
AuthSaber: Automated Safety Verification of OpenID Connect
Programs

Tamjid Al Rahat
University of California, Los Angeles
Los Angeles, California, United States

tamjid@ucla.edu

Yu Feng
University of California, Santa

Barbara
Santa Barbara, California, United

States
yufeng@cs.ucsb.edu

Yuan Tian
University of California, Los Angeles
Los Angeles, California, United States

yuant@ucla.edu

Abstract

Single Sign-On (SSO)-based authentication protocols, like OpenID

Connect (OIDC), play a crucial role in enhancing security and pri-

vacy in today’s interconnected digital world, gaining widespread

adoption among the majority of prominent authentication service

providers. These protocols establish a structured framework for

verifying and authenticating the identities of individuals, organiza-

tions, and devices, while avoiding the necessity of sharing sensitive

credentials (e.g., passwords) with external entities. However, the

security guarantees of these protocols rely on their proper im-

plementation, and real-world implementations can, and indeed

often do, contain logical programming errors leading to severe at-

tacks, including authentication bypass and user account takeover.

In response to this challenge, we present AuthSaber , an automated

veri�er designed to assess the real-world OIDC protocol implemen-

tations against their standard safety speci�cations in a scalable

manner. AuthSaber addresses the challenges of expressiveness for

OIDC properties, modeling multi-party interactions, and automa-

tion by �rst designing a novel speci�cation language based on linear

temporal logic, leveraging an automaton-based approach to con-

strain the space of possible interactions between OIDC entities, and

incorporating several domain-speci�c transformations to obtain

programs and properties that can be directly reasoned about by

software model checkers. We evaluate AuthSaber on the 15 most

popular and widely used OIDC libraries and discover 16 previously

unknown vulnerabilities, all of which are responsively disclosed to

the developers. Five categories of these vulnerabilities also led to

new CVEs.

CCS Concepts

• Security and privacy→Web application security; Logic and

veri�cation; Security requirements; • Theory of computation

→ Program veri�cation; Veri�cation by model checking.

Keywords

OpenID Connect security; single sign-on; safety veri�cation; auto-

mated analysis; authorization; authentication;

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3670318

ACM Reference Format:

Tamjid Al Rahat, Yu Feng, and Yuan Tian. 2024. AuthSaber : Automated

Safety Veri�cation of OpenID Connect Programs. In Proceedings of the 2024

ACM SIGSAC Conference on Computer and Communications Security (CCS

’24), October 14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA,

14 pages. https://doi.org/10.1145/3658644.3670318

1 Introduction
Single Sign-On (SSO) protocols such asOpenIDConnect (OIDC) [41]

have gained widespread adoption across various industries [27, 39]

in recent years, as organizations recognize their value in bolstering

security, streamlining access management, and enhancing interop-

erability. These protocols play a pivotal role in the current digital

ecosystem as they eliminate the need for users to manage multi-

ple usernames and passwords while providing enhanced security

through centralized authentication and authorization. Moreover,

OIDC contributes to a seamless and e�cient user experience, lead-

ing to increased productivity and reduced support costs. Through

integration with diverse authentication service providers, OIDC

establishes a fundamental foundation for convenient, secure, and

scalable identity management. Therefore, ensuring the security and

correctness of the implementation of these protocols is of utmost

importance.

While OIDC protocol o�ers numerous bene�ts, it can be vulnera-

ble to severe security attacks if not implemented correctly. Security

guarantees of these protocols are only as strong as the implemen-

tation that enforces them. Unfortunately, the current security of

the protocol holds mostly at the speci�cation level [41], whereas

real protocol implementations in the wild often have logical errors

leading to severe attacks [18, 37, 45]. Recent years have witnessed

a growing number of security attacks across the web stemming

from these implementation errors. For instance, in 2023, a bug [38]

in Microsoft’s OIDC implementation allowed hackers to breach

over two dozen organizations via forged tokens used to access

Azure service. Grammarly recently �xed a security �aw [24] in

its implementation of access token veri�cation which could allow

attackers to hijack user accounts. Similar OIDC vulnerabilities have

been discovered earlier in popular online services like Booking and

Expo [17]. The presence of errors in the protocol implementation

of these esteemed authentication service providers underscores the

urgency of developing analysis tools to enhance the security of

OIDC implementation.

Prior research e�orts in developing security analysis tools for

SSO protocols can be, in general, divided into two categories: bug de-

tection and veri�cation. Most bug detection techniques [26, 46, 47]

look for syntactic or semantic patterns that are highly correlated

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Tamjid Al Rahat, Yu Feng, and Yuan Tian

with security vulnerabilities (e.g., token leakage) observed in the

protocol �ows. These patterns often require upfront knowledge

about the lower-level details (e.g., speci�c data �ows, source and

sink APIs, etc.) of the programs, leading them to be error-prone

and incomplete. In addition, most of these solutions rely on ap-

proximated static analysis and lack precision in practice. These

limitations not only reduce the scope of checkable properties but

also lead to signi�cant false positive and false negative cases. On

the other hand, previous e�orts in formal veri�cation within this

domain [22, 25] concentrate on protocol design rather than its imple-

mentation. Moreover, these approaches require manual translation

of both protocol interactions and speci�cations into correspond-

ing formal models, which can then be consumed by o�-the-shelf

veri�ers like Tamarin Prover [36] or Alloy [29]. However, manu-

ally or semi-automatically translating complex interactions within

the real-world protocols’ programs can be error-prone and ine�-

cient, rendering them impractical for large-scale evaluations. Con-

sequently, it is crucial to design an automated veri�cation toolkit

to ensure that the protocol implementation conforms to its safety

speci�cations.

However, developing an automated veri�er for checking OIDC

programs against their standard safety speci�cations is quite chal-

lenging, primarily due to the following reasons: 1) C1 (Expres-

siveness): The core speci�cation of OIDC [41] is written in dozens

of pages in plain English, and incorporates more than ten other

protocols (e.g., OAuth [48], JWT [32], etc.), making the security

behavior of the protocol challenging to express. Additionally, many

safety properties require complex reasoning about temporal rela-

tionships that go beyond the expressiveness of prior works [46, 47]

relying on simple data- and control-dependencies. 2) C2 (Multi-

party interactions): Unlike traditional programs that have single

or a few entry points, OIDC implementations typically involve com-

plex interactions among multiple parties (e.g., identity providers,

relying parties, etc.). Prior works in this domain only analyze a

portion of the protocol (e.g., the relying parties [5, 26, 46] or the

providers [47]), and consider the remaining pieces as black boxes–

which signi�cantly limits the assurance guarantee and the scope of

safety properties that can be veri�ed. On the other hand, a naive ap-

proach can lead to prohibitive performance issues by enumerating

all possible combinations of interactions or false negatives by choos-

ing interactions in an ad-hoc manner. Therefore, it is non-trivial to

automatically model the complex interactions among di�erent par-

ties into a uni�ed model. 3) C3 (Automation):Mainstream OIDC

implementations are coded in high-level programming languages

like Java and Javascript. Consequently, neither OIDC programs nor

their speci�cations (containing domain-speci�c information) can

be directly analyzed by existing program veri�cation tools [15, 34].

Therefore, devising an automated approach that accommodates

complex protocol features implemented in various programming

languages is both critical and challenging.

Our approach. To address the above-mentioned challenges, we de-

sign and implement AuthSaber , an automated veri�er for checking

OIDC implementations against their security behavior (i.e., safety

properties) de�ned by the standard speci�cation. To address the

challenge C1, we design AuthLTL, a highly expressive speci�cation

language that is extended from the standard Linear Temporal Logic

(LTL). In particular, AuthLTL augments standard LTL with more ex-

pressive OIDC predicates that allow developers to formally express

the desired safety properties of the protocol, including the tempo-

ral relations between interactions and events involving multiple

parties during the authorization and authentication �ows.

Additionally, to address C2, we propose a staged approach that

iteratively constrains the space of valid candidates without compro-

mising the assurance of the veri�er. In particular, given an OIDC

implementation together with its Interaction Dependence Graph

(IDG) that over-approximates the interactions among di�erent en-

try points, we leverage an automaton-based algorithm to constrain

the space of potential interactions among multiple parties using

the �ow constraints de�ned by the speci�cation. The output of this

step will lead to an e�ective harness that only considers interac-

tions among di�erent entry points that are consistent with the �ow

constraint enforced by the speci�cation and ignores the spurious

interactions.

Moreover, to address C3, we design several customized trans-

formations that convert OIDC implementations and their speci-

�cations to corresponding forms that can be analyzed by exist-

ing software model checkers [15]. For OIDC implementations, we

�rst compile them to WalaIR [53] and then perform a transpila-

tion from WalaIR to Boogie IR [7], which can be consumed by the

model checker. On the other hand, since the properties expressed

in AuthLTL contain terms and predicates that are not accepted

by the model checker, we devise a customized transformation that

converts an AuthLTL formula into its equisatis�able formula in stan-

dard LTL while instrumenting the transpiled program. The model

checker then consumes the resulting new formula and program,

and generates a counter-example if there is a violation.

Findings. We evaluate AuthSaber on the most popular implemen-

tations of OIDC protocol which is currently supported by all major

authentication providers. We verify 24 safety properties across the

15 most popular OIDC implementations and uncover critical se-

curity violations. In total, we identify 16 previously undiscovered

vulnerabilities, posing risks of severe attacks such as user account

takeover and authentication bypass. We responsively disclosed all

vulnerabilities and received acknowledgments for 10 vulnerabilities

from the developers and prominent providers, including Google.

Furthermore, the con�rmed violations resulted in the assignment of

�ve newCVEs (CVE-2023-33292, CVE-2023-35819, CVE-2023-35820,

CVE-2021-44878, CVE-2021-225731). Additionally, AuthSaber also

e�ectively veri�ed the correctness of patched versions addressing

the known violations previously reported.

Contributions. In summary, we make the following contributions:

• We design a domain-speci�c speci�cation language AuthLTL

that enables developers to express complex safety properties

of OIDC protocol, including the temporal properties that are

originally described in plain English.

