estimates, however, are always affected by errors that have non-
negligible impacts on control performance. Various stabilizing
and safety-critical control frameworks address this issue, but all
require some characterization of the current estimation error
to determine when to apply more or less conservative control
inputs. Current methods of bounding these errors either take
a very coarse worst-case bound or employ computationally
expensive time-varying set-valued methods.

This paper fills the missing gap in these works, presenting
new deterministic worst-case error bounds for a state estimation
scheme for generic nonlinear systems. Crucially, these error
bounds can be efficiently computed in real-time and shrink
or grow depending on the current system behavior and the
current measurement quality. These new, lightweight, “online”
error bounds can directly interface with the aforementioned
measurement-robust control frameworks, resulting in less con-
servative control actions while retaining safety and stability
guarantees.

I. INTRODUCTION

In feedback control, one typically builds a full or partial-
state feedback control law to accomplish the desired control
task. This is particularly true in safety-critical scenarios,
where one must prioritize the system’s safety above all
else. Almost all of these techniques for nonlinear control–
particularly in safety-critical control–rely on knowledge of
the system state. In practice, this means that the state
feedback control law is designed first, and then implemented
using, not the true system state, but an estimate from a
separately designed state estimator.

While theoretically justified in some cases, the choice of
estimation scheme can have major impacts on the overall
control performance. It is well-known, for example, that
stabilizing control laws for nonlinear systems may catas-
trophically fail when instead given a state estimate [1].

Many modern nonlinear control techniques have been
developed that accommodate the inherent imperfect knowl-
edge of the state in a measurement-robust or uncertainty-
aware framework. For example, the robust control Lyapunov
and Barrier function frameworks have both been adapted
to handle uncertainty in estimation [2], [3], [4]. These
frameworks, however, must assume some bound on the
state estimation error and employ more conservative control
actions depending on the magnitude of the error bound. In
safety-critical control, for example, the measurement-robust
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barrier function framework effectively “inflates” the unsafe
set and attempts to maintain a harsher safety criterion [3].
Beyond conservative control inputs, loose bounds can also
lead to issues where a guaranteed safe control input does not
exist.

What these existing measurement-robust frameworks lack
is an estimation scheme that comes with error guarantees
that vary with time in order to be less conservative, as noted
in [4]. When equipped with such an estimation method,
the measurement-robust control frameworks can adapt to be
more or less conservative as the estimation error bounds grow
or shrink. This adaptation may even be necessary in order to
properly guarantee the safety or stability of the closed-loop
system.

Many nonlinear estimation methods–even classic algo-
rithms such as the Extended Kalman Filter (EKF)–already
have some form of time-varying error guarantee [1]. When
these guarantees exist, however, they typically include a
fixed inflation to accommodate the worst-case measurement
noise or disturbances in the system, in a manner akin to
input-to-state stability (ISS) bounds [5]. These bounds are
then always “inflated” regardless of the actually experienced
measurement noise or disturbances, even if the observer itself
may be performing better in some periods than others.

Alternatively, there exist set-valued observers that hold
on to tight, time-varying error bounds that may shrink or
grow depending on the exact sequence of system outputs.
Set-valued observers, however, are typically only available
for highly structured or linear systems [6]. Even when
available, these methods are often extremely computationally
demanding, limiting their practical utility [7].

In this work, we present an estimation scheme based on
numerical differentiation that directly targets these issues:
it possesses deterministic, time-varying bounds that adapt
online to the experienced measurement noise and system
behavior. These new guarantees can directly be handed to any
measurement-robust control framework, where their time-
varying nature permits more aggressive control actions when
the estimation method is more confident. Moreover, since
these guarantees are deterministic worst-case bounds, any
measurement-robust control law based on these values will
yield deterministic worst-case correctness proofs.

II. PROBLEM SETUP AND BACKGROUND

We consider nonlinear control systems of the form:

ẋ = f(x, u)

y = h(x, u),
(1)
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where for all t ∈ R≥0, x(t) ∈ Rn is the state, u(t) ∈ Rm is
the input, and y(t) ∈ Rp is the output. We assume that the
map f is sufficiently regular for solutions of (1) to exist and
be unique for all t ≥ 0 and x(0) ∈ Rn.

We are interested in estimating the state x(t) of the system
(1) at some time t ∈ [t0, tN ] given (possibly noise-corrupted)
N + 1 sampled-data measurements of y(t) at a window of
times {t0, t1, ..., tN}. The method we propose relies on the
following definition of observability to ensure a well-posed
problem.

