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ABSTRACT: The ability to convert atmospheric CO2 and light
into biomass and value-added chemicals makes cyanobacteria a
promising resource microbial host for biotechnological applica-
tions. A newly discovered fastest-growing cyanobacterial strain,
Synechococcus sp. PCC 11901, has been reported to have the
highest biomass accumulation rate, making it a preferred target host
for producing renewable fuels, value-added biochemicals, and
natural products. System-level knowledge of an organism is
imperative to understand the metabolic potential of the strain,
which can be attained by developing genome-scale metabolic
models (GEMs). We present the first genome-scale metabolic
model of Synechococcus sp. PCC 11901 (iRS840), which contains
840 genes, 1001 reactions, and 944 metabolites. The model has been optimized and validated under di/erent trophic modes, i.e.,
autotrophic and mixotrophic, by conducting an in vivo growth experiment. The robustness of the metabolic network was evaluated
by changing the biomass coe1cient of the model, which showed a higher sensitivity toward pigments under the photoautotrophic
condition, whereas under the heterotrophic condition, amino acids were found to be more influential. Furthermore, it was
discovered that PCC 11901 synthesizes succinyl-CoA via succinic semialdehyde due to its imperfect TCA cycle. Subsequent flux
balance analysis (FBA) revealed a quantum yield of 0.16 in silico, which is higher compared to that of PCC 6803. Under mixotrophic
conditions (with glycerol and carbon dioxide), the flux through the Calvin cycle increased compared to autotrophic conditions. This
model will be useful for gaining insights into the metabolic potential of PCC 11901 and developing e/ective metabolic engineering
strategies for product development.

KEYWORDS: cyanobacteria, metabolic flux analysis, flux variability analysis, dynamic flux balance analysis

1. INTRODUCTION

Photosynthetic organisms can capture solar energy and convert
atmospheric carbon dioxide into valuable compounds.1 These
compounds serve as promising precursors for the synthesis of
renewable fuels and value-added chemicals. The current
production of petroleum-based chemicals releases greenhouse
gases into the atmosphere, such as CO2, CO, N2O, and
others.2 Photosynthetic organisms can aid in the sequestration
of atmospheric CO2, a potent greenhouse gas, while synthesiz-
ing valuable molecules such as lipids, biopolymers, and
pigments. In this regard, plants, microalgae, and cyanobacteria
have captured the scientific community’s attention as they o/er
solutions to the global challenges posed by the adverse
environmental impact of fossil fuels. Among these organisms,
cyanobacteria can be a promising candidate for sustainable
biofuel production due to their fast growth rate, remarkable
carbon sequestration ability, minimal nutrient requirements,

adaptability to di/erent environmental conditions, and
relatively easy genetic manipulation.3

Over the years, several cyanobacterial strains, i.e.,
Synechococcus sp. PCC 7002,4 Synechocystis sp. PCC 6803,5

Synechococcus elongatus PCC 7942,6 and S. elongatus UTEX
29737 have been studied as model organisms for understanding
the photosynthetic mechanism and the production of di/erent
value-added compounds. The sustainable production of
bioplastics,8 ethanol,9 free fatty acids,10 and terpenoids11 has
been reported for these cyanobacterial strains through genetic
engineering. For instance, S. elongatus PCC 7942 has been
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engineered with genes encoding non-native pyruvate decar-
boxylase and alcohol dehydrogenase to produce ethanol.12

Further, the same organism has been used to synthesize 1.1 g
L−1 of isobutyraldehyde by diverting the carbon flux from the
valine biosynthesis pathway with the addition of ketoacid
decarboxylase.13 Other economically important chemicals
produced via heterologous biosynthetic pathways in cyanobac-
teria include 1-butanol,14 2,3-butanediol,15 and ethylene16 with
a titer of 29.9 mg L−1, 2.38 g L−1, and 45.12 mL L−1 day−1,
respectively. It is evident that cyanobacteria are flexible and can
be utilized to develop industrially significant products.17

The recently isolated novel cyanobacterial strain Synecho-
coccus sp. PCC 1190110 (PCC 11901 from here) was reported
to be the fastest-growing cyanobacterium, with a doubling time
of only ≈2 h. In addition, PCC 11901 can grow under high
light intensity18 (900 μmol photons m−2 s−1) and salinity
(5%), which can lead to a significant dry cell weight (∼33 g/L)
that is 2−3 folds higher than the existing model cyanobacterial
strains. Furthermore, genetic engineering in PCC 11901 has
improved free fatty acid production to 6 mM (1.5 g L−1),
which is particularly interesting for industrial applications.10

These features make the newly isolated cyanobacterium a
potential green cell factory for the sustainable biosynthesis of
industrially relevant carbon-based molecules through the
biosequestration of atmospheric carbon. Nevertheless, in
order to identify, evaluate, and develop e1cient strain for
product development, it is imperative to extensively analyze
the system-level information on the organism.
The genome-scale metabolic model (GEM) will serve as a

computational framework for exploring and evaluating the
metabolic potential of an organism by providing a flux
distribution across metabolic pathways. GEM has been
considered an e/ective systems biology tool for understanding
the fluxome and simulating the complex metabolic pathways of
microbial species. The genome-scale metabolic models of
several cyanobacterial strains have been developed over the
past few decades, and they have been successfully used for
product development. In the following years, the GEMs of
Synechococcus sp. PCC 7002,19,20 Synechocystis sp. PCC 6803,5

S. elongatus PCC 7942,21 and S. elongatus BDU 13019222 have
been developed by several research groups for biotechnological
applications. The metabolic networks of Synechocystis sp. PCC
6803 have been well-developed due to the continual
improvement of the genome-scale model. The Synechocystis
sp. PCC 6803 model has been used to support metabolic

engineering of the fatty acid pathway gene DGAT, enabling a
quantitative insight into flux distribution and further
investigation into the e/ects of glycerol-3-phosphate produc-
tion on lipid biosynthesis.23 Furthermore, in PCC 6803, flux
balance analysis (FBA) predicted the deletion of the nadhf1
gene responsible for the reoxidation of NADP(H), which
resulted in the enhanced production of ethanol.9 In another
study, using the minimization of metabolic adjustment
(MOMA) algorithm, FBA predicted disruption of some of
the genes in the NDH-1 complex, resulting in the enhanced
titer of 1,3-propanediol and glycerol in S. elongatus PCC
7942.24 Thus, the reconstruction of the genome-scale model
and flux analysis strategies will help to e/ectively understand
the system-level behavior of the biochemical pathway of the
newly discovered PCC 11901 and assist in rational metabolic
engineering.
Here, the first genome-scale metabolic model (iRS840) of

