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Abstract— Estimation algorithms and nonlinear observers
are widespread tools used in a variety of real-world applications,
from satellite control to epidemiological studies. Their primary
purpose is to provide an estimate of the state computed
from available measurements and a model of the dynamics.
When state estimates are used to enforce safety properties,
it is essential to understand and characterize how accurate
these estimates are so that safety is still guaranteed. While
several observer design techniques provide bounds for the
estimation error, they are either computationally expensive or
too conservative and thus difficult to use in practice. Our work
tackles these issues by providing error bounds for observers
based on Savitzky-Golay filtering which are applicable to non-
linear systems satisfying a suitable observability assumption.
Moreover, the error bounds are computed online based on
measured data are thus tighter than offline bounds based on
worst case assumptions.

We generalize prior theoretical results by some of the authors
from polynomial approximations to other functions and use this
added flexibility to obtain tighter bounds. Finally, we illustrate
the results using multiple examples, including an application to
in-host models used in epidemiology.

I. INTRODUCTION

The recent interest in safety as a control design objective
[1] has brought a new focus on observers since safety
enforcing techniques, such as control barrier functions [2],
[3], rely on state estimates. It is, therefore, critical to provide
formal guarantees on the error of such estimates. Unfortu-
nately, all the observer design techniques providing error
bounds, known by the authors, either yield worst-case offline
bounds or require highly structured systems with a significant
computational footprint.

Notably, only a handful of estimation algorithms explicitly
provide deterministic bounds on the error, with set-valued
observers being one of the few examples [4]. However,
their applications are often limited due to requiring linear
or highly structured control systems [5]. Similarly, interval
observers [6] are commonly utilized for providing time-
varying bounds, yet they suffer from similar system restric-
tions as set-valued observers. Although there are observer
design techniques providing offline error bounds [7], they
tend to be too conservative due to the worst-case nature of
their formulation/computation.

Other strategies that focus on different guarantees offer
asymptotic or ISS properties in the presence of noise [8].
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In the context of safety, asymptotic properties tend to be
less useful since safety is to be enforced at each time instant
and not just asymptotically. Moreover, ISS bounds tend to be
too conservative, given they are typically obtained indirectly,
e.g., via Lyapunov functions.

Many control barrier function frameworks use ISS ob-
servers to ensure the safety of the closed-loop system [9].
Other works use disturbance observers [10] to derive con-
trollers capable of dealing with disturbances or use robust
Lyapunov functions [11] to cope with measurement errors.
All of these techniques, however, rely on worst-case offline
characterizations of the estimation error. As these bounds
tend to be very conservative, the guarantees of these methods
became less useful.

In contrast with the previously described results, online
bounds offer the promise of reducing conservatism since they
can adapt to the evolution of the system and the available
measurements. Recently, some of the authors introduced a
new technique to compute online error bounds for observers
designed via Savitzky-Golay filtering [12]. In this paper,
we extend the scope of the previous work and improve
its performance while maintaining a minimal computational
footprint. We numerically validate our theoretical results
in several examples, including an in-host model describing
the evolution of COVID in infected patients. In particular,
this example illustrates how the choice of sampling rate is
essential since error bounds can be substantially tightened
by increasing the measurement frequency.

The main contributions of this paper are thus threefold:
1) We generalize the results in [12] by using arbitrary

smooth functions to approximate the data rather than
polynomials.

2) We further extend the theoretical analysis in [12] by
decoupling the estimator choice from the error bounds,
thereby providing tighter error bounds on the state
estimates.

3) We show how the error bounds are practically useful
for monitoring the evolution of COVID infections in
patients.

II. PROBLEM SETUP

We start by considering a nonlinear control system given
by:

ẋ = f(x, u)
y = h(x, u),

(1)

where x ∈ Rn represents the state of system, u ∈
Rm the control input, y ∈ Rp the output, and both
f : Rn × Rm → Rn and h : Rn × Rm → Rp are sufficiently
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regular maps to ensure existence and uniqueness of solutions.
Our objective is to estimate the state x(t) given N + 1
noise corrupted measurements {ym0, ..., ymN}, at discrete
time instants {t0, ..., tN}, where ym(t) = y(t) + w(t), and
w represents measurement noise. Denoting by y(d) ∈ Rp the
derivative of order d of y with respect to time and u(d) ∈ Rm

as the derivative of order d of u with respect to time, our
approach is based on the following notion of observability.

