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Abstract—In recent years, there has been increasing interest
in using formal methods-based techniques to safely achieve
temporal tasks, such as timed sequence of goals, or patrolling
objectives. Such tasks are often expressed in real-time logics
such as Signal Temporal Logic (STL), whereby, the logical
specification is encoded into an optimization problem. Such
approaches usually involve optimizing over the quantitative
semantics, or robustness degree, of the logic over bounded
horizons: the semantics can be encoded as mixed-integer linear
constraints or into smooth approximations of the robustness
degree. A major limitation of this approach is that it faces
scalability challenges with respect to temporal complexity: for
example, encoding long-term tasks requires storing the entire
history of the system. In this paper, we present a quantitative
generalization of such tasks in the form of symbolic automata
objectives. Specifically, we show that symbolic automata can be
expressed as matrix operators that lend themselves to automatic
differentiation, allowing for the use of off-the-shelf gradient-
based optimizers. We show how this helps solve the need to store
arbitrarily long system trajectories, while efficiently leveraging
the task structure encoded in the automaton.

I. INTRODUCTION

For autonomous robots operating in highly uncertain or
dynamic environments, motion planning can be challenging
[1], [2]. A popular class of motion planning algorithms
that address such environments is model predictive control,
which recomputes short-term plans in real-time to adapt to
changes in the environment or stochasticity in the environment
dynamics [3], [4]. In this design paradigm, the system
designer creates a predictive model of the behavior of the
robot and its operating environment that is used at runtime to
predict future states based on some finite sequence of control
actions. The system uses this model predictive approach
along with an online optimizer to fine the optimal sequence
of control actions that minimize some user-specified cost
function on the predicted trajectory. The system then applies
the first control action, and then replans the sequence for the
newly observed state. This paradigm is also referred to as
receding horizon planning.

In most modern motion planning approaches, the opti-
mization problem is directly or indirectly reduced to solving
quadratic cost functions over system states and actions, with

This work was partially supported by the National Science Foundation
through the following grants: CAREER award (SHF-2048094), CNS-
1932620, CNS-2039087, FMitF-1837131, CCF-SHF-1932620, funding by
Toyota RD and Siemens Corporate Research through the USC Center for
Autonomy and Al, an Amazon Faculty Research Award, and the Airbus
Institute for Engineering Research.

the assumption that the desired system behaviors are the ones
that minimize such costs [5], [6]. While this is adequate
for task objectives such as tracking a set of way-points,
or minimizing the energy consumed by the robot, some
objectives require the robot to exhibit complex spatio-temporal
behavior [7], [8], [9]. There is growing body of literature to
specify such tasks using formalisms such as Linear Temporal
Logic (LTL) [10] and Signal Temporal Logic (STL) [11] and
the use of these logics for robot motion planning.

Broadly speaking, there have been two high-level directions
one can take with motion planning with temporal logic
specifications [12]: 1) by translating the specification into
an automaton, and decomposing the planning problem over
it; or 2) by using the quantitative semantics of the logic to
directly optimize for satisfaction or robustness of the system
w.r.t. the specification.

The techniques presented in [13], [8], [14], [15], [16]
represent the former of the above approaches. Here, the
frameworks deconstruct complex, temporal motion planning
over the transitions in an automaton representing the temporal
specification. Specifically, for each location in the automaton,
a corresponding set is computed in the state space of the
system, and the motion plan is computed for each pair
of such connected sets. These approaches suffer from the
lack of scalability, as the size of the automata can increase
exponentially to that of the temporal logic specification.

On the other hand, several proposed works in recent
literature directly optimize over the semantics of the temporal
logic. Of particular relevance to this paper is STL which
allows defining a robust satisfaction value or robustness that
approximates the distance of a given trajectory from the set
of trajectories satisfying the formula [17], [18], [19]. The
robustness metric is leveraged to encode the motion planning
problem for linear (and piecewise-linear) dynamical systems
as a mixed integer linear program [20], [21] or by gradient-
based optimization of the smooth approximation of robustness
[22], [23]. A key limitation of these approaches are that they
are not applicable to general nonlinear models, or suffer from
intractability with increasing prediction horizon and formula
complexity.