the fastest-growing cyanobacterial strain Synechococcus sp. PCC
11901 has been reconstructed with available genomic
information. The iRS840 was optimized under di/erent
trophic modes (autotrophic and mixotrophic), and the in
silico growth rate was validated against the in vivo experiment.
Further, model validation was performed through gene
essentiality analysis with the available gene knockout data. In
addition, the model was subjected to a biomass sensitivity
analysis (SA) to identify the e/ect of biomass precursors on
the model growth rate and metabolic properties. The distinct
metabolic behavior and flux distribution in the biochemical
network under various growth conditions were also predicted
with flux balance analysis (FBA) and flux variability analysis
(FVA). Finally, the dynamic FBA (dFBA) was performed
utilizing an experimentally derived carbon dioxide uptake rate
to simulate batch cultivation of PCC 11901 for biomass
production and carbon source(s) utilization patterns. The
integration of modeling and experimentation has enabled us to
comprehend the intricate metabolic changes of Synechococcus
sp. PCC 11901 with respect to di/erent trophic modes.

2. RESULTS AND DISCUSSION

2.1. Cultivation of Synechococcus sp. PCC 11901
under Di1erent Growth Conditions. PCC 11901 has been
shown to have a high growth rate with a doubling time of 2−3
h under optimal conditions.10 Hence, to investigate this
further, growth characteristics studies were conducted under
di/erent trophic modes. Initially, PCC 11901 was grown under

Figure 1. Cultivation of PCC 11901 in the MAD medium. (A) Growth analysis of PCC 11901 under glycerol +1% CO2 and 1% CO2 used as
controls. (B) CO2 uptake rate of PCC 11901 with glycerol +1% CO2 and 1% CO2.
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photoautotrophic conditions, and the growth rate was
determined to be 0.063 and 0.151 h−1 under atmospheric
CO2 and 1% CO2 as the carbon source, respectively.
Subsequently, the CO2 uptake rate of PCC 11901 was
experimentally calculated when 1% CO2 was supplied. It was
observed that, initially, the CO2 uptake was high, reaching up
to 4.9 mg min−1 L−1 at 28 h and exhibited almost constant
uptake until 78 h; however, the uptake rate decreased, reaching
2.42 mg min−1 L−1 by day 6 (Figure 1B). The findings align
consistently with those of prior research studies.10 To further
evaluate the growth characteristics, PCC 11901 was cultivated
under mixotrophic conditions using glycerol, along with 1%
CO2 (Figure 1A). When the PCC11901 was cultured in 1%
CO2 along with glycerol under the mixotrophic condition, it
was observed that cells demonstrated a marginally accelerated
growth rate, reaching an OD730 of up to 22.5. In contrast,
under photoautotrophic conditions (1% CO2), the OD730 was
19.4, which is ≈14% less compared to the mixotrophic
condition. Further, it was noted that with 1% CO2, the CO2

uptake rate of PCC11901 under the mixotrophic condition
exhibited a variation of 5.8−2.1 mg min−1 L−1 in glycerol
(Figure 1B). Overall, under mixotrophic conditions, the
growth rate and CO2 uptake were marginally higher compared
to the photoautotrophic condition.
2.2. Genome-Scale Metabolic Model Reconstruction

and Refinement of Synechococcus sp. PCC 11901. The
newly discovered fast-growing cyanobacterial strain PCC
11901 can serve as a potential model strain for biotechno-
logical application. Because of the recent discovery of this
cyanobacterial strain, knowledge of its biochemical pathways
and metabolic features remained mostly unexplored. The
genome-scale metabolic modeling strategy will help reveal the
system-level biochemical characteristics of this fast-growing
cyanobacterial strain in terms of metabolic fluxes. Thus, for the
reconstruction of the first genome-scale metabolic model
(GEM) of PCC 11901, the whole genome sequence was
obtained from the NCBI database under the accession number
GCA_005577135.1.10 The annotated genome sequence was
employed in the ModelSEED server25 to generate a draft GEM
of PCC 11901. The initial model contained 18.4% unbound
reactions, leading to multiple reaction cycles that neither
produce nor consume any metabolites. These reaction cycles
lack a thermodynamic driving force, thus making the net flux
zero. These thermodynamically infeasible cycles were elimi-
nated by removing the duplicate reactions, turning o/ the

lumped reaction, and selectively turning the reactions on/o/
based on the available cofactor specificity information from
ModelSEED and the literature. Further, it was noted that the
model contained multiple orphan metabolites that did not
participate in any metabolic pathways and were primarily
associated with only one reaction. These metabolites were
either removed or connected to the appropriate metabolic
pathways. To further enhance the quality of the model, the
reversibility of the reactions was checked, and they were
corrected by appropriately assigning the directionality by
changing the lower and/or upper bounds upon referring to the
ModelSEED reaction database and the literature. The model
also included 45.14% blocked reactions, which were the result
of missing reactions in various metabolic pathways. These
reaction gaps were associated with central metabolism, lipids,
amino acids, cofactors, photosynthesis, pigment reactions, etc.
Further, we have performed the manual gap filling using the
KEGG26 pathway database, ModelSEED reactions databases,25

PubChem,27 BiGG Database,28 and information from the
literature.4,5,19,20,29 The previously published cyanobacterial
metabolic models, i.e., PCC6803 (iJN678), Synechococcus sp.
PCC7002,19,20 Synechocystis sp. PCC 680329 and S. elongatus
BDU 13019222 were utilized during the curation of the draft
model. PCC 11901 is closely related to PCC 7002,10 and its
metabolic pathways remain highly conserved when compared
to that of PCC6803.18 A total of 221 reactions were manually
added to the draft model, constituting 22.26% of the total
reactions in the reconstructed model, which were majorly
involved in photosynthesis and pigment biosynthesis pathways
(Figure 2B). These reactions are required to harvest photons
and utilize light energy to catalyze the fundamental photo-
synthetic endergonic processes, which result in high-energy
molecules. Furthermore, pigments synthesized by various
biochemical pathways are essential for maintaining the
metabolic flux through photosynthetic reactions. In the
pigment biosynthesis pathway, a vital reaction catalyzed by
chlorophyll synthase has been incorporated into the model
using available cyanobacterial knowledge.19 This enables the
production of chlorophyll, an important molecule of the
pigment biosynthesis pathway. Besides photosynthesis and
pigment biosynthesis, several reactions associated with amino
acid and folate biosynthesis have been added during the model
refinement. It was estimated that ∼11.8% of the total added
reaction belonged to amino acid metabolism (Figure 2B).
Along with these metabolic reactions, transport and exchange

