AuthSaber: Automated Safety Verification of OpenlD Connect

Programs
Tamjid Al Rahat Yu Feng Yuan Tian
University of California, Los Angeles University of California, Santa University of California, Los Angeles
Los Angeles, California, United States Barbara Los Angeles, California, United States

tamjid@ucla.edu

Santa Barbara, California, United

yuant@ucla.edu

States
yufeng@cs.ucsb.edu

Abstract

Single Sign-On (SSO)-based authentication protocols, like OpenID
Connect (OIDC), play a crucial role in enhancing security and pri-
vacy in today’s interconnected digital world, gaining widespread
adoption among the majority of prominent authentication service
providers. These protocols establish a structured framework for
verifying and authenticating the identities of individuals, organiza-
tions, and devices, while avoiding the necessity of sharing sensitive
credentials (e.g., passwords) with external entities. However, the
security guarantees of these protocols rely on their proper im-
plementation, and real-world implementations can, and indeed
often do, contain logical programming errors leading to severe at-
tacks, including authentication bypass and user account takeover.
In response to this challenge, we present AuthSaber, an automated
verifier designed to assess the real-world OIDC protocol implemen-
tations against their standard safety specifications in a scalable
manner. AuthSaber addresses the challenges of expressiveness for
OIDC properties, modeling multi-party interactions, and automa-
tion by first designing a novel specification language based on linear
temporal logic, leveraging an automaton-based approach to con-
strain the space of possible interactions between OIDC entities, and
incorporating several domain-specific transformations to obtain
programs and properties that can be directly reasoned about by
software model checkers. We evaluate AuthSaber on the 15 most
popular and widely used OIDC libraries and discover 16 previously
unknown vulnerabilities, all of which are responsively disclosed to
the developers. Five categories of these vulnerabilities also led to
new CVEs.

CCS Concepts

« Security and privacy — Web application security; Logic and
verification; Security requirements; « Theory of computation
— Program verification; Verification by model checking.

Keywords

OpenlID Connect security; single sign-on; safety verification; auto-
mated analysis; authorization; authentication;

® This work is licensed under a Creative Commons Attribution
o International 4.0 License.

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA.
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3670318

ACM Reference Format:

Tamjid Al Rahat, Yu Feng, and Yuan Tian. 2024. AuthSaber: Automated
Safety Verification of OpenID Connect Programs. In Proceedings of the 2024
ACM SIGSAC Conference on Computer and Communications Security (CCS
’24), October 14-18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3658644.3670318

1 Introduction

Single Sign-On (SSO) protocols such as OpenID Connect (OIDC) [41]
have gained widespread adoption across various industries [27, 39]
in recent years, as organizations recognize their value in bolstering
security, streamlining access management, and enhancing interop-
erability. These protocols play a pivotal role in the current digital
ecosystem as they eliminate the need for users to manage multi-
ple usernames and passwords while providing enhanced security
through centralized authentication and authorization. Moreover,
OIDC contributes to a seamless and efficient user experience, lead-
ing to increased productivity and reduced support costs. Through
integration with diverse authentication service providers, OIDC
establishes a fundamental foundation for convenient, secure, and
scalable identity management. Therefore, ensuring the security and
correctness of the implementation of these protocols is of utmost
importance.

While OIDC protocol offers numerous benefits, it can be vulnera-
ble to severe security attacks if not implemented correctly. Security
guarantees of these protocols are only as strong as the implemen-
tation that enforces them. Unfortunately, the current security of
the protocol holds mostly at the specification level [41], whereas
real protocol implementations in the wild often have logical errors
leading to severe attacks [18, 37, 45]. Recent years have witnessed
a growing number of security attacks across the web stemming
from these implementation errors. For instance, in 2023, a bug [38]
in Microsoft’s OIDC implementation allowed hackers to breach
over two dozen organizations via forged tokens used to access
Azure service. Grammarly recently fixed a security flaw [24] in
its implementation of access token verification which could allow
attackers to hijack user accounts. Similar OIDC vulnerabilities have
been discovered earlier in popular online services like Booking and
Expo [17]. The presence of errors in the protocol implementation
of these esteemed authentication service providers underscores the
urgency of developing analysis tools to enhance the security of
OIDC implementation.

Prior research efforts in developing security analysis tools for
SSO protocols can be, in general, divided into two categories: bug de-
tection and verification. Most bug detection techniques [26, 46, 47]
look for syntactic or semantic patterns that are highly correlated

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA.

with security vulnerabilities (e.g., token leakage) observed in the
protocol flows. These patterns often require upfront knowledge
about the lower-level details (e.g., specific data flows, source and
sink APIs, etc.) of the programs, leading them to be error-prone
and incomplete. In addition, most of these solutions rely on ap-
proximated static analysis and lack precision in practice. These
limitations not only reduce the scope of checkable properties but
also lead to significant false positive and false negative cases. On
the other hand, previous efforts in formal verification within this
domain [22, 25] concentrate on protocol design rather than its imple-
mentation. Moreover, these approaches require manual translation
of both protocol interactions and specifications into correspond-
ing formal models, which can then be consumed by off-the-shelf
verifiers like Tamarin Prover [36] or Alloy [29]. However, manu-
ally or semi-automatically translating complex interactions within
the real-world protocols’ programs can be error-prone and ineffi-
cient, rendering them impractical for large-scale evaluations. Con-
sequently, it is crucial to design an automated verification toolkit
to ensure that the protocol implementation conforms to its safety
specifications.

However, developing an automated verifier for checking OIDC
programs against their standard safety specifications is quite chal-
lenging, primarily due to the following reasons: 1) C1 (Expres-
siveness): The core specification of OIDC [41] is written in dozens
of pages in plain English, and incorporates more than ten other
protocols (e.g., OAuth [48], JWT [32], etc.), making the security
behavior of the protocol challenging to express. Additionally, many
safety properties require complex reasoning about temporal rela-
tionships that go beyond the expressiveness of prior works [46, 47]
relying on simple data- and control-dependencies. 2) C2 (Multi-
party interactions): Unlike traditional programs that have single
or a few entry points, OIDC implementations typically involve com-
plex interactions among multiple parties (e.g., identity providers,
relying parties, etc.). Prior works in this domain only analyze a
portion of the protocol (e.g., the relying parties [5, 26, 46] or the
providers [47]), and consider the remaining pieces as black boxes—
which significantly limits the assurance guarantee and the scope of
safety properties that can be verified. On the other hand, a naive ap-
proach can lead to prohibitive performance issues by enumerating
all possible combinations of interactions or false negatives by choos-
ing interactions in an ad-hoc manner. Therefore, it is non-trivial to
automatically model the complex interactions among different par-
ties into a unified model. 3) C3 (Automation): Mainstream OIDC
implementations are coded in high-level programming languages
like Java and Javascript. Consequently, neither OIDC programs nor
their specifications (containing domain-specific information) can
be directly analyzed by existing program verification tools [15, 34].
Therefore, devising an automated approach that accommodates
complex protocol features implemented in various programming
languages is both critical and challenging.

Our approach. To address the above-mentioned challenges, we de-
sign and implement AuthSaber, an automated verifier for checking
OIDC implementations against their security behavior (i.e., safety
properties) defined by the standard specification. To address the
challenge C1, we design AuthLTL, a highly expressive specification
language that is extended from the standard Linear Temporal Logic

Tamjid Al Rahat, Yu Feng, and Yuan Tian

(LTL). In particular, AuthLTL augments standard LTL with more ex-
pressive OIDC predicates that allow developers to formally express
the desired safety properties of the protocol, including the tempo-
ral relations between interactions and events involving multiple
parties during the authorization and authentication flows.

Additionally, to address C2, we propose a staged approach that
iteratively constrains the space of valid candidates without compro-
mising the assurance of the verifier. In particular, given an OIDC
implementation together with its Interaction Dependence Graph
(IDG) that over-approximates the interactions among different en-
try points, we leverage an automaton-based algorithm to constrain
the space of potential interactions among multiple parties using
the flow constraints defined by the specification. The output of this
step will lead to an effective harness that only considers interac-
tions among different entry points that are consistent with the flow
constraint enforced by the specification and ignores the spurious
interactions.

Moreover, to address C3, we design several customized trans-
formations that convert OIDC implementations and their speci-
fications to corresponding forms that can be analyzed by exist-
ing software model checkers [15]. For OIDC implementations, we
first compile them to WalalR [53] and then perform a transpila-
tion from WalalR to Boogie IR [7], which can be consumed by the
model checker. On the other hand, since the properties expressed
in AuthLTL contain terms and predicates that are not accepted
by the model checker, we devise a customized transformation that
converts an AuthLTL formula into its equisatisfiable formula in stan-
dard LTL while instrumenting the transpiled program. The model
checker then consumes the resulting new formula and program,
and generates a counter-example if there is a violation.

Findings. We evaluate AuthSaber on the most popular implemen-
tations of OIDC protocol which is currently supported by all major
authentication providers. We verify 24 safety properties across the
15 most popular OIDC implementations and uncover critical se-
curity violations. In total, we identify 16 previously undiscovered
vulnerabilities, posing risks of severe attacks such as user account
takeover and authentication bypass. We responsively disclosed all
vulnerabilities and received acknowledgments for 10 vulnerabilities
from the developers and prominent providers, including Google.
Furthermore, the confirmed violations resulted in the assignment of
five new CVEs (CVE-2023-33292, CVE-2023-35819, CVE-2023-35820,
CVE-2021-44878, CVE—2021—225731). Additionally, AuthSaber also
effectively verified the correctness of patched versions addressing
the known violations previously reported.

