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Abstract— In recent years, there has been increasing interest
in using formal methods-based techniques to safely achieve
temporal tasks, such as timed sequence of goals, or patrolling
objectives. Such tasks are often expressed in real-time logics
such as Signal Temporal Logic (STL), whereby, the logical
specification is encoded into an optimization problem. Such
approaches usually involve optimizing over the quantitative
semantics, or robustness degree, of the logic over bounded
horizons: the semantics can be encoded as mixed-integer linear
constraints or into smooth approximations of the robustness
degree. A major limitation of this approach is that it faces
scalability challenges with respect to temporal complexity: for
example, encoding long-term tasks requires storing the entire
history of the system. In this paper, we present a quantitative
generalization of such tasks in the form of symbolic automata
objectives. Specifically, we show that symbolic automata can be
expressed as matrix operators that lend themselves to automatic
differentiation, allowing for the use of off-the-shelf gradient-
based optimizers. We show how this helps solve the need to store
arbitrarily long system trajectories, while efficiently leveraging
the task structure encoded in the automaton.

I. INTRODUCTION

For autonomous robots operating in highly uncertain or

dynamic environments, motion planning can be challenging

[1], [2]. A popular class of motion planning algorithms

that address such environments is model predictive control,

which recomputes short-term plans in real-time to adapt to

changes in the environment or stochasticity in the environment

dynamics [3], [4]. In this design paradigm, the system

designer creates a predictive model of the behavior of the

robot and its operating environment that is used at runtime to

predict future states based on some finite sequence of control

actions. The system uses this model predictive approach

along with an online optimizer to fine the optimal sequence

of control actions that minimize some user-specified cost

function on the predicted trajectory. The system then applies

the first control action, and then replans the sequence for the

newly observed state. This paradigm is also referred to as

receding horizon planning.

In most modern motion planning approaches, the opti-

mization problem is directly or indirectly reduced to solving

quadratic cost functions over system states and actions, with
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the assumption that the desired system behaviors are the ones

that minimize such costs [5], [6]. While this is adequate

for task objectives such as tracking a set of way-points,

or minimizing the energy consumed by the robot, some

objectives require the robot to exhibit complex spatio-temporal

behavior [7], [8], [9]. There is growing body of literature to

specify such tasks using formalisms such as Linear Temporal

Logic (LTL) [10] and Signal Temporal Logic (STL) [11] and

the use of these logics for robot motion planning.

Broadly speaking, there have been two high-level directions

one can take with motion planning with temporal logic

specifications [12]: 1) by translating the specification into

an automaton, and decomposing the planning problem over

it; or 2) by using the quantitative semantics of the logic to

directly optimize for satisfaction or robustness of the system

w.r.t. the specification.

The techniques presented in [13], [8], [14], [15], [16]

represent the former of the above approaches. Here, the

frameworks deconstruct complex, temporal motion planning

over the transitions in an automaton representing the temporal

specification. Specifically, for each location in the automaton,

a corresponding set is computed in the state space of the

system, and the motion plan is computed for each pair

of such connected sets. These approaches suffer from the

lack of scalability, as the size of the automata can increase

exponentially to that of the temporal logic specification.

On the other hand, several proposed works in recent

literature directly optimize over the semantics of the temporal

logic. Of particular relevance to this paper is STL which

allows defining a robust satisfaction value or robustness that

approximates the distance of a given trajectory from the set

of trajectories satisfying the formula [17], [18], [19]. The

robustness metric is leveraged to encode the motion planning

problem for linear (and piecewise-linear) dynamical systems

as a mixed integer linear program [20], [21] or by gradient-

based optimization of the smooth approximation of robustness

[22], [23]. A key limitation of these approaches are that they

are not applicable to general nonlinear models, or suffer from

intractability with increasing prediction horizon and formula

complexity.

Our Contributions: In this paper, we propose a framework

to bridge the gap between automata-based techniques and

robustness-based optimization. Specifically, we define a

matrix operator on symbolic automata that
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1) translates symbolic automata to weighted matrices given

a system state; and

2) builds on abstract matrix operations to enable automatic

differentiation.