Figure 2. Genome-scale metabolic reconstruction of Synechococcus sp. PCC 11901. (A) The pathway level subsystem statistics for reactions. (B)
The number of reactions was added to the model by manual gap filling in various compartments.
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reactions of carbon dioxide, oxygen, glycerol, etc., were added
to the model to facilitate the intercompartmental movement of
di/erent metabolic compounds. Furthermore, the ATP
maintenance requirement in the PCC 11901 model has been
denoted by the ATP hydrolysis rate, which was quantified by
constraining the model with experimentally measured CO2

uptake rate and maximizing the flux through the ATP_ase
reaction:30 ATP + H2O → ADP + Pi + H+. For the PCC
11901 model, the ATP maintenance flux was set to be 2.7
based on the recently developed model of Synechococcus sp.
(iSyn706).22 Finally, the genome-scale metabolic model of
Synechococcus sp. PCC 11901 (iRS840) contains 840 genes,
1001 reactions, and 944 metabolites (Tables S1 and S2).
There are 79 metabolic transport and 49 exchange reactions
available in the model. The model possesses metabolic
pathways associated with photosynthesis, pigment production,
carbohydrate metabolism, fatty acid biosynthesis, amino acid
metabolism, folate metabolism, etc. Apart from the cytosol,
two additional compartments, i.e., periplasm and thylakoid,
were incorporated into the model, and all of the reactions were
localized in these compartments. Further, PCC11901 GEM
was compared with other known cyanobacterial models that
showed distinct numbers of genes, reactions, and metabolite
compositions in each model (Table 1). Moreover, the detailed
metabolic profile of PCC 11901 was assessed against those of
other published cyanobacterial models to identify the unique
metabolites. A total of 260 unique metabolites were observed,

which were not found in the other five models (Table S3). The
identified metabolites were associated with various metabolic
pathways, including amino acid metabolism, ubiquinone and
terpenoid-quinone production, and porphyrin, chlorophyll, and
pigment biosynthesis, among other things. The metabolic
reactions were categorized into various subsystems such as
amino acid metabolism, photosynthesis, pigment biosynthesis,
folate metabolism, TCA cycle, etc. (Figure 2A). The model
was further analyzed to understand the metabolic flux
distribution pattern in essential metabolic pathways specific
to di/erent growth conditions.

2.2.1. Formulation of Biomass Objective Function for
Optimizing iRS840. In the genome-scale metabolic model, the
biomass reaction is the compilation of precursor metabolic
molecules, like amino acids, carbohydrates, lipids, vitamins,
cofactors, and ions, with specific coe1cients representing cell
biomass production. The biomass precursor constituents and
their corresponding coe1cients have been adopted from the
previously characterized, closely related cyanobacterial species
PCC7002.10 The average nucleotide identity (ANI) and
functional identity (AF) between these two strains were 96.5
and 86.4%, respectively. Thus, the biomass equation of the
previously published PCC 7002 model was adopted with the
necessary modification for formulating the biomass equation of
PCC 11901. Based on each autotrophic, mixotrophic, and
heterotrophic growth condition, necessary modifications have
been made to the biomass composition. The biomass equation

Table 1. List of GEMs Reconstructed for Cyanobacteria

cyanobacteria
Synechococcus sp.
PCC 700220

Synechococcus sp. BDU
130192 (iSyn706)22

Cyanothece sp. ATCC
51142 (iCce806)31

Synechocystis PCC
6803 (iSyn731)29

Arthrospira
platensis NIES-

3932
Synechococcus sp. PCC
11901 (this study)

metabolites 697 900 587 996 673 944

reactions 742 908 719 1156 746 1001

genes 728 706 806 731 644 840

Figure 3. Sensitivity analysis of the biomass objective function in di/erent growth conditions. The e/ect of a 10% alteration of each biomass
precursor on the specific growth rate of PCC 11901 has been represented for (A) autotrophic and (B) heterotrophic conditions. FBA was
performed in each step to obtain the specific growth rate during biomass coe1cient alteration. Autotrophic and heterotrophic were simulated using
CO2 (4.1 mmol gdw−1 h−1) and glycerol (2.2 mmol gdw−1 h−1) as carbon sources.
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contained 64 metabolic components. The biomass equation
incorporates pigments like β-carotene, chlorophyll a, (3Z)-
phycocyanobilin, and β-cryptoxanthin by considering photo-
synthetic pathways. The in silico growth rate under autotrophic
and mixotrophic was observed to be ∼0.135 and 0.181 h−1,
respectively.
Following the biomass equation formulation, the condition-

specific biomass reactions were subjected to sensitivity analysis
for further validation. Additionally, the model was utilized to
gain insight into and identify metabolites that exhibit
sensitivity under various trophic conditions. Here, the e/ect
of coe1cient alteration (±10%) of the biomass precursors on
the autotrophic, heterotrophic, and mixotrophic growth rates
has been checked through FBA. In autotrophic conditions, a
10% fluctuation of the biomass precursor’s coe1cient altered
the biomass formation rate by an average of ∼1.31% (Figure
3A). In heterotrophic and mixotrophic conditions, a 10%
alteration in the biomass precursor’s coe1cient changed the
specific growth rate by an average of ∼1.15 and ∼1.05%,
respectively. Thus, the minute fluctuation in the specific
growth rates signifies the robust metabolic characteristic of the
PCC 11901 model under di/erent growth conditions. Further,
growth rate variation toward the alteration of each biomass
precursor was examined across all growth conditions to
identify growth condition-specific sensitive metabolites. The
model-specific growth rate was sensitive toward pigments, i.e.,
β-carotene and β-cryptoxanthin, in the autotrophic and
mixotrophic growth conditions, where >1% fluctuation in the
model growth rate has been observed. The same positive
correlation between pigments and growth was observed in A.
platensis FACHB-314, wherein applying external chemical
stimuli led to the up-regulation of genes (cobA/hemD, hemG,
and ho) associated with the production of pigment
intermediate molecules. Subsequently, this results in increased
biomass and enhanced growth due to high pigment
accumulation.33 Apart from the pigments, alteration of the
coe1cient in the amino acids has a minimal e/ect (<1%) on
the specific growth rate (Figure 3A). In the heterotrophic
condition, although the pigments were present in the biomass
equation, the specific growth rate was found to be more
sensitive to L-arginine (∼1.3%) and L-asparagine (∼1.3%)
(Figure 3B). This could be because, in heterotrophic
conditions, the amino acid content is higher compared to