Contributions. In summary, we make the following contributions:

o We design a domain-specific specification language AuthLTL
that enables developers to express complex safety properties
of OIDC protocol, including the temporal properties that are
originally described in plain English.

e We design a specialized automated verification approach
tailored for the analysis of real-world OIDC programs. Our
approach adeptly models the multi-party interactions inher-
ent in the OIDC protocol, thereby mitigating the complexity
of the verification problem. Additionally, it transforms safety

!"The record creation date may reflect when the CVE ID was allocated or re-
served and does not necessarily indicate when this vulnerability was discovered"-
www.cve.mitre.org

AuthSaber: Automated Safety Verification of OpenID Connect Programs

properties into standard LTL, facilitating further analysis by
software model checkers.

e We implement the proposed concept in a tool named AuthSaber,
and evaluate its performance across the 15 most popular and
widely adopted OIDC libraries. We identify 16 previously un-
known violations, all of which are reported to the developers
for responsive disclosure. Five categories of these violations
also resulted in new CVEs.

2 Background

We first provide a background of single sign-on (SSO) service, fol-
lowed by its most popular representative OpenID Connect (OIDC)
protocol. To illustrate, we present an example of one of the authen-
tication flows supported by OIDC.

2.1 Single Sign-On (SSO)

Single Sign-On (SSO) is a security and authentication mechanism
that enables users to access multiple applications or services with
a single set of login credentials. The purpose of SSO protocols is to
provide a secure and reliable means of identifying individuals and
ensuring that they are who they claim to be in the digital space.
These protocols are used in various contexts, such as online bank-
ing, e-commerce, social media, and government services. Some
common examples of SSO protocols include OpenID Connect [41],
OAuth [48], and SAML [49]. SSO protocols typically involve the
exchange of digital tokens or credentials that a trusted authority,
such as a certification authority or identity provider, can verify.
The protocol, in general, specifies how these tokens are created,
transmitted, and validated in a secure fashion, as well as how ac-
cess to resources or services is granted based on the authorization
obtained from the end users.

I
Relying Party (RP) OpenlD Provider (OP)

Discovery: establishes
credentials (e.g., keys, urls, etc.)

Authrequest: client Id, scope

User
authorizes
Validates

code

i
Verifies
Auhcode | | _ Access token request: auth code |
le e ke D ek
Verifies
both tokens | _ _ User resource request: access _token_ |

Figure 1: Interactions between the Relying Party (RP) and
OpenlID Provider (OP) during the authentication process of
Authorization Code Flow in OIDC.

2.2 OpenlD Connect

Among all SSO protocols, OpenID Connect (OIDC) is the most pop-
ular and supported by nearly all major identity service providers,
including Google, Microsoft, and Amazon. OIDC is an authentica-
tion protocol [41] allowing users to authenticate themselves across
different web and mobile applications. It is built on top of the OAuth
2.0 protocol, which provides authorization for accessing resources.

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA.

OIDC utilizes an identity layer added on top of the authorization
flows, which allows the clients to authenticate end users using their
existing accounts. Precisely, a user authenticates with the OIDC
provider’s authorization server and receives an ID Token, a JSON
Web Token (JWT) [32] formatted string that contains information
about the user’s identity, such as their name and email address
as payload along with a signature component that can be crypto-
graphically verified by the recipient. The ID token is then used to
authenticate the user to a web or mobile application, which can
then authorize the user to access resources or services. The pro-
tocol relies on communication between multiple parties, such as
the Relying Party (RP), OIDC Provider (OP), and users. It provides
support for three authentication flows that can be implemented by
the participating parties: (1) Authorization Code Flow, (2) Implicit
Flow, and (3) Hybrid Flow. Each flow defines the transactions that
occur between multiple parties during the authentication process.
Figure 1 illustrates an example of an Authorization Code Flow,
where upon establishing the discovery of credentials, RP initiates
an authentication request. The OP then issues an authorization code
upon successful authorization from end users. RP then verifies the
code and exchanges it for an access token along with an ID token.
Finally, RP verifies the authenticity of the tokens and exchanges
the access token for user resources.

3 Overview

We now outline the threat model followed by a running example
of OIDC implementation to discuss the overview of AuthSaber.

3.1 Threat model

Our objective in this work is to verify the OIDC protocol imple-
mentations (i.e., programs) against the standard security behavior
expressed as safety properties. We assume that an attacker may
attempt to impersonate legitimate users and/or other participat-
ing entities such as relying parties and service providers to gain
unauthorized access to the resources of users and clients. Hence,
malicious actors can be users, client applications, and even autho-
rization servers (i.e., deployed by attackers) during the protocol ex-
ecution. Attackers may exploit vulnerabilities in the authentication
flows implemented by these entities, aiming to gain unauthorized
access or privileges. In addition, attackers may intercept and mod-
ify communication exploiting any insecure client applications or
devices running the applications. Precisely, attackers may utilize
the supported OIDC endpoints [41] to exploit the authentication
access control flow during the protocol execution. This exploitation
may also enable them to eavesdrop on, tamper with, or inject mali-
cious parameters (e.g., tokens) into the protocol endpoints, thereby
compromising the integrity and confidentiality of the authorization
and authentication. It is essential to note that we assume attackers
do not possess the capability to directly modify the source code
or binaries of server-side implementations. Additionally, they are
restricted from direct access to the internal storage or databases of
the authorization servers for retrieving information.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA.

1 void processTokenResponse(TokenResponse res) {
2 UserInfo info;

3 String atoken = res.getParam("access_token");
4 if(verifyToken(res)) {

5 info = userInfoRequest(atoken);

6 loginUser(info);

7} else {

8 authError(); //Reject token

.

10 }

11 boolean verifyToken(TokenResponse res) {

12 Client ¢ = Registration.client;

13 IdToken itoken = res.getParam("id_token");
14 Algorithm alg = itoken.getAlgorithm();

15 boolean v = false;

16 if(alg == "none") {

17 //Incorrect: using "none" algorithm

18 //forces to skip signature verification
19 v = JWT.verify(itoken, alg);

20)

21 else if(alg == "hs256") {

22 //Verifies signature using client secret
23 v = JWT.verify(itoken, alg, c.client_secret);
24}

25 [...]

26 if(lv) {

27 return false;

28)

29 return true;

30 }

Figure 2: Code example of an OIDC relying party validating
the id token received as a response from the provider during
the authentication flow. When validating the id token (line
11), it accepts ‘none’ as a valid algorithm value for the token,
which enforces the verify function (line 19) to skip the sig-
nature verification for the token. This enables attackers to
bypass the signature verification by injecting a maliciously
crafted id token with an altered algorithm value in its un-
protected header.

3.2 Running example

Figure 2 illustrates a critical security mistake when validating the
id token received from the OIDC provider during an authentica-
tion flow. Here, id token contains a cryptographically verifiable
signature component that prevents attackers from injecting mali-
ciously crafted tokens. Therefore, incorrect validation of id token
could be exploited to bypass authentication during the execution of
OIDC protocol. The example is motivated by a vulnerable imple-
mentation of OIDC protocol from the Pac4j [43], a popular library
for identity access management. This example first processes the
response (line 1) received from the token endpoint, which contains
an access token and an id token. The id token contains a signa-
ture that is generated by signing its header and payload component,
which typically are not protected. The code calls the verifyToken
method (line 4) to verify the id_token. Once the id_token is success-
fully verified, it uses the access_token (line 5) at the UserInfo end-
point to obtain user’s information to login the user. If the id_token
is not verified, the token is rejected and the flow is terminated with
an error response (line 8). In verifyToken function, it first extracts
the header algorithm (line 14) of the id_token, and based on the
algorithm value, it uses the verify function provided by JWT [32]
library to verify the signature component (line 16-24) of the token.

Tamjid Al Rahat, Yu Feng, and Yuan Tian

Boogie

v
Program programs Software Model Q

4 Translation Checker
; &

OIDC

Programs @ Valid

entry points

Invalid

W il g8
E;
) @ aligation
0OIDC Authentication flow
Specification constraints
(English)

Figure 3: Schematic workflow of AuthSaber.

Safety Properties. When processing Id Tokens, an important
safety property is: (®1) ‘once an access token is received along
with an id token, it should not be used at the user info endpoint un-
less the id token is verified’ (OIDC ref. §3.1.3.5). At first glance, the
code example seems to satisfy the property ®;. However, there is an
edge case relevant to the id token’s header algorithm, which leads
to a subtle bug due to the discrepancy between the original specifi-
cation and the actual implementation. Particularly, using the ‘none’
as algorithm value enforces the verification algorithm to skip the
signature component of an id_token. Even though the ‘none’ value
must not be used by OIDC for validating id token, it is accepted
as a valid algorithm for JWT tokens. Therefore, another important
safety property to check is: (®2) ‘if a received id token uses ‘none’
as the header algorithm value, the associated access token should
not be used at the user info endpoint’ (OIDC ref. §2, §3.1.3.7).
Unfortunately, the code example depicted in Figure 2 violates
the property @, as it accepts ‘none’ as a valid algorithm when
verifying the signature of the id token. Since using ‘none’ as the
algorithm value enforces the verify function to ignore the signature
component, it eventually allows attackers to bypass authentication
simply by modifying the algorithm value within the unprotected
header component of the id token.
Verification with AuthSaber. AuthSaber can uncover such vi-
olations by verifying OIDC implementations against their safety
properties that describe the unexpected security behavior. Figure 3
illustrates the schematic workflow of our safety verification ap-
proach. To use AuthSaber, the user first needs to provide the secu-
rity properties expressed in AuthLTL, the specification language
in AuthSaber that supports linear temporal logic. For example, the
requirement to verify the id token (®1) can be expressed as follows
in AuthLTL:

O(response(s, arg(access_token) =t A arg(id_token)
= i) = - request(c, arg(access_token) =t) U
verifyToken(i, ret = true))

This AuthLTL property states that if a response from the autho-
rization server s contains an access token t and an id token i, a
request using the token ¢ from client ¢ should not be sent until the
id token i is successfully verified. Since an id token is expected
to contain a signature component that is usually verified by calling
an external JWT [32] function (e.g., verify), a true value returned
from the external call indicates the successful verification of the
token. Similarly, the property of handling the ‘none’ algorithm for

AuthSaber: Automated Safety Verification of OpenID Connect Programs

id token (®2) can be expressed in AuthLTL as follows:

O(response(s, arg(access_token) =t A arg(id_token)
=i Ai.alg = none) = —¢request(c, arg(access_token)

=1))

This property states that if access token t is received (as a response
from the authorization server s) with an id token i whose alg
header value is ‘none’, a subsequent request (e.g., user info request)
using the access token should not be sent.