• We design a specialized automated veri�cation approach

tailored for the analysis of real-world OIDC programs. Our

approach adeptly models the multi-party interactions inher-

ent in the OIDC protocol, thereby mitigating the complexity

of the veri�cation problem. Additionally, it transforms safety

1"The record creation date may re�ect when the CVE ID was allocated or re-
served and does not necessarily indicate when this vulnerability was discovered"–
www.cve.mitre.org

AuthSaber : Automated Safety Verification of OpenID Connect Programs CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

properties into standard LTL, facilitating further analysis by

software model checkers.

• We implement the proposed concept in a tool namedAuthSaber ,

and evaluate its performance across the 15 most popular and

widely adopted OIDC libraries. We identify 16 previously un-

known violations, all of which are reported to the developers

for responsive disclosure. Five categories of these violations

also resulted in new CVEs.

2 Background
We �rst provide a background of single sign-on (SSO) service, fol-

lowed by its most popular representative OpenID Connect (OIDC)

protocol. To illustrate, we present an example of one of the authen-

tication �ows supported by OIDC.

2.1 Single Sign-On (SSO)

Single Sign-On (SSO) is a security and authentication mechanism

that enables users to access multiple applications or services with

a single set of login credentials. The purpose of SSO protocols is to

provide a secure and reliable means of identifying individuals and

ensuring that they are who they claim to be in the digital space.

These protocols are used in various contexts, such as online bank-

ing, e-commerce, social media, and government services. Some

common examples of SSO protocols include OpenID Connect [41],

OAuth [48], and SAML [49]. SSO protocols typically involve the

exchange of digital tokens or credentials that a trusted authority,

such as a certi�cation authority or identity provider, can verify.

The protocol, in general, speci�es how these tokens are created,

transmitted, and validated in a secure fashion, as well as how ac-

cess to resources or services is granted based on the authorization

obtained from the end users.

Discovery: establishes

credentials (e.g., keys, urls, etc.)

Auth request:

User

 authorizes

Verifies

Auth code Access token request:

Validates

code

Verifies

both tokens User resource request:

OpenID Provider (OP)Relying Party (RP)

Figure 1: Interactions between the Relying Party (RP) and

OpenID Provider (OP) during the authentication process of

Authorization Code Flow in OIDC.

2.2 OpenID Connect

Among all SSO protocols, OpenID Connect (OIDC) is the most pop-

ular and supported by nearly all major identity service providers,

including Google, Microsoft, and Amazon. OIDC is an authentica-

tion protocol [41] allowing users to authenticate themselves across

di�erent web and mobile applications. It is built on top of the OAuth

2.0 protocol, which provides authorization for accessing resources.

OIDC utilizes an identity layer added on top of the authorization

�ows, which allows the clients to authenticate end users using their

existing accounts. Precisely, a user authenticates with the OIDC

provider’s authorization server and receives an ID Token, a JSON

Web Token (JWT) [32] formatted string that contains information

about the user’s identity, such as their name and email address

as payload along with a signature component that can be crypto-

graphically veri�ed by the recipient. The ID token is then used to

authenticate the user to a web or mobile application, which can

then authorize the user to access resources or services. The pro-

tocol relies on communication between multiple parties, such as

the Relying Party (RP), OIDC Provider (OP), and users. It provides

support for three authentication �ows that can be implemented by

the participating parties: (1) Authorization Code Flow, (2) Implicit

Flow, and (3) Hybrid Flow. Each �ow de�nes the transactions that

occur between multiple parties during the authentication process.

Figure 1 illustrates an example of an Authorization Code Flow,

where upon establishing the discovery of credentials, RP initiates

an authentication request. The OP then issues an authorization code

upon successful authorization from end users. RP then veri�es the

code and exchanges it for an access token along with an ID token.

Finally, RP veri�es the authenticity of the tokens and exchanges

the access token for user resources.

3 Overview

We now outline the threat model followed by a running example

of OIDC implementation to discuss the overview of AuthSaber .

3.1 Threat model

Our objective in this work is to verify the OIDC protocol imple-

mentations (i.e., programs) against the standard security behavior

expressed as safety properties. We assume that an attacker may

attempt to impersonate legitimate users and/or other participat-

ing entities such as relying parties and service providers to gain

unauthorized access to the resources of users and clients. Hence,

malicious actors can be users, client applications, and even autho-

rization servers (i.e., deployed by attackers) during the protocol ex-

ecution. Attackers may exploit vulnerabilities in the authentication

�ows implemented by these entities, aiming to gain unauthorized

access or privileges. In addition, attackers may intercept and mod-

ify communication exploiting any insecure client applications or

devices running the applications. Precisely, attackers may utilize

the supported OIDC endpoints [41] to exploit the authentication

access control �ow during the protocol execution. This exploitation

may also enable them to eavesdrop on, tamper with, or inject mali-

cious parameters (e.g., tokens) into the protocol endpoints, thereby

compromising the integrity and con�dentiality of the authorization

and authentication. It is essential to note that we assume attackers

do not possess the capability to directly modify the source code

or binaries of server-side implementations. Additionally, they are

restricted from direct access to the internal storage or databases of

the authorization servers for retrieving information.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Tamjid Al Rahat, Yu Feng, and Yuan Tian

1 void processTokenResponse(TokenResponse res) {

2 UserInfo info;

3 String atoken = res.getParam("access_token");

4 if(verifyToken(res)) {

5 info = userInfoRequest(atoken);

6 loginUser(info);

7 } else {

8 authError(); //Reject token

9 }

10 }

11 boolean verifyToken(TokenResponse res) {

12 Client c = Registration.client;

13 IdToken itoken = res.getParam("id_token");

14 Algorithm alg = itoken.getAlgorithm();

15 boolean v = false;

16 if(alg == "none") {

17 //Incorrect: using "none" algorithm

18 //forces to skip signature verification

19 v = JWT.verify(itoken, alg);

20 }

21 else if(alg == "hs256") {

22 //Verifies signature using client secret

23 v = JWT.verify(itoken, alg, c.client_secret);

24 }

25 [...]

26 if(!v) {

27 return false;

28 }

29 return true;

30 }

Figure 2: Code example of an OIDC relying party validating

the id token received as a response from the provider during

the authentication �ow. When validating the id token (line

11), it accepts ‘none’ as a valid algorithm value for the token,

which enforces the verify function (line 19) to skip the sig-

nature veri�cation for the token. This enables attackers to

bypass the signature veri�cation by injecting a maliciously

crafted id token with an altered algorithm value in its un-

protected header.

3.2 Running example

Figure 2 illustrates a critical security mistake when validating the

id token received from the OIDC provider during an authentica-

tion �ow. Here, id token contains a cryptographically veri�able

signature component that prevents attackers from injecting mali-

ciously crafted tokens. Therefore, incorrect validation of id token

could be exploited to bypass authentication during the execution of

OIDC protocol. The example is motivated by a vulnerable imple-

mentation of OIDC protocol from the Pac4j [43], a popular library

for identity access management. This example �rst processes the

response (line 1) received from the token endpoint, which contains

an access token and an id token. The id token contains a signa-

ture that is generated by signing its header and payload component,

which typically are not protected. The code calls the verifyToken

method (line 4) to verify the id_token. Once the id_token is success-

fully veri�ed, it uses the access_token (line 5) at the UserInfo end-

point to obtain user’s information to login the user. If the id_token

is not veri�ed, the token is rejected and the �ow is terminated with

an error response (line 8). In verifyToken function, it �rst extracts

the header algorithm (line 14) of the id_token, and based on the

algorithm value, it uses the verify function provided by JWT [32]

library to verify the signature component (line 16-24) of the token.

OIDC
Programs

OIDC
Specification

(English)

Program

Translation

Software Model

Checker

Authentication Flow

Validation

Authentication flow
constraints

Valid
entry points

Safety
properties

Boogie
programs

Invalid
flow

Figure 3: Schematic work�ow of AuthSaber.

Safety Properties. When processing Id Tokens, an important

safety property is: (¨1) ‘once an access token is received along

with an id token, it should not be used at the user info endpoint un-

less the id token is veri�ed’ (OIDC ref. §3.1.3.5). At �rst glance, the

code example seems to satisfy the property ¨1. However, there is an

edge case relevant to the id token’s header algorithm, which leads

to a subtle bug due to the discrepancy between the original speci�-

cation and the actual implementation. Particularly, using the ‘none’

as algorithm value enforces the veri�cation algorithm to skip the

signature component of an id_token. Even though the ‘none’ value

must not be used by OIDC for validating id token, it is accepted

as a valid algorithm for JWT tokens. Therefore, another important

safety property to check is: (¨2) ‘if a received id token uses ‘none’

as the header algorithm value, the associated access token should

not be used at the user info endpoint’ (OIDC ref. §2, §3.1.3.7).

Unfortunately, the code example depicted in Figure 2 violates

the property ¨2, as it accepts ‘none’ as a valid algorithm when

verifying the signature of the id token. Since using ‘none’ as the

algorithm value enforces the verify function to ignore the signature

component, it eventually allows attackers to bypass authentication

simply by modifying the algorithm value within the unprotected

header component of the id token.

Veri�cation with AuthSaber. AuthSaber can uncover such vi-

olations by verifying OIDC implementations against their safety

properties that describe the unexpected security behavior. Figure 3

illustrates the schematic work�ow of our safety veri�cation ap-

proach. To use AuthSaber , the user �rst needs to provide the secu-

rity properties expressed in AuthLTL, the speci�cation language

in AuthSaber that supports linear temporal logic. For example, the

requirement to verify the id token (¨1) can be expressed as follows

in AuthLTL:

□(response(ĩ, ėĨĝ(access_token) = Ī ' ėĨĝ(id_token)

= ğ) ⇒ ¬ request(ę, ėĨĝ(access_token) = Ī) U

verifyToken(ğ, ĨěĪ = true))

This AuthLTL property states that if a response from the autho-

rization server ĩ contains an access token Ī and an id token ğ , a

request using the token Ī from client ę should not be sent until the

id token ğ is successfully veri�ed. Since an id token is expected

to contain a signature component that is usually veri�ed by calling

an external JWT [32] function (e.g., verify), a true value returned

from the external call indicates the successful veri�cation of the

token. Similarly, the property of handling the ‘none’ algorithm for

AuthSaber : Automated Safety Verification of OpenID Connect Programs CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

id token (¨2) can be expressed in AuthLTL as follows:

□(response(ĩ, ėĨĝ(access_token) = Ī ' ėĨĝ(id_token)

= ğ ' ğ .ėĢĝ = none) ⇒ ¬♢request(ę, ėĨĝ(access_token)

= Ī))

This property states that if access token Ī is received (as a response

from the authorization server ĩ) with an id token ğ whose ėĢĝ

header value is ‘none’, a subsequent request (e.g., user info request)

using the access token should not be sent.