other growth conditions.34 Also, in cyanobacteria, certain
amino acids, such as arginine, exhibit multifaceted function-
ality, serving as a building block for protein biosynthesis while
concurrently operating as a nitrogen bu/er system.35 This may
explain the heightened sensitivity of the model to arginine
under heterotrophic conditions. Thus, the overall model
demonstrated the versatility to accommodate and alter the
flux distribution in response to varying growth conditions while
maintaining a stable flux distribution during a slight
perturbation of the biomass precursor coe1cient. Because of
the robust character of the metabolic network, it can readjust
the flux distribution pattern through di/erent metabolic
reactions and maintain a stable specific growth rate.
2.3. Model Validation. 2.3.1. Comparison of the In Silico

and In Vivo Growth Rate. The growth simulations were
performed for the metabolic model under photoautotrophic
and mixotrophic conditions by using the FBA approach. The
modified AD7 medium10 containing ammonium as the sole
nitrogen has been used to calculate the model growth rate. In
the autotrophic condition, the iRS840 showed a biomass
formation rate of 0.135 h−1 while utilizing carbon dioxide (4.1
mmol gdw−1 h−1) along with a nitrogen source and essential
metal ions in the presence of light (P680 and P700) (Table
S4). The photosynthetic quotient (PQ) was found to be
comparable to the PQ range of 1.1 ± 0.4 to PQ = 2.1 ± 0.5 in
cyanobacterial species.36 The in silico autotrophic growth rate
was in agreement with the experimental growth rate of 0.149
h−1. In the case of mixotrophy, dark cycle and photosynthetic
reactions coexist, increasing the energy production needed to
fix both carbon sources, thereby e/ectively accelerating growth
rates. Here, glycerol and CO2 are simultaneously taken up by
the system, increasing the amount of carbon entering the
system and consequently increasing biomass production. The
model-simulated mixotrophic growth rate of 0.181 h−1 has
been observed using glycerol (0.3 mmol gdw−1 h−1) and CO2

(3.8 mmol gdw−1 h−1) as carbon sources. The simulated
growth rate exhibited a close resemblance (80.2%) to the
experimental growth rate, which was determined to be 0.151
h−1. Similarly, the model’s ability to grow in di/erent organic
carbon sources in mixotrophic conditions to mimic in vivo
growth conditions was also evaluated. During the analysis, the
model was updated with an uptake rate of 0.3 mmol gdw−1 h−1

(Figure 4B) for di/erent carbon sources, including, glycerol,

Figure 4. Viability and growth of Synechococcus sp. PCC 11901 in various carbon sources under mixotrophic conditions. (A) Comparative analysis
of in silico and the in vivo viability on multiple carbon sources. (B) In silico mixotrophic growth rate (1/h) was simulated by the FBA of PCC11901
on di/erent carbon sources.
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bicarbonate, sucrose, and fructose, under the mixotrophic
condition, which is in agreement with the experimental data
(Figure 4A). This indicated that the model possessed all of the
intricate metabolic networks required for metabolizing those
carbon sources, similar to PCC 11901.

2.3.2. Gene Essentiality Analysis. The gene essentiality
analysis has been performed for the model iRS840 to identify
the essential genes that are crucial for the cell’s viability. Single-
gene deletion analysis revealed the presence of 273 critical
genes under photoautotrophic conditions. Further, essential
and nonessential genes predicted by iRS840 have been
compared to the literature gene knockout data. Closely
comparable cyanobacterial species Synechococcus sp. PCC
700210 and Synechocystis sp. PCC 680318 has been used to
validate the gene knockout prediction of iRS840, as the
experimental knockout data were unavailable for the newly
discovered PCC 11901 strain. Synechococcus sp. PCC 11901
showed an average nucleotide identity (ANI) of 96.76 and
73.7%, with PCC 700210 and PCC 6803, respectively. The 20
homologous gene knockout data have been available for
Synechococcus sp. PCC 700220 (2 essential and 18 nonessential
genes). The model possessed 16 of these 20 homologous genes
and correctly predicted 11 nonessential genes. The model
mispredicted three nonessential genes associated with amino
sugar and nucleotide synthesis, pyruvate metabolism, and
carbohydrate metabolism. Further, one essential gene
associated with the nitrate reduction reaction was predicted
incorrectly (false negative) by the model. The model’s
specificity was calculated to be 0.785 (GG = 11, NGG = 3),
and sensitivity was calculated to be 0.5 (NGNG = 1, GNG =
1) with the available gene knockout data (Table S5).
Additionally, the gene essentiality analysis has been conducted
using the essential and nonessential genes of Synechocystis sp.

PCC 6803.29 The model was able to predict 5 essential genes
out of 11, and they were mostly associated with the pigment
biosynthesis pathway and transport reaction. In contrast, the
model could predict 50 out of 53 nonessential genes used in
the model analysis (Table S5). The nonessential genes that
were predicted to be essential by the model belong to the
reactions associated with photosynthesis, the pigment biosyn-
thesis pathway, and carbohydrate metabolism. According to
this analysis, the model’s specificity is 0.94 (GG = 50, NGG =
3), and its sensitivity is 0.45 (NGNG = 5, GNG = 6). The
occurrence of a few false positives can be ascribed to the
potential presence of duplicate genes. Furthermore, even
though these cyanobacteria are closely related, their metabolic
profiles may di/er, which could account for the observed
variations in the knockout data. Hence, we have performed
FROG (Tables S6−S8) analysis to validate the single-gene
deletion predictions obtained from the gene essentiality
analysis. The knockout profiles obtained through the FROG
analysis (Table S9) showed a good correlation with the earlier
gene essentiality analysis under photoautotrophic conditions.
2.4. Comparative Analysis of the In Silico Flux