AuthSaber then verifies the OIDC programs against the safety
properties expressed in AuthLTL. However, unlike regular pro-
grams, an OIDC program typically involves multiple entities (e.g.,
relying party, authorization server, etc.) and each of them has many
entry points to interact with each other. Therefore, constructing
a naive harness required by the model checker can result in both
false negatives (i.e. invoking entry points in an ad-hoc manner) and
scalability problems (i.e., enumerating all possible interactions). To
mitigate these challenges, AuthSaber takes additional authentica-
tion flow constraints as input (defined by the standard specifica-
tion) and preserves a subset of interactions that are consistent with
authentication flow constraints, which dramatically reduces the
complexity of verification without compromising soundness.

In particular, given an OIDC program, AuthSaber first validates
the authentication flow constraints in the programs. If the programs
violate the flow constraints, the verification terminates without
checking the safety properties. Otherwise, the flow validation pro-
cedure returns a harness with a set of entry points that satisfy the
flow constraints.

To verify the implementation of resulting valid entry points of
OIDC protocol against their safety properties in AuthLTL, AuthSaber
utilizes an off-the-shelf LTL model checker [15]. However, main-
stream OIDC programs are mostly written in high-level program-
ming languages like Java and Javascript, and these programs are
not directly accepted by existing LTL model checkers. Furthermore,
to ensure expressiveness, AuthLTL introduces domain-specific con-
structs that go beyond the standard syntax of LTL and are not
consumable by the model checker. To mitigate these challenges,
AuthSaber first translates the input programs into Boogie [33] — a
language-agnostic representation that makes the verification task
tractable for model checking. Second, it automatically transforms
the specification in AuthLTL into their equisatisfiable regular LTL
formulas through our customized program transformation. Finally,
AuthSaber verifies the programs against the transformed safety
properties in LTL. If the programs are not verified, it returns a
counter-example that implies the violated paths in the program.

4 System Design

This section outlines the design and implementation details of
AuthSaber, an automated safety verification tool specifically crafted
to address the scalability challenge posed by multi-party interac-
tions within the OIDC protocol.

4.1 Specification Language
We begin with the details of our specification language that can

be used for expressing the OIDC safety properties based on the
standard specification.

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA.

Syntax. Figure 4 illustrates the formal syntax of our AuthLTL
specification language. AuthLTL is designed to formally express
the safety properties of OIDC that developers or security analysts
intend to verify. Notably, AuthLTL comprises atomic propositions
featuring logical and temporal connectives. However, unlike the
standard LTL where the formulas are defined over propositional
variables, AuthLTL formulas are defined over the OIDC-specific
predicates.

o == Ylorploveleo=oeleoel-e
[0¢|0e|OoleUe
Y == ¢ | verifyToken(t, ¢) | authUser(u, ¢)

| request(d, ¢) | response(s, ¢) | check(f, §)
| call(f,d,¢) | ...
¢ u= ecompe|pAPlPVP|d
olclef]f@) | eopelarg(c) | conf(c)

Figure 4: Syntax of AuthLTL specification.

®
Il

Expressions. AuthLTL expressions include variables v, constants
¢, field variables e.f, binary operations op, and function calls f (7).
We provide an additional construct args(c) that returns the values
mapped against a key constant c in the context of a request or
response instance. Similarly, conf(c) returns the configured value
against the key c. We found these constructs very useful as OIDC
properties require reasoning about the protocol-specific request
and response parameters mapped against certain string constants.
For instance, arg(state) returns the value of the “state” parameter
used in a request used during the protocol interactions. Expressions
can be composed using standard arithmetic and logical operators
to construct more complex expressions ¢.

OIDC predicates. Our domain-specific atomic predicates 7 work
as the cornerstone of AuthLTL formulas as they refer to the events
and actions that occur during the execution of the protocol im-
plementation. For example, predicate verifyToken(t, ¢) is true if
the signature of an id token t is verified in a context that satisfies
predicate ¢. In the context of OIDC, verifyToken(t, ¢) provides an
abstraction of the external JWT [32] API calls that are commonly
used to verify the signature component of the id token with re-
spect to its header algorithm. Similarly, userAuth(u, ¢) predicate
is true if an authorization (from user u) satisfying the predicate ¢
is obtained during the protocol flow. Moreover, request(d, ¢) and
response(s, §) predicates are true if an HTTP request is sent to
an entity d and a response received from an entity s, respectively,
in a context satisfying ¢. Finally, check(f, ¢) is true if a condition
satisfying ¢ is explicitly checked by function f and call(f,d, ¢) is
true if function f is called with arguments @ in a context satisfying
¢. Along with variables, predicates also accept “_” (underscore) to
represent “don’t care”.

Temporal operators. It is common for OIDC protocols to check
properties that require reasoning about the temporal modality of
protocol events. Temporal operators in our specification language
include always (O), eventually (¢), next (O) and until (). Dy sig-
nifies a universal assertion, indicating that condition ¢ holds true
at all steps during the program execution. Conversely, ¢¢ asserts
that ¢ will become true at some point in the future. Og signifies
an immediate successor, stating that ¢ must hold true in the very
next time step. Finally, ¢;1 U ¢z defines a relationship between

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA.

two conditions, specifying that the first condition ¢; remains true
until ¢z becomes true, encapsulating the concept of persistence
and change over time. These operators enable precise specification
and reasoning about the protocol’s execution steps, making them
invaluable tools for analyzing the security behavior and safety of
OIDC programs. Additionally, AuthLTL formulas can be combined
with standard logical connectives (e.g., A, V, =, and —) to express
more complex properties.

ExAMPLE 1. When responding to the authorization code flow to
perform authentication, the server returns an authorization code
(OpenID spec. §3.1.2) that can be exchanged for an id token and (or)
an access token. This flow prevents exposing any tokens directly to
the user agent and other malicious client applications. However, the
specification requires authenticating the user before sending the code
to the client. Since the methods used by the server to authenticate
the end user vary for different service providers, AuthLTL provides
authUser predicate to model user authentication. In addition, gencode
is an OIDC API that returns the code generated by the server. We
encode this property in AuthLTL as follows:

¢ = DO(request(s, arg(response_type) = code
A session = u) = — response(c, arg(code) =
gencode(u, _)) U authUser(u, ret = true))

4.2 Program Translation

Real-world OIDC protocols are implemented in high-level program-
ming languages like Java and Javascript which are not directly
consumed by the model checkers. Hence, we first transform the
original OIDC programs to its corresponding Boogie IR [33]. Specif-
ically, we begin by compiling the OIDC programs to WalalR [53],
a stackless static-single assignment (SSA) form consisting normal
statements like assignments, function calls, conditional jumps, and
so on. We then encode the WalalR statements to their corresponding
Boogie representation.

Boogie language. A Boogie program consists of a set of decla-
rations, which can introduce types, constants, functions, axioms,
variables, procedure declarations, and procedure implementations.
Boogie types include both primitive data types like bool, int, as
well as the user-defined data types and map types. Boogie func-
tions are typically pure, meaning they do not have side effects, and
functions are commonly used to define background theories and lan-
guage properties. Additionally, Boogie procedure implementations
imperatively describe the behavior of a declared procedure and
consist of standard statements like assignments, call, return,
assume and assert.

Functions are uninterpreted by default and their semantics are
quantified through extra axioms. In addition, functions without
arguments are treated as constants. Boogie axioms are used to re-
strict the interpretation of functions and constants. Axioms may
include common operations in programming languages, such as
arithmetic, boolean, function, map, and first-order quantifiers. Un-
like functions, Boogie procedures can have side effects, and they are
commonly used to encode the executable components of input pro-
grams such as functions and constructors. Procedure declarations
can have input and output parameters, and they are used to specify
pre-conditions (requires construct) and post-conditions (ensures
construct) of the encoded methods.

Tamjid Al Rahat, Yu Feng, and Yuan Tian

Memory modeling. Programming languages used for implement-
ing OIDC protocols are typically object-oriented and an important
design choice for translating such languages to Boogie is the rep-
resentation of the memory (i.e., heap). We model the program’s
classes, objects, and fields with the help of a heap, which maps
an object reference and field to values. Since the values can be of
different types, depending on their corresponding field name, we
use a polymorphic map for the heap variable.

EXAMPLE 2. Let’s consider the following example of the Boogie
program illustrating a common pattern of object-oriented memory
modeling.

type Obj;

type Field t;

type Heap = <t>[0bj,Field tlt;

const data: Field t;

const next: Field Obj;

var h: Heap;
This Boogie program defines a nullary type constructor Obj for object
references and a unary type constructor Field for instance fields. It
then declares a constant data, a field of type t, and next, a field
of type Obj. Variable h of type Heap maps from object-field pairs
to value. Thus, given the field data in an object reference o, a field
access expression o.data in the source code can be translated into
expression h[o,data] in Boogie.