Our Contributions: In this paper, we propose a framework
to bridge the gap between automata-based techniques and
robustness-based optimization. Specifically, we define a
matrix operator on symbolic automata that
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1) translates symbolic automata to weighted matrices given
a system state; and

2) builds on abstract matrix operations to enable automatic
differentiation.

This matrix operator can be used along with off-the-shelf
gradient-based optimization pipelines to compute end-to-end
motion plans for complex temporal specifications. We will
demonstrate the efficacy of our proposed framework in various
motion planning scenarios by comparing against similar tools.
We also explore how various notions of robustness can be
achieved within the same pipeline, and how they manifest in
concrete tasks.

Related Work

In automata-based methods, temporal logic specifications
are usually translated to finite state automata (for finite-length
behavior) or w-regular automata (for infinite behavior) [24].
The control problem is then reduced to a graph game on the
product of the specification automaton and a finite model of
the system, such as a transition system or a Markov Decision
Process [25], [15]; or as a hierarchical control problem on
a hybrid system [7], [13], [26], [27]. The main limitation
of automata-based methods is the prohibitive computational
complexity, due to the exponential blow-up of finite model
abstractions for infinite systems.

The main thrust of optimization-based methods are tempo-
ral logics with semantics defined over finite-length signals,
namely Signal Temporal Logic [11] and Metric Temporal
Logic [28]. Specifically, many optimization-based approaches
exploit the quantitative semantics defined for these logics
presented in [17] and [18]. These robustness metrics are
used in optimization pipelines to assign costs that penalize
deviation from specified system behavior. For example, [21]
and [29] both present methods to translate STL formulas into
mixed-integer constraints for convex optimization, based on
prior work for Linear Temporal Logic [30]. Likewise, [23]
and [22] present smooth approximations of STL quantitative
semantics to enable gradient-based optimization directly over
the STL formula. Unlike automata-based approaches, such
methods require entire signal histories to compute a robustness
score, and the min and max operations in the quantitative
semantics, can lead to various local optima due to vanishing
gradients and non-linearity.

Recent developments in automatic differentiation algo-
rithms [31] has enabled a boom in the use of gradient-based
optimization methods, via off-the-shelf libraries like PyTorch
[32], and JAX [33]. The works in [22] and [23] leverage this
in when defining their smooth approximations of robustness.
Similarly, the library presented in [34] builds on PyTorch to
define the quantitative semantics of STL as compute graphs.
Such gradient-based methods have allowed for the evaluation
of temporal logic quantitative semantics to scale well by
leveraging the compute pipeline that such libraries build on,
but still suffer from dependence on history.

start

Fig. 1. Example of a symbolic automaton describing the specification “move
to region Ryeq, then region Rgreen, and then to region Rorange in order while
always avoiding region Rypjye. ~ An accepting run in the automaton is a
sequence of states @ € X* that moves the automaton location from the
initial location go to the accepting location g3.

1.0

orange

Fig. 2. An example trajectory in a 2D workspace that satisfies the
specification in Fig. 1. Here, the state x is a vector in R?, and the trajectory
starts at a point (—1, —1) and completes the specified task.

II. PRELIMINARIES

In this section, we will define some notation and back-
ground for our proposed method. Through this paper, we
will use S™ to denote the state space of our system, where
S C R. Then, we can define predicates on S™ as Boolean
expressions with the recursive grammar:

=T [L[ux)20leAe|pVe, (D

where

e T and L refer to true and false values respectively;

e 1 :S™ — R is a scalar, differentiable function; and

e 0 Ay, and ¢ V @ refer to Boolean conjunction (and),

and disjunction (or) operations respectively.

Let @ denote the set of all such predicates over S™. For some
s € S™and ¢ € ¥, we say that s models ¢ (denoted s |= ¢)
if s satisfies the Boolean predicate .