Distribution of PCC 11901 under Di1erent Growth
Conditions. The Synechococcus sp. PCC 11901 strain is
metabolically versatile and can utilize di/erent carbon sources
to maintain biomass production. How the alteration of the
carbon sources under di/erent growth conditions a/ects the
metabolic flux distribution of di/erent biochemical pathways
has not been explored. Here, we have checked the metabolic
flux distribution of the model for autotrophic and mixotrophic
growth with condition-specific constraints (Figure 5). In the
autotrophic conditions, the cell transported carbon dioxide
from the extracellular environment (4.1 mmol gdw−1 h−1),
participating in the carbon fixation Calvin cycle. CO2 is fixed

Figure 5. Flux distribution predicted under di/erent growth conditions. The metabolic fluxes of the biochemical reaction in central carbon
metabolism in autotrophic (green) and mixotrophic (black) conditions have been represented with a specified color code. In the photoautotrophic
conditions, the CO2 uptake rate was found to be 4.1 mmol gdw−1 h−1. In the case of mixotrophic growth, glycerol and the CO2 uptake rate were
fixed at 0.3 and 3.8 mmol gdw−1 h−1, respectively.
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by RuBisCO, fueled by the ATP and NADPH generated
during photosynthesis, and through 3-PG, the carbon enters
the metabolic pathway. Further, in the photoautotrophic
conditions, the quantum yield (i.e., CO2 fixed per photon
consumed) was calculated as 0.16 for the PCC 11901 model
(Table S10), which was higher than the quantum yield of
Synechocystis sp. PCC 6803,37 which was calculated to be
0.072. This finding suggests that PCC 11901 may e1ciently
utilize a marginally higher concentration of CO2, while it needs
a slightly lower amount of photon input. In addition to other
notable attributes, it was observed that alanine demonstrated
the highest flux among all amino acids under phototrophic
conditions, while valine, tyrosine, tryptophan, threonine,
serine, proline, phenylalanine, methionine, lysine, histidine,
and leucine exhibited the lowest production flux. The exhibited
low amino acid flux pattern aligned with findings reported in
other cyanobacterial studies.38

In the mixotrophic mode, the organic carbon source glycerol
was initially metabolized through the reaction glycerol to
glycerol-3-phosphate (glycerol kinase) before entering the
central carbon metabolism pathway. This metabolic pathway
ultimately gives rise to dihydroxyacetone phosphate (DHAP),
which is an essential precursor for the synthesis of S7P
(sedoheptulose-7-phosphatase) and RuBP (ribulose-1,5-bi-
sphosphate). This S7P molecule also functions as a rheostat

for carbon flux at the interface of glycolysis and the pentose
phosphate pathway.39 These bifunctional enzymes present in
the pentose phosphate pathway could assist in the conversion
of carbon dioxide into storable carbohydrates within the
intracellular matrix, and a comparable mechanism was also
proposed within the framework of PCC 7002.19 In both
growth conditions, CO2 served as the primary carbon source,
which may have contributed to the higher 3PGA and 2PG
fluxes. Further, it was seen that similar to certain other
cyanobacterial strains,40 PCC 11901 also exhibits an
incomplete TCA cycle due to its 2-oxoglutarate dehydrogenase
enzyme deficiency. This precludes the direct production of
succinate and necessitates the conversion of succinyl semi-
aldehyde into succinate, facilitated by succinate semialdehyde
oxidoreductase. Furthermore, the TCA cycle plays a crucial
role in providing essential amino acid precursors, as well as
carbon skeletons, for nitrogen fixation, specifically in the form
of 2-oxoglutarate, and a similar trend was observed in the case
of PCC 700219 and PCC 6803.37 Under mixotrophic
conditions, the organic carbon source was metabolized through
the nonoxidative pentose phosphate pathway to produce
ribulose-1, 5-biphosphate, and a substantial flux across
RuBisCO was seen to fix the CO2 that the metabolic network’s
decarboxylation processes released. The RuBisCO facilitated
the necessary flow of 3-phosphoglycerate flux, which was

Figure 6. Flux variability analysis of PCC 11901: (A) flux space distribution under three di/erent growth conditions, calculated Cohen’s d value for
normal distribution for the overall flux range under the three trophic modes, (B) autotrophic-heterotrophic (AH), (C) mixotrophic-heterotrophic
(MH), and (D) autotrophic-mixotrophic (AM).
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further separated and channeled toward the TCA cycle, led by
the phosphoglycerate mutase (PGM) and subsequently
followed by the phosphoglycerate kinase (PGK). Further,
under the mixotrophic conditions, there was a significant
increase in flux across RuBisCO compared to the autotrophic
condition. A comparable pattern was observed in PCC 7002
when it was subjected to an organic carbon source (glycerol),
resulting in a 1.5-fold increase in transcription levels of
RubisCO.41 Moreover, the overall H+/ATP in silico flux ratio
remained nearly consistent within the range of 4−4.67
observed in Synechocystis species.42−44 Overall, it was noted
that the 3PGA and 2PG formation exhibited relatively higher
flux under the mixotrophic condition. Also, it was found that
substantial pyruvate flux was directed toward acetyl-CoA, i.e.,
the TCA cycle under the mixotrophic condition compared to
other growth conditions. In all growth conditions, the TCA
cycle exhibited considerable activity and facilitated the flow of
metabolites through the γ-aminobutyric acid (GABA) shunt.
2.5. Flux Variability Analysis of Synechococcus sp.

PCC 11901 under Di1erent Growth Conditions. Flux
variability analysis (FVA) allows us to determine the range of
feasible reaction fluxes that satisfy the original FBA constraints
within an optimal solution. Additionally, FVA provides
valuable information about the flexibility and robustness of
the metabolic network. The flux variability range of the PCC
11901 metabolic network was explored in three growth
conditions by keeping the optimal biomass production rate
at 90%, and the condition-specific flux range of the reactions
was determined (Table S11). It was observed that the flux
space in autotrophic and mixotrophic conditions expanded
compared to that under heterotrophic conditions (Figure 6A).
Further, Cohen’s d e/ect size was calculated to assess the
changes in the flux spaces across the three trophic modes. The
e/ect size (ds) of the pairwise combination of the three
di/erent trophic modes was calculated, and it was found to be
0.05, 0.21, and 0.25 for autotrophic-mixotrophic (AM) (Figure
6D), mixotrophic-heterotrophic (MH) (Figure 6C), and
heterotrophic-autotrophic (AH) (Figure 6B), respectively.
The e/ect size indicates a considerable expansion in the flux
span under mixotrophy and autotrophy compared with the
heterotrophic growth condition. This expansion can be
primarily attributed to the reactions associated with pigment
and photosynthesis. Further, these pathways were assessed to
calculate the pairwise e/ect size, and it was found to be 0.33,