This matrix operator can be used along with off-the-shelf

gradient-based optimization pipelines to compute end-to-end

motion plans for complex temporal specifications. We will

demonstrate the efficacy of our proposed framework in various

motion planning scenarios by comparing against similar tools.

We also explore how various notions of robustness can be

achieved within the same pipeline, and how they manifest in

concrete tasks.

Related Work

In automata-based methods, temporal logic specifications

are usually translated to finite state automata (for finite-length

behavior) or ω-regular automata (for infinite behavior) [24].

The control problem is then reduced to a graph game on the

product of the specification automaton and a finite model of

the system, such as a transition system or a Markov Decision

Process [25], [15]; or as a hierarchical control problem on

a hybrid system [7], [13], [26], [27]. The main limitation

of automata-based methods is the prohibitive computational

complexity, due to the exponential blow-up of finite model

abstractions for infinite systems.

The main thrust of optimization-based methods are tempo-

ral logics with semantics defined over finite-length signals,

namely Signal Temporal Logic [11] and Metric Temporal

Logic [28]. Specifically, many optimization-based approaches

exploit the quantitative semantics defined for these logics

presented in [17] and [18]. These robustness metrics are

used in optimization pipelines to assign costs that penalize

deviation from specified system behavior. For example, [21]

and [29] both present methods to translate STL formulas into

mixed-integer constraints for convex optimization, based on

prior work for Linear Temporal Logic [30]. Likewise, [23]

and [22] present smooth approximations of STL quantitative

semantics to enable gradient-based optimization directly over

the STL formula. Unlike automata-based approaches, such

methods require entire signal histories to compute a robustness

score, and the min and max operations in the quantitative

semantics, can lead to various local optima due to vanishing

gradients and non-linearity.

Recent developments in automatic differentiation algo-

rithms [31] has enabled a boom in the use of gradient-based

optimization methods, via off-the-shelf libraries like PyTorch

[32], and JAX [33]. The works in [22] and [23] leverage this

in when defining their smooth approximations of robustness.

Similarly, the library presented in [34] builds on PyTorch to

define the quantitative semantics of STL as compute graphs.

Such gradient-based methods have allowed for the evaluation

of temporal logic quantitative semantics to scale well by

leveraging the compute pipeline that such libraries build on,

but still suffer from dependence on history.
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Fig. 1. Example of a symbolic automaton describing the specification “move
to region Rred, then region Rgreen, and then to region Rorange in order while
always avoiding region Rblue. ” An accepting run in the automaton is a
sequence of states x ∈ Σ∗ that moves the automaton location from the
initial location q0 to the accepting location q3.

Fig. 2. An example trajectory in a 2D workspace that satisfies the
specification in Fig. 1. Here, the state x is a vector in R2, and the trajectory
starts at a point (−1,−1) and completes the specified task.

II. PRELIMINARIES

In this section, we will define some notation and back-

ground for our proposed method. Through this paper, we

will use Sn to denote the state space of our system, where

S ⊆ R. Then, we can define predicates on Sn as Boolean

expressions with the recursive grammar:

ϕ := > | ⊥ | µ(x) ≥ 0 | ϕ ∧ ϕ | ϕ ∨ ϕ, (1)

where

• > and ⊥ refer to true and false values respectively;

• µ : Sn → R is a scalar, differentiable function; and

• ϕ ∧ ϕ, and ϕ ∨ ϕ refer to Boolean conjunction (and),

and disjunction (or) operations respectively.

Let Φ denote the set of all such predicates over Sn. For some

s ∈ Sn and ϕ ∈ Φ, we say that s models ϕ (denoted s |= ϕ)

if s satisfies the Boolean predicate ϕ.

Remark. The above syntax is similar to that of Signal Tempo-

ral Logic [11] without the temporal operators. Moreover,

subsequent definitions will leverage this to define some

concepts introduced in [35].