Remark. The above syntax is similar to that of Signal Tempo-
ral Logic [11] without the temporal operators. Moreover,
subsequent definitions will leverage this to define some
concepts introduced in [35].

Definition 1 (Symbolic Automata [36]). A symbolic automa-
ton is a tuple A = (X, Q, Qo, Qr, A) where

e X is an input alphabet;

e (@ is a set of locations in the automaton, with Qg and
Q@ r denoting the initial and final (or accepting) locations
respectively; and

e A:(@Q X Q — P denotes a mapping from transitions in
the automaton to a Boolean predicate expression.

13735

Authorized licensed use limited to: University of Southern California. Downloaded on March 08,2025 at 09:15:39 UTC from IEEE Xplore. Restrictions apply.



In this paper, we restrict ourselves to automata that accept
regular languages, i.e., automata that are defined on finite
length sequences of elements in the input alphabet. We use ¥*
to refer to the set of all finite length sequence of elements s €
Y. Given a sequence of input alphabets, £ = (sg, $1,...,5) €
3*, a run in the symbolic automaton 4 is a sequence of
locationsh(qo, q1,---,qi+1) such that s; = A(q;, ¢i+1). We
use q; SN ¢i+1 to denote such a valid transition in the
automaton, and run_4(§) to denote the set of runs induced in
A by € € ¥*. If single trace £ can generate multiple runs in
A, we say that the automaton is non-deterministic. A run is
accepting in the automaton if ¢, € Q¢ for any induced run
(gosq1,---,q1) € runy(§), and we denote this by £ = A.

Remark. Note that a run run4(§) is rejecting in A if the
last location in the run is not in (). Thus, for a finite state
automaton, the logical negation of the specification can be
obtained by checking if a run does not end in Qp, i.e.,
,F =Q\Qr.

Example 1. In Fig. 1 and Fig. 2, we see an example of a
symbolic automaton with a sequential specification, and a
trajectory that satisfies it.

Definition 2 (Semiring [37]). A tuple, K = (K, ®,®,0,1)
is a semiring with the underlying set K if (K,®,0) is a
commutative monoid w~ith identity 0; (K ,®, 1) is a 1}10noid
with identity element 1; ® distributes over ¢; and 0 is an
annihilator for ® (forall k € K,k®@0=0® k = 0).

Definition 3 (Symbolic Weighted Automata [38], [36],
[35]). Given a symbolic automaton .4 and a semiring
K= (K ,®,®,0, i), a symbolic weighted automaton over a
semiring K is a tuple (A, w), where w : Q x ¥ x Q@ — K
is a weighting function.

We define the weight of a sequence of inputs £ € X* in an
symbolic weighted automaton A as the mapping w4 : ¥* —
K, where

€]

D RQulrié riv)

rerun4 (&) =0

wa(§) =

Remark. Note that when using K = (NU{oo}, min, +, 0, 00),
this definition of w is equivalent to that of the standard shortest
path in a directed graph.

Example 2 (Weights of a path). Looking at the same automata
as in Fig. 1, let us define a weighting function as

o) =1 if ¢ =qu

w\g, T, = .

©ed 1, otherwise.

This weighting function assigns 0 weight if the input sequence
enters the rejecting sink state g4. Under different semirings,
we can see different effects of w4 as follows (noting that
[runa(§)| =1 for any £ € X* as A is deterministic):

« Boolean Semiring K = ({0,1},V,A,0,1): Here, any
input sequence ¢ that does not induce a run that enters
qq will have w4(€) = 1 as all weights will be 1 (which
is equivalent to the Boolean true value T). Otherwise,

w4(€) = 0, as even a single 0 weight transition will
render the conjunction ® = A false.

e (min,max) Semiring K = ({0,1}, max, min,0,1):
This is semantically equivalent to the Boolean semiring,
and thus produced identical results.

e (min,+) Semiring K = (N U {oo}, min,+,0,00):
Referred to as a tropical semiring, under this semiring,
w4 (&) outputs the length of the input sequence until it
first reaches the rejecting sink g4 or the length of the
input sequence itself |&].