0.72, and 0.43 for AM, MH, and AH, respectively. The flux
space of reactions associated with photosynthesis was observed
to be greater under autotrophic and mixotrophic conditions
than under heterotrophic conditions. It has been seen that
under the mixotrophic conditions, the photochemical
e1ciency is relatively increased compared to the autotrophic
condition. Nevertheless, the autotrophic condition exhibited a
better photochemical e1ciency compared with the hetero-
trophic condition. Furthermore, while comparing the total
e/ect size between di/erent growth conditions, it was found
that A-H also displayed a considerable e/ect size (Tables S12−

S14). Overall, Cohen’s d analysis suggests that the photo-
systems are highly active, and their flux space can be expanded
in autotrophic and mixotrophic conditions compared to
heterotrophy, and the same was seen in the PCC6803
expression analysis.45

In this study, FVA analysis simulated the range of possible
metabolic flux for the given reaction(s) within the defined
model constraints. It was observed that the heterotrophic
mode had a rigid flux space control, indicating that this growth
condition may limit the metabolic capacity of the cyanobac-
teria, which is improved while maintaining the mixotrophic
condition. Under the mixotrophic condition, cyanobacterial
metabolism becomes more robust, especially in terms of
growth rate, and this has been seen in other cyanobacteria like
PCC 794246 as well. The principal rationale for this is that the
synergistic e/ect that occurs between organic carbon
metabolism and photosynthesis under mixotrophic conditions
results in increased cellular activity and growth. Further, FVA
analysis may help in predicting the optimal growth condition,
metabolic pathway constraints, and carbon-feeding strategies
for increasing the productivity of biomass and essential
biomolecules. Additionally, it can o/er essential insights for
further genetic engineering to improve the strain’s potential.
2.6. Dynamic Flux Balance Analysis for Simulating

Biomass Production under Di1erent Growth Condi-
tions. Dynamic flux balance analysis (dFBA) was imple-
mented to establish a match between the simulated and
experimental substrate consumption and biomass formation
profiles. In order to simulate the time-dependent growth
profile of PCC 11901, we used experimentally determined
carbon dioxide uptake rates under di/erent time periods
(growth phases). In the autotrophic growth conditions, the
model was grown under an experimentally calculated average

Figure 7. Dynamic flux balance analysis under (A) autotrophic mode and (B) mixotrophic mode.
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CO2 uptake rate, and dFBA was implemented, through which
dynamic biomass production and CO2 consumption data were
obtained. Following this, the biomass and CO2 data acquired
from the simulation of the previous growth phase were
updated into the model along with the second uptake rate.
This updated model was utilized to simulate the subsequent
phase. This iterative process was continued until the last phase
was simulated. It was observed that the simulated biomass
production data were in accordance with the empirical value of
in vivo biomass. During the simulation, it was observed that
there was a brief lag phase of approximately 20 h, following
which it entered the exponential phase. Overall, the in silico
biomass profile concurred with the experimental findings.
Further, it was noted that, by 128 h, the simulated biomass
concentration had reached up to 11.3 g L−1 and was slightly
exceeding the in vivo total biomass of 10.5 g L−1 at 127 h
(Figure 7A) (Table S15).
Furthermore, dFBA was executed for mixotrophic con-

ditions, wherein glycerol and CO2 were utilized as carbon
sources. Similar to the autotrophic conditions, simulations
were performed for the mixotrophic growth conditions,
wherein the sole di/erence was the utilization of mixotro-
phic-specific CO2 and glycerol uptake rates. The model was
assigned a glycerol uptake rate of 0.0275 mmol gdw−1 h−1 with
an initial glycerol concentration of 1.12 g L−1 (12 mmol).
Following the phase-dependent model simulation, it was
observed that, overall, the in silico biomass exhibited a close
resemblance to the experimental values, with minor deviations
during the initial exponential phase, which continued up to 96
h. Further, it was observed that the in silico scenario
demonstrated an overall consistent glycerol consumption
pattern, with complete depletion occurring at 124 h,
consequently compelling the system to rely solely on CO2 as
the principal carbon source (Table S16). Furthermore, it was
noted that until 96 h, there was a consistent decline in overall
CO2; this might be attributed to the comparatively low glycerol
consumption seen until 96 h, suggesting a greater dependence
on CO2 within the system. Additionally, it was observed that
the simulated CO2 consumption was more rapid after 96 h.
Nevertheless, post-96 h, it was noted that the glycerol
consumption was more accelerated, resulting in the system
utilizing both carbon sources more evenly. Overall, during in
silico analysis, the biomass concentration peaked at 12.93 g L−1

at the 128th hour, slightly elevated compared to the in vivo
value of 11.78 g L−1. Notably, the maximal biomass
concentration exhibited a good concurrence with the empirical
value, indicating the model’s ability to replicate the organism’s
growth by providing experimentally obtained carbon dioxide
consumption uptake rates.
The findings from dFBA indicate that the model successfully

replicated the organism’s growth and carbon consumption
profiles in both autotrophic and mixotrophic conditions. In
autotrophic conditions, the model exhibited a greater degree of
biomass production profile resemblance to the in vivo data.
This might be attributed to the utilization of time-dependent
CO2 uptake rates. Further, under the mixotrophic condition, it
was observed that the in silico biomass profile was similar to
the in vivo biomass profile, with only a slight di/erence in the
initial exponential biomass profile. Nevertheless, the mixo-
trophic material demonstrated a significant increase in biomass
production both in silico and in vivo, reaching up to 12.93 and
11.78 g L−1, respectively (Figure 7B). The dFBA analysis also
showed that under mixotrophy conditions the biomass was

enhanced by up to 12.6% compared to autotrophy. The
findings indicate that the model successfully replicates the
growth pattern of PCC 11901 under both autotrophic and
mixotrophic conditions. We have obtained a Pearson
correlation coe1cient (R) of 0.925 between experimental
and simulation dFBA biomass values. Further, the P-value is <
0.00012 (at a significance level of p < 0.01) for both
autotrophic and mixotrophic growth conditions (Figure S1).
Overall, it was observed that the mixotrophic conditions show
a significant increase in biomass production, and it can be
regarded as a favorable condition. The same trend has been
seen in other cyanobacteria as well,45−47 and this growth
condition can be used to achieve a higher cyanobacterial yield.