Definition 1 (Symbolic Automata [36]). A symbolic automa-

ton is a tuple A = (Σ, Q,Q0, QF ,∆) where

• Σ is an input alphabet;

• Q is a set of locations in the automaton, with Q0 and

QF denoting the initial and final (or accepting) locations

respectively; and

• ∆ : Q×Q→ Φ denotes a mapping from transitions in

the automaton to a Boolean predicate expression.
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In this paper, we restrict ourselves to automata that accept

regular languages, i.e., automata that are defined on finite

length sequences of elements in the input alphabet. We use Σ∗

to refer to the set of all finite length sequence of elements s ∈
Σ. Given a sequence of input alphabets, ξ = (s0, s1, . . . , sl) ∈
Σ∗, a run in the symbolic automaton A is a sequence of

locations (q0, q1, . . . , ql+1) such that si |= ∆(qi, qi+1). We

use qi
si−→ qi+1 to denote such a valid transition in the

automaton, and runA(ξ) to denote the set of runs induced in

A by ξ ∈ Σ∗. If single trace ξ can generate multiple runs in

A, we say that the automaton is non-deterministic. A run is

accepting in the automaton if ql ∈ Qf for any induced run

(q0, q1, . . . , ql) ∈ runA(ξ), and we denote this by ξ |= A.

Remark. Note that a run runA(ξ) is rejecting in A if the

last location in the run is not in QF . Thus, for a finite state

automaton, the logical negation of the specification can be

obtained by checking if a run does not end in QF , i.e.,

Q′
F = Q \QF .

Example 1. In Fig. 1 and Fig. 2, we see an example of a

symbolic automaton with a sequential specification, and a

trajectory that satisfies it.

Definition 2 (Semiring [37]). A tuple, K = (K,⊕,⊗, 0̃, 1̃)
is a semiring with the underlying set K if

(

K,⊕, 0̃
)

is a

commutative monoid with identity 0̃;
(

K,⊗, 1̃
)

is a monoid

with identity element 1̃; ⊗ distributes over ⊕; and 0̃ is an

annihilator for ⊗ (for all k ∈ K, k ⊗ 0̃ = 0̃⊗ k = 0̃).

Definition 3 (Symbolic Weighted Automata [38], [36],

[35]). Given a symbolic automaton A and a semiring

K =
(

K,⊕,⊗, 0̃, 1̃
)

, a symbolic weighted automaton over a

semiring K is a tuple (A, w), where w : Q × Σ ×Q → K
is a weighting function.

We define the weight of a sequence of inputs ξ ∈ Σ∗ in an

symbolic weighted automaton A as the mapping wA : Σ∗ →
K, where

wA(ξ) =
⊕

r∈runA(ξ)

|ξ|
⊗

i=0

w(ri, ξi, ri+1)

Remark. Note that when using K = (N∪{∞},min,+, 0,∞),
this definition of w is equivalent to that of the standard shortest

path in a directed graph.

Example 2 (Weights of a path). Looking at the same automata

as in Fig. 1, let us define a weighting function as

w(q, x, q′) =

{

0, if q′ = q4

1, otherwise.

This weighting function assigns 0 weight if the input sequence

enters the rejecting sink state q4. Under different semirings,

we can see different effects of wA as follows (noting that

|runA(ξ)| = 1 for any ξ ∈ Σ∗ as A is deterministic):

• Boolean Semiring K = ({0, 1} ,∨,∧, 0, 1): Here, any

input sequence ξ that does not induce a run that enters

q4 will have wA(ξ) = 1 as all weights will be 1 (which

is equivalent to the Boolean true value >). Otherwise,

wA(ξ) = 0, as even a single 0 weight transition will

render the conjunction ⊗ ≡ ∧ false.

• (min,max) Semiring K = ({0, 1},max,min, 0, 1):
This is semantically equivalent to the Boolean semiring,

and thus produced identical results.

• (min,+) Semiring K = (N ∪ {∞},min,+, 0,∞):
Referred to as a tropical semiring, under this semiring,

wA(ξ) outputs the length of the input sequence until it

first reaches the rejecting sink q4 or the length of the

input sequence itself |ξ|.