AuthSaber then veri�es the OIDC programs against the safety

properties expressed in AuthLTL. However, unlike regular pro-

grams, an OIDC program typically involves multiple entities (e.g.,

relying party, authorization server, etc.) and each of them has many

entry points to interact with each other. Therefore, constructing

a naive harness required by the model checker can result in both

false negatives (i.e. invoking entry points in an ad-hoc manner) and

scalability problems (i.e., enumerating all possible interactions). To

mitigate these challenges, AuthSaber takes additional authentica-

tion �ow constraints as input (de�ned by the standard speci�ca-

tion) and preserves a subset of interactions that are consistent with

authentication �ow constraints, which dramatically reduces the

complexity of veri�cation without compromising soundness.

In particular, given an OIDC program, AuthSaber �rst validates

the authentication �ow constraints in the programs. If the programs

violate the �ow constraints, the veri�cation terminates without

checking the safety properties. Otherwise, the �ow validation pro-

cedure returns a harness with a set of entry points that satisfy the

�ow constraints.

To verify the implementation of resulting valid entry points of

OIDC protocol against their safety properties in AuthLTL,AuthSaber

utilizes an o�-the-shelf LTL model checker [15]. However, main-

stream OIDC programs are mostly written in high-level program-

ming languages like Java and Javascript, and these programs are

not directly accepted by existing LTL model checkers. Furthermore,

to ensure expressiveness, AuthLTL introduces domain-speci�c con-

structs that go beyond the standard syntax of LTL and are not

consumable by the model checker. To mitigate these challenges,

AuthSaber �rst translates the input programs into Boogie [33] – a

language-agnostic representation that makes the veri�cation task

tractable for model checking. Second, it automatically transforms

the speci�cation in AuthLTL into their equisatis�able regular LTL

formulas through our customized program transformation. Finally,

AuthSaber veri�es the programs against the transformed safety

properties in LTL. If the programs are not veri�ed, it returns a

counter-example that implies the violated paths in the program.

4 System Design
This section outlines the design and implementation details of

AuthSaber , an automated safety veri�cation tool speci�cally crafted

to address the scalability challenge posed by multi-party interac-

tions within the OIDC protocol.

4.1 Speci�cation Language

We begin with the details of our speci�cation language that can

be used for expressing the OIDC safety properties based on the

standard speci�cation.

Syntax. Figure 4 illustrates the formal syntax of our AuthLTL

speci�cation language. AuthLTL is designed to formally express

the safety properties of OIDC that developers or security analysts

intend to verify. Notably, AuthLTL comprises atomic propositions

featuring logical and temporal connectives. However, unlike the

standard LTL where the formulas are de�ned over propositional

variables, AuthLTL formulas are de�ned over the OIDC-speci�c

predicates.

ą ::= ć | ą ' ą | ą (ą | ą ⇒ ą | ą ô ą | ¬ą

| □ ą | ♢ ą | ą | ą U ą

ć ::= č | verifyToken(t, č) | authUser(u, č)

| request(d, č) | response(s, č) | check(f, č)

| call(Ĝ , ®Ĭ, č) | ...

č ::= ě comp ě | č ' č | č (č | ¬č

ě ::= Ĭ | ę | ě.Ĝ | Ĝ (®Ĭ) | ě op ě | arg(c) | conf (c)

Figure 4: Syntax of AuthLTL speci�cation.

Expressions. AuthLTL expressions include variables Ĭ , constants

ę , �eld variables ě.Ĝ , binary operations ĥĦ , and function calls Ĝ (®Ĭ).

We provide an additional construct args(c) that returns the values

mapped against a key constant ę in the context of a request or

response instance. Similarly, conf (c) returns the con�gured value

against the key ę . We found these constructs very useful as OIDC

properties require reasoning about the protocol-speci�c request

and response parameters mapped against certain string constants.

For instance, arg(state) returns the value of the “state” parameter

used in a request used during the protocol interactions. Expressions

can be composed using standard arithmetic and logical operators

to construct more complex expressions č .

OIDC predicates. Our domain-speci�c atomic predicatesć work

as the cornerstone of AuthLTL formulas as they refer to the events

and actions that occur during the execution of the protocol im-

plementation. For example, predicate verifyToken(t, č) is true if

the signature of an id token Ī is veri�ed in a context that satis�es

predicate č . In the context of OIDC, verifyToken(t, č) provides an

abstraction of the external JWT [32] API calls that are commonly

used to verify the signature component of the id token with re-

spect to its header algorithm. Similarly, userAuth(u, č) predicate

is true if an authorization (from user ī) satisfying the predicate č

is obtained during the protocol �ow. Moreover, request(d, č) and

response(s, č) predicates are true if an HTTP request is sent to

an entity Ě and a response received from an entity ĩ , respectively,

in a context satisfying č . Finally, check(f, č) is true if a condition

satisfying č is explicitly checked by function Ĝ and call(Ĝ , ®Ĭ, č) is

true if function Ĝ is called with arguments ®Ĭ in a context satisfying

č . Along with variables, predicates also accept “_” (underscore) to

represent “don’t care”.

Temporal operators. It is common for OIDC protocols to check

properties that require reasoning about the temporal modality of

protocol events. Temporal operators in our speci�cation language

include always (□), eventually (♢), next () and until (U). □ą sig-

ni�es a universal assertion, indicating that condition ą holds true

at all steps during the program execution. Conversely, ♢ą asserts

that ą will become true at some point in the future. ą signi�es

an immediate successor, stating that ą must hold true in the very

next time step. Finally, ą1 U ą2 de�nes a relationship between

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Tamjid Al Rahat, Yu Feng, and Yuan Tian

two conditions, specifying that the �rst condition ą1 remains true

until ą2 becomes true, encapsulating the concept of persistence

and change over time. These operators enable precise speci�cation

and reasoning about the protocol’s execution steps, making them

invaluable tools for analyzing the security behavior and safety of

OIDC programs. Additionally, AuthLTL formulas can be combined

with standard logical connectives (e.g., ', (,⇒, and ¬) to express

more complex properties.

Example 1. When responding to the authorization code �ow to

perform authentication, the server returns an authorization code

(OpenID spec. §3.1.2) that can be exchanged for an id token and (or)

an access token. This �ow prevents exposing any tokens directly to

the user agent and other malicious client applications. However, the

speci�cation requires authenticating the user before sending the code

to the client. Since the methods used by the server to authenticate

the end user vary for di�erent service providers, AuthLTL provides

authUser predicate to model user authentication. In addition,ĝěĤęĥĚě

is an OIDC API that returns the code generated by the server. We

encode this property in AuthLTL as follows:

ą := □(request(ĩ, ėĨĝ(response_type) = code

' session = ī) ⇒ ¬ response(ę, ėĨĝ(code) =

ĝěĤęĥĚě (ī, _)) U authUser(ī, ret = true))

4.2 Program Translation

Real-world OIDC protocols are implemented in high-level program-

ming languages like Java and Javascript which are not directly

consumed by the model checkers. Hence, we �rst transform the

original OIDC programs to its corresponding Boogie IR [33]. Specif-

ically, we begin by compiling the OIDC programs to WalaIR [53],

a stackless static-single assignment (SSA) form consisting normal

statements like assignments, function calls, conditional jumps, and

so on.We then encode theWalaIR statements to their corresponding

Boogie representation.

Boogie language. A Boogie program consists of a set of decla-

rations, which can introduce types, constants, functions, axioms,

variables, procedure declarations, and procedure implementations.

Boogie types include both primitive data types like bool, int, as

well as the user-de�ned data types and map types. Boogie func-

tions are typically pure, meaning they do not have side e�ects, and

functions are commonly used to de�ne background theories and lan-

guage properties. Additionally, Boogie procedure implementations

imperatively describe the behavior of a declared procedure and

consist of standard statements like assignments, call, return,

assume and assert.

Functions are uninterpreted by default and their semantics are

quanti�ed through extra axioms. In addition, functions without

arguments are treated as constants. Boogie axioms are used to re-

strict the interpretation of functions and constants. Axioms may

include common operations in programming languages, such as

arithmetic, boolean, function, map, and �rst-order quanti�ers. Un-

like functions, Boogie procedures can have side e�ects, and they are

commonly used to encode the executable components of input pro-

grams such as functions and constructors. Procedure declarations

can have input and output parameters, and they are used to specify

pre-conditions (requires construct) and post-conditions (ensures

construct) of the encoded methods.

Memory modeling. Programming languages used for implement-

ing OIDC protocols are typically object-oriented and an important

design choice for translating such languages to Boogie is the rep-

resentation of the memory (i.e., heap). We model the program’s

classes, objects, and �elds with the help of a heap, which maps

an object reference and �eld to values. Since the values can be of

di�erent types, depending on their corresponding �eld name, we

use a polymorphic map for the heap variable.

Example 2. Let’s consider the following example of the Boogie

program illustrating a common pattern of object-oriented memory

modeling.

type Obj;

type Field t;

type Heap = <t>[Obj ,Field t]t;

const data: Field t;

const next: Field Obj;

var h: Heap;

This Boogie program de�nes a nullary type constructor Obj for object

references and a unary type constructor Field for instance �elds. It

then declares a constant data, a �eld of type t, and next, a �eld

of type Obj. Variable h of type Heap maps from object-�eld pairs

to value. Thus, given the �eld data in an object reference o, a �eld

access expression o.data in the source code can be translated into

expression h[o, data] in Boogie.