Encoding WalalR to Boogie. With the help of the memory model-
ing described above, most of the WalalR expressions and statements
can be translated into Boogie in a syntax-directed way:

(1) As WalalR expressions are already simplified with SSA form,
they can be directly translated to Boogie. We use Boogie’s
int and bool primitive types to represent the integer and
boolean-typed constants in the source program. We model
the arithmetic operations with Boogie functions along with
assertion for operations like integer division.

WalalR’s assign statements can be directly translated to Boo-

gie assignments. For field assignment, we use Boogie’s map

update operation, as explained above.

(3) Method invocations are translated as Boogie procedure calls.
We use the symbol table structure and pointer analysis meth-
ods to precisely infer the values of arguments. However,
Boogie defines specific return variables in procedure declara-
tions. Therefore, we translate the WalalR return statements
to assignments to the defined return variable.

—
N
~

—~
N
=

which is translated by adding an assume statement (i.e.,
assume(expr) or assume(—expr)) on the control-flow path
of the Boogie program.

4.3 AuthLTL to Regular LTL

Our specification language AuthLTL is designed to achieve high
expressiveness for complex OIDC properties, which involve domain-
specific predicates such as verifyToken and authUser (Section 4.1).
This leads us to a new challenge as these predicates are not rec-
ognizable by an off-the-shelf LTL model checker. To mitigate this
challenge, AuthSaber automatically transforms the given AuthLTL
formula ¢ into its equisatisfiable LTL formula ¢’ through instru-
menting the original program ? to P’. Precisely, ¢ and ¢’ are

Conditional branches in WalalR take the form if (expr) goto L,

AuthSaber: Automated Safety Verification of OpenID Connect Programs

AuthLTL expression @

O (response (s, arg(access_token) = at A arg(id_token) = it)
= -request(c, arg(access_token) = at) U verifyToken(it, ret = true))

' V... := response(s, arg(access token) | void handleResponse (HttpResponse res, ..)(
= at A arg(id_token) = it); |

= true;

v

verify(res(id_tokenl);

Program
£

Program| .
EARE verifyToken (it, ret = true); ..

e sendRequest (res[access_tokenl, ..);

; i= request(c, arg(access_token) = at); | Original program P is instrumented with
:= true; | freshly generated variables holding values
assigned for each AuthLTL expressions

AuthLTL expressions are replaced with the
newly introduced program variables v

O(Vees = 2 Veeg U Vver)

Regular LTL Expression ¢

Figure 5: Transformation of AuthLTL formula ¢ to its equi-
satisfiable regular LTL ¢’ while transforming the original
program P to $’.

equisatisfiable in that P’ satisfies ¢’ if and only if P satisfies ¢.
Intuitively, this transformation allows us to bridge the semantic
gap between the AuthLTL properties and the ones in canonical LTL
that can be directly consumed by model checkers.

To transform a given AuthLTL formula ¢ into an equisatisfi-
able LTL formula ¢’, we implement the following steps. First, we
introduce a global mapping that maps AuthLTL’s expressions to
their corresponding program variables. Second, for every domain-
specific predicate ¢/ in a given AuthLTL formula, we introduce a
fresh variable vy, and update the original AuthLTL formula by re-
placing every occurrence of i with the fresh variable v. Finally, we
establish the relation between expressions and their corresponding
fresh variables through instrumentation. Specifically, we instru-
ment the program by assigning the correct value of vy, which is
determined by evaluating the predicate i with respect to the pro-
gram’s execution environment.

ExampLE 3. Figure 5 illustrates the above-mentioned transfor-
mation using an AuthLTL formula discussed in Section 3. The
transformation takes an AuthLTL formula ¢ and a program # as
input, and generates the transformed LTL formula ¢’ along with the
instrumented program $’. As the original AuthLTL formula con-
sists of three atomic predicates response, request and verifyToken,
we introduce three freshly generated boolean variables vyes, 0req
and vyer, respectively, which are replaced by each predicate in the
original AuthLTL formula. Finally, we instrument ¥ by assigning
the correct value to these variables. Since the final step is not trivial,
we explain it in more detail below:

(1) For request(_, ¢) predicate, we assign true the correspond-
ing vyeq variable if the condition ¢ holds right before the re-
quest is sent. Similarly, since response(_, ¢) predicate should
be evaluated after a response is received, its variable vys is
set to true if ¢ holds after the response handler is called.

(2) For the verifyToken(t, ¢) predicate, the boolean variable vyer
is set based on the result returned from external function
verify. Hence, vyer is assigned after verify function is called.

4.4 Safety Verification

In this section, we elaborate on the details of our safety verifier
that is customized for the OIDC domain. Specifically, we propose a
staged approach that first generates an effective harness to constrain

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA.

the space of valid communication among multiple parties through
authentication flow validation enforced by the standard specification,
and then reduces our verification problem to an instance of LTL
model checking.

4.4.1 Authentication Flow Validation. To ensure a sound verifi-
cation, the OIDC implementation needs to be driven by a harness
that simulates all possible interactions of different parties. However,
unlike regular programs with single or a few entry points, OIDC im-
plementations consist of dozens of entry points that can be invoked
by the participating entities (e.g., relying party, OIDC providers,
etc.) to finish the desired authorization and authentication services.
In this case, a naive harness, which exhaustively enumerates all
combinations of entry points to verify safety properties is techni-
cally sound but prohibitive in practice due to the unbounded search
space. On the other hand, a harness that invokes entry points in an
ad-hoc manner could result in false negatives.

recvRequest authnFaile

d

getConsent

Figure 6: Automata representation of the authentication flow
constraints for the OIDC implicit flow defined (in English)
by the specification.

Key observation. In addition to safety properties that can be ex-
pressed in our language in Section 4.1, the OIDC specification [41]
also suggests authentication flow constraints that should be con-
formed by OIDC implementations. For instance, here is an example
of the original constraint of the Implicit Flow for authentication
from the specification (in English):

(1) Client prepares an authentication request and sends the re-

quest to the authorization server.

(2) Server authenticates the user and obtains user’s authoriza-

tion.

(3) Server sends back the user to the client with an ID Token.

(4) Client validates the ID token and retrieves the user’s subject

identifier.

Note that the above flow constraint not only mentions relevant
parties (i.e., client and server.) of the protocol but also specifies the
key actions and their temporal sequence that should be performed
by each party. Since a harness that violates the authentication flow
is not recommended, our key insight is to decompose the origi-
nal unbounded verification problem to a staged approach: 1) we
first construct a finite state machine that formalizes the seman-
tics of flow constraint, 2) construct an augmented state machine
representation of OIDC implementation that encodes all possible
paths of communication, and finally, 3) generate an effective har-
ness that only invokes valid authentication flows by computing

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA.

(Client)

——> Internal dependenc
> Extemnal dependency

[Relying party)

=,

Model

\@ I \
| G .

Anr
- & |

Automata for authentication flow
Ane

Selected program entrypoints
o

Figure 7: Authentication flow validation approach imple-
mented by AuthSaber which first models the interaction
between the entrypoints of each participating OIDC entities
as IDG. The IDG model is then validated against the flow
constraints defined by the standard OIDC specification and
the resulting (valid) endpoints are then processed for safety
verification using model checking.

the intersection between the flow constraints and the augmented
program.

Step 1: Authentication flow constraints. Our first step is to
convert the authentication flow constraint in English into its for-
mal specification using finite state machine ¢, 5. Figure 6 shows a
finite state machine that corresponds to the flow constraint at the
beginning of Section 4.4.1. In particular, each node (s;) denotes a
representative state of a different party (i.e., client vs. server.). Each
transition represents an authentication action that leads a party
to a new state specified by the flow constraint. We use solid and
dashed arrows to represent transitions within a single entity and
multiple entities, respectively. Once the client receives an authen-
tication response from the server at state co, according to the last
step of the flow constraint from OpenlID specification (i.e., “Client
validates the ID token and retrieves the user’s subject identifier"),
the client should first check the validity of the token (state c¢1) and
then retrieves the user’s subject identifier at state c;. We omit the
formal definition of flow constraint since it can be easily translated
from the original English description.

Step 2: Interaction Dependence Graph (IDG). Given the entities
of the OIDC implementation, AuthSaber constructs its Interaction
Dependence Graph (IDG) that over-approximates the interactions
(i.e., communication via different entry points.) among the entities.
Specifically, IDG is a graph G(V, Ein, Eex) where:

(1) V is a set of vertices, where each v € V represents an entry
function that communicates (i.e., via network APIs) with
other entities of the protocol.

(2) Eip are solid arrows that encode internal data dependencies
among entry functions within the same entity. Precisely,
(v,0") € Eiy indicates that v depends on the data from o
during the protocol interaction.

Tamjid Al Rahat, Yu Feng, and Yuan Tian

(3) Eex are dashed arrows that encode the external dependencies
among entry points across all participating entities. Specifi-
cally, (v,0”) € Eyx indicates o’ depends on an entry point v
provided by an external entity.