Assumption 1. The control system (1) is differentially
observable of order d. In particular, there exists a continuous
function L that maps the d derivatives of the output y(t) and
input u(t) to the state x(t), i.e.:

(y(t), ẏ(t), ..., y(d)(t), u(t), u(t), ..., u(d)(t))
L7−→ x(t). (2)

Under mild assumptions, see [13, Chapter 4], differential
observability is known to be a generic property and thus a
good starting point for out theoretical developments. Fur-
thermore, under assumption 1, the problem of estimating the
state is reduced to the problem of estimating the derivatives
of the output. Hence, the problem addressed in this paper is:
how to estimate the derivatives of the output so as to provide
an online error bound on the resulting state estimate?

III. ESTIMATING DERIVATIVES AND
COMPUTING ERROR BOUNDS

A. Computing Derivatives

From the differential observability assumption, it is clear
that as long as we can estimate the first d derivatives of the
output, it is possible to estimate the state of the nonlinear
system. Thus, in this section, we focus on computing the
derivatives of the output.

Let us start by assuming the output, y, to be d + 1
times continuously differentiable and one dimensional, as
the extension to the multidimensional case is straightforward.
Using the measurements of y at the instants {t0, t1, . . . , tN}
we construct a function g : R → R approximating y on the
interval [t0, tN ]. Our results are agnostic to how g is com-
puted as long as it is d+1 times continuously differentiable.
In practice, g is described by a finite number of parameters
(e.g., a polynomial), and we find the parameters that lead to
the best fit of g(ti) to y(ti) for all i ∈ {t0, t1, . . . , tN}.

Lastly, we exploit the fact that g approximates y, and,
similarly to Savitzky-Golay filtering [13], approximate the
first d derivatives of y by differentiating the smooth function
g.

B. Computing the Derivatives’ Error

Although g may approximate well y at the discrete time
instants, there is no guarantee that it may also do so at every
point in [t0, tN ]. To estimate the worst-case fit between g and
y, we use the idea of residual interpolant commonly used in
functional approximation. In this case, we use a degree-d
polynomial defined by:

r(si) := y(si)− g(si), ∀si ∈ D, (3)

where D := {s0, ..., sd} ⊆ {t0, ..., tN}, and d > 0. Note that
r is uniquely determined since it is a polynomial of degree
d interpolating d+1 points.

Our first and foremost result uses the residual polynomial
to compute an exact equality for the estimation error e(k) :=
y(k) − g(k), where k ∈ N. Beforehand, we define vi ∈ R≥0

as the time instant where the i-th zero of e(k) − r(k) occurs.
Theorem 1. For any t ∈ [s0, sd], the following equality

holds:

e(k)(t) = r(k)(t) +
e(d+1)(ξt)

(d− k + 1)!

d−k∏
i=0

(t− vi), (4)

where ξt ∈ [s0, sd] is a function of t.
Proof. Let us start by defining the function q : R → R as:

q(t) := e(t)− r(t). (5)

It follows by construction that q(t) = 0, ∀t ∈ D. Since
D has d+ 1 elements, q has at least d+ 1 zeros. Hence, by
Rolle’s Theorem, q(k) has at least d− k+1 zeros, and thus,
we define V := {v0, ..., vd−k} as the set containing d−k+1
zeros of q(k).

We now define a family of functions ht : R → R
parameterized by t ∈ [s0, sd]:

ht(z) = q(k)(z)− αt

d−k∏
i=0

(z − vi), (6)

for some αt ∈ R. The parameter αt, a function of t, is
defined so that the equality ht(t) = 0 holds for every t.
Such choice of αt exists since for t = vi, both q(k)(t) and∏d−k

i=0 (t−vi) are zero and the choice of αt is inconsequential.
When t ̸= vi, then αt exists since

∏d−k
i=0 (t−vi) is non-zero.

When αt ensures ht(t) = 0, we assert that ht(z) has d −
k+ 2 zeros, namely z = vi and z = t. Hence, using Rolle’s
Theorem there exists some ξt ∈ R such that h(d−k+1)(ξt) =
0. Thus, we compute αt as:

0 = h
(d−k+1)
t (ξt) = q(d+1)(ξt)− αt(d− k + 1)!

= e(d+1)(ξt)− αt(d− k + 1)!

⇒ αt =
e(d+1)(ξt)

(d− k + 1)!
.

(7)

Finally, using (6), for any t ∈ [s0, sd] the error e(k)(t) is
given by:

e(k)(t) = r(k)(t) +
e(d+1)(ξt)

(d− k + 1)!

d−k∏
i=0

(t− vi). (8)

■
This approach provides an exact formula for the error at

any t ∈ [s0, sd], however, in practice, we do not know where
the zero of h(d−k+1) occurs, and therefore we cannot find ξt.
Thus, our next step is to use Theorem 1 to design an online
bound that can be computed using the available information,
i.e., known bounds on y and g, the model of the control
system, and the available measurements.
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C. Computing Error Bounds

We transform equality (8) into a bound that can be
computed online by first considering the case where k = 0
and then extending such bound for 0 < k ≤ d.