Matrix Semirings: If m is a positive integer and K is

a semiring, then the set of m × m matrices with entries

in K, denoted Km×m, is also a semiring [39]. Specifically,

for matrices A,B,C ∈ Km×m, we can define the semiring

operation as follows:

• Addition A⊕B = C is defined as element-wise addition

Cij = Aij ⊕Bij ;

• The additive identity matrix is, intuitively, the m×m
matrix with all entries 0̃;

• Multiplication AB = C is defined similar to matrix

multiplication as Cij =
⊕m−1

k=0 Aik ⊗Bkj ; and

• The multiplicative identity matrix (or simply, identity

matrix) is similar to the usual: an m×m matrix with

all diagonal entries equal to 1̃, and the rest are 0̃.

Remark. Note that the above translates to the usual matrix

multiplication in linear algebra for the semiring of reals

(R,+,×, 0, 1).

From the above definition of matrix semiring arithmetic,

one can derive the vector dot product, the vector-matrix

product, and various other concepts from linear algebra

that show direct equivalences under the abstract algebraic

framework [39]. In the rest of this paper, we will use the

standard notation for matrix multiplication (C = AB), vector

dot product (x3 = x1 · x2 = x1x2), and vector-matrix

multiplication (x2 = xT
1 A), but the operations are defined on

semirings unless otherwise specified.

III. MOTION PLANNING WITH AUTOMATON MATRIX

OPERATORS

For optimization-based motion planning, we concern our-

selves with two general motion planning problems given

temporal specifications:

Problem 1 (Open-Loop Motion Planning). Given a discrete-

time, dynamical system

xt+1 = f(xt, ut), (2)

where xt, xt+1 ∈ Sn, ut ∈ U ⊆ R
m, and f : Sn × U → Sn

is a (piecewise) differentiable function. For a task automaton

A, a planning horizon H ∈ N, and some initial state x0 ∈
Σ = Sn, compute a control plan u

∗ =
(

u∗
0, . . . , u

∗
H−1

)

, such

that, for t ∈ 0, . . . , H − 1:

u
∗ = argmin

u
‖u‖

s.t. (x0, . . . , xH) |= A
xt+1 = f(xt, ut).

(3)
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Problem 2 (Closed-loop Control). Given a discrete-time,

dynamical system like in Eq. 2 and a task automaton A,

derive a feed-back control law

u∗
t = π(xt)

s.t. (x0, x1, . . .) |= A
xt+1 = f(xt, u

∗
t )

(4)

In this section, we will define the automaton matrix

operator A for a symbolic automaton A. The matrix operator

for an automaton A is a mapping A : Σ→ K |Q|×|Q| that, for

each input element in the alphabet x ∈ Σ maps to a |Q|×|Q|
matrix with entries in the set K with some semiring associated

with it. The goal of this mapping is to capture the structure of

the automaton while leveraging matrix semiring algebra [39]

to compute weights of system trajectories and, consequently,

reason about the acceptance of the given system trace in the

automaton.

Before we formally define A, we will define a few

weighting functions for it:

Definition 4 (Generalized Weights). For a given predicate

ϕ ∈ Φ, some value x ∈ Sn and a semiring K = (K ⊆
R,⊕,⊗, 0̃, 1̃), let λ : Sn ×Φ→ K be recursively defined as

follows

λ(x,>) = 1̃, λ(x,⊥) = 0̃

λ(x, µ(x) ≥ 0) =

{

0̃ if µ(x) ≥ 0

µ(x) if µ(x) < 0

λ(x, ϕ1 ∧ ϕ2) = λ(x, ϕ1)⊗ λ(x, ϕ2)

λ(x, ϕ1 ∨ ϕ2) = λ(x, ϕ1)⊕ λ(x, ϕ2).

(5)

Let α, β ∈ K |Q| be the initial and final weights respectively

for A such that:

αi =

{

1̃, if qi ∈ Q0

0̃, otherwise,
βi =

{

1̃, if qi ∈ QF

0̃, otherwise.
(6)

In the above definitions, λ corresponds to a symbolic

weighting function that generates a weight in K for each

concrete input x ∈ Sn; and α and β correspond to the initial

and final locations in the automaton respectively.

