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Mitigating greenhouse-gas emissions, of which fossil-derived carbon dioxide (COy) is the dominant component, is
becoming increasingly imperative. One of the tools for lowering the demand for fossil carbon is cultivation of
microalgae, which are fast-growing photosynthetic microorganisms that utilize sunlight for energy and CO3 as
their carbon source. In addition, microalgae can provide feedstock to replace fossil sources, particularly for
transportation fuels. In open and closed microalgal cultivating systems (also called open ponds and photo-
bioreactors, respectively), COy can be sparged into the culture medium through a gas distributor; CO3 molecules
diffuse through the gas-liquid interface and dissolve into the culture medium, from which they can be taken up
for the biosynthesis of microalgal cells. Due to the modest solubility of CO, in water, optimal design and
operating variables (e.g., inlet gas flow rate, sparger characteristics, CO, concentration in the inlet gas, and the
height of a PBR or sump) are required to increase the CO mass transfer rate into the medium and, consequently,
CO, uptake and biomass productivity. The concepts and phenomena discussed in this work apply to photo-
bioreactors and open ponds that are sparged with CO5. This review systematically evaluates how the key design
and operating variables affect bubble behavior and the rate of CO; delivery into the medium. The review also
addresses advanced strategies that are being employed to increase the rate of CO; transfer, but with lower costs
than with sparging.

1. Introduction

Mitigation of greenhouse-gas emissions, of which carbon dioxide
(COy) is the dominant component, is becoming increasingly imperative
[1-4]. The amount of CO; in the atmosphere reached 425 ppm in
February 2024, and impacts of global-climate change already are
occurring [5], with more severe consequences predicted if the CO,
concentration exceeds 450 ppm [6,7]. Strategies to reduce atmospheric
CO; include chemical, physical, and biological CO; fixation, and bio-
logical methods have environmental and economic advantages [8-10].
CO,, fixation by terrestrial plants and photosynthetic microorganisms
convert COy into organic biomass components [11,12]. Among
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photoautotrophs, only 3-6 % of global CO; is captured by terrestrial
plants [12], while CO; fixation by microalgae and cyanobacteria is much
higher [13,14]. Because microalgae are fast-growing photosynthetic
microorganisms that can thrive with simple inputs - sunlight, CO, and
macronutrients — they are ideal microbial factories for CO, uptake and
conversion to organic materials of widespread use in society [15-17].
For example, direct air capture (DAC) of CO, by microalgae has gained
global attention as a simple and scalable option to capture atmospheric
COs and turn it into useful products that replace those now produced
from fossil sources, such as transportation fuels [18].

Microalgal cultivation can be used to treat wastewater, and it also
generates biomass rich in valuable components such as high-value
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nutraceuticals, health-food components, and cosmetics, along with
lower-value commodities, such as feedstock for transportation fuel,
bioplastics, animal and fish feed, and fertilizer [19-22]. The economics
of CO; uptake via microalgal cultivation is highly sensitive to biomass
productivity per unit area [23]. Identifying conditions that increase
productivity will at least partly overcome the economic obstacles
[19,24].

Microalgal cultivation systems are divided into open and closed
systems. Open systems, such as open raceway ponds, have the advantage
of low capital cost and simple construction and operation [25,26]. On
the other hand, closed systems can provide better control on cultivation
conditions (temperature, pH, light intensity), more efficient CO; de-
livery, minimized water loss, and relatively low invasion by grazers or
competitors compared to open systems [27-29]. Disadvantages of closed
systems are higher capital and operating costs [30,31], scalability lim-
itations [28,32], and O, accumulation [33].

This review focuses on design factors and operating variables that
influence the CO; availability for microalgal cultivation. The concepts
discussed here apply to open and closed systems, for which optimizing
the CO; delivery can improve biomass productivity, which reduces the
overall production costs. We focus on systems in which the CO; is
delivered by sparging, or the releasing bubbles near the bottom of the
water column. This is common for vertical PBR columns and for sumps
in an open pond. CO; molecules diffuse from the sparged bubbles to
become dissolved inorganic-C species that the microalgal cells can fix by
photosynthesis. Bubble behavior significantly affects CO5 transfer into
the microalgal suspension, which then influences the microalgal growth
and COz-capture efficiency. Bubble behavior is affected by many design
and operational parameters: e.g., inlet air flow rate, sparger character-
istics, CO5 concentration at the inlet, and the depth of a PBR or sump.
This review addresses the effects of the design and operational param-
eters on bubble behavior and, consequently, the rates of CO, uptake and
production of valuable products.