Beforehand, we note that providing error bounds for the
estimates of output derivatives without any assumptions
on the differentiated signal is impossible. Thus, we make
general assumptions on this signal, such as the knowledge
of a bound on one of its derivatives.

Assumption 2. There exist constants Yd, Gd,W ∈ R+
0 such

that for every ξt ∈ [s0, sd] the following inequalities hold:
Yd ≥ |y(ξt)(d+1)| and Gd ≥ |g(ξt)(d+1)|, and for all t ∈
[s0, sd], W ≥ |w(t)|.

In practice, it is easier to compute a tighter upper bound
Gd than Yd since we can choose the function g. Now, the
first result we derive is a bound on the estimation error
between the measured output ym := y + w and the smooth
estimation model g. Beforehand, let us denote the Lagrange
basis polynomials for D as li : R → R with i = 0, 1, ..., d,
defined as:

li(t) =
∏

sj∈D\si

t− sj
si − sj

. (9)

This polynomial basis ensures the residual follows (3),
allowing us to separate two different components, the error
of the noisy measurements e(t) +w(t), and the noise signal
w(t).

Corollary 1. Let d > 0, and assume the existence of an
upper bound σ > 0 for the maximum inter-sample time, i.e.,
si+1 − si ≤ σ for all i ∈ {0, 1, . . . , d − 1}. The following
inequality holds:

|e(t)| ≤
∣∣∣ ∑
si∈D

li(t)(e(si) + w(si))
∣∣∣

+
∑
si∈D

∣∣∣li(t)∣∣∣W +
(Yd +Gd)σ

d+1

4(d+ 1)
.

(10)

Proof. We bound the estimation error by:

e(t) = e(t) + w(t)− w(t)

≤ |e(t) + w(t)|+W,
(11)

and bound the residual as follows:

r(t) =
∑
si∈D

li(t)e(si)

≤
∣∣∣ ∑
si∈D

li(t)e(si)
∣∣∣

≤
∣∣∣ ∑
si∈D

li(t)(e(si) + w(si))
∣∣∣+ ∣∣∣ ∑

si∈D

li(t)w(si)
∣∣∣

≤
∣∣∣ ∑
si∈D

li(t)(e(si) + w(si))
∣∣∣+ ∑

si∈D

∣∣∣li(t)∣∣∣W.

(12)

Then, we use (12) and (8) to bound |e(t)| by:

|e(t)| ≤
∣∣∣ ∑
si∈D

li(t)(e(si) + w(si))
∣∣∣+ ∑

si∈D

∣∣∣li(t)∣∣∣W
+

Yd +Gd

(d+ 1)!

d∏
i=0

|t− vi|.
(13)

Now, we consider the worst-case scenario, when t is
exactly at the center of either [s0, s1] or [sd−1, sd]. In that
case, there are exactly d + 1 zeros and their distance to t
ranges from 1/2σ up to dσ. We note that the first two zeros
both have a distance of 1/2σ, since t is in the middle of two
samples. Therefore, we use the bound:

Yd +Gd

(d+ 1)!

d∏
i=0

|t− vi| ≤
(Yd +Gd)σ

4(d+ 1)!

d∏
i=1

iσ

≤ (Yd +Gd)σ
d+1

4(d+ 1)
.

(14)

Finally, we substitute (14) into (13) to compute the overall
bound as:

|e(t)| ≤
∣∣∣ ∑
si∈D

li(t)(e(si) + w(si))
∣∣∣

+
∑
si∈D

∣∣∣li(t)∣∣∣W +
(Yd +Gd)σ

d+1

4(d+ 1)
.

(15)

■
The strategy in the proof of Corollary 1 can also be

exploited to obtain a bound when k > 0.
Corollary 2. Let d > 0, d ≥ k > 0, and assume the

existence of an upper bound σ > 0 for the maximum inter-
sample time, i.e., si+1− si ≤ σ for all i ∈ {0, 1, . . . , d−1}.
The following inequality holds:

|e(k)(t)| ≤
∣∣∣ ∑
si∈D

l
(k)
i (t)(e(si) + w(si))

∣∣∣
+

∑
si∈D

∣∣∣l(k)i (t)
∣∣∣W + (Yd +Gd)σ

d−k+1

(
d

k − 1

)
.

(16)

Proof. Let us begin by reconsidering the bound (13), and
the worst possible scenario, when t is equal to s0 or sd. In
that case, we know there are d − k + 1 zeros, each with a
maximum distance to t ranging from kσ to dσ. Therefore,
we use the bound.