Assumption 1: The control system (1) is differentially
observable of order d. In particular, there exists a (possibly
time-dependent) continuous function L that maps the d
derivatives of the output y(t) and input u(t) to the state
x(t). More explicitly, L is such that:

(y(t), ẏ(t), ..., y(d), u(t), u̇(t), ..., u(d)(t))
L7−→ x(t).

As described in [8], [9], places where the map L fails to
exist are called singular observations.

A. Related work

A number of frameworks have addressed the interface
between uncertainty in the system state and control in
the context of stability and safety. We only discuss non-
stochastic methods here, as they are closer to our work and
its deterministic guarantees. From the perspective of stability,
there are characterizations of ISS with respect to estimation
errors, which guarantee that bounded errors cannot unbound-
edly destroy stability [10]. In practice, however, there is no
method for creating controllers that enforce this particular
form of ISS for arbitrary nonlinear systems [11].

Other works developed notions of robustness to estimation
errors, leading to the concepts of robust control Lyapunov
functions (CLFs) and measurement-robust control barrier
functions (CBFs) [2], [3], [4]. Both of these schools of
thought, however, rely on a characterization of the estimation
error that is valid at any instant of time. Loose offline
characterizations of this uncertainty can lead to overly con-
servative controls, or worse, issues of feasibility from a lack
of “guaranteed safe/stable” control actions.

On the estimation side of this problem, there are many
methods for state estimation that possess a time-varying error
bound. Perhaps the most straightforward to understand are
set-valued observers, wherein a tight approximation (polyhe-
dral, ellipsoidal, or a hyper-rectangle) of the possible states of
the system is propagated through the dynamics at each step
[7]. This tighter representation is less conservative, but comes
at the cost of limited applicability and often prohibitively
large amounts of computation and memory.

More familiar observers possess asymptotic guarantees,
and even ISS-like guarantees are often established [5]. Even
these ISS guarantees, however, rely on some a priori estimate
of the worst-case measurement noise for all time, then inflate
the estimation guarantees for all time accordingly. Some
promising and recent notions of ISS observers with “fading
memory” exist through the use of input-to-state dynamical
stability, but the error bounds provided by these estimators

are not always available in real-time to mitigate the issues
in measurement-robust control [12].

While developing observers for systems such as (1), one
natural thought is to directly leverage Assumption 1 and
consider derivative estimation equivalent to state estimation
[8]. This idea is not new, and many existing works connected
numerical differentiation techniques to state estimation dat-
ing back to the 1990s, proving that these estimation tech-
niques can produce globally bounded error [13]. The existing
guarantees, however, are strictly offline: given some estimate
of the output’s nonlinearity and magnitude of the noise, a
single static error bound is provided for all time.

In this work, we show that these offline guarantees can
be significantly tightened and made online. In particular, we
prove a time-varying estimation error bound for Savitzky-
Golay filtering that can be computed online with a simple
multiplication by a fixed pre-computed matrix. Moreover, we
show in experiments that these online bounds are orders of
magnitude tighter than previously established offline bounds.

B. Savitzky-Golay filtering

The differential observability condition effectively equates
estimating the state of the control system with estimating its
output and derivatives. As such, we will construct a method
for estimating d derivatives of the output from sampled-
data measurements that possesses the online error bounds
we seek.

We propose a state estimation framework built on a
classical scheme for numerical differentiation: polynomial
least-squares, or Savitzky-Golay filtering [14].

In Savitzky-Golay filtering, we build a local (in time)
approximation of the output signal y by fitting a window of
N + 1 samples in some interval [ti, tf ] ⊆ R with a degree-
d polynomial. We then estimate the d derivatives of y at
some time in this window τ ∈ [ti, tf ] by differentiating the
polynomial approximation to y at τ . Finally, we apply the
map L from Assumption 1 to produce a state estimate x̂(τ).
Notably, if the samples are uniformly spaced, this entire
process becomes a single matrix multiplication with a fixed
matrix computed offline.

In this work, we appeal to the following intuition: the
residuals from the least-squares regression naturally measure
fit quality. By residuals, we mean the misfit between the
polynomial p and the output y at the sampled outputs.
These residuals may be high or low depending on the
actual measurement noise and nonlinearities at any given
time, rather than being fixed a priori. Our main results
formalize this intuition by connecting the online residuals
to a deterministic worst-case error bound on the derivative
estimation error during Savitzky-Golay filtering.