2. Fundamentals of microalgal cultivation

Since >50 % of microalgae biomass is comprised of carbon, inor-
ganic C is the most essential input for microalgal growth; inorganic
carbon is converted directly into sugars via photosynthesis, and the
sugars are then converted into a wide range of organic molecules that
constitute biomass [34]. A simple representation of photosynthesis to
produce glucose from COs is:

6CO, + 6H,0 + light energy—CcH ;06 + 60, (@D)]

Glucose is then converted to other biomass components, such as
lipids, proteins, nucleotides, pigments, and various other components of
biomass. However, the composition of a microalgal cell varies from
species to species, as well as with the culture conditions. The average
chemical formula for a microalgal cell as reported by Barbosa et al. is
CHj6200.41N014Po011 [35]. The overall equation for the conversion of
CO3, to biomass was obtained by doing an elemental balance and is given
by:

C0O,+0.22 POi’ +0.14 NOy +-0.81 H,0—CH 620041 No.14Po.011 +1.85 O,
(2

Producing 1 ton of algae requires between 1.8 and 2.2 tons of COy

[36,371; an insufficient supply of CO, decreases biomass productivity

[38]. However, providing excess COs that is unutilized is an economic
burden.

2.1. COg chemistry in water

As CO;, transfers from the gas phase to the liquid phase, it reacts with
water and is converted into dissolved inorganic carbon (DIC): (COy
(aq)), carbonic acid (H2COs), bicarbonate (HCO;), and carbonate
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(CO27). The speciation is dictated by the pH and alkalinity according to
the following chemical equilibria [39]:

H,0 + CO,(aq)<=>H,CO; &% H* + HCO; <% H' +C0% 3)

in which K7 and K> are the first and second acid-dissociation coefficients.
Because, H,CO3 dominates CO5(aq), they are summed and denoted as
HyCOs* [33] [34]. At near-neutral pH, bicarbonate (HCO3) is the
dominant form, and high pH makes carbonate (CO%’) the dominant
species. Fig. 1 illustrates the pH-controlled speciation.

The concentration of CO5 present in the aqueous phase at equilib-
rium is given by Henry’s law:

Pco,

Cco, = @
= Heo,

where Cco, is the dissolved concentration of CO4 (mole LD, Pco, is the
partial pressure of CO; in the gas phase (atm), and Hco, is the Henry’s
constant for CO, (atm L molefl) [40,41]. From Henry’s law (Eq. (4)), it
is obvious that the gas-phase concentration of CO, at the inlet controls
the maximum concentration of COy that can be achieved in the liquid
phase in the PBR. Therefore, the inlet CO5 concentration exerts a major
control over the CO»-concentration gradient between the gas phase and
the culture medium. In algal-cultivation media, a base level of DIC is
typically added in the form of carbonate salts that define the alkalinity.
Depending on the cultivation scenario, the alkalinity can range from 1 to
100 mM. Setting the alkalinity and the concentration of CO5 delivered
dictates the equilibrium pH of the cultivation. Fig. 2 highlights the
equilibrium DIC concentration based upon these factors. The point at
which an alkalinity (alk) line intersects the DIC line based on the CO,
concentration is the approximate equilibrium point for the cultivation
medium.

The Monod model can be used to describe the growth kinetics of
microalgae as a function of the concentration of bioavailable inorganic C
species, which are H,CO3* and HCO3 [42].

C,
- - 5
/'t ” max KC Cv ( )

where Cy is the mM concentration of H,CO,, HCO5, or the sum of H,COj
and HCO3; u is the specific growth rate (day™b; Hmax 1S the maximum
specific growth rate (day’l); and K¢ (in mM) is the Michaelis constant.
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Fig. 1. Dissolved inorganic carbon (DIC) equilibria in the aqueous phase as a
function of pH for a temperature of 25 °C.
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Fig. 2. Available DIC at different pH values based upon the selected alkalinity
(alk) and CO, concentrations. The intersection of the two factors identifies the
equilibrium pH (Modified from Eustance et al. [126]).

The rate of COy-mass transfer can be gauged by the increase in DIC.
DIC = [H,CO;] + [HCO; | + [CO57] (6)

The product of the DIC and ionization fractions provides the con-
centration of each species in the culture medium:

[H,CO}] = a;-DIC Q)
[HCO3] = ay-DIC ®)
[cOi] = a;-DIC 9

where the ionization fractions a1, az, and a3 are calculated from Egs.
(10) to (12) using the pH of the culture medium, where pH = —log [H'].

1

Q) =—F— (10)
K; KiK;
(1 + 5 + e )
1
= (11)
<1 +%+,§—£)
1
az = (12)

HY | g
(e )

A high pH (>9) favors mass transfer of CO; to the liquid medium,
because a; and the concentration of CO»(aq) are small; however, most
microalgae grow well at pH values of 7 to 9 [43]. Thus, using alkaliphilic
microalgal species that can grow well at elevated pH (pH > 10) naturally
provides conditions for high CO, transfer [44,45], and as an added
advantage the high pH environment also provides protection against
many grazers and predators that are incompatible with alkaline envi-
ronments [46].