1

(d− k + 1)!

d−k∏
i=0

|t− vi| ≤
1

(d− k + 1)!

d∏
i=k

iσ

≤ σd−k+1d!

(d− k + 1)!(k − 1)!
.

≤ σd−k+1

(
d

k − 1

)
.

(17)
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Finally, the overall bound is given by:

|e(k)(t)| ≤
∣∣∣ ∑
si∈D

l
(k)
i (t)(e(si) + w(si))

∣∣∣
+

∑
si∈D

∣∣∣l(k)i (t)
∣∣∣W + (Yd +Gd)σ

d−k+1

(
d

k − 1

)
.

(18)

■

D. Gaussian Estimator

In this section, we exploit the flexibility afforded by the
ability to choose the function g. In prior work [12] g was
assumed to be a polynomial. Instead, we consider a sum of
Gaussians and show in section IV how this choice leads to
tighter error bounds.

The Gaussian estimator is constructed from N + 1 mea-
surements using n < N + 1 Gaussian functions:

γi(t) = e
−(t−ti)

2

2c2 , (19)

where ti ∈ [t0, tN ] represents the center of γi and c ∈ R>0

is the standard deviation. The function g(t) is then defined
as:

g(t) =

n−1∑
i=0

θiγi(t), (20)

where θ = [θ0, . . . , θn−1] ∈ Rn is a constant parameter to
be chosen so as to maximize the fit between y(ti) and g(ti).
To compute θ, we consider γ = [γ0, . . . , γn−1], and solve
the least-squares problem formulated as:

θ = argmin
θ

N∑
i=0

||ym(ti)− γ(ti)θ||22. (21)

The function (20) can approximate arbitrarily well n points
given n Gaussian functions and an appropriate c. In practice,
however, we found it preferable to use a smaller number of
Gaussians to reduce the impact of measurement noise. The
reason for using Gaussian functions comes from the larger
number of parameters to tune, which empirically leads us
to conclude that these functions are able to provide better
bounds.

IV. SIMULATION RESULTS

In this section, we show, via numerical simulations, how
the proposed results improve upon the polynomial observer
in [12]. We also consider the concrete example of estimating
the internal states of patients infected with COVID when
using an in-host model describing the evolution of the
infection.

A. Improvement in error bounds

Consider the first example presented in [12], i.e., the
Lorenz attractor system, defined by:

ẋ1 = s(x2 − x1)

ẋ2 = x1(ρ− x3)− x2, y = x1,

ẋ3 = x1x2 − βx1

(22)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2
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Polynomial Error
Gaussian Error
Polynomial Bound
Gaussian Bound

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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150

y(1
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time [s]

0

2000

4000

6000

8000

10000

y(2
)

Fig. 1. Comparison of the error and bound of the first two derivatives
of the Lorentz system between the degree-2 polynomial and the Gaussian
estimator.

where s = 7, ρ = 45 and β = 5.5. The output estimation is
based on a sampling window with 21 samples and a 100Hz
sampling rate. The Gaussian estimator used 5 Gaussian
functions, each with a standard deviation of c = 0.15.
To display the power both observers have to cope with
measurement noise, a white noise signal was added to the
output y, with a standard deviation of 0.15 and W = 0.5. The
result in Fig. 1 used a degree-2 polynomial observer, while
the results in Fig. 2 and Fig. 3 used a degree-3 polynomial
observer.

Firstly, as depicted in Fig. 1, it is evident that the Gaussian
estimator exhibits a much lower estimation error compared
to the polynomial while having a similar error bound, with
an equal floor but a lower peak. The main factor contributing
to the high estimation error in the case of the degree-2
polynomial function is the choice of the order of the observer.
To prevent a larger estimation bound on the derivatives, we
opted for a lower-order polynomial than the one required
by the Lorenz system. Consequently, the estimation function
was not well-suited for the highly nonlinear output, leading
to an estimation error that reached a peak of 3 in the output
and 75 in the derivative.

The output estimation presented in Fig. 2 depicts the
estimation results with a degree-3 polynomial. While this
approach led to a significant reduction in estimation error,
it also resulted in an increase in the error bound. The
reason behind not using a larger degree polynomial lies in
the limitation of the previous work [12], which could not
increase the degree of the polynomial, without loosening
the bounds. In contrast, the Gaussian estimator displayed
a superior bound and yielded better estimation results. This
comparison shows how decoupling the estimation function or
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104

Fig. 2. State estimation error and bounds of the Lorentz system between
the degree-3 polynomial and the Gaussian estimator.

model from the polynomial order of the residual allows for
a more effective estimation function without compromising
the error bound.