III. ONLINE ERROR BOUNDS

We assume that the output function h for the control
system (1) is such that the output y is continuous and d+1-
times differentiable. For simplicity of analysis, we discuss
only scalar outputs (m = 1), as the generalization to higher
dimensions is straightforward.

4730

Authorized licensed use limited to: UCLA Library. Downloaded on March 08,2025 at 23:47:59 UTC from IEEE Xplore.  Restrictions apply. 



We then approximate the output locally with a degree-d
polynomial p : R → R of the form:

p(t) = a0 + a1t+ · · ·+ ad−1t
d−1 + adt

d. (2)

Given N + 1 measurements of the output y at times
{t0, t1, ..., tN} ⊆ R, each corrupted by some noise signal
e(ti), ti ∈ {t0, t1, ..., tN}, we determine the polynomial p by
minimizing the squared error in the following optimization
problem:

minimize
a:=(a0,...,ad)∈Rd+1

N∑
i=0

∥[y(ti) + e(ti)]− p(ti)∥22. (3)

Note that we do not have access to y(ti), only its noisy
measurements y(ti) + e(ti) at each sampled time.

A. Error bounds on derivatives

First, we state our main result which holds with equality.
Theorem 1: Choose any subset of sample times D :=

{s0, s1, ..., sd} ⊆ {t0, t1, ..., tN} with cardinality |D| = d+
1 ≤ N + 1, and let p : R → R be any degree-d polynomial.
Define the degree-d polynomial “residual interpolant” rD
associated with p and D, i.e., the polynomial such that:

y(si)− p(si) = rD(si) for all si ∈ D. (4)

Then for any t ∈ [s0, sd], it holds that:

y(k)(t)− p(k)(t) = r
(k)
D (t) +

y(d+1)(ξ)

(d− k + 1)!

d−k∏
i=0

(t− νi),

(5)

where k ≥ 0 and si ≤ νi ≤ si+k for each i = 0, 1, ..., d− k
and ξ ∈ [s0, sd].

Proof: Define the auxiliary function Q : R → R as:

Q(t) = y(t)− p(t)− rD(t).

By construction, Q is continuous and at least d + 1-times
differentiable with at least d+1 zeroes in the interval [s0, sd].
In particular, its zeros are each of the si ∈ D. By repeated
applications of Rolle’s Theorem, Q(k) has at least d−k zeros,
each denoted by νi, with νi ∈ [si, si+k].

Consider another function H : R → R defined as:

H(z) = Q(k)(z)− α
d−k∏
i=0

(z − νi), (6)

for some α ∈ R. Note that for any chosen t ∈ [s0, sd] with
t ̸= νi for all i = 0, 1, ..., d−k, there exists a choice of α ∈ R
such that H(t) = 0. We will derive an explicit expression
for this α in terms of y(d+1).

Because H(t) = 0 for t ∈ [s0, sd], then H is d − k +
1 times differentiable with at least d − k + 2 zeros in the
interval [s0, sd]. In particular, H(z) = 0 when z = νi, with
i = 0, 1, ..., d − k, and also at the prescribed z = t. Again
using repeated applications of Rolle’s Theorem, the d−k+1
derivative of H then has at least one zero in the interval

[s0, sd], meaning there exists some ξ ∈ [s0, sd] (depending
on t) such that:

H(d−k+1)(ξ) = Q(k+(d−k+1))(ξ)− α(d− k + 1)!

0 = Q(d+1)(ξ)− α(d− k + 1)!

= y(d+1)(ξ)− α(d− k + 1)!

⇒ α =
y(d+1)(ξ)

(d− k + 1)!
,

where in the third equality we abused the fact that p, rD,
and eD are degree-d polynomials.

Simply plugging this value for α into (6) and re-arranging,
we find:

H(t) = 0 = Q(k)(t)− y(d+1)(ξ)

(d− k + 1)!

d−k∏
i=0

(t− νi)

= y(k) − p(k) − r
(k)
D (t)

− y(d+1)(ξ)

(d− k + 1)!

d−k∏
i=0

(t− νi)

⇒ y(k) − p(k) = r
(k)
D (t) +

y(d+1)(ξ)

(d− k + 1)!

d−k∏
i=0

(t− νi),

for all t ∈ [s0, sd] as desired.
Note that Theorem 1 is an equality, meaning there is

no tighter bound for a given polynomial p. Our choice
of polynomial p, however, will change the values (and
derivatives) of the residual interpolant rD, suggesting we
choose p that minimizes its impact (e.g., least-squares).

