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Abstract:

This paper presents a framework for training neural network (NN)-based feedback controllers
for autonomous agents with deterministic nonlinear dynamics to satisfy task objectives and
safety constraints expressed in discrete-time Signal Temporal Logic (DT-STL). Control synthesis
that uses the robustness semantics of DT-STL poses challenges due to its non-convexity,
non-differentiability, and recursive definition, in particular when it is used to train NN-
based controllers. We introduce a smooth neuro-symbolic computation graph to encode DT-
STL robustness to represent a smooth approximation of the robustness, enabling the use of
powerful stochastic gradient descent and backpropagation-based optimization for training. Our
approximation guarantees that it lower bounds the robustness value of a given DT-STL formula,
and shows orders of magnitude improvement over existing smooth approximations when applied
to control synthesis. We demonstrate our approach on planning to satisfy complex spatio-

temporal and sequential tasks, and show scalability with formula complexity.
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1. INTRODUCTION

Learning-based approaches to synthesize controllers for
highly nonlinear dynamical systems are used across do-
mains: from autonomous vehicles to robots. Popular ways
to train NN-based controllers include deep reinforcement
learning (RL)(Li et al., 2017; Chua et al., 2018; Mnih
et al., 2013) and deep imitation learning (Fang et al.,
2019). Techniques to synthesize neural controllers (in-
cluding deep RL methods) largely focus on optimizing
user-defined rewards or costs, but do not directly address
specific spatio-temporal task objectives. For example, con-
sider the objective that the system must reach region
Ry before reaching region Ry, while avoiding an obstacle
region. spatio-temporal objectives can be easily expressed
in the formalism of Signal Temporal Logic (STL) (Maler
and Nickovic, 2004). The discrete-time variant of STL has
found applications in robotics and control synthesis (Ra~
man et al., 2014; Pant et al., 2018) through quantitative
semantics (Donzé and Maler, 2010; Fainekos and Pappas,
2006).

The use of DT-STL-based objectives has seen consider-
able recent interest in data-driven methods for training
controllers for dynamical systems that can be described
by (stochastic) difference equations. This literature brings
together two separate threads: (1) smooth approximations
to the robustness degree of DT-STL specifications (Gilpin
et al., 2020; Pant et al., 2017) enabling the use of STL
robustness in gradient-based learning of control policies,
and (2) efficient representation of the robustness compu-

tation allowing its use in training neural controllers using
backpropagation (Yaghoubi and Fainekos, 2019; Leung
et al., 2019, 2021; Hashemi et al., 2023a,b). However, with
few exceptions, existing literature largely focuses on open-
loop control policies. Closed-loop feedback control has the
obvious advantage that it is robust to perturbations in
the system state; on the other hand, the control synthesis
problem is significantly harder.

In this paper, we revisit our prior work (Hashemi et al.,
2023a) that proposed a ReLU-based neural network en-
coding (called STL2NN) of DT-STL formulas to exactly
compute the robustness value. We show how we can signif-
icantly extend this computation graph to obtain smooth,
guaranteed underapproximations of the DT-STL robust-
ness value. We use backpropagation-based methods that
treat the one-step environment dynamics and the neural
feedback controller as a recurrent unit that is then unrolled
as many times as required by the temporal horizon of the
DT-STL specification . We make the following contribu-
tions:

(1) We propose smooth versions of computation graphs
representing the robustness degree computation of a DT-
STL specification over the trajectory of a dynamical sys-
tem. Our computation graph guarantees that it lower
bounds the robustness value with a tunable degree of
approximation.

(2) We develop a backpropagation framework which lever-
ages the new differentiable structure, and we show how we
can handle DT-STL specifications.
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Related Work. The use of temporal logic specifications
for controller synthesis is a well-studied problem. Recent
years have also seen growing interest in data-driven tech-
niques (Li et al., 2018) for control synthesis. In (Balakr-
ishnan and Deshmukh, 2019), the authors replace hand-
crafted reward functions with the STL robustness within
single-agent or multi-agent deep RL frameworks. The over-
all approach of this paper is the closest to the work in
(Yaghoubi and Fainekos, 2019; Leung et al., 2019, 2021;
Hashemi et al., 2023a,b), where DT-STL robustness is
used in conjunction with backpropagation to train neural
network-based controllers. A significant difference between
some of the previous approaches (Leung et al., 2019, 2021)
and this work is the smooth semantics we introduced and
utilized for training the optimal policy.