Finally, Fig. 3 displays how the state estimation bound
was influenced by the change in output bound shown in Fig.
2. While the third state has a bound which does not provide
much information, this is caused by the estimation of x3

requiring the second derivative of x1. We conclude from this
result that our work enables tighter bounds, allowing a better
state estimation result without compromise.

B. Applications to Epidemiology

We now present the application to an epidemiological
model, specifically the Target Cell Limited (TCL) model for
acute infections [14], [15], where the in-host dynamics are
described by the following set of differential equations:

U̇(t) = −βU(t)V (t)

İ(t) = βU(t)V (t)− δI(t)

V̇ (t) = pI(t)− cV (t).

(23)

Here, U [cells] denotes the number of unin-
fected/susceptible cells; I [cells] denotes the number
of infected cells; and V [copies.mL-1] represents the
concentration of viral particles The model parameters β
[mL.copies-1.day-1] represents the infection rate of healthy
cells, δ [day-1] represents the death rate of infected cells,
p [copies.mL-1.cells-1.day-1] represents the viral replication
rate, and c [day-1] represents the clearance rate of the virus.
The observable output, y(t), of this model will be the
viral load, V (t), which can be measured at discrete time
instances using testing methods such as ddPCR [16]. We
also note that this model satisfies the property of being

Fig. 3. State Bounds for the polynomial and the Gaussian estimators. Each
bound is shaded differently, and the darker green indicates the area where
the bounds overlap.

differentially observable, with the mapping between the
output and internal states being given by:

V = y

I =
1

p
(ẏ + cy)

U =
1

pβy
(ÿ + (δ + c)ẏ + δcy).

(24)

It is important to note that the state U is only observable
for non-zero viral load, as the mapping is only well defined
when y ̸= 0.

In our simulations, we look at the scenario where an
infected patient is being closely monitored in urgent care,
with viral load measurements being taken at intervals of 6
hours. In such a situation it is critical to accurately estimate
the amount of uninfected and infected cells within the
patient, to assess the patient’s condition and make informed
decisions regarding the patient’s treatment and care plan.

Fig. 4 shows the evolution of the internal states of such
a host, undergoing a viral infection. The model parameters
used were β = 1×10−8, δ = 1.07, p = 2 and c = 2.3. These
values were sampled from the parameter ranges determined
for modeling the infection process of COVID-19, based on
collected data [15]. The graphical results show the effective-
ness of the proposed observer in accurately estimating all the
internal states throughout the entire infection period, as well
as producing precise estimation error bounds for I and V.
However, we note that the error bound for the estimate of U
diverges when the viral load is extremely low, as the output
to state map approaches a singularity. But, this divergence
occurs either during the early stages of infection or when the

7732

Authorized licensed use limited to: UCLA Library. Downloaded on March 09,2025 at 00:26:36 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4. Estimation of states in the TCL viral dynamics model using
Gaussian estimators, with N = 6 and n = 5

Fig. 5. Comparison of estimation error and error bound for states in the
TCL viral dynamics model using Gaussian estimators, with N = 6 and
n = 5, for sampling times of 6 hours and 12 hours

host is nearing recovery, both of which are comparatively less
severe situations. In contrast, during the more critical phase
of the infection, characterized by a high level of infected
cells and viral load, the observer bound for U converges
to a significantly smaller range, providing a more confident
estimate.

Fig. 5 compares the estimation error and the associated
bound obtained for the same patient being tested at two
different sampling frequencies; once every 6 hours and once
every 12 hours. This highlights the importance of using a
sufficiently high sampling rate to obtain a precise bound on
the estimation error, as it can be observed that decreasing the
sampling time by a factor of 2 has reduced the error bound
by more than an order of magnitude.

Our algorithm provides tight bounds on the estimation
error provided the sampling rate can be chosen sufficiently
high, as depicted in the studied case, where a sampling
period of 6 hours was used. As testing becomes cheaper,
this provides an excellent opportunity to closely monitor the
evolution of the infection in the hospitalized population.

V. CONCLUSION

In this paper, we introduce a Savitzky-Golay observer
with improved error bounds. Our contribution improves on
previous work by allowing for non-polynomial approximat-
ing functions which, in turn, lead to tighter error bounds

by working with, e.g., sums of Gaussian functions. The
algorithm has been compared with prior work, showing
notable enhancements in performance.

Furthermore, we applied the algorithm to address an epi-
demiological problem, displaying its practical utility in real-
world scenarios. Several questions remain open for future
research such as the choice of approximating functions and
the optimal choice of the set D.
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