EncodingWalaIR to Boogie.With the help of the memory model-

ing described above, most of theWalaIR expressions and statements

can be translated into Boogie in a syntax-directed way:

(1) As WalaIR expressions are already simpli�ed with SSA form,

they can be directly translated to Boogie. We use Boogie’s

int and bool primitive types to represent the integer and

boolean-typed constants in the source program. We model

the arithmetic operations with Boogie functions along with

assertion for operations like integer division.

(2) WalaIR’s assign statements can be directly translated to Boo-

gie assignments. For �eld assignment, we use Boogie’s map

update operation, as explained above.

(3) Method invocations are translated as Boogie procedure calls.

We use the symbol table structure and pointer analysis meth-

ods to precisely infer the values of arguments. However,

Boogie de�nes speci�c return variables in procedure declara-

tions. Therefore, we translate the WalaIR return statements

to assignments to the de�ned return variable.

(4) Conditional branches inWalaIR take the form if (expr) goto L,

which is translated by adding an assume statement (i.e.,

assume(expr) or assume(¬expr)) on the control-�ow path

of the Boogie program.

4.3 AuthLTL to Regular LTL

Our speci�cation language AuthLTL is designed to achieve high

expressiveness for complexOIDC properties, which involve domain-

speci�c predicates such as verifyToken and authUser (Section 4.1).

This leads us to a new challenge as these predicates are not rec-

ognizable by an o�-the-shelf LTL model checker. To mitigate this

challenge, AuthSaber automatically transforms the given AuthLTL

formula ą into its equisatis�able LTL formula ą ′ through instru-

menting the original program P to P′. Precisely, ą and ą ′ are

AuthSaber : Automated Safety Verification of OpenID Connect Programs CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

6 '

ó �

6 ó �

'

Program
�

AuthLTL expression �

Regular LTL Expression �2

Program
�2

Original program � is instrumented with

freshly generated variables holding values

assigned for each AuthLTL expressions

AuthLTL expressions are replaced with the
newly introduced program variables

Figure 5: Transformation of AuthLTL formula ą to its equi-

satis�able regular LTL ą ′ while transforming the original

program P to P′.

equisatis�able in that P′ satis�es ą ′ if and only if P satis�es ą .

Intuitively, this transformation allows us to bridge the semantic

gap between the AuthLTL properties and the ones in canonical LTL

that can be directly consumed by model checkers.

To transform a given AuthLTL formula ą into an equisatis�-

able LTL formula ą ′, we implement the following steps. First, we

introduce a global mapping that maps AuthLTL’s expressions to

their corresponding program variables. Second, for every domain-

speci�c predicate ć in a given AuthLTL formula, we introduce a

fresh variable Ĭć and update the original AuthLTL formula by re-

placing every occurrence ofć with the fresh variable Ĭć . Finally, we

establish the relation between expressions and their corresponding

fresh variables through instrumentation. Speci�cally, we instru-

ment the program by assigning the correct value of Ĭć , which is

determined by evaluating the predicateć with respect to the pro-

gram’s execution environment.

Example 3. Figure 5 illustrates the above-mentioned transfor-

mation using an AuthLTL formula discussed in Section 3. The

transformation takes an AuthLTL formula ą and a program P as

input, and generates the transformed LTL formulaą ′ along with the

instrumented program P′. As the original AuthLTL formula con-

sists of three atomic predicates response, request and verifyToken,

we introduce three freshly generated boolean variables ĬĨěĩ , ĬĨěħ
and ĬĬěĨ , respectively, which are replaced by each predicate in the

original AuthLTL formula. Finally, we instrument P by assigning

the correct value to these variables. Since the �nal step is not trivial,

we explain it in more detail below:

(1) For request(_, č) predicate, we assign true the correspond-

ing ĬĨěħ variable if the condition č holds right before the re-

quest is sent. Similarly, since response(_, č) predicate should

be evaluated after a response is received, its variable ĬĨěĩ is

set to true if č holds after the response handler is called.

(2) For the verifyToken(Ī, č) predicate, the boolean variable ĬĬěĨ
is set based on the result returned from external function

verify. Hence, ĬĬěĨ is assigned after verify function is called.

4.4 Safety Veri�cation
In this section, we elaborate on the details of our safety veri�er

that is customized for the OIDC domain. Speci�cally, we propose a

staged approach that �rst generates an e�ective harness to constrain

the space of valid communication among multiple parties through

authentication �ow validation enforced by the standard speci�cation,

and then reduces our veri�cation problem to an instance of LTL

model checking.

4.4.1 Authentication Flow Validation. To ensure a sound veri�-

cation, the OIDC implementation needs to be driven by a harness

that simulates all possible interactions of di�erent parties. However,

unlike regular programs with single or a few entry points, OIDC im-

plementations consist of dozens of entry points that can be invoked

by the participating entities (e.g., relying party, OIDC providers,

etc.) to �nish the desired authorization and authentication services.

In this case, a naive harness, which exhaustively enumerates all

combinations of entry points to verify safety properties is techni-

cally sound but prohibitive in practice due to the unbounded search

space. On the other hand, a harness that invokes entry points in an

ad-hoc manner could result in false negatives.

C2

initAuth
C0 C1

S0 S1

S2 S3

S4

authRequest

authResponse

recvRequest

recvRequest

valIdToken

handleRequest finish

authnUser

getConsent

authnFailed
consent

getSubject

Figure 6: Automata representation of the authentication �ow

constraints for the OIDC implicit flow de�ned (in English)

by the speci�cation.

Key observation. In addition to safety properties that can be ex-

pressed in our language in Section 4.1, the OIDC speci�cation [41]

also suggests authentication �ow constraints that should be con-

formed by OIDC implementations. For instance, here is an example

of the original constraint of the Implicit Flow for authentication

from the speci�cation (in English):

(1) Client prepares an authentication request and sends the re-

quest to the authorization server.

(2) Server authenticates the user and obtains user’s authoriza-

tion.

(3) Server sends back the user to the client with an ID Token.

(4) Client validates the ID token and retrieves the user’s subject

identi�er.

Note that the above �ow constraint not only mentions relevant

parties (i.e., client and server.) of the protocol but also speci�es the

key actions and their temporal sequence that should be performed

by each party. Since a harness that violates the authentication �ow

is not recommended, our key insight is to decompose the origi-

nal unbounded veri�cation problem to a staged approach: 1) we

�rst construct a �nite state machine that formalizes the seman-

tics of �ow constraint, 2) construct an augmented state machine

representation of OIDC implementation that encodes all possible

paths of communication, and �nally, 3) generate an e�ective har-

ness that only invokes valid authentication �ows by computing

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Tamjid Al Rahat, Yu Feng, and Yuan Tian

·

Automata for authentication flow
�AF

Interaction
Dependence

Automata

�IDG

S0 S1 S2
AuthReq(t) UserInfoReq(t)

B0

root

C1

B1

A3 C4

A4

[Harness]

C.authRequest()

B.f0

B.f1

A.initToken()

A.f4

C.userInfo()

�IDG X �AF

Model

Checker

Programs of
OIDC entities

Authentication flow
constraints

�af Selected program entrypoints
for verification

A0

A1

A2

A3

A4

C0

C4

C3

C1

B0

B1

B2

C2

authRequest

tokenRequest

userInfo

redirect

initToken

revokeToken

refreshToken

userInfo

userInfoR
eq

(Relying party)

(OIDC provider)

(Client)

A simplified Interaction Dependence Graph (IDG)
between the entrypoints of protocol entities

Internal dependency
External dependency

�AF

Figure 7: Authentication �ow validation approach imple-

mented by AuthSaber which �rst models the interaction

between the entrypoints of each participating OIDC entities

as IDG. The IDG model is then validated against the �ow

constraints de�ned by the standard OIDC speci�cation and

the resulting (valid) endpoints are then processed for safety

veri�cation using model checking.

the intersection between the �ow constraints and the augmented

program.

Step 1: Authentication �ow constraints. Our �rst step is to

convert the authentication �ow constraint in English into its for-

mal speci�cation using �nite state machine čėĜ . Figure 6 shows a

�nite state machine that corresponds to the �ow constraint at the

beginning of Section 4.4.1. In particular, each node (ĩğ) denotes a

representative state of a di�erent party (i.e., client vs. server.). Each

transition represents an authentication action that leads a party

to a new state speci�ed by the �ow constraint. We use solid and

dashed arrows to represent transitions within a single entity and

multiple entities, respectively. Once the client receives an authen-

tication response from the server at state ę0, according to the last

step of the �ow constraint from OpenID speci�cation (i.e., “Client

validates the ID token and retrieves the user’s subject identi�er"),

the client should �rst check the validity of the token (state ę1) and

then retrieves the user’s subject identi�er at state ę2. We omit the

formal de�nition of �ow constraint since it can be easily translated

from the original English description.

Step 2: Interaction Dependence Graph (IDG). Given the entities

of the OIDC implementation, AuthSaber constructs its Interaction

Dependence Graph (IDG) that over-approximates the interactions

(i.e., communication via di�erent entry points.) among the entities.

Speci�cally, IDG is a graph G(Ē , āğĤ, āěĮ) where:

(1) Ē is a set of vertices, where each Ĭ ∈ Ē represents an entry

function that communicates (i.e., via network APIs) with

other entities of the protocol.

(2) āğĤ are solid arrows that encode internal data dependencies

among entry functions within the same entity. Precisely,

(Ĭ, Ĭ ′) ∈ āğĤ indicates that Ĭ ′ depends on the data from Ĭ

during the protocol interaction.

(3) āěĮ are dashed arrows that encode the external dependencies

among entry points across all participating entities. Speci�-

cally, (Ĭ, Ĭ ′) ∈ āěĮ indicates Ĭ ′ depends on an entry point Ĭ

provided by an external entity.

To construct the IDG, we leverage the program dependency

graph generated by the WALA framework to identify all entry

functions in Ē as well as their internal data dependency in āğĤ .