The equality (5) also behaves in expected ways for specific
cases. If there is no measurement error e(ti) = 0 and
the function y is a polynomial of degree at most d, then
the interpolating polynomial p has zero residuals, y(d+1)

is uniformly zero, and therefore (5) guarantees zero misfit
everywhere in the interval. Similarly, when the number of
points and degree of the polynomial are equal (d = N ), (5)
immediately recovers the guarantee associated with interpo-
lating polynomials.

Despite its tightness, Theorem 1 relies on knowledge of
parameters that we do not have access to in reality: the noise-
free values of y(d+1)(ξ), the times νi, and the underlying true
misfit y(ti)− p(ti). In practice, we only have access to the
measured (noise-impacted) residuals, y(ti)+e(ti)−p(ti), and
perhaps a uniform bound on the noise and value of y(d+1)(ξ).
In the following corollary, we loosen the equality in (5) by
only relying on these assumptions.

Corollary 1: Assume there exist M,E ∈ R≥0 such that
|y(d+1)(ξ)| ≤ M for all ξ ∈ [s0, sd], and |e(si)| ≤ E for all
si ∈ D. If the subset D has maximal inter-sample spacing
si+1 − si ≤ δ, then:

|y(k)(t)− p(k)(t)| ≤
∑
si∈D

∣∣∣l(k)i (t) (y(si) + e(si)− p(si))
∣∣∣

+ E
∑
si∈D

|l(k)i (t)|+Mδd−k+1,

(7)
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for all k ≥ 0, where li : R → R with i = 0, 1, ..., d are the
Lagrange basis polynomials for D:

li(t) =
∏

sj∈D\{si}

t− sj
si − sj

. (8)

Proof: We begin by simply applying the triangle
inequality to the right-hand side of (5):

|y(k)(t)− p(k)(t)| ≤ |r(k)D (t)|+ |y(d+1)(ξ)|
(d− k + 1)!

d−k∏
i=0

|t− νi|

≤ |r(k)D (t)|+ M

(d− k + 1)!

d−k∏
i=0

|t− νi|.

Then note that the interpolating polynomial rD can be
explicitly written as a function of its interpolation sites using
the Lagrange basis for D, as defined in (8):∣∣∣∣ dkdtk rD(t)

∣∣∣∣ =
∣∣∣∣∣ dkdtk ∑

si∈D
li(t) (y(si)− p(si))

∣∣∣∣∣
=

∣∣∣∣∣∑
si∈D

l
(k)
i (t) (y(si) + e(si)− p(si))− l

(k)
i (t)e(si)

∣∣∣∣∣
≤
∑
si∈D

∣∣∣l(k)i (t) (y(si) + e(si)− p(si))
∣∣∣+ ∣∣∣l(k)i (t)e(si)

∣∣∣
≤
∑
si∈D

∣∣∣l(k)i (t) (y(si) + e(si)− p(si))
∣∣∣+ E

∣∣∣l(k)i (t)
∣∣∣ .

Finally, we note that each of the νi is in the interval [si, si+k].
By assumption, each of these intervals is at most size kδ. The
product term is upper bounded by a choice of t that is at one
end of the polynomial, which we can use as a lazy bound:

M

(d− k + 1)!

d−k∏
i=0

|t− νi| ≤
M

(d− k + 1)!

d−k∏
i=0

(i+ 1) · kδ

= Mkd−k−1δd−k+1.

While this bound is valid, it can easily be sharpened by
characterizing this product for the specific choice of t where
estimation is relevant. Combining these terms, we recover
the desired result.

We have now removed any unknown quantities from The-
orem 1, meaning Corollary 1 presents an online-computable
bound characterizing the error in derivative estimation. Inter-
estingly, this bound may vary in time with the fit residuals
y(ti)+e(ti)−p(ti), which formalizes the intuition that “good
polynomial fits” should produce better estimates, regardless
of the standing assumptions on the system.

While the bounds in Corollary 1 are in principle “online
computable”, their practical value only holds if they are also
computationally lightweight. Implementing both Savitzky-
Golay filters and evaluating Corollary 1’s bounds are com-
putationally efficient. The filtering itself is a simple matrix
multiplication of the current window of outputs by a fixed
N+1×N+1 fitting matrix. The bounds require the measured
residuals (one more matrix multiply and a vector subtraction)

followed by a simple inner product with a (fixed, offline-
computable) vector of l

(k)
i (t) evaluations at the estimation

time of interest t ∈ [t0, tN ].
Both Theorem 1 and Corollary 1 hold for an arbitrary

degree-d polynomial p and its measured residuals. In prac-
tice, the Savitzky-Golay scheme uses the least-squares poly-
nomial, which is useful because it indirectly minimizes the
individual measured residuals in the bound (7).