Definition 5 (Automaton Matrix Operator). For a

given weighted automaton (A, w), where w(q, s, q′) =
λ(s,∆(q, q′)), let A : Sn → K |Q|×|Q| be a matrix semiring

operator over the semiring K = (K ⊆ R,⊕,×, 0̃, 1̃) such

that:

A(s)ij = λ(s,∆(qi, qj)) (7)

Note that the matrix operator A(x) defines a weighted

transition matrix for the automaton where each entry A(x)ij
determines the cost of moving from location qi to qj when

seeing the input x. Thus, given a previous weighted location

vector q and an input state x, we can write the next weighted

location vector as q′ = qTA(x). Thus, we can define the

weight of a state trajectory ξ = (x0, x1, . . . , xl) from the set

of initial locations Q0 (encoded in α) to any final location

in QF (encoded in β) as follows:

wA(ξ) = αT
A(x0)A(x1) . . .A(xl)β. (8)

By encoding the automaton as a matrix operator, and

defining the semantics of the weighted automaton trough

matrix semirings, we are able to leverage state-of-the-art

automatic differentiation libraries built on matrix and array

operations. Thus, Algorithm 1 shows how we leverage this

in a gradient-based pipeline to solve the open-loop control

problem.

From the above, we can solve the open-loop plan as the

solution of a gradient-based optimization problem using the

procedure in Algorithm 1. Specifically, the gradient ∇uwA

in line 8 can be symbolically computed using off-the-shelf

algorithms. Algorithm 2 shows how we can use the open-loop

algorithm as a subroutine in computing a receding-horizon

control law for satisfying A by memoizing the current weight

in A at time t in the vector qt, as seen in line 8, as in

model predictive control (MPC). However, in general, motion

planning is NP-Hard and gradient-based methods may not

guarantee convergence to an optimal solution. They require

either sufficiently good initial guesses or can be used in

combination with sampling-based methods like the cross-

entropy method [40].

Algorithm 1 Gradient-based optimization with automaton

matrix operator.

1: procedure OPEN-LOOPA,K(xinit, qinit, H, γ, k)

xinit ∈ Sn: initial system state

qinit ∈ K |Q|: an initial weight configuration

H ∈ N: planning horizon

γ > 0: learning rate for gradient descent

k ∈ N: number of optimization epochs

2: Zero-initialize u = (u0, . . . , uH−1)
3: x0 ← xinit

4: for 1, . . . , k epochs do

5: ξ = (x0, x1, . . . , xH) from Eq. 2.

6: Compute A(xi) for i ∈ 0, . . . , H .

7: wA(ξ) = qTinitA(x0)A(x1) . . .A(xH)β.

8: u← u+ γ∇uwA(ξ).
9: end for

10: return u

11: end procedure

IV. EXPERIMENTAL RESULTS

To demonstrate the applicability of our method, we will

show examples of open-loop and closed-loop planning with

some specifications relevant to autonomous robots in general.

In all the experiments, we will compare against two other

related works:

• STLCG [34], where finite-length signal traces are evalu-

ated over Signal Temporal Logic (STL) formula encoded

as quantitative computation graphs in PyTorch [32]. This,

along with our automaton operator method, will be used

in a gradient-based optimization pipeline.

• Mixed integer program (MIP) encoding of STL robust-

ness following [21], [12] which will be optimized using

off-the-shelf mixed integer convex program solvers [41].
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Algorithm 2 Gradient-based MPC with automaton matrix

operator.

1: procedure MPCA,K(xinit, H, γ, k)

xinit ∈ Sn: initial system state

H ∈ N: planning horizon

γ > 0: learning rate for gradient descent

k ∈ N: number of optimization epochs

2: x0 ← xinit

3: q0 ← α
4: for t = 0, 1, . . . do

5: u
∗ ← OPEN-LOOPA,K(xt, qt, H, γ, k)

6: Apply u∗
t (first item in u

∗)

7: Update xt+1 from environment

8: qt+1 ← qTt A(xt)
9: end for

10: end procedure

Note. While the above frameworks are able to compute

quantitative costs from logical specifications, one should note

that the quantitative semantics of STL necessarily require the

entire history of the system (unless restricted to a specific

syntactic subset). Thus, this makes them generally unfeasible

to use for all MPC tasks, but we make best efforts to do

so for our experiments. Specifically, closed-loop control for

both, ϕ1 and ϕ2 in the experimental results is unfeasible

using the above methods. This restriction is not present in

our automaton-based approach.