However, precisely constructing external dependency edges for

āěĮ is prohibitive since it requires whole-program analysis and

global invariants. To mitigate this challenge, we over-approximate

external data dependencies in āěĮ by adding (dashed edges) be-

tween the entry points of all entities. Note that the current IDG

is sound but encodes a lot of spurious external dependencies. Con-

sequently, we leverage the �ow constraint to further re�ne the

external dependencies in step 3. Figure 7 illustrates the re�nement

technique of our interaction modeling.

Step 3: Re�ning IDG usng �ow constraint čėĜ . Since using

the original IDG to explore all the possible interactions does not

scale, AuthSaber automatically derives a subset of potentially valid

interactions using �ow constraints from step 1. Toward this goal,

AuthSaber employs an automaton-based solution [1] to preserve a

subset of external dependencies that are consistent with the �ow

constraints čėĜ . As shown in Figure 7, AuthSaber �rst transforms

the IDG to a �nite automatonAąĀă (Qğ , Σğ , ħ0ğ , Ăğ , ąğ), where states

Qĝ corresponds to the nodes of IDG and Σğ includes the entry

functions associated with the graph nodes. Transition function

ąğ : Qğ × Σğ → Qğ corresponds to the external and internal edges

(āğĤ and āěĮ) of IDG. Finally, ħ0ğ ∈ Qğ is a super root node that

connects the main function of all entities and accepting states Ăğ
are the nodes with no dependants (i.e., do not make any external

request).

Meanwhile, AuthSaber already constructed the automaton AýĂ

from the �ow constraint čėĜ in step 1. In this case, AuthSaber com-

putes the product automaton A (ýĂ×ąĀă) of the two automatons

(using the standard algorithm [1]) and the language recognized by

the product automaton represents the intersection of the languages

recognized by AýĂ and AąĀă . Therefore, the resulting product

automaton A (ýĂ×ąĀă) only preserves the external dependencies

that are consistent with the �ow constraint čėĜ .

4.4.2 Model Checking. After AuthSaber derives the endpoints of

valid interactions among OIDC entities, it proceeds to verify the

safety properties within these endpoints. Our safety property veri-

�cation technique for OIDC programs is an instance of the counter

example guided abstraction re�nement (CEGAR) framework which

we adapt from [15]. In the following, we begin with the necessary

preliminaries followed by a brief overview of the veri�cation using

model checking.

Büchi automaton. A Büchi automaton A = (Σ,Q, ħ0,→, F) is a

�nite-state automaton which consists a �nite alphabet Σ, a �nite set

of states Q, an initial state ħ0 ∈ Q, a transition relation→ which is

a function Q×Σ → Q, and a set of accepting states F ¦ Q. A word

is an in�nite sequence ĭ = ě0ě1 . . . such that ěğ ∈ Σ for all ğ g 0.

A run Ĩ is an in�nite sequence of states ħ0ħ1 . . . such that for all

ěğ ∈ ĭ , there is a transition ħğ × ěğ → ħğ+1 in the Büchi automaton

A. A word ĭ is accepted by A if a run of ĭ on A visits a set of

AuthSaber : Automated Safety Verification of OpenID Connect Programs CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

�nal states in�nitely many times. Finally, set of all words that are

accepted by A are denoted by the language L(A).

LTL to Büchi. Any standard LTL formula can be expressed as a

Büchi automaton [6]. Since AuthSaber has already transformed the

AuthLTL formulas to standard LTL, our safety properties can also

be converted into equivalent Büchi automaton, which is a more

tractable form for automated analysis.

Büchi program product. To systematically explore the state space

of the program for checking safety properties, a Büchi product

representing the intersection of the Boogie program and the LTL

automata is constructed. Let P = (S,L, ąP) be an OIDC program

with a set of statements S, program locations L and a transition

function ąP : L × S → L. On the other hand, Aą = (Σ,Q, ħ0,→

, F) be the Büchi automaton representation of a given AuthLTL

safety property ą . Now, Büchi program product P ¹ Aą is in fact

another Büchi automaton B = (ΣB ,QB , ħ0B , ąB , FB) such that

ΣB consists of all sequential compositions of two statements ĩ1
and ĩ2, where ĩ1 is a statement of program P and ĩ2 is a statement

that assumes that a subset of atomic proposition č in property ą is

satis�ed, i.e.,

ΣB = {ĩ1; assume č | ĩ1 ∈ S, č ∈ Σ}

QB is the cartesian product of program locations and Büchi au-

tomaton states (i.e., L × Q), and ħ0B is the pair of initial program

location Ģ0 and initial state ħ0 of Aą . Transition function ąB is a

product of the program’s transition and Büchi automaton’s transi-

tion such that an edge in B is labeled by two sequential statements;

one is from the program’s edge label and another is an assume

statement obtained from the transition of Aą . Formally,

ąB = {(Ģ1, ħ1), ĩ; assume č, (Ģ2, ħ2)

| (Ģ1, ĩ, Ģ2) ∈ ąP , (ħ1, č, ħ2) ∈→}

Finally, FB is a pair (Ģ, ħ) such as ħ ∈ F is an accepting state of

Aą and Ģ is a location of accepting state of program P at which

the protocol �ow terminates.

Veri�cation. The model checking technique �rst constructs a

Büchi automatonA¬ą for a given OIDC safety propertyą such that

the language accepted by A¬ą violates the desired security behav-

ior. Next, it constructs a Büchi product automaton B = P ¹ A¬ą

which represents the input program together with the speci�cation.

Hence, P satis�es the safety property ą if and only if the language

of B is empty or B does not have a trace that is feasible during

the execution. To check this, the veri�cation method iteratively

�nds a trace ă that is accepted by B and checks the feasibility of

ă under the program’s execution environment. Here, any trace ă

accepted by L(B) always takes the lasso-shaped form ă1ă
Ĉ
2
. Hence,

ă is feasible if and only if ă2 can be executed in�nitely many times

after executing ă1. This is done by �rst checking the feasibility of

ă1, the loop ă2, and then ă1ă2. If none of those are infeasible, the

feasibility checking tries to �nd a ranking function to prove that

the loop will eventually terminate. Finally, if ă is inferred as feasible,

it represents a counterexample (i.e., a path that violates the safety

property). Otherwise, ă is a spurious path and removed from the

language of B, and the veri�cation method moves to the next trace

accepted by B.

4.5 Implementation

We implemented the technical concepts discussed above inAuthSaber

tool, which takes OIDC programs along with the safety speci�ca-

tion as input and veri�es the programs against the speci�cation.

AuthSaber consists of approximately 9,500 lines of code in Java. For

OIDC implementation in Java, AuthSaber takes bytecode as input,

and for Javascript (JS), it accepts the source codes (i.e., scripts) as

input. We use IBM T.J. Watson Libraries for Analysis (WALA) [53]

to represent the input program as WalaIR. WALA supports both

Java and JS as the front end and represents the programs in the

uni�ed structure of WalaIR. We further utilize WALA’s pointer-

analysis and callgraph APIs which allow us to reason about the

semantics of the program instructions when translating into equiv-

alent Boogie [33] programs. Finally, the CEGAR framework of our

model checking is built upon the UltimateAutomizer model checker

tool [15].

Manual e�ort for initial setup. To facilitate the automated ver-

i�cation of a diverse range of real-world OIDC programs, users

may need to invest additional manual e�ort in the initial setup

of AuthSaber . For instance, AuthSaber utilizes a comprehensive

ontological mapping of OIDC keywords to associated terms (such

as function names and variables) used within the OIDC imple-

mentation. While the majority of OIDC-speci�c keywords (e.g.,

id token) in our AuthLTL can be seamlessly mapped using pattern

matching to terms de�ned in the programs in accordance with the

standard speci�cation [41], certain OIDC implementations feature

custom authentication �ows, necessitating manual e�ort to align

predicates and variables in AuthLTL with their counterparts in

the implementation. Furthermore, OIDC programs commonly use

external JWT libraries to support their cryptographic functions,

particularly for signature veri�cation. Although AuthSaber o�ers

abstract modeling for commonly used JWT APIs, users may be

required to contribute additional modeling if OIDC implementation

employs new JWT libraries or APIs. However, these manual tasks

are a one-time requirement and can be universally applied to any

OIDC implementations adhering to the standard speci�cation.

5 Evaluation
This section begins by presenting the research questions, followed

by an evaluation designed to address these questions.

Research questions. We design our evaluation scheme primarily

to answer the following research questions:

(1) RQ1. Can AuthSaber verify safety properties in real-world

OIDC implementations?

(2) RQ2. Can AuthSaber verify previously reported violations in

OIDC implementations that were patched by the developers?

(3) RQ3. How does AuthSaber perform when compared with

other security analysis tools in the SSO domain?

5.1 Experimental Setup

Below, we �rst de�ne the scope of OIDC properties considered in

our evaluation. We then elaborate on the OIDC libraries and bench-

marks selected for veri�cation against these speci�ed properties.

Selection of properties. We de�ne the safety properties based

on the standard speci�cations outlined in OpenID Connect Core

1.0 [41] and established security best practices [28]. The scope of

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Tamjid Al Rahat, Yu Feng, and Yuan Tian

OIDC Components Authentication Flows RP OP OIDC References #Properties
Authentication request validation AC, I, H ✓ §3.1.2.2, §3.2.2.2, §3.3.2.2 1
Authentication response validation AC, I, H ✓ §3.1.2.7, §3.2.2.8, §3.3.2.8 2
Token request validation AC, H ✓ §3.1.3.2, §3.3.3.2 1
Token response validation AC, H ✓ §3.1.3.5, §3.3.3.5 2
ID token validation AC, I, H ✓ ✓ §2, §3.1.3.7, §3.2.2.11 8
Access token validation AC, I, H ✓ ✓ §3.1.3.8, §3.2.2.9 1
Authorization code validation AC, H ✓ §3.3.2.10 1
User info request and response AC, I, H ✓ ✓ §5.3.1, §5.3.2, §5.3.4 2
Client authentication AC, I, H ✓ §9 6

Table 1: OIDC components and relevant details that we consider to gather the safety properties for our evaluation. Here, we

consider the components required for all three possible authentication paths in OIDC speci�cation [41]: (1) authorization code

�ow (AC), (2) implicit �ow (I), and (3) hybrid �ow (H). These components are supported by the relying party (RP) and OIDC

provider (OP) to perform the authentication �ow.

these properties is illustrated in Table 1. Additionally, Table 2 pro-

vides details on the speci�c properties selected within the scope of

Id Token Validation, a crucial component in OIDC’s authentication

�ows.