Matrix Semirings: If m is a positive integer and K is
a semiring, then the set of m X m matrices with entries
in K, denoted K™, is also a semiring [39]. Specifically,
for matrices A, B,C € K™*™_ we can define the semiring
operation as follows:

o Addition A® B = C'is defined as element-wise addition
Cij = Aij ® Bij;

« The additive identity matrix is, intuitively, the m x m
matrix with all entries ();

o Multiplication AB = C' is defined similar to matrix
multiplication as C;; = ;”;01 A ® Byj; and

o The multiplicative identity matrix (or simply, identity
matrix) is similar to the usual: an m X m matrix with
all diagonal entries equal to 1, and the rest are 0.

Remark. Note that the above translates to the usual matrix
multiplication in linear algebra for the semiring of reals
(R,+, x,0,1).

From the above definition of matrix semiring arithmetic,
one can derive the vector dot product, the vector-matrix
product, and various other concepts from linear algebra
that show direct equivalences under the abstract algebraic
framework [39]. In the rest of this paper, we will use the
standard notation for matrix multiplication (C' = AB), vector
dot product (x3 = x1 - x2 = x17x3), and vector-matrix
multiplication (zo = xlTA), but the operations are defined on
semirings unless otherwise specified.

III. MOTION PLANNING WITH AUTOMATON MATRIX
OPERATORS

For optimization-based motion planning, we concern our-
selves with two general motion planning problems given
temporal specifications:

Problem 1 (Open-Loop Motion Planning). Given a discrete-
time, dynamical system

Ti41 = f(wtvut)v ()

where x4, 2141 € S™, up €U CR™, and f: S xU — S™
is a (piecewise) differentiable function. For a task automaton
A, a planning horizon H € N, and some initial state z( €
¥ = S, compute a control plan u* = (ug,...,u}_;), such
that, fort € 0,..., H — 1:

u* = argmin,||ull

s.t. (xo,...,zg) = A 3)

Tip1 = f(@g,uy).
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Problem 2 (Closed-loop Control). Given a discrete-time,
dynamical system like in Eq. 2 and a task automaton A,
derive a feed-back control law
up = m(x)
S.t. (i(),[l?l,...) ':A (4)
Ti1 = flae, uy)

In this section, we will define the automaton matrix
operator A for a symbolic automaton 4. The matrix operator
for an automaton A is a mapping A : ¥ — KIQIXI®l that, for
each input element in the alphabet x € ¥ maps to a |Q] X |Q)|
matrix with entries in the set K with some semiring associated
with it. The goal of this mapping is to capture the structure of
the automaton while leveraging matrix semiring algebra [39]
to compute weights of system trajectories and, consequently,
reason about the acceptance of the given system trace in the
automaton.

Before we formally define A, we will define a few
weighting functions for it:

Definition 4 (Generalized Weights). For a given predicate
¢ € ®, some value € S™ and a semiring K = (K C
R, &, ®,6, 1), let A : S™ x & — K be recursively defined as
follows

Mz, T) =1, Mz, L) =0
B 6 if p(z) >0
M, p(x) >0) = { if () < 0 6)
Az o1 Ap2) = ANz,01) @ AT, 02)
Az, o1 Vp2) = Az, )@A(va)-

Let o, B € KI9l be the initial and final weights respectively

for A such that:
1, ifg e
ﬁi={~ GEQr

D Ry Reye)
’ 0, otherwise, 0, otherwise.

In the above definitions, A\ corresponds to a symbolic
weighting function that generates a weight in K for each
concrete input z € S™; and « and 3 correspond to the initial
and final locations in the automaton respectively.