2.2. Factors affecting CO2 mass transfer

CO sparged into the medium first diffuses across the gas-liquid
interface and rapidly speciates into the various inorganic forms of car-
bon: CO; (aq), carbonic acid (H,CO3), bicarbonate (HCO3), and car-
bonate (CO%’ ), according to the pH. The bioavailable forms of carbon
CO, (aq) and HCOj; can transfer across the cell membrane either
through passive diffusion or active transport and then be assimilated by
microalgal cells. Carbonic anhydrase (CA) catalyzes the interconversion
of CO2 and HCO3 and plays a key role in enhancing carbon transfer
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through the following steps [47]. First, extracellular CA (eCA) associ-
ated with the microalgal cell surface aids in inorganic-carbon uptake by
converting HCO3 to CO, (aq) that readily diffuses across the cell
membrane into cytoplasm and then to chloroplast [48,49]. Although,
passive diffusion of COs into the cell due to its high solubility in lipid
membranes has the benefit of energy saving for the cell, CO, can also
diffuse out of the cell. To overcome this, in its second role, CA present
within the cytoplasm and chloroplast converts CO5 to HCO3, which then
enters the pyrenoid, a major compartment in chloroplast. The effec-
tiveness of microalgal photosynthesis is credited to the COz-concen-
trating mechanism (CCM), which is facilitated by the CA present in the
pyrenoid. In the final step, CA present within the pyrenoid converts
HCOj3 to CO,, thereby concentrating the localized concentration of CO4
in the proximity of RuBisCO to enhance the rate of CO; fixation [50,51].
This process is shown schematically in Fig. 3.

The COo-transfer rate (N¢o,, mol m~2 min~Y) from the gas phase to
the liquid phase at any location is given by

Nco, = kia x VCO, (13)

where kya is the overall volumetric mass-transfer coefficient (min 1), k;,
is the mass-transfer coefficient (m min_l); a is the interfacial area per
unit volume (m™Y), and VCO, is the CO,-concentration gradient be-
tween the gas and the aqueous phase (mol m~2). Eq. (14) can be used to
obtain the total amount of CO, transferred to the culture medium:

Q = Nco, X Vppr X At a4

where Q is the total CO5 transferred to the culture media (mol), Vppg is
the working volume of the photobioreactor (mg), and At is time (min).

The value of kza is affected by bubble behavior, the superficial gas
velocity, sparger design, temperature, and culture-medium properties.
Therefore, the design and operational parameters of the PBR or sump,
including the inlet CO, concentration, sparger design, and inlet gas flow
rate, affect kza and, as a consequence, the CO,-mass transfer rate, as
illustrated in Fig. 4. The influence of these factors is discussed in Section
3.

3. Photobioreactor design variables
3.1. Inlet CO5 concentration

The inlet CO, concentration is an important variable in the design of
PBRs, as it affects the driving force available for CO, transport from the
gas phase to the liquid phase. Depending on reactor design and available
gas sources, the concentration of CO5 can vary from <1 % (e.g., from air)
to 100 % CO4, (e.g., from pure CO, or from fermentation off-gas). In some
scenarios, the concentration of CO; being utilized can be manipulated to
a desired concentration. However, algal cultivation can be integrated
with an industrial process that produce waste CO,. For example, natural-
gas and coal-fired power plants produce waste streams containing 3-8 %
and 10-15 % CO,, respectively [52]. In contrast, biogas from anaerobic
digesters and landfills have 30-40 % CO, typically.

The CO2 concentration in the CO,-delivery gas dictates the concen-
tration gradient and, therefore, the rate at which CO5 can be transferred
to the culture medium. As the bubbles rise, they decrease in size based
upon the change in their CO, concentration and initial bubble size
[53,54]. This, in turn, affects the bubble-rise velocity and residence
time, as smaller bubbles have a slower velocity [55,56]. In addition,
bubble-rise trajectory, bubble-growth rate, and bubble-detachment rate
are influenced by the inlet CO2 concentration [54,56]. For example,
Zhao et al. [57] observed that, as the CO, concentration was increased
from 10 % to 20 %, the rate of bubble growth decreased due to a higher
CO, gradient between the gas and the aqueous phase, leading to
enhancement in CO, mass transfer. Ding et al. [56] also showed that
injecting gas with a higher CO, concentration caused the bubbles to
have less acceleration on their rise velocity, which led to a lower
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Fig. 3. CO, mass transfer from a bubble to a microalgal cell and the mass-transfer resistances encountered in each step. The bioavailable forms (CO, and HCO;) can
transfer across the cell membrane and be assimilated by microalgal cells either through passive diffusion or active transport. Carbonic anhydrase (CA) functions
vitally in transforming two primary forms of CO, and HCO3 together. This process enhances the targeted active transport of HCO3 to the pyrenoid in microalgae.
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Fig. 4. Schematic of how CO, concentration, sparger design, and gas-flow rate
affect bubble behavior, mass transfer parameters, and, thereby, CO,-mass
transfer to the microalgae-culture medium in a PBR.

terminal velocity. These observations emphasize the fact that the inlet
CO4, concentration is an important variable to control CO2 mass transfer
in a PBR.