To construct the IDG, we leverage the program dependency

graph generated by the WALA framework to identify all entry
functions in V as well as their internal data dependency in Ejp,.
However, precisely constructing external dependency edges for
Eex is prohibitive since it requires whole-program analysis and
global invariants. To mitigate this challenge, we over-approximate
external data dependencies in E.x by adding (dashed edges) be-
tween the entry points of all entities. Note that the current IDG
is sound but encodes a lot of spurious external dependencies. Con-
sequently, we leverage the flow constraint to further refine the
external dependencies in step 3. Figure 7 illustrates the refinement
technique of our interaction modeling.
Step 3: Refining IDG usng flow constraint ¢,s. Since using
the original IDG to explore all the possible interactions does not
scale, AuthSaber automatically derives a subset of potentially valid
interactions using flow constraints from step 1. Toward this goal,
AuthSaber employs an automaton-based solution [1] to preserve a
subset of external dependencies that are consistent with the flow
constraints ¢, ¢. As shown in Figure 7, AuthSaber first transforms
the IDG to a finite automaton A;pg (Qj, Zi, qoi, Fi, 8;), where states
Qy corresponds to the nodes of IDG and ¥; includes the entry
functions associated with the graph nodes. Transition function
di 1 Qi X Z; — Q; corresponds to the external and internal edges
(Ein and E.x) of IDG. Finally, qo; € Q; is a super root node that
connects the main function of all entities and accepting states F;
are the nodes with no dependants (i.e., do not make any external
request).

Meanwhile, AuthSaber already constructed the automaton Agf
from the flow constraint ¢, ¢ in step 1. In this case, AuthSaber com-
putes the product automaton A srxrpc) of the two automatons
(using the standard algorithm [1]) and the language recognized by
the product automaton represents the intersection of the languages
recognized by Aar and Ajpg. Therefore, the resulting product
automaton A(Arx1pG) only preserves the external dependencies
that are consistent with the flow constraint ¢, .

4.4.2 Model Checking. After AuthSaber derives the endpoints of
valid interactions among OIDC entities, it proceeds to verify the
safety properties within these endpoints. Our safety property veri-
fication technique for OIDC programs is an instance of the counter
example guided abstraction refinement (CEGAR) framework which
we adapt from [15]. In the following, we begin with the necessary
preliminaries followed by a brief overview of the verification using
model checking.

Biichi automaton. A Biichi automaton A = (2, Q, qo, —, F) is a
finite-state automaton which consists a finite alphabet ¥, a finite set
of states @, an initial state qo € Q, a transition relation — which is
a function @ XX — @, and a set of accepting states ¥ C Q. A word
is an infinite sequence w = epe; ... such that e; € ¥ for all i > 0.
A runr is an infinite sequence of states qoqj ... such that for all
e; € w, there is a transition g; X e; — gj4+1 in the Biichi automaton
A. A word w is accepted by A if a run of w on A visits a set of

AuthSaber: Automated Safety Verification of OpenID Connect Programs

final states infinitely many times. Finally, set of all words that are
accepted by A are denoted by the language L(A).

LTL to Biichi. Any standard LTL formula can be expressed as a
Biichi automaton [6]. Since AuthSaber has already transformed the
AuthLTL formulas to standard LTL, our safety properties can also
be converted into equivalent Biichi automaton, which is a more
tractable form for automated analysis.

Biichi program product. To systematically explore the state space
of the program for checking safety properties, a Biichi product
representing the intersection of the Boogie program and the LTL
automata is constructed. Let # = (S, L, §p) be an OIDC program
with a set of statements S, program locations £ and a transition
function ép : L xS — L. On the other hand, A, = (Z,Q, g0, —
,F) be the Bichi automaton representation of a given AuthLTL
safety property ¢. Now, Biichi program product £ ® A, is in fact
another Biichi automaton 8 = (£g,Qg, qo g, 08, F5) such that
X g consists of all sequential compositions of two statements s;
and sz, where s; is a statement of program # and s; is a statement
that assumes that a subset of atomic proposition ¢ in property ¢ is
satisfied, i.e.,

g ={s;;assume ¢ | s € S, € 3}

Qg is the cartesian product of program locations and Biichi au-
tomaton states (i.e., £ X Q), and qo g is the pair of initial program
location Iy and initial state go of A. Transition function g is a
product of the program’s transition and Biichi automaton’s transi-
tion such that an edge in 8 is labeled by two sequential statements;
one is from the program’s edge label and another is an assume
statement obtained from the transition of Ap. Formally,

{(l1,q1), s;assume ¢, (Iz,q2)
| (l,s,I2) € 6p,(q1, ¢, q2) €}

5p =

Finally, ¥ is a pair (I,q) such as ¢ € ¥ is an accepting state of
Ay and [is a location of accepting state of program # at which
the protocol flow terminates.

Verification. The model checking technique first constructs a
Biichi automaton A-, for a given OIDC safety property ¢ such that
the language accepted by A-,, violates the desired security behav-
ior. Next, it constructs a Biichi product automaton 8 =P ® A-p
which represents the input program together with the specification.
Hence, P satisfies the safety property ¢ if and only if the language
of B is empty or B does not have a trace that is feasible during
the execution. To check this, the verification method iteratively
finds a trace 7 that is accepted by B and checks the feasibility of
7 under the program’s execution environment. Here, any trace 7
accepted by L(8B) always takes the lasso-shaped form 7;75’. Hence,
7 is feasible if and only if 72 can be executed infinitely many times
after executing ;. This is done by first checking the feasibility of
71, the loop 72, and then 71 72. If none of those are infeasible, the
feasibility checking tries to find a ranking function to prove that
the loop will eventually terminate. Finally, if 7 is inferred as feasible,
it represents a counterexample (i.e., a path that violates the safety
property). Otherwise, 7 is a spurious path and removed from the
language of B, and the verification method moves to the next trace
accepted by B.

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA.

4.5 Implementation

We implemented the technical concepts discussed above in AuthSaber
tool, which takes OIDC programs along with the safety specifica-
tion as input and verifies the programs against the specification.
AuthSaber consists of approximately 9,500 lines of code in Java. For
OIDC implementation in Java, AuthSaber takes bytecode as input,
and for Javascript (JS), it accepts the source codes (i.e., scripts) as
input. We use IBM T.J. Watson Libraries for Analysis (WALA) [53]
to represent the input program as WalalR. WALA supports both
Java and JS as the front end and represents the programs in the
unified structure of WalalR. We further utilize WALA’s pointer-
analysis and callgraph APIs which allow us to reason about the
semantics of the program instructions when translating into equiv-
alent Boogie [33] programs. Finally, the CEGAR framework of our
model checking is built upon the UltimateAutomizer model checker
tool [15].

Manual effort for initial setup. To facilitate the automated ver-
ification of a diverse range of real-world OIDC programs, users
may need to invest additional manual effort in the initial setup
of AuthSaber. For instance, AuthSaber utilizes a comprehensive
ontological mapping of OIDC keywords to associated terms (such
as function names and variables) used within the OIDC imple-
mentation. While the majority of OIDC-specific keywords (e.g.,
id token) in our AuthLTL can be seamlessly mapped using pattern
matching to terms defined in the programs in accordance with the
standard specification [41], certain OIDC implementations feature
custom authentication flows, necessitating manual effort to align
predicates and variables in AuthLTL with their counterparts in
the implementation. Furthermore, OIDC programs commonly use
external JWT libraries to support their cryptographic functions,
particularly for signature verification. Although AuthSaber offers
abstract modeling for commonly used JWT APIs, users may be
required to contribute additional modeling if OIDC implementation
employs new JWT libraries or APIs. However, these manual tasks
are a one-time requirement and can be universally applied to any
OIDC implementations adhering to the standard specification.

5 Evaluation
This section begins by presenting the research questions, followed
by an evaluation designed to address these questions.
Research questions. We design our evaluation scheme primarily
to answer the following research questions:
(1) RQ1. Can AuthSaber verify safety properties in real-world
OIDC implementations?
(2) RQ2. Can AuthSaber verify previously reported violations in
OIDC implementations that were patched by the developers?
(3) RQ3. How does AuthSaber perform when compared with
other security analysis tools in the SSO domain?

5.1 Experimental Setup

Below, we first define the scope of OIDC properties considered in
our evaluation. We then elaborate on the OIDC libraries and bench-
marks selected for verification against these specified properties.

Selection of properties. We define the safety properties based
on the standard specifications outlined in OpenID Connect Core
1.0 [41] and established security best practices [28]. The scope of

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA.

Tamjid Al Rahat, Yu Feng, and Yuan Tian

OIDC Components Authentication Flows RP oP OIDC References #Properties
Authentication request validation AC,LH v §3.1.2.2, §3.2.2.2, §3.3.2.2 1
Authentication response validation AC,LH v §3.1.2.7, §3.2.2.8, §3.3.2.8 2
Token request validation AC,H v §3.1.3.2, §3.3.3.2 1
Token response validation AC,H v §3.1.3.5,§3.3.35 2
1D token validation AC,ILH v v §2, §3.1.3.7, §3.2.2.11 8
Access token validation AC,LH v v §3.1.3.8, §3.2.2.9 1
Authorization code validation AC,H v §3.3.2.10 1
User info request and response AC,ILH v v §5.3.1, §5.3.2, §5.3.4 2
Client authentication AC,LLH v §9 6

Table 1: OIDC components and relevant details that we consider to gather the safety properties for our evaluation. Here, we
consider the components required for all three possible authentication paths in OIDC specification [41]: (1) authorization code
flow (AC), (2) implicit flow (I), and (3) hybrid flow (H). These components are supported by the relying party (RP) and OIDC

provider (OP) to perform the authentication flow.

these properties is illustrated in Table 1. Additionally, Table 2 pro-
vides details on the specific properties selected within the scope of
Id Token Validation, a crucial component in OIDC’s authentication
flows.

In total, we have identified 24 safety properties, encompassing
all three authentication flows supported in OIDC: (1) authorization
code flow, (2) implicit flow, and (3) hybrid flow. It is noteworthy
that, for the current analysis, we exclude the optional to implement
OIDC components, such as self-issued OIDC providers and passing
requests as JWT objects. Our empirical study indicates that these
components are not widely supported by most OIDC implementa-
tions.