2. PRELIMINARIES

We denote the set, {1,2,--- ,n} with [n]. A feed forward
neural network (NN) with ¢ hidden layers is denoted by
the array [ng,n1,- -+ ,ner1], where ng denotes the number
of inputs, ngyq is the number of outputs and for i € [¢], n;
denotes the width of i*" hidden layer.

NN Feedback Control Systems (NNFCS). Let s and
a denote the state and action variables that take values
from compact sets S C R™ and A C R™, respectively. We
use s (resp. ai) to denote the value of the state (resp.
action) at time k. We define a neural network controlled
system (NNFCS) as a recurrent difference equation

sk+1 = f(sk, ax), (1)
where ay, = my(s, k) is the control policy. We assume that
the control policy is a parameterized function 7y, where
0 is a vector of parameters that takes values in ©. Later
in the paper, we instantiate the specific parametric form
using a neural network for the controller. That is, given a
fixed vector of parameters 6, the parametric control policy
T returns an action a; as a function of the current state
sk € S and time k € Z=°, i.e., a; = mp(sp, k).

Closed-loop Model Trajectory. For a discrete-time
NNFCS, for a set of designated initial states Z C S
under a pre-defined feedback policy 7y, (1) represents an
autonomous discrete-time dynamical system. For a given
initial state sg € Z, a system trajectory Ugo is a function
mapping time instants in [0, K] to S, where ago (0) = sp,
and for all k € [0,K — 1], 0% (k + 1) = f(sy, mo(sk, k))
The computation graph for this trajectory is a recurrent
structure. In this paper, we provide algorithms to learn a
policy my« that maximizes the degree to which certain task
objectives and safety constraints are satisfied.

Task Objectives and Safety Constraints. We assume
that task objectives and safety constraints are specified
using the syntax of Signal Temporal Logic (STL)(Maler
and Nickovic, 2004) in positive normal form

o = h(s)x0] w1 A2 | e1Ver | 01 Urps | p1R1p2 (2)
where U; and R; are the timed until and release op-
erators, e {<,<,>,>}, and h is a function from S

to R. In this work, since we use discrete-time semantics
for STL (referred to as DT-STL), the time interval I is

1 If obvious from the context, we drop @ in the notation crgo.
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Fig. 1. Shows an illustration for computation graph of
trajectory states in our control feedback system. The
controller is a feed forward neural network that re-
ceives the time and state and returns a decision. The
parameters of this controller will be trained to satisfy
a temporal property, formulated in STL framework.

a bounded interval of integers, i.e., I = [a,b] C [0, K].
The timed eventually (F;) and always (Gy) operators
can be syntactically defined through until and release.
That is, Fyo = TUjrp and Gy = LR where T and
L represent true and false. We briefly recall the formal
semantics of DT-STL over discrete-time trajectories previ-
ously presented in (Fainekos and Pappas, 2006). Note that
without timestamps, DT-STL is just a regular language;
nevertheless, in this work, we use robust semantics which
are not defined over automata or regular expressions.

Boolean Semantics and Formula Horizon. We denote ¢
being true at time k in trajectory 020 by Ugo,k E . We
say that o , k |= h(s) > 0 iff h(c? (k)) < 0. The semantics
of the Boolean operations (A, V) follow standard logical
semantics of conjunctions and disjunctions, respectively.
For temporal operators, we say Ugo,k: E ©1Ujps is true if
there is a time k', s.t. k' —k € I where 5 is true and for all
times k" € [k, k'), ¢1 is true. Similarly, ago,k' E o1Rpo
is true if for all times k' with ¥’ — k € I, s is true, or
there exists some time k" € [k, k') such that ¢, was true.
The temporal horizon of a DT-STL formula defines the
number of time-steps required in a trajectory to evaluate
the formula, o ,0 = ¢ (see (Maler and Nickovic, 2004)).

Quantitative Semantics (Robustness value) of DT-STL.
Quantitative semantics of DT-STL roughly define a signed
distance of a given trajectory from the set of trajectories
satisfying or violating the given DT-STL formula. There
are many alternative semantics proposed in the literature
(Donzé and Maler, 2010; Fainekos and Pappas, 2006); in
this paper, we focus on the semantics from (Donzé and
Maler, 2010) that are shown below. The robustness value
p(¢,0% k) of a DT-STL formula ¢ over a trajectory o9
at time k is defined recursively as follows 2.