Inlet CO5, concentration and its effect on microalgal growth. Although a
higher input CO2 concentration favors CO2 mass transfer, providing
higher CO5 concentrations also can lower the pH of the culture, as the
medium’s alkalinity is distributed to a larger pool of DIC [42]. Thus, a
proper balance between CO; concentration and pH has to be established
to optimize microalgal growth. For example, Barahoei et al. [58] showed
that increasing the input CO2 concentration from 3 % to 7 % boosted

biomass productivity by 57 %, which is consistent with other published
studies [59-61]. In another work, Chlorella sp. was cultivated with CO5
concentrations ranging from 10 to 25 % [62], and 10 % COy was
observed to yield maximal growth. On the other hand, Ding et al. [63]
found that the maximum growth rate for Chlorella pyrenoidosa occurred
when the CO; concentration was 5 %. They explained that concentra-
tions below 5 % led to limitation from CO5 mass transfer, but concen-
trations above 5 % lowered the pH enough to have a negative influence
on the microalgal growth rate.

pH-stat. In cultivation conditions in which CO; is delivered sepa-
rately from coarse aeration or is blended into a single gas stream,
excessive CO3 levels, which acidify the culture medium, can be miti-
gated through pH control [64]. Fig. 2 supports that, depending on CO4
availability in the gas phase and culture-medium alkalinity, a targeted
pH set point can maximize CO, mass transfer without acidifying the
medium.

Bubble behavior as a function of COy concentration and column height.
The height of the photobioreactor also affects bubble-residence time,
which affects mass transfer of CO4 to the culture. A desirable height of a
photobioreactor requires a proper height/diameter ratio, which depend
on economics and the impact of CO, concentration and column height
on bubble behavior. Therefore, we look at bubble behavior for two
scenarios: (i) a fixed column height, but varying inlet CO5 concentration
(Fig. 5a); and (ii) a fixed inlet CO, concentration, but varying column
height (Fig. 5b).

For bubbles rising in a quiescent liquid, three forces simultaneously
control the bubble’s behavior: buoyancy, drag, and gravitational force.
Near the gas entry point at the bottom of the water column, buoyancy
dominates, resulting in bubble acceleration. However, as the bubble
accelerates up through the water column, the drag force increases. As
the bubble reaches a certain height, the net force acting on the bubble
equals zero, at which point the bubble attains its terminal velocity [63].

For a fixed height (Fig. 5a), increasing the inlet CO5 concentration
decreases the bubble diameter as the bubble rises and loses CO-,
consequently decreasing the bubble-rise velocity [63]. Smaller bubbles
and increased partial pressure of CO, increase the CO, transport rate
[65], as well as the rate at which the bubble size shrinks as it rises; this is
illustrated in Fig. 5a.

As the bubble travels upward, the partial pressure of CO, in the
bubble decreases, and, as a consequence, the partial pressures of other
gases (e.g., No and Oy) increase. The bulk of air is Ng, but microalgal
photosynthesis produces O3, which accentuates the increase of Oy par-
tial pressure in the bubble as it travels up through the reactor. Transfer
of O, into the bubbles can be a benefit, since it is well established that
high dissolved O3 concentration inhibits microalgal growth [66,67]. For
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Fig. 5. Factors affecting bubble behavior for two conditions: a) at a given height of photobioreactor with different CO, concentrations, and b) at a fixed CO,

concentration for different column heights.

example, dissolved-oxygen concentrations over 30 mg L' led to a 30 %
loss in biomass productivity in Chlorella vulgaris. Therefore, mitigation of
dissolved-O, buildup may be required for optimal design, especially in
large-scale tubular photobioreactors [68,69]. One strategy is to supply
CO3 at a higher concentration, which simultaneously increases CO, mass
transfer to the medium and O, transfer from the medium to the bubbles.

Optimal CO-, concentration depends on cultivation conditions. Although
some earlier studies showed that inlet-CO, concentrations above 5 %
harmed microalgal cells and inhibited their growth [70-72], more
recent studies underscored the benefits of higher inlet CO,. Tongpra-
whan et al. [73] sparged gas with air (0.03 % CO) and 50 % CO5 and
observed 3 times faster growth with 50 % CO,. Similarly, Tang et al.
[61] cultivated Scenedesmus obliquus (SJTU-3) and Chlorella pyrenoidosa
(SJTU-2) with CO5 ranging from 0.03 % to 50 % and observed optimal
growth at 10 % COy concentration. Others saw the fastest growth of
microalgae using 50 % and 100 % CO; in concert with a pH stat to
control the pH [74-76]. An overview of the results obtained by notable
studies is provided in Table 1. Taken together, these results indicate that
maximizing CO4 utilization in microalgal cultivation requires careful co-
optimization of the inlet CO, concentration, microalgal species, pH/
alkalinity, equipment, and operating conditions that affect bubble size
dynamics, including the diameter-to-height ratio and the superficial gas
velocity.

3.2. Gas flow rate and superficial gas velocity

The gas flow rate (Qg, m® min~!) is an independent parameter that
affects the amount of CO, that can be transferred to the culture medium.
The gas flow rate directly determines the superficial gas velocity, Ug =
Qg/Acs, where Acg is the cross-sectional area of the column (m?). The
bubble residence time is strongly affected by U, because U, has a direct
impact on bubble diameter and shape [77-79], as well as the number of
bubbles formed [80]. Low superficial gas velocities (Ug < 0.03 m sH
allow bubbles to aggregate to form larger bubbles that have a higher
rising velocity [63,78,79,81]. In contrast, large superficial gas velocities
(Ug > 0.05 m s™1) leads to the breakup of large bubbles into smaller
bubbles that rise more slowly.