One of the main motivations for using least-squares over
interpolation is the ability to “smooth out” the impact mea-
surement noise. This property is implicit in (7), where we can
reduce the magnitude of the terms involving measurement
noise by shrinking the values of the Lagrange basis polyno-
mials l

(k)
i (t) associated with the subset D. To shrink these

values, we must select a subset of times D ⊆ {t0, t1, ..., tN}
that is spaced as far apart as possible. If the polynomial p
was selected with least-squares, then the term associated to
its residuals maintains the same uniform bound regardless
of the subset of fitting points D. As we select a subset D
with larger inter-sample times, however, the final term in (7)
representing the output’s deviation from polynomial grows.
Choosing the best subset D ⊆ {t0, t1, ..., tN} optimizes the
trade off between smoothing and accuracy.

In principle, we could solve the combinatorial problem
of choosing the subset D ⊆ {t0, t1, ..., tN} with cardinality
|D| = d+1 that minimizes the bound (7) each time we make
a derivative estimate. This approach is clearly intractable,
but we can easily approximate it by choosing a small family
of different subsets (e.g., by parameterizing the subset by
several choices of inter-sample spacing δ) and evaluating (7)
for each subset choice online, always claiming the tightest
guarantee achieved by this family. Similarly, we could select
the subset D a priori by assuming some fixed maximum
values for the measured residuals and optimizing (7) over
D, but this reduces the dynamic properties of the bound.

Our method has two parameters: the degree of the fitting
polynomial d, and the number of points in the window N .
The bound in Corollary 1 scales with the fitting polynomial
degree d in the exponent, suggesting d be as small as possible
while still estimating enough derivatives. Similarly, as we
increase the number of points in the window (assuming iden-
tical residual values), we increase the number of candidate
subsets D, therefore tightening the potential bound. These
observations reflect typical rules for polynomial regression.

B. From derivatives to state

Up to this point, we have discussed only online error
bounds for derivative estimation. We can transfer these
error bounds from the space of derivative estimates to state
estimates in a number of ways, such as interval analysis
techniques. In practice, we may use whichever method
provides the tightest guarantees, but for completeness, we
state a naive but immediate result for the special case of
Lipschitz continuous observability maps.

Theorem 2: Assume that the function L in Assumption 1
is uniformly continuous, and let x̂(t) denote the result of
composing L with estimates of y and its d derivatives from
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a degree-d polynomial p : R → R. Under the same setting as
Corollary 1, there exists a nondecreasing function α : R → R
from the polynomial fit residuals to the estimation error:

|x(t)− x̂(t)| ≤ α

(∑
si∈D

|y(si) + e(si)− p(si)|

)
.

If an explicit expression for the observation map L is
not known, we could follow the steps proposed in [15] and
solve the observation equations (or the equations governing
the derivatives) for the state via Newton’s method. The
error bounds would then propagate through the convergence
guarantees of this method.

The process outlined above produces a state estimate for
the time t ∈ [t0, tN ] where the derivative estimation takes
place. Depending on when this time is chosen, there is
necessarily a delay in the state estimate. We could choose
to estimate derivatives at the most recent time tN ∈ [t0, tN ],
but differentiating fitting polynomials at their endpoints is
notoriously inaccurate [16]. This difficulty is also reflected
in the bounds given from Corollary 1, which are maximized
when evaluated at t0 and tN .

We could also counteract the estimation delay by evolving
the estimate from Theorem 2 forward with the differential
equation model (1). We could even use an Extended Kalman
Filter (EKF) initialized at the delayed estimate x̂(t) to both
remove the delay and tighten the bounds from Theorem
2 when the EKF’s local exponential convergence can be
guaranteed [9], [13].

IV. EXPERIMENTS AND EVALUATION

In this section, we validate the theoretical bounds from
Corollary 1 in a couple simple examples. In each case, we
show that our online error bounds are orders of magnitude
tighter than more standard offline bounds, and vary with time
depending on the system dynamics.