® plp, k)

h(sr) >0
1 A p2 (resp. V)

h(sk)
min(p(¢1, k), p(2, k)) (resp. max)

U ) p(‘P27 k/), y
maXx min i
#1 - ab1P2 k' €[k+a,k+b] k/,ren[}fk,)p(@l’k )
R . p(5927 kl)7 iy
min max
#15a b2 K €lk+a,k+b] k//?ﬁ)’(k,)p(‘pl’k )

(3)

2 For brevity, we omit the trajectory from the notation, as it is
obvious from the context.
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We note that if p(¢,k) > 0 the DT-STL formula ¢ is
satisfied at time k, and we say that the formula ¢ is
satisfied by a trajectory if p(p,0) > 0.

Discrete Time STL Robustness as a ReLU NN. The quan-
titative semantics of DT-STL is based on min/max op-
erators. Therefore, the robust interpretation of a DT-
STL specification is difficult to be used in gradient-based
method for learning. However, min / max operators can be
expressed using ReLU functions as follows (see (Hashemi
et al., 2023a)):

min(ay,as) = a; — ReLU(a; — as2), 4
max(ay,a2) = ag + ReLU(ay — a2). (4)
This allows the computation graph representing the ro-
bustness of a DT-STL formula w.r.t. a given trajectory
to be expressed using repeated application of the RelLU
function (with due diligence in balancing min, max com-
putations over several arguments into a tree of at most
logarithmic height in the number of operands). We call
this ReLU-based computation graph as STL2NN.

3. TRAINING NN CONTROL POLICIES

Problem Definition. We wish to learn a neural network
(NN) control policy my (or equivalently the parameter
values 6), s.t. for any initial state sg € Z, using the control
policy 7y, the trajectory obtained, i.e., o? ,» satisfies a given
DT-STL formula ¢.

Our solution strategy is to treat each time-step of the given
dynamical equation in (1) as a recurrent unit. We then
sequentially compose or unroll as many units as required
by the horizon of the DT-STL specification. The unrolled
structure essentially represents the symbolic trajectory,
where each recurrent unit shares the NN parameters of
the controller (see Figure 1). By composing this structure
with the neural network representing the given DT-STL
specification ¢; for instance, the STL2NN computation
graph introduced in the previous section, then we have
an NN that maps the initial state of the system (1) to
the robustness degree of . Thus, training the resulting
NN to guarantee that its output is positive over a suffi-
cient sample of initial conditions is the first step towards
computing the policy my. The second step is to verify
that the computed 7y guarantees the satisfaction of the
specification ¢ for any initial condition sqg € Z. This can
be achieved by using reachability computation methods
(Dutta et al., 2019) or conformal prediction (Vovk et al.,
2005) based probabilistic guarantees (see Sec. 5.1).

4. SMOOTH UNDER-APPROXIMATION FOR
STL2NN

The existing smooth semantics for gradient computation
(Gilpin et al., 2020; Pant et al., 2017; Leung et al., 2019)
perform backward computation on a computation graph
that is generated based on dynamic programming. Al-
though these computation graphs are efficient for forward
computation, they may face computational difficulty for
backward computation over the robustness when the spec-
ification is highly complex. However, STL2NN, directly uti-
lizes the STL tree (Donzé and Maler, 2010) to generate a
feedforward RelLU neural network as a computation graph

whose depth grows logarithmically with the complexity
of DT-STL specification. This makes back-propagation
more feasible for complex specifications. On the other
hand, the way it formulates the robustness (Feedforward
NN) facilitates the back-propagation process, by enabling
vectorized computation of the gradient. However, consid-
ering that STL2NN is exactly identical to the non-smooth
robustness introduced in Eq. (3), using smooth approxima-
tions, as suggested in previous studies (Gilpin et al., 2020;
Pant et al., 2017), has proven to improve the efficiency,
particularly in gradient-based techniques. Therefore, we
approximate STL2NN with a smooth function. It is also
preferable that this smooth approximation also acts as
a guaranteed lower bound for the robustness. Ensuring
its positivity guarantees that the real robustness is also
positive. Thus, we approximate STL2NN with a smooth
under-approximator, and we call this smooth function as
LB4TL. We also propose a thorough and clear compari-
son between the performance of LBATL and the previous
smooth semantics, available in the literature. To generate
LBATL, we firstly replace ReLU activations in the min()
operation Eq. (4) with the softplus activation function
defined as:

1
softplus(a; — as ;b) = glog (1 + eb(‘“_’”)) , b>0.