In total, we have identi�ed 24 safety properties, encompassing

all three authentication �ows supported in OIDC: (1) authorization

code �ow, (2) implicit �ow, and (3) hybrid �ow. It is noteworthy

that, for the current analysis, we exclude the optional to implement

OIDC components, such as self-issued OIDC providers and passing

requests as JWT objects. Our empirical study indicates that these

components are not widely supported by most OIDC implementa-

tions.

Collection of OIDC implementations. To evaluate AuthSaber ,

we collect widely adopted open-source libraries of OIDC protocol.

Statistical information for the selected libraries is presented in

Table 3, indicating their popularity based on metrics like GitHub

stars. Out of these libraries, 11 are implemented in Java, and 4

in Javascript. Additionally, six of these libraries are certi�ed [42]

by the o�cial OpenID Foundation. It’s worth noting that not all

OpenID-certi�ed libraries are open source or publicly accessible,

which limits their inclusion in our evaluation.

Collection of labeled benchmarks. In order to evaluateAuthSaber’s

performance on verifying known security issues in OIDC implemen-

tation, we further collect a dataset of OIDC programs and annotate

them with associated safety properties that are violated or satis�ed

in the programs. To compile the dataset, we conduct a manual ex-

amination of publicly available security reports from the OpenID

libraries and their online communities. We ensure that these reports

have been veri�ed and addressed by the developers of the respec-

tive libraries. Next, we annotate the incorrect program samples as

buggy benchmarks and their corrected (i.e., patched) version as

safe benchmarks. Libraries are excluded in cases where security

reports are either not publicly available or not con�rmed by the

developers. Overall, our dataset comprises 28 buggy benchmarks

and 25 safe benchmarks. For each benchmark, we further translate

the corresponding security issues in AuthLTL expressions.

5.2 Experimental Results

We carried out all experiments on a machine equipped with a Quad-

Core Intel Core i5 processor and 32GB of memory, operating on

macOS 14.0.We delve into the detailed insights regarding the results

of our experiments as follows.

Evaluation of OIDC implementations.We verify the popular

OIDC libraries we collected against the 24 safety properties ex-

pressed in AuthLTL. However, given that libraries are often de-

signed to support distinct authentication platforms, not all of them

implement every authentication �ow and feature supported in the

OIDC protocol. Consequently, certain properties may be irrelevant

for a particular library if it does not support the associated authen-

tication feature or �ows. In such cases, we exclude these properties

from the library’s evaluation. The veri�cation results are presented

in Table 4, showing the number of properties satis�ed (i.e., veri�ed)

and did not satisfy (i.e., falsi�ed) for each library. Here, falsi�ed

properties indicate a violation of properties, implying the existence

of vulnerabilities in the input program. In the 15 popular OIDC

libraries, AuthSaber successfully veri�ed a total of 134 properties

and reported 16 security violations that were previously unknown.

AuthSaber also reported 11 false positives, as found during the man-

ual validation of the generated counter-examples. We meticulously

validate each violation before responsively disclosing them to the

developers of the libraries.

RQ1: AuthSaber uncovered 16 previously unknown secu-

rity violations in themost popular OIDC libraries, resulting

in �ve new CVEs.

Evaluation of labeled benchmarks.We further evaluateAuthSaber

using the benchmarks we collect from publicly available security

reports and relevant patches for the respective OIDC libraries. As

outlined in the experimental setup earlier, we collect a total of

28 buggy OIDC programs (i.e., containing at least one violated

property) and 25 safe programs (i.e., the patched version of the

buggy programs). Since these programs are manually collected

based on con�rmed security issues from developers, they provide

the known ground truths for all benchmarks, indicating whether a

benchmark satis�es a given property. We evaluate each benchmark

using AuthSaber , which successfully falsi�es all 28 buggy bench-

marks. We manually investigate the counter-examples generated

by the tool for each benchmark and validate them against the la-

beled safety properties. On the other hand, as illustrated in Table 5,

AuthSaber successfully veri�es 22 out of 25 safe benchmarks and

incorrectly �ags (i.e., false positive) three benchmarks.

AuthSaber : Automated Safety Verification of OpenID Connect Programs CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

#No. Description of safety properties for the component of ID Token validation

1 Once a token request is received, a successful response should not be sent without obtaining end-user authentication.

2 If ID token with signature algorithm none is received as a response from the server, the token should be rejected.

3 If ID token is received with a code from the server, the code should not be used for access token unless the ID token is veri�ed.

4 An ID token should not be veri�ed without �rst checking if the alg header value matches the expected algorithm value.

5 Issuer claim of an ID token should not be empty and it should be checked against the con�gured issuer before making a token

request.

6 Audience claim of an ID token should not be empty and it should be checked before making a token request.

7 If the authentication response type is ‘id_token token’, the at_hash claim must be validated.

8 If the authentication response type is ‘id_token token’, the nonce claim must be present and should match the nonce value

sent with the authentication request.

Table 2: Properties within the scope of ID Token validation (OpenID ref. §2, §3.1.3.7, §3.2.2.11).

OpenID libraries
Language Popularity

(#github stars)
#LOC

1) Keycloak Java 15.2k 38.2k
2) Spring Security Java 7.5k 19.5k
3) Connect2id Java N/A 23.2k
4) Mitre OpenID Java 1.4k 21.3k
5) Google Client Java 600 4.7k
6) Pac4j Java 2.2k 29.8k
7) Oracle Cordova Java 10 7.5k
8) AppAuth Java 2.4k 8.8k
9) OxAuth Java 400 34.4k
10) Quarkus Java 11.4k 7.8k
11) Auth0 Java 257 23.1k
12) Node OIDC JS 2.6k 13.6k
13) AppAuth-JS JS 912 5.2k
14) Auth0 Express JS 360 2.7k
15) Asgardeo JS 25 3.6k

Table 3: Popular OIDC libraries selected for evaluating

AuthSaber. Among these, eleven libraries are implemented

in Java and four are implemented in JS.

OIDC libraries #Properties #Veri�ed #Falsi�ed
Avg.

time(s)
1. Keycloak 15 12 1 3118
2) Spring Security 15 14 0 1835
3) Connect2id 11 11 0 2177
4) Mitre OpenID 8 6 1 1782
5) Google Client 9 7 2 638
6) Pac4j 13 11 1 940
7) Oracle Cordova 8 7 1 460
8) AppAuth 10 6 3 336
9) OxAuth 16 15 0 2348
10) Quarkus 10 7 3 430
11) Auth0 8 7 0 708
12) Node OIDC 15 13 0 1670
13) AppAuth-JS 7 6 1 218
14) Auth0 Express 8 6 1 510
15) Asgardeo 8 6 2 788

Overall 161 134 16 1316

Table 4: Veri�cation results for the popular OpenID Connect

implementations. In all 15 OIDC libraries, we successfully

veri�ed 134 properties and found 16 con�rmed security vi-

olations that were previously unknown. We validated and

responsively disclosed all violations to the respective devel-

opers.

RQ2: AuthSaber successfully veri�ed all 28 buggy bench-

marks and 22 out of 25 safe benchmarks among the labeled

benchmarks with known security issues.

OIDC libraries
#Collected
benchmarks

#Veri�ed by
AuthSaber

#FP

1) Keycloak 6 5 1
2) Mitre OpenID 4 4 0
3) Google Client 3 3 0
4) Oracle Cordova 1 1 0
5) OxAuth 2 2 0
6) Quarkus 2 2 0
7) Auth0 3 2 1
8) AppAuth-JS 2 1 1
9) Asgardeo 2 2 0

Total: 25 22 3

Table 5: Veri�cation results for the collected safe benchmarks

that were patched by the developers based on previously

reported violations. For this evaluation, we exclude the li-

braries for which no previous violations are found, or the

reports are no longer publicly accessible.

OIDC Flow #OIDC Properties
#Checked Properties

AuthSaber Cerberus S3KVetter
Auth code 12 11 4 3
Implicit 6 6 2 2
Hybrid 10 7 1 0
Total: 28 24 7 5

Table 6: Comparison of AuthSaber with existing tools in SSO

domain in terms of the number of OIDC safety properties

that can be expressed and checked.

Comparison with existing SSO analysis tools. Since there are

no other formal veri�cation tools available for OIDC programs, we

compare AuthSaber with other available program analysis tools

in this domain. Speci�cally, we compare AuthSaber against Cer-

berus [47] and S3KVetter [26], which use static analysis and sym-

bolic execution, respectively, to analyze the security of OAuth pro-

tocol implementation. Although OIDC protocol is built on top of

OAuth protocol, these tools are not designed to reason about the

semantics of OIDC and therefore, this is not an apples-to-apples

comparison. Hence, we �rst do our best to express 24 OIDC safety

properties for three authentication �ows: 1) authorization code �ow,

2) implicit �ow, and 3) hybrid �ow. Among them, authorization

code �ow and implicit �ows are inherited from the OAuth [48]

protocol. Further, we evaluate the buggy benchmarks using Cer-

berus and S3kVetter tools against the safety properties. Since the

hybrid �ow and use of id tokens are not supported in OAuth, we

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Tamjid Al Rahat, Yu Feng, and Yuan Tian

add additional tags to specify the properties in Cerberus’s query

language. Additionally, as S3KVetter tool only supports Python pro-

grams, we manually translate our Java/JS benchmarks into Python

language. Table 6 shows the detailed results of our evaluation. Out

of 28 OIDC properties, AuthSaber was able to check 24 properties.

Using Cerberus, we were able to check 7 out of 28 properties, and

with S3KVetter tool, we were able to check 5 properties. More-

over, S3KVetter does not provide any speci�cation language and

expresses the properties over only request and response arguments,

which restricts us from checking the properties of hybrid �ow using

their tool.