Besides the impact of Ug on bubble size and CO2 mass transfer, se-
lection of a proper superficial gas velocity is especially crucial at higher

cell densities in PBRs, because it also controls mixing and the spatial
distribution of the cells. At high cell densities, cells at the center of the
PBR column will be shaded by cells at the periphery. A high-enough U,
allows all cells to be exposed to light, and it also prevents cells from
settling at the bottom of the column or sticking to the column wall.
Proper mixing also ensures homogeneous distribution of nutrients in the
PBR and maintains a uniform temperature and pH [10,82]. On the other
hand, too-high superficial gas velocity has two negative impacts. First, it
can cause excessive shear stress on the microalgal cells, which has been
observed with Spirulina platensis [83], Dunaliella [84], Tetraselmis suecica
[85], Gymnodinium splendens [86], and others [83]. Second, bubbles
scatter light, and more bubbles increase light attenuation [57].

3.3. Spargers

Sparging has two functions: mixing of algal cells (especially in PBRs)
to utilize light efficiently and gas transfer for CO5 delivery and O,
removal. Sparging is affected by the sparger type (summarized in
Table 2) and the gas-flow rate (Qg, m3 min’l), which collectively dictate
bubble size, the number of bubbles, and overall mixing intensity. A large
trade-off of sparging is related to bubble size::arge bubbles are better for
mixing, while smaller bubbles offer better gas transfer. Bubble size is
dictated by the sparger orifice diameter and total gas flow rate. Coarse
aeration is typically produced by orifices >1 mm and generates bubbles
that are >5 mm [87], while fine aeration generates bubbles that can be
classified into macrobubbles (>100 pm), microbubbles (1-100 pm), and
nanobubbles (<1 pm) [88]. Fig. 6 depicts the impact of sparger pore size
and flow rate on bubble size in a PBR.

Smaller bubbles have an increased surface-area-to-volume ratio and
a slower rise velocity compared to larger bubbles, which increases the
overall interfacial area (a) in the mass transfer coefficient (k;a) and al-
lows for more efficient CO5 delivery [89]. For example, microbubbles
have been shown to improve mass transfer per flow rate by up to 100-
fold, compared to aquatic, industrial, and open-tube spargers [90].
Nanobubbles have even greater surface area and do not rise at all due to
the virtual disappearance of buoyant force [91]. However, generating
microbubbles and nanobubbles increases energy costs by a factor of four
over coarse aeration, although this cost may be offset by the increase in
CO, transfer efficiency [4,92]. In addition, using microbubbles or



Table 1
A review of previous studies regarding the effects of design and operating parameters on biological CO, uptake.
Species Cultivation system Sparger type Flow rate Inlet CO, Mass transfer Maximum Biomass Biomass Optimal COy Ref.
and volume (L) (mL/min, concentration (%)  coefficient (h™')  Concentration (g.L™1) productivity (g. conditions removal
vvm*) (ppm)"” L td?h reported (% w/w)
(mg. L%
hly
Chlorella vulgaris Bubble column PBR Spiral 50 mL/min 0.04 1.75 0.31 100 mL/min 8]
4) (0.0125 vvm) 15 3.15 0.35 7.52 % CO,
50 mL/min 0.04 1.92 0.24
(0.0125 vvm) 15 2.29 0.23
150 mL/min
(0.0375)
150 mL/min
(0.0375)
Chlorella vulgaris Bubble column PBR Spiral 100 mL/min 7.52 3.43 0.41 100 mL/min [81
(9.6) (0.0104 vvm) 7.52 % CO,
Chlorella vulgaris Bubble column PBR Spiral 50 mL/min 0.04 1.79 0.25 100 mL/min [8]
(16) (0.0031 vvm) 15 3.13 0.38 7.52 % CO,
50 mL/min 0.04 2.2 0.33
(0.0031 vvm) 15 3.25 0.49
150 mL/min
(0.0094 vvm)
150 mL/min
(0.0094 vvm)
Chlorella PY-ZU1 Plate PBR (21) Jet aerator 0.02 vvm 15 32 1.33 - - - [108]
0.04 vvm 39
0.06 vvm 48
0.08 vvm 49
0.1 vvim 50
Synechococcus elongatus Membrane sparger Polypropylene hollow fiber 25 mL/min 0.04 1.49 1.86 0.86 5 % CO, 32 [109]
PBR (0.013) membrane sparger (1.9 vvm) 5 1.86 2.45 1.23 4
10 2.28 1.51 0.48
Synechococcus elongatus Membrane contactor ~ Polypropylene hollow fiber 25 mL/min 0.04 1.25 1.78 0.75 10 % CO, 10 [109]
PBR membrane contactor (0.625 vvm) 5 1.92 0.96 25
(0.04) 10 2.1 1.12
Chlorella sp. AG10002 Bubble column PBR Gas sparger 0.06 vvm 0.5 - 1.16 0.191 0.2 vvm 83.3° [60]
(0.6) 0.1 vvm 1 1.54 0.255 5 % CO, 1125
0.2 vvim 2 1.78 0.295 129.1
0.4 vvin 5 2.02 0.335 145.8
Chlorella vulgaris Bubble column PBR Gas sparger 1 vvm 0.03 - 2.71 0.72 0.5 vvm - [110]
(€8] 1 3.32 0.9 5 % CO,
5 3.76 1.01
10 2.59 0.69
15 0.65 0.15
Chlorella vulgaris Bubble column PBR Gas sparger 0.1 vvm - 2.95 0.84 0.5 vvm - [110]
(€8] 0.5 vvm 3.83 1.07 5 % CO4
1 vvm 3.51 0.95
1.5 vvm 2.54 0.67
2 vvm 1.07 0.32
Chlorella vulgaris Bubble column PBR PVDF hollow fiber 1.2 L/min 0.5 - 0.65 - 1 % CO, 37¢ [111]
5) membranes with internal (0.24 vvm) 1 0.75 62
diameter of 0.5 mm 6 0.60 180
12 0.59 80
Chlorella vulgaris Bubble column PBR Gas sparger 0.03 - 0.47 0.07 5.35 % CO, 43.36 [112]
(0.5) 3 0.88 0.13 41.78
5 0.82 0.12 41.64
7 1.11 0.16 42.44