Similarly, we replace the RelLU activation functions con-
tributing in max() operation Eq. (4) with the swish acti-
vation function:

a; — a9

= 71 I e—b(a1—az)’ b > 0.

swish(a; — ag ;b)

Next, we show that LB4TL is a guaranteed lower-bound
for STL2NN. To that end, we start with the following
proposition,

Proposition 1. For any two real numbers x,y € R:
y+swish(z—y) < max(z,y), z—softplus(x—y) < min(z,y).

Proof. We know for all z,y € R, max(z,y) = y +
ReLU(xz — y) and min(z,y) = = — ReLU(z — y). We also
know, for all z € R, swish(z) < ReLU(z) and softplus(z) >
ReLU(z) (Ramachandran et al., 2017).

The result of the Proposition. 1, can be utilized to propose
the following result,

Proposition 2. Assume 1 and @y are two different DT-
STL formulas, and assume L; = LB4TL(J§0 ,01, 030) <
Ry = p(ago ,¢1,0) and Ly = LB4TL(020 ,p2, 050) <
Ry = p(08 ,¢2,0). Then we can conclude,

LB4TL(02, , 1V 92, 05b) < p(ad, 1V 2,0),
LB4TL(Ug0 , P1 A Y2, 0 1b) S P(Ugo , P1 A 90270)'
Proof. Based on Proposition. 1, we know LB4TL(0§0 , o1V
w2, 0;b) = Lg + swish(L; — L2 ;b) < max(Ly, Ly) and
p(ago ,p1 V 2,0) = max(Ry, Ry) We also know Ly < Ry,
and Lo < R which implies max (L1, Lo) < max(R1, R2).
Therefore, we can conclude LB4TL(US0 ,p1 Vo, 0:b) <
p(ogo , 1V 2,0). Likewise, from Proposition. 1, we know
LB4TL(O’§O , P1 A »2, 0, b) = L1 — SOftp'US(Ll — L2 ,b) S
min(Ly, Ly) and p(0f ,¢1Ap2,0) = min(Ry, Ry). We also
know L; < Ry, and Ly < Ry which implies min(Lq, Lg) <
min(Ry, Ry). Therefore, we can conclude LB4TL(cf o1 A

@2, 0;0) < p(al o1 A p2,0).
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The result of Proposition. 2 can also be utilized to intro-
duce the following result.

Lemma 3. For any formula ¢ belonging to DT-STL frame-
work in positive normal form, and b > 0, for a given trajec-
tory 020 =80,81,...,SK, if LB4TL(02O ,, 0;b) > 0, then
ogo = ¢, where LB4TL is a computation graph for DT-STL
robustness, but with the softplus activation utilized in min
operation and the swish activation employed in max.

Proof. Let’s denote the set of predicates that are con-
tributing to robustness computation of a DT-STL formula
v as, A = {a1 >0,a3 >0,--- ,any > 0}. The DT-STL
formula, ¢ can be expanded in terms of V and A operations
applied to predicates, a > 0 where (a > 0) € A (see (Donzé
and Maler, 2010)). In addition, for all predicates (a > 0) €
A, we have LB4TL(c? , (a > 0), 0;b) < p(c? ,(a > 0),0),
since both are equal to a. Therefore, we can start from
the predicates (a > 0) € A, and utilize the result of the
Proposition. 2 to conclude for any DT-STL formula ¢ we
have, LB4TL(0§0 o, 0;0) < p(ogo ,,0).

4.1 Training with LB4TL

Algorithm 2 Neurosymbolic policy learning

1: Initialize variables

2: while | min (p(gp,aﬁj,O)) <p| do
so€EL

So ¢~ Sample from 7

J . . .
020 < Simulate using pollqy Tgi

3
4
5: d + VoLB4TL(0?) using 0¥’
6: 07T« 07 + Adam(d)

7 j—i+1
8: end while

In order to train the controller for all initial states, s € Z
we solve the following optimization problem:

0" = argmax (Esogz (e, 02, 0)]) ,
s.t. ago(k +1)=f (o*go(k),ﬂ'g (ago(k), k)) .

that aims to increase the expectation of the robustness
for initial states uniformly sampled from the set of initial
states. Solving this optimization problem is equivalent to
training the NN controller using a gradient-based algo-
rithm (shown in Alg. 2). However, we terminate the al-
gorithm once the robustness is above a pre-specified lower
threshold p. We also generate a population of samples from
the set of initial states of the system, ie. Z, for training
purposes, and denote this set by Z.

5. EXPERIMENTAL EVALUATION

We now present an evaluation of the performance of our
proposed method 3 on two case studies.