RQ3: AuthSaber is 3× more expressive in specifying and

checking safety properties than other existing program

analysis tools in SSO domain.

Limitations.When evaluating real-world OIDC programs,AuthSaber

incorporates several conservative assumptions that could lead to

false positive (FP) cases, as shown in Table 5. For instance, when

dealing with dynamic programming features like dynamic class

loading, re�ected calls or signature-based function calls in Java or

JS, AuthSaber currently relies on over-approximation. This reliance

can introduce spurious paths in the downstream veri�cation task,

consequently leading to false positive cases. In addition, non-linear

arithmetic and bitwise operations are currently modeled using un-

interpreted functions which can also trigger false alarms during the

evaluation. However, based on our evaluation, AuthSaber doesn’t

have many false alarms.

Moreover, although liveness properties are not common for ex-

pressing the unexpected security behavior of OIDC protocol and

are not the focus of this work, our speci�cation language AuthLTL

can also be used to express the liveness properties. However, since

the model checking technique of AuthSaber is based on the CE-

GAR framework provided by the UltimateAutomizer [15], which

in general, does not give a termination guarantee, our tool also

inherits this limitation. However, a key aspect of our approach, as

outlined in Section 4, uses the �ow constraints to deduce a �nite

set of interactions. This allows AuthSaber to restrict the state space

within a valid set of OIDC endpoints, ensuring a fair termination

during the veri�cation.

5.3 Developer Acknowledgment

After scrutinizing and validating the results obtained fromAuthSaber ,

we responsively disclosed all 16 previously unknown violations to

the developers and vendors of the respective OIDC libraries. As

of the writing of this paper, we have received acknowledgments

from the developers for 10 reported vulnerabilities, while the re-

maining reports are currently under review process. Six vulnera-

bilities were immediately �xed following our reports. Additionally,

the con�rmed vulnerabilities resulted in the assignment of �ve

new CVEs (CVE-2023-33292, CVE-2023-35819, CVE-2023-35820,

CVE-2021-44878, CVE-2021-22573). We intend to maintain ongoing

communication with the developers, assisting them in promptly

resolving the remaining vulnerabilities.

5.3.1 Case Studies. Here, we delve into a few case studies based on

the evaluation results obtained from AuthSaber for popular OIDC

libraries.

1) Google Client Authentication.We applied AuthSaber to verify

the implementation of the Google Client Authentication library for

Java [23], a widely used library for facilitating authorized access

to Google’s APIs. In our investigation of the violated traces gener-

ated by AuthSaber , we identi�ed that the library validates issuer

(iss), audience (aud), and expiration (exp) claims upon receiving

an id token from authorization service providers. Unfortunately,

it failed to check the signature of the token and accepted it solely

based on the validity of these claims received as the payload of

the token. Since the payload of an id token is unprotected and

cannot be trusted without proper veri�cation of the signature com-

ponent, attackers could manipulate the claims of a valid token or

forge a token received from another application, potentially gaining

unauthorized access to clients.

Upon submission of our report, Google promptly acknowledged

the vulnerability, with a statement from one of Google’s Security

Engineers stating, “Nice catch! I’ve �led a bug with the responsible

product team based on your report.” The bug was labeled as “priority-

1” and �xed within two weeks of our report. We received further

acknowledgment from Google through their bug bounty program

for our contribution to discovering and reporting this vulnerability.

2) AppAuth. AppAuth has gained popularity among developers

utilizing the OIDC protocol due to its support for a wide range of

mobile and web platforms. Using AuthSaber , we veri�ed its OIDC

implementation in Java [3] and uncovered two critical vulnerabili-

ties. Firstly, while the library correctly validates the issuer claim

of id token, it does so only if a ‘discovery’ document is present.

However, utilizing a discovery document is optional in OIDC, and

the issuer claim should be validated irrespective of the discovery

method employed by the providers [41]. This vulnerability could

allow attackers to inject an id token obtained from a malicious

issuer. Secondly, the library neglects the signature veri�cation of

the token and incorrectly assumes that the tokens are exchanged

using TLS communication – a practice also not enforced or vali-

dated by the library. We promptly reported all identi�ed issues to

the developers, and one of them acknowledged that “these issues

are not best security practice and should be �xed.”

6 Related work

SSO veri�cation. Recent years have seen several e�orts to verify

the security of the design, especially the authorization and au-

thentication �ows supported by the SSO protocols. For instance,

Fett et al. use a Dolev-Yao style generic formal model of several

SSO protocols [20–22] to prove authorization and session integrity

properties against the model. Additionally, Lu et al. [35] use ap-

plied PI calculus to model OIDC protocol and provide security

analysis using ProVerif [9]. Similarly, Hamman et al. [25] proves

privacy properties in OIDC model using Tamarin prover [36]. How-

ever, unlike AuthSaber , these works verify the properties against

a manually constructed model based on the protocol design and

are not equipped to reason about complex programming language

semantics used in OIDC or other SSO implementations. In addition,

AuthSaber : Automated Safety Verification of OpenID Connect Programs CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

manual construction of models for SSO programs can be both error-

prone and time-consuming, preventing them from being used for

large-scale analysis.

SSO bug �nding. There has also been substantial interest in detect-

ing SSO bugs based on vulnerable patterns, which can be catego-

rized into two classes: 1) static bug analysis and 2) network tra�c

analysis. For instance, S3kvetter [54] uses symbolic execution to

check security properties in OAuth client’s SDK. In addition, Oauth-

lint [46] performs static data-�ow analysis to check six OAuth’s

anti-protocol patterns in Android applications, and Cerberus [47]

also uses static analysis to check the security of OAuth service

providers. The scope of these works is limited to OAuth protocol,

and they require the bug patterns are already known to the tool

users. Additionally, theseworks focus on the properties of one entity

(i.e., client or server) and assume the other entities are correctly im-

plemented whereas AuthSaber uses an entity-agnostic veri�cation

against the properties from the standard speci�cation. Moreover,

WPSE [10] and Bulwark [52] study network-tra�c-based security

monitoring systems for di�erent SSO entities (e.g., browsers, web

apps, etc.). However, network tra�c analysis requires heavy man-

ual setup and cannot be applied or extended to uncover all possible

execution behavior SSO protocols.

CEGAR-based veri�cation.Our veri�cation technique is based on

the counterexample-guided abstraction re�nement (CEGAR) [11],

which has been used to provide formal security guarantees in many

problem domains, including blockchain security [44, 51], cryptog-

raphy [40], IoT protocols [2, 50] and autonomous systems [16, 31].

However, these tools are designed for speci�c domains and cannot

be used or extended to check complex multi-party protocols like

OIDC.

Automated protocol analysis. Automated protocol analysis has

also been the subject of extensive security research, resulting in a

wide range of works in recent years. Automated tools like Tamarin

prover [36] and Proverif [9] have been used to prove properties

in various protocols, including TLS [13, 14], 5G [8, 12] and single-

party authentication [4, 19, 30]. However, these veri�cations, unlike

AuthSaber , mostly work at the protocol’s external communication

level and cannot uncover �ne-grained security violations caused

by programming errors at their implementation level.

7 Conclusion
In this paper, we propose AuthSaber , an e�cient automated veri-

�er for checking safety properties in the implementation of OIDC

protocols. AuthSaber provides a highly expressive speci�cation lan-

guage to formally express the safety properties and incorporates

an automated veri�cation approach that is tailored to several scala-

bility and automation challenges in the OIDC domain. We evaluate

AuthSaber on 15 popular OIDC libraries and discover 16 previously

unknown security violations, leading to �ve new CVEs and further

improvement in the security of popular OIDC implementations.

8 Acknowledgements

We are grateful to the anonymous reviewers for their insightful

and constructive feedback and suggestions. This work is supported

in part by National Science Foundation under the award numbers
2320903, 2323105, 2325369, 2317184, and 1908494, by DARPA un-

der the agreement number N66001-22-2-4037, by Google Faculty

Research, and Ethereum Foundation awards. The views and con-

clusions contained in this document are those of the authors and

should not be interpreted as representing the o�cial policies, either

expressed or implied, of the funding agencies.

References
[1] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. 1986. Compilers: Principles,

Techniques, and Tools. Addison-Wesley. https://www.worldcat.org/oclc/12285707
[2] Mahmoud Ammar, Bruno Crispo, Bart Jacobs, Danny Hughes, and Wilfried

Daniels. 2019. S č V—The Security MicroVisor: A Formally-Veri�ed Software-
Based Security Architecture for the Internet of Things. IEEE Transactions on
Dependable and Secure Computing 16, 5 (2019), 885–901.

[3] AppAuth. 2023. AppAuth-Android. https://openid.github.io/AppAuth-Android/.
[4] Linard Arquint, Felix A Wolf, Joseph Lallemand, Ralf Sasse, Christoph Sprenger,

Sven N Wiesner, David Basin, and Peter Müller. 2023. Sound veri�cation of
security protocols: From design to interoperable implementations. In 2023 IEEE
Symposium on Security and Privacy (SP). IEEE, 1077–1093.

[5] Guangdong Bai, Jike Lei, GuozhuMeng, Sai Sathyanarayan Venkatraman, Prateek
Saxena, Jun Sun, Yang Liu, and Jin Song Dong. 2013. Authscan: Automatic
extraction of web authentication protocols from implementations. (2013).

[6] Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking. MIT
press.

[7] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K Rustan M
Leino. 2006. Boogie: A modular reusable veri�er for object-oriented programs.
In Formal Methods for Components and Objects: 4th International Symposium,
FMCO 2005, Amsterdam, The Netherlands, November 1-4, 2005, Revised Lectures 4.
Springer, 364–387.

[8] David Basin, Jannik Dreier, Lucca Hirschi, Saša Radomirovic, Ralf Sasse, and
Vincent Stettler. 2018. A formal analysis of 5G authentication. In Proceedings
of the 2018 ACM SIGSAC conference on computer and communications security.
1383–1396.