A. Lorenz Attractor System

We consider the Lorenz attractor system dynamics with a
single output:

ẋ1 = σ · (x2 − x1)
ẋ2 = x1 · (ρ− x3)− x2

ẋ3 = x1x2 − βx3

, y = x1,

where we set the parameters σ = 10, ρ = 28, and β =
8
3 . We use a sampling frequency of 100Hz (inter-sample
time δ = 0.01 seconds) and apply a Savitzky-Golay filter
to fit a degree d = 2 polynomial to sliding windows of
20 measurements. We differentiate this polynomial at the
midpoint, and in our comparisons we use the delayed value
of the system output and state (meaning we do not consider
the effects of estimation lag). We derive the error bounds
on the state estimate by performing interval analysis on an
explicit expression for the map from Assumption 1.

To highlight the online nature of our bounds, we add
bounded (E = 0.5) measurement errors to the system only
during times t ∈ [1.6, 3.3], and otherwise we have zero noise.
Crucially, we supply the bounds in Corollary 1 with the
same value of E = 0.5 at all times, meaning we are always

Fig. 1. Error in the the derivative estimation for the Lorenz system. The
true estimation error is shown in blue, with dashed red lines and shading
indicating the online error bounds of Corollary 1. The solid black lines
denote offline bounds.

theoretically accommodating these measurement errors, even
when none are present in the system. We also provide the
bounds with a uniform bound |y(d+1)| ≤ 96733, which is
valid for all time.

For comparison, we also plot some naive offline bounds
derivable via Taylor series analysis, identical to those given
in [13]. We omit the derivation of these bounds here for
brevity, but the interested reader may find them in [17].
In Fig. 1, we show the error in the estimated output
derivatives on a log-scale plot, highlighting that our new
online bounds are orders of magnitude tighter. In addition to
always being tighter, these bounds may adapt naturally the
noise in the measurements. Furthermore, the measurement
errors are bounded E = 0.5 and so the output’s value
(i.e., the estimate of the state x1) cannot be more accurate
than this fundamental limit. Similarly, the output’s derivative
estimation error is always lower bounded by 2E

δmax
≈ 20,

and 4E
δ2max

≈ 800 for the second derivative, where δmax is
the largest possible inter-sample spacing. Our error bounds
in Fig. 1 show that our method is provably near these
fundamental limits in the noiseless regime.

This same phenomenon is apparent in Fig. 2, where
we plot the state of the system (blue) alongside the state
estimate (dashed red) with error bounds (red shading). The
bounds naturally accommodate the extreme noise levels,
but immediately tighten when no measurement errors are
present. Moreover, the map L from Assumption 1 naturally
incorporates the system dynamics, which is why at some
particular times the bounds increase, despite no measurement
errors being added.

B. Ackerman Steering Model

We also consider a more physical system for a two-
axle Ackerman steering model with “GPS” position outputs,
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Fig. 2. State estimates for the Lorenz system. The true state is shown in
blue, with dashed red lines and red shading indicating the state estimate
and online error bounds of Corollary 1. Note that the system produces a
singular measurement around t = 0.5.

Fig. 3. A diagram illustrating the states of the Ackerman steering model.

whose states and dynamics are illustrated in Fig. 3.
We set the axle separation ℓ to 0.5, and use a sampling

frequency of 100Hz (δ = 0.01), fitting a degree d =
5 polynomial to the data using a sliding window of 50
measurements. We inject bounded measurement errors with
magnitude E = 0.025 only in the interval t ∈ [4.9, 9.8].

Here we show the state estimates (with error bounds) in
Fig. 4. Notably, in the interval where there were measurement
errors, the bounds inflate slightly and become less “smooth”.
The local dynamics of the vehicle, however, impact how
much inflation occurs.

V. CONCLUSIONS

In this paper, we presented new deterministic worst-case
error guarantees for a nonlinear state estimation scheme.
Most importantly, our error bounds are easy to compute
online and shrink or grow depending on the system behavior.
These new error bounds directly interface with existing
measurement-robust control frameworks, reducing the con-
servative nature of these methods.

We validated this estimator and its guarantees with two
different nonlinear systems, verifying their performance and
tightness. In the future, this principle of relating fit “residu-
als” to estimation errors could be extended to more classical
estimators, proving new “online” error bounds for other
families of nonlinear observers.

Fig. 4. State estimates for the Ackerman model. The true state is shown in
blue, with dashed red lines and red shading indicating the state estimate and
online error bounds of Corollary 1. The spike in x3 at t ≈ 6 is caused by
angle wrapping artifacts. Spikes in x5 are caused by singular measurements
as estimating x5 computes the curvature of the vehicle path.
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