(continued on next page)
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Table 1 (continued)

Species Cultivation system Sparger type Flow rate Inlet CO, Mass transfer Maximum Biomass Biomass Optimal CO, Ref.
and volume (L) (mL/min, concentration (%) coefficient (h™?!) Concentration (g.L’l) productivity (g. conditions removal
vvm*) (ppm)” L td?h reported (% w/w)
(mg. L%
hh?
9 1.03 0.15 42.83
10 1.01 0.15 49.09
Pseudokirchneriella Bubble column PBR Gas sparger 0.03 - 0.48 0.08 4.87 % CO, 46.22 [112]
subcapitata (0.5) 3 0.79 0.12 45.91
5 0.65 0.10 45.67
7 0.66 0.10 42.84
9 0.90 0.13 41.94
10 0.53 0.18 37.19
Synechocystis salina Bubble column PBR Gas sparger 0.03 - 0.46 0.07 5.55 % CO, 43.04 [112]
(0.5) 3 0.10 0.15 42.32
5 0.92 0.14 42.21
7 1.15 0.17 41.56
9 0.97 0.14 43.00
10 0.75 0.11 42.19
Microcystis aeruginosa Bubble column PBR Gas sparger 0.03 - 0.38 0.06 5.62 % CO, 42.75 [112]
(0.5) 3 0.87 0.13 42.20
5 0.88 0.14 42.68
7 1.01 0.15 42.29
9 0.84 0.12 40.50
10 0.81 0.12 42.05
Chlorella vulgaris Bubble column PBR - - 0.03 - 0.50 - 5 % CO, 92.2 [113]
5) 0.5 0.54 7.1
1 0.69 4.5
2 0.69 2.5
5 1.16 1.5
Spirulina platensis Flat plate (10) - - 0.03 - 0.52 - 10 % CO, 13.75? [114]
2 0.64 16.66
5 0.70 18.33
10 0.72 18.75
Chlorella vulgaris Flat plate (10) - - 0.03 - 0.46 - 10 % CO, 3.752 [114]
2 0.60 5
5 0.64 5.41
10 0.70 5.83
Chlorella pyrenoidosa Bubble column (0.4) - 20 mL/min 3 - 1.30 - %5 CO,, - [63]
(0.05 vvm) 5 1.26 20 mL/min
10 mL/min 5 1.53
(0.025 vvm) 5 1.48
20 mL/min 10 1.21
(0.05 vvm)
30 mL/min
(0.075 vvm)
20 mL/min
(0.05 vvm)
Chlorella sp. FC2 IITG Bubble column (10) Porous flexi-membrane 0.08 vvm 2 - 4.26 0.27 - - [115]
Chlorella mutant PY-ZU1 Horizontal tubular rubber strip aerator 0.1 vvm 15 6.0 3.84 - - - [116]
PBR (0.11) 0.2 vvim 8.5
0.3 vvim 10.1
0.4 vvim 11.5
0.5 vvm 12.1
Chlorella mutant PY-ZU1 Horizontal tubular Ceramic shell aerator 0.1 vvm 15 10.1 5.4 - - - [116]
PBR (0.11) 0.2 vvm 13.5
0.3 vvm 15.0

(continued on next page)
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Table 1 (continued)

Ref.

Mass transfer Maximum Biomass Biomass Optimal CO,

Inlet CO,

Flow rate

Sparger type

Cultivation system
and volume (L)

Species

removal
(% w/w)

conditions
reported

productivity (g.
LldY

coefficient (h ™) Concentration (g.L‘l)

concentration (%)

(ppm)”

(mL/min,
vvm™)

(mg. L L
hhe

16.5

0.4 vvm
0.5 vvm

19.0

[117]

6.02 % CO,

Diffuser with diameter of:

0.4 mm
1 mm

Multicultivator

(0.14)

Scenedesmus Sp.