In the case of open-loop experiments, we will report the

total number of optimizer iterations until a satisfying trajectory

in the system is found (denoted t∗). Meanwhile, for closed-

loop experiments, we will report the final robustness [18] of

the system trajectories with respect to the corresponding STL

task specifications(denoted ρ). We report the results of our

experiments in Table I, with the first column describing the

specification under test.

Remark. For the MILP solver, we report the number of

simplex iterations performed by Gurobi [42] for the open-

loop problems. It should be noted that while Gurobi’s simplex

optimization iterations are about 10-20 times faster than a

gradient-based solution on an Intel Core i7 (1.80GHz) CPU

machine with no graphics processor for computation purposes,

the MILP solver is unfeasible for even relatively simple, long-

horizon specifications.

To aid our presentation, we will informally describe the

syntax and semantics of discrete-time STL (DT-STL). In

addition to the Boolean predicates defined in Eq. 1, temporal

logics add the following temporal operators (relevant to our

studies)

• G[a,b] ϕ, where a, b ∈ N ∪ {∞}, describes that the

formula ϕ must hold for all time steps t ∈ [a, b].
• F[a,b] ϕ, where a, b ∈ N ∪ {∞}, describes that the

formula ϕ must hold at least once for t ∈ [a, b].

We refer the readers to [24] for a detailed survey of such

specification languages.

Fig. 3. Example of a trajectory satisfying ϕ1 and ϕ2. The left-side trajectory
was produced by the (min,max) automaton in a single integrator dynamics
model, while the second one was produced by the (max,+) automaton for
unicycle model.

ϕ1: Reach Multiple and Avoid: Here, we control a

point mass on a 2D workspace, governed via simple single-

integrator dynamics by directly controlling its velocity on the

workspace:

xt+1 = xt + ut∆t, (9)

where the sampling time ∆t = 0.1 seconds. The goal of the

controller is defined by the specification

ϕ1 := FG[0,5](x ∈ Rred)

∧ FG[0,5](x ∈ Rgreen)

∧ F(|x− xgoal| ≤ δ)

∧ G(x 6∈ Rblue),

(10)

which says that the controlled mass must visit regions Rred

and Rgreen for at least 5 time steps and visit xgoal (in any

order) while always avoiding Rblue.

In Fig. 3, we can see that while all the tested methods

are able to generate accepting trajectories in the open-loop

case, the (max,+)-automaton matrix operator performs ≈ 10
times faster than other gradient-based methods.

Moreover, in the closed-loop case, only the automaton-

based methods seem to be able to complete the task. This

is because there is no way to encode temporal requirements

as above in these other frameworks, making automata-based

methods the only viable option for long-horizon, temporal

tasks.

ϕ2: Sequential Tasks with Avoid: Here, we model the

system as a simple unicycle on a 2D workspace, with each

state being represented as p = (x, y, θ, v, ω): the x- and y-

positions, the heading, the linear velocity, and the angular

velocity of the unicycle. The system is thus controlled by the

second-order linear and angular accelerations u = (ua, uω):

pt+1 = pt +













v cos(θ)
v sin(θ)

ω
ua

uω













∆t, (11)

where the sampling time ∆t = 0.1 seconds. The goal of the

controller is to move the unicycle from some initial state to
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TABLE I

RESULTS FOR MOTION PLANNING USING AUTOMATA AND TEMPORAL LOGIC OBJECTIVES WITH SINGLE INTEGRATOR DYNAMICS.

Specification Setting
Performance

H k γ
Num. Iterations t∗ (lower better)

Robustness ρ (higher better)

(min,max) (max,+) STLCG MILP

ϕ1: Visit the RED region, GREEN region
and the STAR in any order, while avoiding
unsafe region, BLUE.

Open Loop (t∗) 746 78 1164 42265 50 1400 0.05

Closed Loop (ρ)
(50 time steps)

0.0 0.0 – – 15 30 0.05

ϕ2: Visit 3 regions in sequence RED →

GREEN → ORANGE at least once while
avoiding unsafe region BLUE.