Definition 5 (Automaton Matrix Operator). For a
given weighted automaton (A, w), where w(q,s,q¢') =
(s, A(g,q)), let A : 8™ — KIQ1*IQl be a matrix semiring
operator over the semiring K = (K C R, ®, x,0,1) such
that:

A(s)ij = A(s, Algi, g5)) (7)

Note that the matrix operator A(x) defines a weighted
transition matrix for the automaton where each entry A(z),;
determines the cost of moving from location ¢; to g; when
seeing the input x. Thus, given a previous weighted location
vector ¢ and an input state x, we can write the next weighted
location vector as ¢’ = g7 A(x). Thus, we can define the
weight of a state trajectory £ = (o, 1, ..., 2;) from the set
of initial locations ¢ (encoded in «) to any final location
in Qr (encoded in ) as follows:

wa(§) = ol Azo)A(zy) ... Alz)B. ®)

By encoding the automaton as a matrix operator, and
defining the semantics of the weighted automaton trough
matrix semirings, we are able to leverage state-of-the-art
automatic differentiation libraries built on matrix and array
operations. Thus, Algorithm 1 shows how we leverage this
in a gradient-based pipeline to solve the open-loop control
problem.

From the above, we can solve the open-loop plan as the
solution of a gradient-based optimization problem using the
procedure in Algorithm 1. Specifically, the gradient V, w4
in line 8 can be symbolically computed using off-the-shelf
algorithms. Algorithm 2 shows how we can use the open-loop
algorithm as a subroutine in computing a receding-horizon
control law for satisfying A by memoizing the current weight
in A at time ¢ in the vector ¢;, as seen in line 8, as in
model predictive control (MPC). However, in general, motion
planning is NP-Hard and gradient-based methods may not
guarantee convergence to an optimal solution. They require
either sufficiently good initial guesses or can be used in
combination with sampling-based methods like the cross-
entropy method [40].

Algorithm 1 Gradient-based optimization with automaton
matrix operator.
1: procedure OPEN-LOOP 4 k(Tinit, Ginits

Tinie € S™: initial system state
Gnit € K IQI: an initial weight configuration
H e N: planning horizon
v > 0: learning rate for gradient descent
k € N: number of optimization epochs

H,~, k)

2: Zero-initialize u = (ug, ..., upg—1)

3: Lo < Tinit

4: for 1,...,k epochs do

5: ¢ = (xg,21,...,2q) from Eq. 2.

6: Compute A(x;) fori €0,...,H.

7: wa(€) = gL A(zo)A(x1) ... Alzg)B.
8: ueu+yvuw¢4(§).

9: end for

10: return u

11: end procedure

IV. EXPERIMENTAL RESULTS

To demonstrate the applicability of our method, we will
show examples of open-loop and closed-loop planning with
some specifications relevant to autonomous robots in general.
In all the experiments, we will compare against two other
related works:

e STLCG [34], where finite-length signal traces are evalu-
ated over Signal Temporal Logic (STL) formula encoded
as quantitative computation graphs in PyTorch [32]. This,
along with our automaton operator method, will be used
in a gradient-based optimization pipeline.

« Mixed integer program (MIP) encoding of STL robust-
ness following [21], [12] which will be optimized using
off-the-shelf mixed integer convex program solvers [41].
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Algorithm 2 Gradient-based MPC with automaton matrix
operator.
1: procedure MPC 4 x(Zinic, H, v, k)
Tinie € S™: initial system state
H € N: planning horizon
v > 0: learning rate for gradient descent
k € N: number of optimization epochs
2 Lo < Tinit
3 go < «
4 for t=0,1,... do
5: u* <= OPEN-LOOP 4 (¢, q¢, H, 7, k)
6: Apply uj (first item in u™)
7
8
9
10:

Update z;4; from environment
Gr1 < qf A(zy)
end for
end procedure

Note. While the above frameworks are able to compute
quantitative costs from logical specifications, one should note
that the quantitative semantics of STL necessarily require the
entire history of the system (unless restricted to a specific
syntactic subset). Thus, this makes them generally unfeasible
to use for all MPC tasks, but we make best efforts to do
so for our experiments. Specifically, closed-loop control for
both, (1 and @9 in the experimental results is unfeasible
using the above methods. This restriction is not present in
our automaton-based approach.