3 To increase the efficiency of our training process, we check for

min (p(cp, crgj ,0)) once every 50 gradient steps to make a decision
sg€Z
on terminating the training algorithm.

Simulation with (pre-training) randoml
assigned NN controller parameters

Start
6 1
5l
4t \

_] Goaly
3t
ol Unsafe set \
Simulation for
1T } trained parameters|
“ Goals

0

0 2 4 6 8
Fig. 2. Simulated trajectories of the NNFCS representing
control for the simple car dynamics for the trained
controller, in contrast with those for a controller ini-
tialized with random parameter values. The trajec-
tories are initiated from the set of sampled initial

conditions, which is 8 = _T?’”, _T5’r, -5

Here we apply our technique on two examples. The prob-
lem setting and training results for experiments are pro-
vided in Table 1, and the simulation of their trained
controllers are available in Figures 2,3. In these figures,
the simulation for the random initial guess of control
parameters are also presented in black color that clearly
violate the specifications. The experiments are explained
as follows, and the sampling time is §¢t = 0.05 sec.

Experiment 1: [Sequential Goals for a Simple Car
Navigation Task]. We use a standard 3-dimensional
model from (Yaghoubi and Fainekos, 2019) to represent
the dynamics of a simple car as follows:

z v cos(f)

N (0 v ¢ 2.5tanh(0.5a1) + 2.5,

vl = vsin(6) |, v+ m/4tanh(0.5a2), ay, az € R.
0 7 tan(vy)

(5)
Here (z,y) is the position, and @ is the heading angle. The
controllers v,y are the velocity and steering angle, respec-
tively. Assuming the outputs of the NN controller are the
(unbounded) values, [a;(k), a2(k)]" we secure satisfaction
of our controller bounds via Eq. (5)(see Table 1). The value
of b in LB4TL is 10.

The task objective is for the car to first visit the goal
region Goaly and then visit the region Goals. Further, we
require this sequential task to be finished in 40 time steps.
However, the car should always avoid the unsafe set Unsafe
(see Figure 2). This temporal task can be formalized in
DT-STL framework as follows:

o7 := Fg40) [Goaly A F[Goals]] A Gig 40 [~ Unsafe set]

Experiment 2: [Reach/Avoid Tasks for a Quadro-
tor]. We use the 6-dimensional model for a quadrotor from
(Yaghoubi and Fainekos, 2019) presented as follows:

T Vg
y Uy < O.ltanh(O.lal),

U, Ug < 0.1 tanh(0.1a2),

Uz | | gtan(u1) |7 uz + g — 2tanh(0.1az), (6)
by —gtan(u2)| g, ay,a3 € R, g = 9.81.
Uz g —us
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Expt. Controller Initial states Sampled initial ~ Controller Runtime (secs) Num.
bounds A states Z NN LB4TL build Training iterations
1 (E),’y) E)[O, 5[] X [*%,}%} (x,y,(@)(O) € (6,8)2 X)[(_)T?’”, =*]  corners, center [4,10,2] 1.31 72.9 750
ui,u2) € [—0.1,0.1 T,Y, 2, Va, Uy, v2)(0) €
2 us € [7.81, 11.81] [0.02, 0.05] x [0, 0.05] x [0]* corners, center [7,10, 3] 0.13 354.36 16950
Table 1. Description of the case studies and the training results. Both used tanh activation.
0° (Gilpin et al., 2020)  (Pant et al., 2017) STLCG LB4TL
Obstacle Runtime( sec ) Runtime( sec ) Runtime( sec )  Runtime( sec )
15t guess 1465 626 NF[-1.3057] 104
279 guess 1028 1017 NF[-1.3912] 580
374 guess 2444 NF[-0.0821] 2352 419
4%h guess NF[-0.1517] NF[-0.9681] NF[-0.4281] 429
5th guess 617 NF[-1.2562] 1946 124
Average 2159 2488 3019 331

0.05
050,05

Fig. 3. Simulated trajectories for the trained controller
in comparison to the trajectories for the NN con-
troller initialized with random parameter values for
the quadrotor case study. Trajectories are initiated
from the set of sampled initial conditions consisting
of the corners of Z and its center.

Here, x = (z,y, z) respectively denotes the quadrotor’s
positions and v = (v, vy,v,) denote its velocities along
the three coordinate axes. The control inputs wi,us, us
respectively represent the pitch, roll, and thrust inputs.
Assuming the outputs of the NN controller are the (un-
bounded) values, [a1(k), as(k),az(k)]"T we secure satisfac-
tion of our controller bounds (see Table 1 ) in Eq. (6). The
value of parameter b in LB4TL is 20.