3. CONCLUSIONS

Our study presents the first genome-scale metabolic network
reconstruction of a fast-growing cyanobacterial strain,
Synechococcus sp. PCC 11901 under di/erent trophic modes.
Because of recent discoveries, knowledge of biochemical
pathways and metabolic activities is limited. Therefore,
reconstruction and analysis of the genome-scale metabolic
model of PCC 11901 o/er a holistic perspective on metabolic
flux distribution, enriching our comprehension of metabolic
activities and underlying pathways. The metabolic model has
been optimized under di/erent trophic conditions using the
experimentally measured CO2 uptake rate. The specific growth
rates predicted by the model were in good agreement with
those obtained experimentally. The PCC 11901 showed
enhanced capacity and metabolic e1ciency under mixotrophic
conditions. This is due to the synergistic interaction between
organic carbon metabolism and photosynthesis, which boosts
cellular activity and growth rates. The dFBA analysis also
showed that mixotrophy favored enhanced biomass accumu-
lation, resulting in a 12.6% increase compared with other
trophic modes. Further, the flux variability analysis (FVA)
predicted optimal growth conditions, identified metabolic
constraints, and optimized carbon-feeding strategies to boost
biomass productivity and biomolecule synthesis. Hence, the
reconstructed GEM will be useful for gaining insights into
PCC 11901’s metabolic potential and developing e/ective
metabolic engineering strategies for value-added product
development.

4. METHODOLOGY

4.1. Chemicals, Culture Medium, and Growth Con-
ditions. A single colony of Synechococcus sp. PCC 11901 was
picked and streaked on a solid MAD medium plate. The
selected colony was cultured in a 150 mL culture flask.
Genomic DNA was extracted, and primers (Table S17) were
designed to amplify the FEK30_RS01775 gene. The amplified
gene was then sequenced to confirm the strain’s identity
(Table S17). For the growth experiments, PCC 11901 was
initially cultured on solid MAD plates for 48 h and then
recultured in 100 mL bubble flasks with aeration using
atmospheric air for 24 h. For anaerobic and aerobic (air)
cultures, cells were taken at the early log phase and recultured
in 50 mL Erlenmeyer flasks with a working volume of 10 mL.
Cultures were provided with various carbon sources, such as
sucrose, fructose, arabinose, glycerol, and bicarbonate.
Mixotrophic experiments using 1% CO2 were accomplished
in bubble cultures. To perform higher concentrations of CO2,
cells were transferred to 1% CO2 chamber for adaptation, and
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after 6 h, cells were cultured in 50 mL fresh modified AD7
medium (Table S18). All experiments were performed in
triplicate, and an initial optical density (OD) of 0.05 was used.
While using shake flasks, cultures were agitated at 250 rpm and
grown in ambient air under the light intensity of 200 μmol
photons m−1 s−2. For cultures under 1% CO2, cells were
initially exposed to 150 μmol photons m−1 s−2, and then the
light intensity increased to 650 μmol photons m−1 s−2 after 24
h. Di/erent sugars such as bicarbonate (cas no: 144−55−8,
www.sigma.com), fructose (cas no: 57−48−7), glycerol (cas
no: 56−81−5), sucrose (cas no: 57−50−1) were also used in
this study. Further, the biomass was estimated using the OD
value. The conversion factor used was 0.563 (Figure S2).
4.2. CO2 Uptake Measurement. The culture tubes were

equipped with carbon dioxide sensors to measure the
composition of the inlet and exhaust gas. In the inlet, pure
CO2 gas was provided from a cylinder and mixed with air using
two mass flow controllers (Alicat Scientific, Inc.) and injected
into the cultures at a rate of 70 mL/min using a multichannel
rotameter (Aalborg). The concentration of inlet and outlet gas
was measured using a CO2 sensor (Vaisala, Finland), and inlet
CO2 concentration was set at 1% CO2.
To calculate the mass of CO2 at exhaust (in mg/min/L), the

ideal gas law formula was used
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where P is the pressure of the environment (Pa), V is the
culture volume (mL), R is the ideal gas constant (m3·Pa·K−1·

mol−1), T is the temperature (K), mCO d2
is the mass of gas (g),

and MCO d2
is the molar mass (g mol−1).

To calculate the CO2 uptake rate, the following formula was
used

= · ·CO Q y y m( )2uptake gas CO ,inlet CO ,outlet CO
2 2 2 (2)

The measured CO2 uptake rate is in milligrams per minute
per liter (mg/min/L) and needs to be converted to millimoles
per gram of dry weight per hour (mmol/gdw/h) in order to be
utilized as an input flux in the model. The calculations are
shown in Table S19.
4.3. Reconstruction of the Genome-Scale Metabolic

Model for Synechococcus sp. PCC 11901. ModelSEED25

workspace was used for annotation and generation of draft
metabolic model PCC 11901. COBRApy48 was used in
Spyder, Anaconda (Python 3.6) for reading and manipulating
the draft model in Systems Biology Markup Language (SBML)
format. COBRA Toolbox v3.049 was used in MATLAB
R2016b. Metabolite formula and charge were added using
PubChem,27 CHEBI (Chemical Entities of Biological Inter-
est),50 ModelSEED,25 and BiGG28 database. Additional
reactions were manually added as necessary to produce
known biomass constituents or utilize known nutrients
through a detailed literature survey; MetaCyc,51 KEGG,26

and ModelSEED25 were used to correct the Synechococcus sp.
PCC 11901 genome-scale model.

4.3.1. Biomass Sensitivity Analysis in Di+erent Growth
Conditions. Sensitivity analysis (SA) is a computational
technique used to examine the possible relationships between
the input sources and output uncertainty of a particular
mathematical model’s output.52 Typically, the results of an SA
run are a sorted list of the sensitivity coe1cients related to the

aforementioned inputs.53 The objective function of an FBA
model is examined in di/erent growth scenarios to see how the
growth rate changes in response to a change in the individual
components of the biomass by 10%. The sensitivity λi

Z

represents the response of the objective function Z to a
perturbation on the availability of a metabolite i.

=
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where bi corresponds to the mass balance for metabolite i and
superscript r denotes a relaxation in the steady state. It can be
noted that if the response of Z to an increment in bi

r is an
increase in its value, then λi

Z should be less than zero. On the
other hand, if Z decreases λi

Z should be greater than zero, and if
Z does not change λi

Z is equal to zero. In this sense, the
sensitivity value can be interpreted as a state of resource
availability showing if a given metabolite is limiting (λi

Z < 0), in
excess (λi

Z > 0) or has no e/ect on Z (λi
Z = 0).