In the case of open-loop experiments, we will report the
total number of optimizer iterations until a satisfying trajectory
in the system is found (denoted ¢*). Meanwhile, for closed-
loop experiments, we will report the final robustness [18] of
the system trajectories with respect to the corresponding STL
task specifications(denoted p). We report the results of our
experiments in Table I, with the first column describing the
specification under test.

Remark. For the MILP solver, we report the number of
simplex iterations performed by Gurobi [42] for the open-
loop problems. It should be noted that while Gurobi’s simplex
optimization iterations are about 10-20 times faster than a
gradient-based solution on an Intel Core i7 (1.80GHz) CPU
machine with no graphics processor for computation purposes,
the MILP solver is unfeasible for even relatively simple, long-
horizon specifications.

To aid our presentation, we will informally describe the
syntax and semantics of discrete-time STL (DT-STL). In
addition to the Boolean predicates defined in Eq. 1, temporal
logics add the following temporal operators (relevant to our
studies)

o Gy, Where a,b € N U {oo}, describes that the
formula ¢ must hold for all time steps ¢ € [a, b].

o Fla5 0, where a,b € N U {oo}, describes that the
formula ¢ must hold at least once for ¢ € [a, b].

We refer the readers to [24] for a detailed survey of such
specification languages.

05
orange
0.0 0.0

0.5

-1.0

Fig. 3. Example of a trajectory satisfying ¢1 and 2. The left-side trajectory
was produced by the (min, max) automaton in a single integrator dynamics
model, while the second one was produced by the (max, +) automaton for
unicycle model.

©1: Reach Multiple and Avoid: Here, we control a
point mass on a 2D workspace, governed via simple single-
integrator dynamics by directly controlling its velocity on the
workspace:

Ti41 = Tt + utAt7 (9)

where the sampling time At = 0.1 seconds. The goal of the
controller is defined by the specification
p1:=F G[075] (€ € Rered)
A F Gio,5)(z € Regreen)
NF(|z — zgoa| < 0)
A G(z & Rblue),

(10)

which says that the controlled mass must visit regions R,eq
and Rgreen for at least 5 time steps and Visit X4 (in any
order) while always avoiding Rpjye-

In Fig. 3, we can see that while all the tested methods
are able to generate accepting trajectories in the open-loop
case, the (max, +)-automaton matrix operator performs == 10
times faster than other gradient-based methods.

Moreover, in the closed-loop case, only the automaton-
based methods seem to be able to complete the task. This
is because there is no way to encode temporal requirements
as above in these other frameworks, making automata-based
methods the only viable option for long-horizon, temporal
tasks.

p2: Sequential Tasks with Avoid: Here, we model the
system as a simple unicycle on a 2D workspace, with each
state being represented as p = (z,y,0,v,w): the z- and y-
positions, the heading, the linear velocity, and the angular
velocity of the unicycle. The system is thus controlled by the
second-order linear and angular accelerations u = (g, Uy, ):

v cos(6)
vsin(f)
Pet1 =P+ w At,
Uq
Uw

(1)

where the sampling time At = 0.1 seconds. The goal of the
controller is to move the unicycle from some initial state to
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TABLE I
RESULTS FOR MOTION PLANNING USING AUTOMATA AND TEMPORAL LOGIC OBJECTIVES WITH SINGLE INTEGRATOR DYNAMICS.

Performance H k
Specification Setting Num. Iterations ¢* (lower better) v
Robustness p (higher better)
(min,max) (max,+) STLCG MILP
1: Visit the RED region, GREEN region ~ Open Loop (t*) 746 78 1164 42265 50 1400  0.05
and the STAR in any order, while avoiding
; Closed Loop (p) 0.0 0.0 - - 15 30 0.05

unsafe region, BLUE. :

(50 time steps)
(2: Visit 3 regions in sequence RED — Open Loop (t*) 35 425 234 - 80 1400  0.05
GREEN = ORANGE at least once while = 007y 007 ) 0.060 0.048 - ~ 40 30 005
avoiding unsafe region BLUE. .