[9] Bruno Blanchet. 2014. Automatic veri�cation of security protocols in the symbolic
model: The veri�er proverif. Foundations of Security Analysis and Design VII:
FOSAD 2012/2013 Tutorial Lectures (2014), 54–87.

[10] Stefano Calzavara, Riccardo Focardi, Matteo Ma�ei, Clara Schneidewind, Marco
Squarcina, and Mauro Tempesta. 2018. WPSE: fortifying web protocols via
browser-side security monitoring. In 27th USENIX Security Symposium. 1493–
1510.

[11] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. 2000.
Counterexample-guided abstraction re�nement. In Computer Aided Veri�cation:
12th International Conference, CAV 2000, Chicago, IL, USA, July 15-19, 2000. Pro-
ceedings 12. Springer, 154–169.

[12] Cas Cremers and Martin Dehnel-Wild. 2019. Component-based formal analysis of
5G-AKA: Channel assumptions and session confusion. In Network and Distributed
System Security Symposium (NDSS). Internet Society.

[13] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla van der
Merwe. 2017. A comprehensive symbolic analysis of TLS 1.3. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security.
1773–1788.

[14] Cas Cremers, Marko Horvat, Sam Scott, and Thyla van der Merwe. 2016. Au-
tomated analysis and veri�cation of TLS 1.3: 0-RTT, resumption and delayed
authentication. In 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 470–
485.

[15] Daniel Dietsch, Matthias Heizmann, Vincent Langenfeld, and Andreas Podelski.
2015. Fairness modulo theory: A new approach to LTL software model checking.
In Computer Aided Veri�cation: 27th International Conference, CAV 2015, San
Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I 27. Springer, 49–66.

[16] Yizhak Yisrael Elboher, Justin Gottschlich, and Guy Katz. 2020. An abstraction-
based framework for neural network veri�cation. In Computer Aided Veri�cation:
32nd International Conference, CAV 2020, Los Angeles, CA, USA, July 21–24, 2020,
Proceedings, Part I 32. Springer, 43–65.

[17] Expo. 2023. Critical OAuth Vulnerability in Expo Framework Allows Account
Hijacking. https://thehackernews.com/2023/05/critical-oauth-vulnerability-in-
expo.html.

[18] Facebook. 2018. Facebook Security Update. https://about.fb.com/news/2018/09/
security-update.

[19] Haonan Feng, Hui Li, Xuesong Pan, Ziming Zhao, and T Cactilab. 2021. A Formal
Analysis of the FIDO UAF Protocol.. In NDSS.

[20] Daniel Fett, Pedram Hosseyni, and Ralf Küsters. 2019. An extensive formal
security analysis of the openid �nancial-grade api. In 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 453–471.

[21] Daniel Fett, Ralf Küsters, and Guido Schmitz. 2016. A comprehensive formal
security analysis of OAuth 2.0. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. 1204–1215.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Tamjid Al Rahat, Yu Feng, and Yuan Tian

[22] Daniel Fett, Ralf Küsters, and Guido Schmitz. 2017. The web sso standard openid
connect: In-depth formal security analysis and security guidelines. In 2017 IEEE
30th Computer Security Foundations Symposium (CSF). IEEE, 189–202.

[23] Google. 2023. Google Oauth Client. https://cloud.google.com/java/docs/
reference/google-oauth-client/latest/overview.

[24] Grammarly. 2023. Critical OAuth Flaws Uncovered in Grammarly, Vidio, and
Bukalapak Platforms. https://thehackernews.com/2023/10/critical-oauth-�aws-
uncovered-in.html.

[25] Sven Hammann, Ralf Sasse, and David Basin. 2020. Privacy-preserving openid
connect. In Proceedings of the 15th ACM Asia Conference on Computer and Com-
munications Security. 277–289.

[26] Boyuan He, Vaibhav Rastogi, Yinzhi Cao, Yan Chen, VN Venkatakrishnan, Run-
qing Yang, and Zhenrui Zhang. 2015. Vetting SSL usage in applications with
SSLint. In 2015 IEEE Symposium on Security and Privacy. IEEE, 519–534.

[27] Fatima Hussain, Rasheed Hussain, Brett Noye, and Salah Sharieh. 2020. Enterprise
API security and GDPR compliance: Design and implementation perspective. IT
Professional 22, 5 (2020), 81–89.

[28] IETF. 2021. OAuth 2.0 Security Best Current Practice. https://datatracker.ietf.
org/doc/html/draft-ietf-oauth-security-topics.

[29] Daniel Jackson. 2012. Software Abstractions: logic, language, and analysis. MIT
press.

[30] Charlie Jacomme, Elise Klein, Steve Kremer, and Maïwenn Racouchot. 2023.
A comprehensive, formal and automated analysis of the EDHOC protocol. In
USENIX Security’23-32nd USENIX Security Symposium.

[31] Peng Jin, Jiaxu Tian, Dapeng Zhi, Xuejun Wen, and Min Zhang. 2022. Trainify:
A cegar-driven training and veri�cation framework for safe deep reinforcement
learning. In International Conference on Computer Aided Veri�cation. Springer,
193–218.

[32] JWT. 2015. Json Web Token. https://datatracker.ietf.org/doc/html/rfc7519.
[33] K Rustan M Leino. 2008. This is boogie 2. manuscript KRML 178, 131 (2008), 9.
[34] K Rustan M Leino. 2010. Dafny: An automatic program veri�er for functional cor-

rectness. In International conference on logic for programming arti�cial intelligence
and reasoning. Springer, 348–370.

[35] Jintian Lu, Jinli Zhang, Jing Li, ZhongyuWan, and Bo Meng. 2017. Automatic ver-
i�cation of security of openid connect protocol with proverif. In Advances on P2P,
Parallel, Grid, Cloud and Internet Computing: Proceedings of the 11th International
Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC–2016)
November 5–7, 2016, Soonchunhyang University, Asan, Korea. Springer, 209–220.

[36] Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. 2013. The
TAMARIN prover for the symbolic analysis of security protocols. In Computer
Aided Veri�cation: 25th International Conference, CAV 2013, Saint Petersburg, Rus-
sia, July 13-19, 2013. Proceedings 25. Springer, 696–701.

[37] Microsoft. 2023. Azure B2C – Crypto Misuse and Account Compromise. https:
//securityboulevard.com.

[38] Microsoft. 2023. Microsoft Bug Allowed Hackers to Breach Over Two Dozen
Organizations via Forged Azure AD Tokens. https://thehackernews.com/2023/
07/microsoft-bug-allowed-hackers-to-breach.html.

[39] Nitin Naik and Paul Jenkins. 2017. Securing digital identities in the cloud by
selecting an apposite Federated Identity Management from SAML, OAuth and
OpenID Connect. In 2017 11th International Conference on Research Challenges in
Information Science (RCIS). IEEE, 163–174.

[40] Saeed Nejati, Jia Hui Liang, Catherine Gebotys, Krzysztof Czarnecki, and Vijay
Ganesh. 2017. Adaptive restart and CEGAR-based solver for inverting crypto-
graphic hash functions. In Veri�ed Software. Theories, Tools, and Experiments:
9th International Conference, VSTTE 2017, Heidelberg, Germany, July 22-23, 2017,
Revised Selected Papers 9. Springer, 120–131.

[41] OpenID. 2021. OpenID Connect Core 1.0. https://openid.net/specs/openid-
connect-core-1_0.html.

[42] OpenID. 2023. OpenID Certi�cation. https://openid.net/certi�cation/.
[43] Pac4j. 2023. Pac4J. https://www.pac4j.org.
[44] Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-Cohen, and

Martin Vechev. 2020. Verx: Safety veri�cation of smart contracts. In 2020 IEEE
symposium on security and privacy (SP). IEEE, 1661–1677.

[45] Portswigger. 2023. Authentication bug that enabled unauthorized access to client
applications. https://portswigger.net.

[46] Tamjid Al Rahat, Yu Feng, and Yuan Tian. 2019. OAUTHLINT: An Empirical
Study on OAuth Bugs in Android Applications. In 34th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2019, San Diego, CA, USA,
November 11-15, 2019. 293–304.

[47] Tamjid Al Rahat, Yu Feng, and Yuan Tian. 2022. Cerberus: Query-Driven Scalable
Vulnerability Detection in OAuth Service Provider Implementations. In Pro-
ceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security. 2459–2473.

[48] RFC6749. 2021. The OAuth 2.0 Authorization Framework. https://tools.ietf.org/
html/rfc6750.

[49] SAML. 2023. SAML protocol. http://saml.xml.org/saml-speci�cations.
[50] Alireza Souri and Monire Norouzi. 2019. A state-of-the-art survey on formal

veri�cation of the internet of things applications. Journal of Service Science
Research 11, 1 (2019), 47–67.

[51] Jon Stephens, Kostas Ferles, Benjamin Mariano, Shuvendu Lahiri, and Isil Dillig.
2021. SmartPulse: automated checking of temporal properties in smart contracts.
In 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 555–571.

[52] Lorenzo Veronese, Stefano Calzavara, and Luca Compagna. 2020. Bulwark: Holis-
tic and Veri�ed Security Monitoring of Web Protocols. In European Symposium
on Research in Computer Security. Springer, 23–41.

[53] WALA. 2023. T.J. Watson Libraries for Analysis (WALA). https://sourceforge.
net/projects/wala.

[54] Ronghai Yang,Wing Cheong Lau, Jiongyi Chen, and Kehuan Zhang. 2018. Vetting
Single Sign-On SDK Implementations via Symbolic Reasoning. In 27th USENIX
Security Symposium. 1459–1474.

	Abstract
	1 Introduction
	2 Background
	2.1 Single Sign-On (SSO)
	2.2 OpenID Connect

	3 Overview
	3.1 Threat model
	3.2 Running example

	4 System Design
	4.1 Specification Language
	4.2 Program Translation
	4.3 AuthLTL to Regular LTL
	4.4 Safety Verification
	4.5 Implementation

	5 Evaluation
	5.1 Experimental Setup
	5.2 Experimental Results
	5.3 Developer Acknowledgment

	6 Related work
	7 Conclusion
	8 Acknowledgements
	References