Collection of OIDC implementations. To evaluate AuthSaber,
we collect widely adopted open-source libraries of OIDC protocol.
Statistical information for the selected libraries is presented in
Table 3, indicating their popularity based on metrics like GitHub
stars. Out of these libraries, 11 are implemented in Java, and 4
in Javascript. Additionally, six of these libraries are certified [42]
by the official OpenID Foundation. It’s worth noting that not all
OpenID-certified libraries are open source or publicly accessible,
which limits their inclusion in our evaluation.

Collection of labeled benchmarks. In order to evaluate AuthSaber’s
performance on verifying known security issues in OIDC implemen-
tation, we further collect a dataset of OIDC programs and annotate
them with associated safety properties that are violated or satisfied
in the programs. To compile the dataset, we conduct a manual ex-
amination of publicly available security reports from the OpenID
libraries and their online communities. We ensure that these reports
have been verified and addressed by the developers of the respec-
tive libraries. Next, we annotate the incorrect program samples as
buggy benchmarks and their corrected (i.e., patched) version as
safe benchmarks. Libraries are excluded in cases where security
reports are either not publicly available or not confirmed by the
developers. Overall, our dataset comprises 28 buggy benchmarks
and 25 safe benchmarks. For each benchmark, we further translate
the corresponding security issues in AuthLTL expressions.

5.2 Experimental Results

We carried out all experiments on a machine equipped with a Quad-
Core Intel Core i5 processor and 32GB of memory, operating on
macOS 14.0. We delve into the detailed insights regarding the results
of our experiments as follows.

Evaluation of OIDC implementations. We verify the popular
OIDC libraries we collected against the 24 safety properties ex-
pressed in AuthLTL. However, given that libraries are often de-
signed to support distinct authentication platforms, not all of them
implement every authentication flow and feature supported in the
OIDC protocol. Consequently, certain properties may be irrelevant
for a particular library if it does not support the associated authen-
tication feature or flows. In such cases, we exclude these properties
from the library’s evaluation. The verification results are presented
in Table 4, showing the number of properties satisfied (i.e., verified)
and did not satisfy (i.e., falsified) for each library. Here, falsified
properties indicate a violation of properties, implying the existence
of vulnerabilities in the input program. In the 15 popular OIDC
libraries, AuthSaber successfully verified a total of 134 properties
and reported 16 security violations that were previously unknown.
AuthSaber also reported 11 false positives, as found during the man-
ual validation of the generated counter-examples. We meticulously
validate each violation before responsively disclosing them to the
developers of the libraries.

RQ1: AuthSaber uncovered 16 previously unknown secu-
rity violations in the most popular OIDC libraries, resulting
in five new CVEs.

Evaluation of labeled benchmarks. We further evaluate AuthSaber
using the benchmarks we collect from publicly available security
reports and relevant patches for the respective OIDC libraries. As
outlined in the experimental setup earlier, we collect a total of
28 buggy OIDC programs (i.e., containing at least one violated
property) and 25 safe programs (i.e., the patched version of the
buggy programs). Since these programs are manually collected
based on confirmed security issues from developers, they provide
the known ground truths for all benchmarks, indicating whether a
benchmark satisfies a given property. We evaluate each benchmark
using AuthSaber, which successfully falsifies all 28 buggy bench-
marks. We manually investigate the counter-examples generated
by the tool for each benchmark and validate them against the la-
beled safety properties. On the other hand, as illustrated in Table 5,
AuthSaber successfully verifies 22 out of 25 safe benchmarks and
incorrectly flags (i.e., false positive) three benchmarks.

AuthSaber: Automated Safety Verification of OpenID Connect Programs

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA.

#No. Description of safety properties for the component of ID Token validation

Once a token request is received, a successful response should not be sent without obtaining end-user authentication.

If ID token with signature algorithm none is received as a response from the server, the token should be rejected.

If ID token is received with a code from the server, the code should not be used for access token unless the ID token is verified.

An ID token should not be verified without first checking if the alg header value matches the expected algorithm value.

G | W DN =

request.

Issuer claim of an ID token should not be empty and it should be checked against the configured issuer before making a token

Audience claim of an ID token should not be empty and it should be checked before making a token request.

7 | If the authentication response type is ‘id_token token’, the at_hash claim must be validated.

sent with the authentication request.

8 | If the authentication response type is ‘id_token token’, the nonce claim must be present and should match the nonce value

Table 2: Properties within the scope of ID Token validation (OpenlID ref. §2, §3.1.3.7, §3.2.2.11).

OpenlID libraries Language (#gﬁﬂﬁl;:;zs) #LOC
1) Keycloak Java 15.2k 38.2k
2) Spring Security Java 7.5k 19.5k
3) Connect2id Java N/A 23.2k
4) Mitre OpenID Java 1.4k 21.3k
5) Google Client Java 600 4.7k
6) Pac4j Java 2.2k 29.8k
7) Oracle Cordova Java 10 7.5k
8) AppAuth Java 2.4k 8.8k
9) OxAuth Java 400 34.4k
10) Quarkus Java 11.4k 7.8k
11) Autho TJava 257 23.1k
12) Node OIDC 7S 2.6k 13.6k
13) AppAuth-JS]S 912 5.2k
14) Auth0 Express]S 360 2.7k
15) Asgardeo]S 25 3.6k

Table 3: Popular OIDC libraries selected for evaluating
AuthSaber. Among these, eleven libraries are implemented
in Java and four are implemented in JS.

OIDC libraries #Properties | #Verified | #Falsified .Avg.
time(s)
1. Keycloak 15 12 1 3118
2) Spring Security 15 14 0 1835
3) Connect2id 11 11 0 2177
4) Mitre OpenID 8 6 1 1782
5) Google Client 9 7 2 638
6) Pac4j 13 11 1 940
7) Oracle Cordova 8 7 1 460
3) AppAuth 10 6 3 336
9) OxAuth 16 15 0 2348
10) Quarkus 10 7 3 430
11) Auth0 8 7 0 708
12) Node OIDC 15 13 0 1670
13) AppAuth-JS 7 6 1 218
14) Auth0 Express 8 6 1 510
15) Asgardeo 8 6 2 788
Overall 161 134 16 1316

Table 4: Verification results for the popular OpenID Connect
implementations. In all 15 OIDC libraries, we successfully
verified 134 properties and found 16 confirmed security vi-
olations that were previously unknown. We validated and
responsively disclosed all violations to the respective devel-
opers.

RQ2: AuthSaber successfully verified all 28 buggy bench-
marks and 22 out of 25 safe benchmarks among the labeled
benchmarks with known security issues.

. . #Collected #Verified b
OIDC libraries benchmarks AuthSalbery #EP
1) Keycloak 6 5 1
2) Mitre OpenID 4 4 0
3) Google Client 3 3 0
4) Oracle Cordova 1 1 0
5) OxAuth 2 2 0
6) Quarkus 2 2 0
7) Auth0 3 2 1
8) AppAuth-JS 2 1 1
9) Asgardeo 2 2 0

Total: 25 22 3

Table 5: Verification results for the collected safe benchmarks
that were patched by the developers based on previously
reported violations. For this evaluation, we exclude the li-
braries for which no previous violations are found, or the
reports are no longer publicly accessible.

. #Checked Properties
OIDC Flow| #0IDC Properties AuthSaber Cerberu]; S3KVetter
Auth code 12 11 4 3
Implicit 6 6 2 2
Hybrid 10 7 1 0
Total: 28 24 7 5

Table 6: Comparison of AuthSaber with existing tools in SSO
domain in terms of the number of OIDC safety properties
that can be expressed and checked.

Comparison with existing SSO analysis tools. Since there are
no other formal verification tools available for OIDC programs, we
compare AuthSaber with other available program analysis tools
in this domain. Specifically, we compare AuthSaber against Cer-
berus [47] and S3KVetter [26], which use static analysis and sym-
bolic execution, respectively, to analyze the security of OAuth pro-
tocol implementation. Although OIDC protocol is built on top of
OAuth protocol, these tools are not designed to reason about the
semantics of OIDC and therefore, this is not an apples-to-apples
comparison. Hence, we first do our best to express 24 OIDC safety
properties for three authentication flows: 1) authorization code flow,
2) implicit flow, and 3) hybrid flow. Among them, authorization
code flow and implicit flows are inherited from the OAuth [48]
protocol. Further, we evaluate the buggy benchmarks using Cer-
berus and S3kVetter tools against the safety properties. Since the
hybrid flow and use of id tokens are not supported in OAuth, we

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA.

add additional tags to specify the properties in Cerberus’s query
language. Additionally, as S3KVetter tool only supports Python pro-
grams, we manually translate our Java/JS benchmarks into Python
language. Table 6 shows the detailed results of our evaluation. Out
of 28 OIDC properties, AuthSaber was able to check 24 properties.
Using Cerberus, we were able to check 7 out of 28 properties, and
with S3KVetter tool, we were able to check 5 properties. More-
over, S3KVetter does not provide any specification language and
expresses the properties over only request and response arguments,
which restricts us from checking the properties of hybrid flow using
their tool.

RQ3: AuthSaber is 3X more expressive in specifying and
checking safety properties than other existing program
analysis tools in SSO domain.

Limitations. When evaluating real-world OIDC programs, AuthSaber
incorporates several conservative assumptions that could lead to
false positive (FP) cases, as shown in Table 5. For instance, when
dealing with dynamic programming features like dynamic class
loading, reflected calls or signature-based function calls in Java or
JS, AuthSaber currently relies on over-approximation. This reliance
can introduce spurious paths in the downstream verification task,
consequently leading to false positive cases. In addition, non-linear
arithmetic and bitwise operations are currently modeled using un-
interpreted functions which can also trigger false alarms during the
evaluation. However, based on our evaluation, AuthSaber doesn’t
have many false alarms.