4.3.2. Gene Essentiality Analysis. The model was subjected
to single-gene deletion analysis to identify essential and
nonessential genes. The genes were classified as essential and
nonessential based on whether the deletion resulted in a
nonviable or viable network,54−56 respectively. Further, the
model-predicted essential and nonessential genes were
compared with available gene data from the closely related
PCC 6803 and PCC 7002 cyanobacterial stains to calculate the
sensitivity and specificity of the model using the following
equation29

=

+

specificity
GG

GG NGG (4)

=

+

sensitivity
NGNG

NGNG GNG (5)

where GG is the number of cases where there was both in silico
and in vivo growth. NGG is the number of cases where there
was no growth in silico, but there was in vivo growth. NGNG is
the number of cases where there was no growth in silico and in
vivo. GNG is the number of cases where there was in silico
growth but no growth in vivo.

4.3.3. Genome-Scale Flux Balance Analysis of Synecho-
coccus sp. PCC 11901 Metabolic Model. The flux solutions
under steady-state conditions were ascertained using FBA. All
simulations were run in MATLAB with FBA57 using the
COBRA toolbox.49 The spectrum of potential flow distribu-
tions can be characterized by a single optimal solution made
achievable via FBA. The linear programming problems were
solved using glpk solver. To find the best solution for the
metabolic model in our investigation, the biomass equation
was maximized. Flux balance analysis was employed in both
the validation and testing phases. PCC 11901 models were
evaluated in terms of biomass production in di/erent trophic
modes: autotrophic, mixotrophic, and heterotrophic. Flux
distributions for each one of these states were inferred by
using FBA.
Maximize vbiomass

Subject to

=

=

S v i n0 1, ...,

j

m

ij j

1 (6)

V V V j m1, ...,j j j,min ,max (7)
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Here, Sij is the stoichiometric coe1cient of metabolite i in
reaction j and vj is the flux value of reaction j. Parameters Vj,min

and Vj,max denote the minimum and maximum allowable fluxes
for reaction j, respectively.
The model included three biomass equations: bio1, bio2,

and bio3, representing autotrophic, heterotrophic, and
mixotrophic conditions, respectively (Table S20). The model’s
biomass objective functions must be set accordingly to
simulate di/erent growth conditions. Further, model’s photo-
synthesis quotient (PQ) was determined, wherein using ratios
of oxygen production to carbon dioxide consumption, typical
PQ ranges of 1.0−1.8 are reported for algae and photo-
synthetic marine organisms.58 Quantum yield is defined as per
mole CO2 fixed per moles of photon consumed,37 and it was
calculated using the following formula

=quantum yield
CO consumed

total photon consumed

2

(8)

4.3.4. Genome-Scale Flux Variability Analysis of Synecho-
coccus sp. PCC 11901 Metabolic Model. The COBRA
toolbox was used to calculate metabolic model fluxes by
maximizing the biomass equation. For FVA,59 the flux
variability function was performed. We intended to compare
the behavior of a cyanobacterial system under various growth
conditions, as the system seeks to attempt to maintain its
maximal objective value. This implies that despite growth
circumstances, the system always retains the maximum amount
of biomass. Therefore, the diversity of each reaction’s flux in
such a scenario can mirror the flux’s narrowness in diverse
circumstances. The FVA output consisted of two vectors
containing the minimum and maximum fluxes for each
reaction. Therefore, the flux range for each reaction could be
computed by using the corresponding lowest and maximum
values. Additionally, we conducted Cohen’s60,61 (ds) e/ect size
measurement to assess the variation in flux space pattern in the
model as the trophic modes of cyanobacterial cultivation were
altered. Equation 9 is utilized to calculate Cohen’s e/ect size

=d d
M M

( ), effect size ( )
Sd

s s
a b

(9)

The average flux space values associated with two distinct
trophic modes are denoted by Ma and Mb. The aggregated
standard deviation of all flux values for the given combination
of trophic modes is denoted by Sd. Cohen’s (ds) e/ect size was
determined between mixotrophy-autotrophy, autotrophy-het-
erotrophy, and mixotrophy-heterotrophy.

4.3.5. Dynamic Flux Balance Analysis Simulations. The
reconstructed model underwent dynamic flux balance anal-
ysis62 (dFBA) to computationally simulate batch growth of
PCC 11901 under both autotrophic and mixotrophic growth
conditions. The computational model simulations were
executed utilizing the COBRA Toolbox v3.0.49 The model
inputs were derived from batch cultivations, wherein the
maximum uptake rate, initial substrate concentration, and
biomass concentration were determined. Subsequently, the
utilization of flux balance analysis (FBA) was executed within
the aforementioned constraints to determine the fluxes at their
maximal growth rate

= ·
+

X X e
t t t

t

( ) (10)

= · ·
+ _

S S V X e(1 )/
t t t t

t

( ) EX S (11)

= · ·
+ _

P P V X e(1 )/
t t t t

t

( ) EX P (12)

The variables Xt, St, and Pt represent the concentrations of
biomass, substrate, and product, respectively, at any given time
point “t” throughout the cyanobacterial growth. The specific
growth rate of the cyanobacterial in h−1 is denoted by “μ”. The
uptake and production rates for the substrate and desired
product are denoted as VEX_S and VEX_P, respectively. The time
di/erence between any two time points is denoted as “Δt”.
The model was simulated with di/erent growth-phase-

specific average CO2 uptake rates under autotrophic and
mixotrophic conditions. The CO2 uptake rate was measured
experimentally in three di/erent phases, i.e., phase I (0−24 h),
phase II (24−48 h), and phase III (48−96 h) and phase IV
(96−128 h). The average maximum CO2 uptake rates under
autotrophic conditions in phase I, phase II, and phase III and
phase IV were 6.1, 2, 1.6, and 0.5 mmol/gdw/h respectively. In
the mixotrophic condition, the average uptake rates used in
di/erent phases I, II, III, and IV are 5.2, 2.4, 1.2, and 0.6
mmol/gdw/h, respectively. The experimental CO2 uptake
value was not available for each time point; therefore, dFBA
has been performed under four distinct average uptake rates to
simulate various growth stages of the model.
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