Open Loop (t∗) 35 425 234 – 80 1400 0.05

Closed Loop (ρ)
(80 time steps)

0.060 0.048 – – 40 30 0.05

Adaptive Cruise Control Closed Loop (ρ)
(3000 time steps)

-1.78 0.4 -2.21 0.6 250 30 0.05

the regions Rred, Rgreen, and Rorange in that sequence, while

avoiding Rblue:

ϕ2 :=

F((x ∈ Rred) ∧ F((x ∈ Rgreen) ∧ F((x ∈ Rorange))))

∧ G(x 6∈ Rblue)
(12)

Note that, similar to ϕ1, this specification cannot be

encoded as a receding horizon controller in STLCG and

the MILP encoding, as the history of what regions have

been visited need to be encoded. Moreover, we do not

perform the experiment for the open-loop problem with the

MILP encoding as the system is inherently non-linear, and

linearizing it about discrete θ is not a requirement fot the

other frameworks.

Adaptive Cruise Control: In an adaptive cruise control

(ACC) scenario, we are designing a controller for the trailing

car (called ego vehicle) such that it maintains a cruising

velocity while also remaining a safe time gap away from the

lead car. Here, the controller operates on the state space

x = (pego, vego, dlead, vrel),

where pego, vego ∈ R are the longitudinal position and

longitudinal velocity of the ego vehicle; dlead ∈ R is the

distance to the lead vehicle; and vrel ∈ R is the relative

velocity of the lead car. While the ego controller receives

the actual dlead and vrel form an external source, for the

MPC prediction step, we (potentially incorrectly) assume a

constant velocity for the lead car. The control input to the

system u ∈ R is the acceleration of the ego vehicle, thus we

can write an approximate predictive model of the system as:

pego,t+1 = pego,t + vego,t∆t+
1

2
ut∆t2

vego,t+1 = vego,t + ut∆t

dlead,t+1 = dlead,t + vrel,t∆t−
1

2
ut∆t2

vrel,t+1 = vrel,t − ut∆t

(13)

where the sampling time ∆t = 0.01 seconds.

The requirements for the behavior of an ACC is parame-

terized by a target cruise speed vref that the ego must reach

if safe to do so; a safety distance dsafe that the ego vehicle

must not cross when trailing a car; and a safe time gap tsafe,

which is the time threshold to violating dsafe. Thus, we can

define the requirements by the following:

ϕsafe = G(dlead > dsafe) (14)

ϕref = G((dlead > dfollow)

⇒ F[0,δ](|vlead − vref| < ε ∨ dlead ≤ dfollow)),
(15)

where dfollow = dsafe + vreltsafe is a safe following distance

that doesn’t violate the safe time gap, with the parameters

vref = 15m/s, tsafe = 1.4s, dsafe = 5m, δ = 50 time steps

and ε = 1m/s. The above specification ϕref describes that the

controller must reach the target speed if the safe time gap

isn’t violated.
In this scenario, we can see from Table I that the gradient-

based methods that use (min,max)-based semantics seem to

get stuck in local optima, similar to the analysis in [23]. This

isn’t a problem for the (max,+) semiring as replacing min
operations with standard addition makes the problem more

conducive to gradient-based optimization, while preserving

acceptance semantics.

V. CONCLUSION

In this paper, we target encoding automata-based spec-

ifications into quantitative objective functions, allowing

efficient encoding of signal history, along with quantitative

cost functions for motion planning. Specifically, we define

a automaton matrix operator that encodes transitions in

the automaton, thereby leveraging matrix-based automatic

differentiation tools for gradient-based motion planning. To

the best of our knowledge, this is the first such framework that

combines optimization-based and automata-based methods

to leverage modern compute capabilities to directly optimize

over automaton specifications efficiently. Moreover, to miti-

gate issues with local optima and vanishing gradients in the

quantitative semantics, we show how using an alternative

(max,+)-algebraic semantics (as presented in [35]) allows

us to find satisfying trajectories faster.
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