0.39 vvm 4.0 mm

0.29
0.29
0.38
0.27
0.29
0.29
0.44
0.22

4.69
3.95
4.45
2.69
4.77
3.8
4.7
3.4

50000

1.5 vvm
0.5 vvm
1.5 vvm
3vvm

diameter diffuser

b

20000
50000
20000
50000
14.10

>

2.6 mm
4 mm
5 mm

b

b

1.5 vvm

[118]

14
64
11
10

0.5
0.7

0.05vvm

Air di users made of sintered
glass (average pore diameter

0.16)

Flat-plate PBR (4.27)

Scenedesmus dimorphus

0.10vvm

1.2

0.15vvm

[119]

1.4

2.30

0.3 L/min
(0.6 vvm)
0.3 L/min
(0.6 vvm)

Erlenmeyer flasks

0.5)

Euglena gracilis

(CCAP1224/5Z)
Phaeodactylum

[119]

65

0.87

0.04

Erlenmeyer flasks

0.5

tricornutum

(CCAP1055/1)

2 CO, removal (mg. L. h™%).

b Inlet CO4, concentration (ppm).

" vvm - volume of air sparged (in aerobic cultures) per unit volume of growth medium per minute.
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nanobubbles can improve light-utilization efficiency in low-density
cultures, because smaller bubbles disperse light more effectively and
homogeneously [57].

Dual sparging. Because of the value of having large and small bubbles
in sparged algal cultures, Eriksen et al. [93] proposed using dual
sparging in bubble column. This approach allows for coarse-bubble
aeration with air to provide the needed mixing for light utilization,
while using fine bubbles for enhanced CO, mass transfer. This approach
increased the fraction of CO; transferred into the liquid phase from 11 %
to 55 %, while also maintaining the same growth rate. Because the small
bubbles were 100 % COs, they provided the maximum driving force for
transferring the CO, into the culture medium.

Energy demand for sparging. The measurement of specific power
consumption (P/V) entails evaluating the energy consumption for each
unit volume of liquid in the photobioreactor (V). This calculation of P/V
takes into account the overall decrease in gas pressure (AP) as well as the
rate at which gas is flowing into the reactor (Qp) that is described in Eq.
(15) [94-96]:

T=05 as)

The energy to sparge algal cultures depends on two factors: 1) the
depth of the sparger and 2) the frictional loss associated with the sparger
design. The head loss from the sparger is the sum of the head loss in the
pipe leading to the sparger and the head loss through the orifices. The
total head loss across the pipe and a single orifice can be calculated by
using Eq. (16) [94]:

LV: V2—V?

Sh=fy oyt o) (16)

where Ah is the head loss (m), fp is the Darcy-Weisbach friction factor
(dimensionless), L is the pipe length (m), D is the hydraulic diameter of
the pipe (m), g is the gravitational constant (m s’z), V is the mean flow
velocity through the pipe (m s~1), V. is mean flow velocity through the
orifice (m s’l), and C, is orifice coefficient which is correlated to the
ratio of sparger diameter to pipe diameter. Eq. (15) is a simplified
equation for a single orifice, however, for practical scenarios, the
mathematical form for head loss across sparger varies by the type of
sparger used, number of orifices, distance of orifice from each other,
nozzle shape, etc. It can be noted from Eq. (15) that head loss increases
with a decreasing orifice size and increasing gas flow velocity.
Furthermore, for a fixed gas volumetric flow rate, decreasing the orifice
diameter also leads to an increase in the gas flow velocity, unless the
number of orifices is increased to account for the smaller area per orifice.
Table 2 summarizes the various types of spargers used and the associ-
ated trade-offs that occur with their implementation in microalgal
cultivation.

The pressure drop is further affected by the sparger-design variables:
1) sparger type (e.g., sintered glass, porous sparger, perforated plate,
ring, pipe and nozzle sparger) [97]; 2) number of orifices and their
diameter [79]; 3) pitch, the distance between orifice [98,99]; and 4)
sparger positioning in the water column (more pressure deeper in the
water column) [100].

Other sparger-design factors. Minimizing bubble weeping and non-
uniformity are two other crucial aspects for designing an effective
sparger [101]. Weeping arises when the sparger pressure is low in
comparison to the static pressure exerted by the culture medium; then,
water can enter the sparger orifices, leading to clogging, fouling, and,
consequently, increased pressure drop. Non-uniformity occurs when the
air flow rate along the length of the sparger is not uniform, and it also
can lead to water intrusion in the low-pressure areas. These problems
can be overcome by maintaining a sufficient pressure across the sparger.
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Table 2
The most common types of spargers used in PBRs and their positive and negative characteristics.
Sparger type Positive characteristics Negative characteristics References
Plate e Widely used e Produces coarse bubbles [120]
e Simple design e Maldistribution across the pores
o Thick plate spargers usually have high pressure drop
Pipe e Commonly used in microalgal cultivation e Uneven gas output and mixing in the reactor [60,121]
e Produces small bubbles with proper spacing and hole diameter
Multiple-ring and spider e Good with high superficial gas velocity e Non-uniform bubbles [122]
Wheel type o Relatively uniform bubbles e Only suitable for the limited range of operating parameters [123]
e Eliminates the need for several pipes in a sparger
Ceramic airstone e Creates fine bubbles e Smaller bubble size may result in some cell damage [124]
Porous membranes e Large gas-liquid contact area e Pores easily blocked [75,125]
o Small bubbles o Relatively short lifespan
k: Low GFR High GFR Low GFR High GFR
x
= p 1 5y, j‘
1]
g T
§ o :
E b i
2 g 3
i ; :
i g
Sparger (SO SR =R
; ]f‘ ]
P