The quadrotor launches from a position in the set Z, and
the task objective is to visit the goal set while avoiding
obstacles. The projections of the obstacle and goal sets into
the quadrotor’s position states are [—00,0.17] x [0.2, 0.35] x
[0,1.2] and [0.05,0.1] x [0.5,0.58] x [0.5,0.7], respectively.
This temporal task can be formalized in DT-STL frame-
work as, @2 = Gg 35)[~ Obstacle] A F[3y 35 [Goal].

Comparison. We now compare against the smooth se-
mantics in (Gilpin et al., 2020; Pant et al., 2017; Leung
et al., 2019) and empirically demonstrate that LB4TL
outperforms them when used for training NN controllers.
We also show that with increasing complexity of the DT-
STL formula, the other smooth semantics show significant
increases in runtime during gradient computation while
LB4TL scales well. Given a fixed initial guess for the con-
trol parameters and a fixed set of sampled initial states Z,
we run this algorithm, 4 times, and we utilize the following
smooth semantics, each time (b = 10).

(1) The first one is the smooth semantics proposed in
(Pant et al., 2017) that replaces the min()/ max() oper-
ators in Eq. (3) with:

‘ ¢
m/ 1 __ 1
min(a, - ,ar) = _BIOg (E e’b“') , max(ay, - - ,a7) = 3 log ( E eba’) .
i=1 i=1

(2) The second one is the smooth semantics proposed in
(Gilpin et al., 2020) that replaces min()/ max() operators
in Eq. (3) with:

Table 2. Comparison between policy training
with LB4TL and the other smooth robustness
semantics.

L ba;

‘
—_ 1 - i
min(ay, -+, a) = —glog<§ c’“") , max(ar, L a) = Y g
i—1

£ ba;

=1 2im e
(3) The third one is the computation graph proposed in
(Leung et al., 2019). This computation graph reformulates
the robustness semantics in an RNN like structure and

utilizes this graph for back-propagation.
(4) The last one is LBATL that is introduced in this work.

We utilize Pytorch’s automatic differentiation toolbox for
all the examples. We also utilize the vehicle navigation case
study with its provided specification as our case study. The
mentioned DT-STL formula can be rephrased as:

39

\/ [F[O,z] [Goall] N F[i+1,40] [GOGZQ]]/\G[QAQ] [_‘ Unsafe set} y
i=1

that is a combination of 78 different future formulas, which
results in a quite large size for LB4TL and is a great
candidate to showcase the superiority of LB4TL comparing
to the existing smooth semantics in terms of training
runtime. We also assume a RelLU neural network with
similar structure proposed in that example.

Since the runtime of the training algorithm is also highly
related to the choice of initial guess for the controller, we
repeat this experiment 5 times, and we assign a unique
initial guess for the controller on all the 4 examples
in a specific experiment. Table. 2 shows the report of
training runtimes for all the experiments. In case the
proposed example of smooth semantics in an experiment
is unable to solve for a valid controller within 1 hour,
we report it as NF[p®"?], that implies the training did
not finish. This also reports the minimum robustness
end . 00
p"* = min (p(%USO
so€EL

before termination. Assuming the runtime for NF[.] to
be 3600 sec, the average of the training runtime for the
first, second, and third objective functions are 2159, 2488,
and 3019 sec (via a Core i9 CPU), respectively. This is
while the average of training runtime for our objective
function (LB4TL) is 331 sec, which shows LB4TL is a
more convenient choice for the training process when the
specification becomes more complex. 4

,O)), where j is the last iteration

4 Our experimental results show, for simple specifications, the per-
formance of LB4TL and the previous smooth semantics are similar.
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5.1 Controller Verification

In order to verify the results, we use a statistical veri-
fication technique based on conformal prediction (Vovk
et al., 2005). Here, we pick 10° i.i.d. initial states from
7 and simulate their corresponding trajectories using the
trained controller; then we validate the following guar-
antee for the NN controllers in our closed-loop system ° :
Pr [Pr[od = ¢] > 99.98%] > 99.5%.

6. CONCLUSION

We introduce LB4TL, a smooth computation graph to
lower bound the robustness degree of a DT-STL speci-
fication. We present a neurosymbolic algorithm that uses
informative gradients from LB4TL to design NN controllers
to satisfy DT-STL specifications. We show the efficacy of
our training algorithm on a two case studies and present
a comparison with existing work to demonstrate the sig-
nificance of our proposed techniques.
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