(80 time steps)
Adaptive Cruise Control Closed Loop (p) -1.78 0.4 -2.21 0.6 250 30 0.05

(3000 time steps)

the regions Ried, Rereen, and Rorange in that sequence, while
avoiding Rpjye:

P2 =
F((.’IT € Rred) N F((.’IT € Rgreen) A F((ﬂ? € Rorange))))
A G(l‘ ¢ Rblue)
(12)
Note that, similar to (7, this specification cannot be
encoded as a receding horizon controller in STLCG and
the MILP encoding, as the history of what regions have
been visited need to be encoded. Moreover, we do not
perform the experiment for the open-loop problem with the
MILP encoding as the system is inherently non-linear, and
linearizing it about discrete 6 is not a requirement fot the
other frameworks.

Adaptive Cruise Control: In an adaptive cruise control
(ACC) scenario, we are designing a controller for the trailing
car (called ego vehicle) such that it maintains a cruising
velocity while also remaining a safe time gap away from the
lead car. Here, the controller operates on the state space

T = (peg()a Vego dleada Urel),

where pego, Vego € R are the longitudinal position and
longitudinal velocity of the ego vehicle; dje,q € R is the
distance to the lead vehicle; and v, € R is the relative
velocity of the lead car. While the ego controller receives
the actual dj.q and v, form an external source, for the
MPC prediction step, we (potentially incorrectly) assume a
constant velocity for the lead car. The control input to the
system u € R is the acceleration of the ego vehicle, thus we
can write an approximate predictive model of the system as:

1
Dego,t+1 = Pego,t 1 vego,tAt + iutAtQ

Vego,t+1 = Vego,t T up At

The requirements for the behavior of an ACC is parame-
terized by a target cruise speed vys that the ego must reach
if safe to do so; a safety distance dg,f that the ego vehicle
must not cross when trailing a car; and a safe time gap tfe,
which is the time threshold to violating dg,.. Thus, we can
define the requirements by the following:

Psafe = G(dlead > dsafe)
Pref = G((dlead > dfollow)

= Fl0,5] ([V1ead = Vret| < €V diead < droliow)),

15)
where dliow = dsafe + Vreltsate 1S a safe following distance
that doesn’t violate the safe time gap, with the parameters
Uref = 15m/S, tsare = 1.48, dgape = dm, 6 = 50 time steps
and € = 1m/s. The above specification (s describes that the
controller must reach the target speed if the safe time gap
isn’t violated.

In this scenario, we can see from Table I that the gradient-
based methods that use (min, max)-based semantics seem to
get stuck in local optima, similar to the analysis in [23]. This
isn’t a problem for the (max, +) semiring as replacing min
operations with standard addition makes the problem more
conducive to gradient-based optimization, while preserving
acceptance semantics.

(14)

V. CONCLUSION

In this paper, we target encoding automata-based spec-
ifications into quantitative objective functions, allowing
efficient encoding of signal history, along with quantitative
cost functions for motion planning. Specifically, we define
a automaton matrix operator that encodes transitions in
the automaton, thereby leveraging matrix-based automatic
differentiation tools for gradient-based motion planning. To
the best of our knowledge, this is the first such framework that
combines optimization-based and automata-based methods
to leverage modern compute capabilities to directly optimize

1 (13)  over automaton specifications efficiently. Moreover, to miti-
dicad,t+1 = diead,t + Vrel,t Al — §utAt2 gate issues with local optima and vanishing gradients in the
Vrelirl = VoLt — UsA quantitative sematntlcs, we show how using an alternative
’ ’ (max, +)-algebraic semantics (as presented in [35]) allows
where the sampling time A¢ = 0.01 seconds. us to find satisfying trajectories faster.
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