Sparger Pore Size: low

Sparger Pore Size: large

Fig. 6. Effect of sparger pore size and gas flow rate (GFR) on bubble size and behavior in a photobioreactor. Bubble coalescence and bubble breakage regime in the
photobioreactor under various conditions have been depicted. Note: The size of bubbles depicted in this image are only for the purpose of illustrating trends.

4. Advanced technologies to increase CO2 mass transfer

High CO4 mass-transfer kinetics and utilization efficiency are critical
for reducing operating costs. Carbon utilization efficiency (CUE) is the
percentage of delivered CO»-C that is fixed into biomass-C. Another
metric is the carbon-transfer efficiency (CTE), which is the percentage of
delivered CO--C that is retained in biomass and in the medium’s IC. The
relationship between CUE and CTE primarily depends of pH, as a higher
pH leads to a higher IC concentration. Current sparging techniques often
give low CUEs, often <20 %, and low CTEs, often <30 % [74,102]. Much
higher CUEs and CTEs are needed to make CO; delivery cost-effective:
for example, a target is 80 % CUE [74], which translates to a CTE of
80-90 %.

Current research into improving the mass transfer of CO; into algal
cultures can be split into 3 categories: biological/enzymatic (carbonic
anhydrase), chemical (pH), and physical (membrane carbonation).

Carbonic anhydrases (CA) are a ubiquitous group of metalloenzymes
that catalyze the rapid inter-conversion of CO, to HCO3 [103]. Micro-
algal cells utilize internal and external CAs to as a part of their carbon-
concentrating mechanism to increase the efficiency of CO2 fixation.
Overall, using CAs can be utilized in PBR to increase carbon capture and
biomass productivity. However, CAs have numerous limitations
including, poor stability and low recovery of enzymes. Therefore, CAs
are being immobilized on buoyant or submerged substrata to enhance
stability and for ease of recovery [104-106]. In addition, research over
the past decade has focused on finding or developing novel CAs that
have increased robustness in real-world conditions [107].

One of the most common approaches to increasing the mass transfer
of COy is to utilize highly alkaline environments (pH >10), which allows
for the direct reaction of CO5 with hydroxide ions to produce HCO3. To
account for the conversion of CO, to HCO3, an enhancement factor (Eq)
is introduced to Eq. (17) [46].

Nco, = Ey x kja x VCO, a7

Depending on pH, E; can range from 20 at pH 9.5 to 170 at pH 10.3.
However, operating at high pH requires alkaliphilic algal species, such
as Spirulina. E1, is related to the reaction kinetics that drive the direct
conversion of CO5 and OH- into HCO3, which is significantly faster than
the when CO; reacts with H,0 to generate HoCOs3.

Similar to reducing bubble size, another option to increase “a” is
membrane carbonation (MC), which utilizes non-porous hollow-fiber
membranes to mediate the transfer of gaseous CO into the culture
medium without the formation of bubbles [74,75]. By utilizing bubble-
free CO; delivery, MC can achieve nearly 100 % CTE, since bubble loss is
precluded. Research has shown that MC with pure CO, is capable of
rapidly delivering CO» to algae raceways with no difference in pH or
growth rates compared to conventional sparging, but with a much
higher CTE and CUE (e.g., ~100$ and >80 %, respectively) [74].

5. Conclusion
Microalgal photosynthesis is a promising approach for utilizing gas-

phase CO; to provide feedstock for biobased commodities. Because rapid
microalgal photosynthesis creates a large demand for IC, maintaining a
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sufficient concentration of dissolved IC is essential to support the growth
of the microalgae. Therefore, microalgal-cultivation systems must be
designed to provide high-rate and high-efficiency CO, mass transfer, and
transfer of CO; from bubbles to the liquid is the most common approach.
Fundamentally, the rate of mass transfer of CO5 depends on the CO,-
concentration gradient between the bubbles and the liquid medium, the
bubble surface area, and the bubble residence time. The transer of COy
to the liquid medium is increased by a high inlet CO» concentration (a
high concentration gradient), fine bubbles (high surface area and longer
residence time) and a greater water column depth (longer bubble resi-
dence time). However, each of these accelerating factors can increase
operating costs. Therefore, other strategies are being investigated to
minimize the capital and operational costs; e.g., using carbonic anhy-
drases, high pH with alkaliphilic phototrophic microorganisms, and
membrane carbonation.
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