Moreover, although liveness properties are not common for ex-
pressing the unexpected security behavior of OIDC protocol and
are not the focus of this work, our specification language AuthLTL
can also be used to express the liveness properties. However, since
the model checking technique of AuthSaber is based on the CE-
GAR framework provided by the UltimateAutomizer [15], which
in general, does not give a termination guarantee, our tool also
inherits this limitation. However, a key aspect of our approach, as
outlined in Section 4, uses the flow constraints to deduce a finite
set of interactions. This allows AuthSaber to restrict the state space
within a valid set of OIDC endpoints, ensuring a fair termination
during the verification.

5.3 Developer Acknowledgment

After scrutinizing and validating the results obtained from AuthSaber,
we responsively disclosed all 16 previously unknown violations to
the developers and vendors of the respective OIDC libraries. As
of the writing of this paper, we have received acknowledgments
from the developers for 10 reported vulnerabilities, while the re-
maining reports are currently under review process. Six vulnera-
bilities were immediately fixed following our reports. Additionally,
the confirmed vulnerabilities resulted in the assignment of five
new CVEs (CVE-2023-33292, CVE-2023-35819, CVE-2023-35820,
CVE-2021-44878, CVE-2021-22573). We intend to maintain ongoing
communication with the developers, assisting them in promptly
resolving the remaining vulnerabilities.

Tamjid Al Rahat, Yu Feng, and Yuan Tian

5.3.1 Case Studies. Here, we delve into a few case studies based on
the evaluation results obtained from AuthSaber for popular OIDC
libraries.

1) Google Client Authentication. We applied AuthSaber to verify
the implementation of the Google Client Authentication library for
Java [23], a widely used library for facilitating authorized access
to Google’s APIs. In our investigation of the violated traces gener-
ated by AuthSaber, we identified that the library validates issuer
(iss), audience (aud), and expiration (exp) claims upon receiving
an id token from authorization service providers. Unfortunately,
it failed to check the signature of the token and accepted it solely
based on the validity of these claims received as the payload of
the token. Since the payload of an id token is unprotected and
cannot be trusted without proper verification of the signature com-
ponent, attackers could manipulate the claims of a valid token or
forge a token received from another application, potentially gaining
unauthorized access to clients.

Upon submission of our report, Google promptly acknowledged
the vulnerability, with a statement from one of Google’s Security
Engineers stating, “Nice catch! I've filed a bug with the responsible
product team based on your report.” The bug was labeled as “priority-
I” and fixed within two weeks of our report. We received further
acknowledgment from Google through their bug bounty program
for our contribution to discovering and reporting this vulnerability.
2) AppAuth. AppAuth has gained popularity among developers
utilizing the OIDC protocol due to its support for a wide range of
mobile and web platforms. Using AuthSaber, we verified its OIDC
implementation in Java [3] and uncovered two critical vulnerabili-
ties. Firstly, while the library correctly validates the issuer claim
of id token, it does so only if a ‘discovery’ document is present.
However, utilizing a discovery document is optional in OIDC, and
the issuer claim should be validated irrespective of the discovery
method employed by the providers [41]. This vulnerability could
allow attackers to inject an id token obtained from a malicious
issuer. Secondly, the library neglects the signature verification of
the token and incorrectly assumes that the tokens are exchanged
using TLS communication — a practice also not enforced or vali-
dated by the library. We promptly reported all identified issues to
the developers, and one of them acknowledged that “these issues
are not best security practice and should be fixed.”

6 Related work

SSO verification. Recent years have seen several efforts to verify
the security of the design, especially the authorization and au-
thentication flows supported by the SSO protocols. For instance,
Fett et al. use a Dolev-Yao style generic formal model of several
SSO protocols [20-22] to prove authorization and session integrity
properties against the model. Additionally, Lu et al. [35] use ap-
plied PI calculus to model OIDC protocol and provide security
analysis using ProVerif [9]. Similarly, Hamman et al. [25] proves
privacy properties in OIDC model using Tamarin prover [36]. How-
ever, unlike AuthSaber, these works verify the properties against
a manually constructed model based on the protocol design and
are not equipped to reason about complex programming language
semantics used in OIDC or other SSO implementations. In addition,

AuthSaber: Automated Safety Verification of OpenID Connect Programs

manual construction of models for SSO programs can be both error-
prone and time-consuming, preventing them from being used for
large-scale analysis.

SSO bug finding. There has also been substantial interest in detect-
ing SSO bugs based on vulnerable patterns, which can be catego-
rized into two classes: 1) static bug analysis and 2) network traffic
analysis. For instance, S3kvetter [54] uses symbolic execution to
check security properties in OAuth client’s SDK. In addition, Oauth-
lint [46] performs static data-flow analysis to check six OAuth’s
anti-protocol patterns in Android applications, and Cerberus [47]
also uses static analysis to check the security of OAuth service
providers. The scope of these works is limited to OAuth protocol,
and they require the bug patterns are already known to the tool
users. Additionally, these works focus on the properties of one entity
(i.e., client or server) and assume the other entities are correctly im-
plemented whereas AuthSaber uses an entity-agnostic verification
against the properties from the standard specification. Moreover,
WPSE [10] and Bulwark [52] study network-traffic-based security
monitoring systems for different SSO entities (e.g., browsers, web
apps, etc.). However, network traffic analysis requires heavy man-
ual setup and cannot be applied or extended to uncover all possible
execution behavior SSO protocols.

CEGAR-based verification. Our verification technique is based on
the counterexample-guided abstraction refinement (CEGAR) [11],
which has been used to provide formal security guarantees in many
problem domains, including blockchain security [44, 51], cryptog-
raphy [40], IoT protocols [2, 50] and autonomous systems [16, 31].
However, these tools are designed for specific domains and cannot
be used or extended to check complex multi-party protocols like
OIDC.

Automated protocol analysis. Automated protocol analysis has
also been the subject of extensive security research, resulting in a
wide range of works in recent years. Automated tools like Tamarin
prover [36] and Proverif [9] have been used to prove properties
in various protocols, including TLS [13, 14], 5G [8, 12] and single-
party authentication [4, 19, 30]. However, these verifications, unlike
AuthSaber, mostly work at the protocol’s external communication
level and cannot uncover fine-grained security violations caused
by programming errors at their implementation level.

7 Conclusion

In this paper, we propose AuthSaber, an efficient automated veri-
fier for checking safety properties in the implementation of OIDC
protocols. AuthSaber provides a highly expressive specification lan-
guage to formally express the safety properties and incorporates
an automated verification approach that is tailored to several scala-
bility and automation challenges in the OIDC domain. We evaluate
AuthSaber on 15 popular OIDC libraries and discover 16 previously
unknown security violations, leading to five new CVEs and further
improvement in the security of popular OIDC implementations.

8 Acknowledgements

We are grateful to the anonymous reviewers for their insightful
and constructive feedback and suggestions. This work is supported

in part by National Science Foundation under the award numbers
2320903, 2323105, 2325369, 2317184, and 1908494, by DARPA un-

der the agreement number N66001-22-2-4037, by Google Faculty

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA.

Research, and Ethereum Foundation awards. The views and con-
clusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either
expressed or implied, of the funding agencies.

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. 1986. Compilers: Principles,
Techniques, and Tools. Addison-Wesley. https://www.worldcat.org/oclc/12285707

[2] Mahmoud Ammar, Bruno Crispo, Bart Jacobs, Danny Hughes, and Wilfried
Daniels. 2019. S y V—The Security MicroVisor: A Formally-Verified Software-
Based Security Architecture for the Internet of Things. IEEE Transactions on
Dependable and Secure Computing 16, 5 (2019), 885-901.

[3] AppAuth. 2023. AppAuth-Android. https://openid.github.io/AppAuth- Android/.

[4] Linard Arquint, Felix A Wolf, Joseph Lallemand, Ralf Sasse, Christoph Sprenger,
Sven N Wiesner, David Basin, and Peter Miiller. 2023. Sound verification of
security protocols: From design to interoperable implementations. In 2023 IEEE
Symposium on Security and Privacy (SP). IEEE, 1077-1093.

[5] Guangdong Bai, Jike Lei, Guozhu Meng, Sai Sathyanarayan Venkatraman, Prateek
Saxena, Jun Sun, Yang Liu, and Jin Song Dong. 2013. Authscan: Automatic
extraction of web authentication protocols from implementations. (2013).

[6] Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking. MIT
press.

[7] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K Rustan M
Leino. 2006. Boogie: A modular reusable verifier for object-oriented programs.
In Formal Methods for Components and Objects: 4th International Symposium,
EMCO 2005, Amsterdam, The Netherlands, November 1-4, 2005, Revised Lectures 4.
Springer, 364-387.

[8] David Basin, Jannik Dreier, Lucca Hirschi, Sasa Radomirovic, Ralf Sasse, and

Vincent Stettler. 2018. A formal analysis of 5G authentication. In Proceedings

of the 2018 ACM SIGSAC conference on computer and communications security.

1383-1396.

Bruno Blanchet. 2014. Automatic verification of security protocols in the symbolic

model: The verifier proverif. Foundations of Security Analysis and Design VII:

FOSAD 2012/2013 Tutorial Lectures (2014), 54-387.

Stefano Calzavara, Riccardo Focardi, Matteo Maffei, Clara Schneidewind, Marco

Squarcina, and Mauro Tempesta. 2018. 'WPSE: fortifying web protocols via

browser-side security monitoring. In 27th USENIX Security Symposium. 1493—

1510.

Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. 2000.

Counterexample-guided abstraction refinement. In Computer Aided Verification:

12th International Conference, CAV 2000, Chicago, IL, USA, July 15-19, 2000. Pro-

ceedings 12. Springer, 154-169.

Cas Cremers and Martin Dehnel-Wild. 2019. Component-based formal analysis of

5G-AKA: Channel assumptions and session confusion. In Network and Distributed

System Security Symposium (NDSS). Internet Society.

[13] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla van der
Merwe. 2017. A comprehensive symbolic analysis of TLS 1.3. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security.
1773-1788.

[14] Cas Cremers, Marko Horvat, Sam Scott, and Thyla van der Merwe. 2016. Au-

tomated analysis and verification of TLS 1.3: 0-RTT, resumption and delayed

authentication. In 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 470—

485.

Daniel Dietsch, Matthias Heizmann, Vincent Langenfeld, and Andreas Podelski.

2015. Fairness modulo theory: A new approach to LTL software model checking.

In Computer Aided Verification: 27th International Conference, CAV 2015, San

Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I 27. Springer, 49-66.

Yizhak Yisrael Elboher, Justin Gottschlich, and Guy Katz. 2020. An abstraction-

based framework for neural network verification. In Computer Aided Verification:

32nd International Conference, CAV 2020, Los Angeles, CA, USA, July 21-24, 2020,

Proceedings, Part I 32. Springer, 43-65.

Expo. 2023. Critical OAuth Vulnerability in Expo Framework Allows Account

Hijacking. https://thehackernews.com/2023/05/critical-oauth-vulnerability-in-

expo.html.

Facebook. 2018. Facebook Security Update. https://about.fb.com/news/2018/09/

security-update.

Haonan Feng, Hui Li, Xuesong Pan, Ziming Zhao, and T Cactilab. 2021. A Formal

Analysis of the FIDO UAF Protocol.. In NDSS.

[20] Daniel Fett, Pedram Hosseyni, and Ralf Kiisters. 2019. An extensive formal

security analysis of the openid financial-grade api. In 2019 IEEE Symposium on

Security and Privacy (SP). IEEE, 453-471.

Daniel Fett, Ralf Kiisters, and Guido Schmitz. 2016. A comprehensive formal

security analysis of OAuth 2.0. In Proceedings of the 2016 ACM SIGSAC Conference

on Computer and Communications Security. 1204-1215.

—
)

[10

[11

[12

[15

[16

=
=

(18

[19

[21

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA.

Daniel Fett, Ralf Kiisters, and Guido Schmitz. 2017. The web sso standard openid
connect: In-depth formal security analysis and security guidelines. In 2017 IEEE
30th Computer Security Foundations Symposium (CSF). IEEE, 189-202.

Google. 2023. Google Oauth Client. https://cloud.google.com/java/docs/
reference/google-oauth-client/latest/overview.

Grammarly. 2023. Critical OAuth Flaws Uncovered in Grammarly, Vidio, and
Bukalapak Platforms. https://thehackernews.com/2023/10/critical-oauth-flaws-
uncovered-inhtml.

Sven Hammann, Ralf Sasse, and David Basin. 2020. Privacy-preserving openid
connect. In Proceedings of the 15th ACM Asia Conference on Computer and Com-
munications Security. 277-289.

Boyuan He, Vaibhav Rastogi, Yinzhi Cao, Yan Chen, VN Venkatakrishnan, Run-
qing Yang, and Zhenrui Zhang. 2015. Vetting SSL usage in applications with
SSLint. In 2015 IEEE Symposium on Security and Privacy. IEEE, 519-534.

Tamjid Al Rahat, Yu Feng, and Yuan Tian

Microsoft. 2023. Microsoft Bug Allowed Hackers to Breach Over Two Dozen
Organizations via Forged Azure AD Tokens. https://thehackernews.com/2023/
07/microsoft-bug-allowed-hackers-to-breach.html.

Nitin Naik and Paul Jenkins. 2017. Securing digital identities in the cloud by
selecting an apposite Federated Identity Management from SAML, OAuth and
OpenlID Connect. In 2017 11th International Conference on Research Challenges in
Information Science (RCIS). IEEE, 163-174.

Saeed Nejati, Jia Hui Liang, Catherine Gebotys, Krzysztof Czarnecki, and Vijay
Ganesh. 2017. Adaptive restart and CEGAR-based solver for inverting crypto-
graphic hash functions. In Verified Software. Theories, Tools, and Experiments:
9th International Conference, VSTTE 2017, Heidelberg, Germany, July 22-23, 2017,
Revised Selected Papers 9. Springer, 120-131.

OpenID. 2021. OpenID Connect Core 1.0. https://openid.net/specs/openid-
connect-core-1_0.html.

[27] Fatima Hussain, Rasheed Hussain, Brett Noye, and Salah Sharieh. 2020. Enterprise [42] OpenlID. 2023. OpenlD Certification. https://openid.net/certification/.
API security and GDPR compliance: Design and implementation perspective. IT [43] Pac4j. 2023. Pac4]. https://www.pac4;j.org.
Professional 22, 5 (2020), 81-89. [44] Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-Cohen, and
[28] IETF. 2021. OAuth 2.0 Security Best Current Practice. https://datatracker.ietf. Martin Vechev. 2020. Verx: Safety verification of smart contracts. In 2020 IEEE
org/doc/html/draft-ietf-oauth-security-topics. symposium on security and privacy (SP). IEEE, 1661-1677.
[29] Daniel Jackson. 2012. Software Abstractions: logic, language, and analysis. MIT [45] Portswigger. 2023. Authentication bug that enabled unauthorized access to client
press. applications. https://portswigger.net.
[30] Charlie Jacomme, Elise Klein, Steve Kremer, and Maiwenn Racouchot. 2023. [46] Tamjid Al Rahat, Yu Feng, and Yuan Tian. 2019. OAUTHLINT: An Empirical

A comprehensive, formal and automated analysis of the EDHOC protocol. In
USENIX Security’23-32nd USENIX Security Symposium.

Peng Jin, Jiaxu Tian, Dapeng Zhi, Xuejun Wen, and Min Zhang. 2022. Trainify:
A cegar-driven training and verification framework for safe deep reinforcement

Study on OAuth Bugs in Android Applications. In 34th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2019, San Diego, CA, USA,
November 11-15, 2019. 293-304.

Tamjid Al Rahat, Yu Feng, and Yuan Tian. 2022. Cerberus: Query-Driven Scalable

learning. In International Conference on Computer Aided Verification. Springer, Vulnerability Detection in OAuth Service Provider Implementations. In Pro-

193-218. ceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
[32] JWT. 2015. Json Web Token. https://datatracker.ietf.org/doc/html/rfc7519. Security. 2459-2473.
[33] K Rustan M Leino. 2008. This is boogie 2. manuscript KRML 178, 131 (2008), 9. [48] RFC6749. 2021. The OAuth 2.0 Authorization Framework. https://tools.ietf.org/
[34] KRustan M Leino. 2010. Dafny: An automatic program verifier for functional cor- html/rfc6750.

rectness. In International conference on logic for programming artificial intelligence [49] SAML. 2023. SAML protocol. http://saml.xml.org/saml-specifications.

and reasoning. Springer, 348-370. [50] Alireza Souri and Monire Norouzi. 2019. A state-of-the-art survey on formal

[35] Jintian Lu, Jinli Zhang, Jing Li, Zhongyu Wan, and Bo Meng. 2017. Automatic ver- verification of the internet of things applications. Journal of Service Science
ification of security of openid connect protocol with proverif. In Advances on P2P, Research 11, 1 (2019), 47-67.
Parallel, Grid, Cloud and Internet Computing: Proceedings of the 11th International [51] Jon Stephens, Kostas Ferles, Benjamin Mariano, Shuvendu Lahiri, and Isil Dillig.
Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC-2016) 2021. SmartPulse: automated checking of temporal properties in smart contracts.
November 5-7, 2016, Soonchunhyang University, Asan, Korea. Springer, 209-220. In 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 555-571.

[36] Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. 2013. The [52] Lorenzo Veronese, Stefano Calzavara, and Luca Compagna. 2020. Bulwark: Holis-
TAMARIN prover for the symbolic analysis of security protocols. In Computer tic and Verified Security Monitoring of Web Protocols. In European Symposium
Aided Verification: 25th International Conference, CAV 2013, Saint Petersburg, Rus- on Research in Computer Security. Springer, 23-41.

sia, July 13-19, 2013. Proceedings 25. Springer, 696-701. [53] WALA. 2023. T.J. Watson Libraries for Analysis (WALA). https://sourceforge.
[37] Microsoft. 2023. Azure B2C - Crypto Misuse and Account Compromise. https: net/projects/wala.
//securityboulevard.com. [54] Ronghai Yang, Wing Cheong Lau, Jiongyi Chen, and Kehuan Zhang. 2018. Vetting

Single Sign-On SDK Implementations via Symbolic Reasoning. In 27th USENIX
Security Symposium. 1459-1474.

	Abstract
	1 Introduction
	2 Background
	2.1 Single Sign-On (SSO)
	2.2 OpenID Connect

	3 Overview
	3.1 Threat model
	3.2 Running example

	4 System Design
	4.1 Specification Language
	4.2 Program Translation
	4.3 AuthLTL to Regular LTL
	4.4 Safety Verification
	4.5 Implementation

	5 Evaluation
	5.1 Experimental Setup
	5.2 Experimental Results
	5.3 Developer Acknowledgment

	6 Related work
	7 Conclusion
	8 Acknowledgements
	References

