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Abstract

Given finite sets X1, . . . , Xm in R
d (with d fixed), we prove that there are

respective subsets Y1, . . . , Ym with |Yi| >
1

poly(m) |Xi| such that, for

y1 ∈ Y1, . . . , ym ∈ Ym, the orientations of the (d + 1)-tuples from y1, . . . , ym do
not depend on the actual choices of points y1, . . . , ym. This generalizes previously
known case when all the sets Xi are equal. Furthermore, we give a construction
showing that polynomial dependence on m is unavoidable, as well as an algorithm
that approximates the best-possible constants in this result.

Mathematics Subject Classifications: 52C10, 52C40

1 Introduction

We say that the sets Y1, . . . , Yd+1 in R
d have the same-type property if, for every choice of

points y1 ∈ Y1, . . . , yd+1 ∈ Yd+1, the orientation of points y1, . . . , yd+1 is the same. More
generally, we say that the sets Y1, . . . , Ym have the same-type property if every d + 1 of
them do. A natural question is the following: given disjoint finite sets X1, . . . , Xm in R

d

such that their union is in general position, are there large subsets Yi ⊆ Xi such that the
sets Y1, . . . , Ym have the same-type property? The same-type lemma proved by Bárány
and Valtr [2] states that each Yi may be taken to have a positive fraction of points from
the corresponding X-set. How large could this fraction be? Formally, for disjoint sets
X1, . . . , Xm in R

d, whose union is in general position, denote by c(X1, . . . , Xm) the largest
constant c for which there exist Y1, . . . , Ym having the same-type property and satisfying
Yi ⊆ Xi, |Yi| > c|Xi|. For fixed numberm and dimension d, denote by c(m, d) the infimum
of c for all such configurations.

The same-type lemma has been used to prove a number of positive fraction results
in discrete geometry, including Radon theorem, Tverberg theorem and Erdős–Szekeres
theorem [2]. Notably, a quantitative version of the latter due to Pór and Valtr [14] was
a crucial ingredient in Suk’s proof [15] of the bound 2n+o(n) for the number of points on
plane guaranteeing the existence of n points in convex position. Additional results that
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directly use the same-type lemma are [9, 5]; also, many arguments that are similar to the
same-type lemma appear in the literature, e.g., [12, 4, 13, 6, 11].

In their original paper, Bárány and Valtr showed that c(m, d) is at least

(d+ 1)(−2d−1)(m−1

d
). Fox, Pach and Suk [6] improved this to c(m, d) > 2−O(d3m logm).

Our first result shows that c(m, d) is polynomial in m, for fixed d.

Theorem 1. For d > 2 and m > d the constant c(m, d) satisfies

d−50d3m−d2
6 c(m, d) 6 ddm−d.

Polynomial bounds were previously known only for the special case when the sets
X1, . . . , Xm are all equal (see Lemma 3.2 in [11], with references to [6]). Our upper bound
of ddm−d applies even to this special case; it is a first upper bound both in the special
and general cases.

We also show that the constants c(m, d) can be computed with arbitrary precision, at
least in principle.

Theorem 2. There exists an algorithm that computes, for any input m, d ∈ N and ε > 0,
a constant c′(m, d) satisfying |c′(m, d)− c(m, d)| < ε.

2 Preliminaries

Sets with the same-type property. For simplicity, we say that a family of sets
X1, . . . , Xm ⊆ R

d is in general position if the sets X1, . . . , Xm are disjoint and their union
is a set of points in general position. We start with a convenient sufficient condition for
sets to have the same-type property.

Lemma 3. Suppose that Y1, . . . , Yd+1 ⊆ R
d are connected sets and no hyperplane inter-

sects all of them. Then the sets Y1, . . . , Yd+1 have the same-type property.

Proof. Note that, since the set Y
def

= Y1 × · · · × Yd+1 is a product of connected sets, it is
itself connected. Suppose that the sets Y1, . . . , Yd+1 lack the same-type property. Then
the sets

Y+
def

= {(y1, . . . , yd+1) ∈ Y : orient(y1, . . . , yd+1) > 0},

Y−

def

= {(y1, . . . , yd+1) ∈ Y : orient(y1, . . . , yd+1) < 0}

are both non-empty. Since both Y+ and Y− are relatively open in Y , and Y is connected,
this implies that Y+ ∪ Y− 6= Y , i.e., there exists (y1, . . . , yd+1) ∈ Y such that the points
y1, . . . , yd+1 are coplanar.

The following is a converse to Lemma 3 under slightly different conditions.

Lemma 4. Suppose that the family of sets Y1, . . . , Yd+1 ⊂ R
d is in general position. If

some hyperplane intersects each of the sets conv Yi, then Y1, . . . , Yd+1 do not have the
same-type property.
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Proof. Let H be any such hyperplane. We may assume that the sets Y1, . . . , Yd+1 are
finite. Indeed, using Carathéodory’s theorem, we may replace Yi by a subset of at most
d+ 1 points whose convex hull contains a point of H ∩ conv Yi.

Keeping the condition H ∩ conv Yi 6= ∅, perturb H so that it contains points of d
sets among Y1, . . . , Yd+1, say the points y1 ∈ Y1, . . . , yd ∈ Yd. Since Y1 ∪ · · · ∪ Yd+1 is in
general position, it follows that H contains no point of Yd+1. Because H does intersect
conv Yd+1, the set Yd+1 contains points yd+1 and y′d+1 that lie on the opposite sides of
H. So, the orientations of the tuples (y1, . . . , yd, yd+1) and (y1, . . . , yd, y

′

d+1) are opposite,
which contradicts the same-type property of Y1, . . . , Yd+1.

Also, in further proofs it will be useful for us to have enough points in each set. The
following lemma implies that small constructions can be blown up to arbitrarily large size,
with no impact on the same-type constant c( · · · ).

Lemma 5. Suppose that X1, . . . , Xm in R
d is a family of sets in general position. Denote

by X
(n)
1 the set obtained by replacing each point of X1 by cloud of n points lying close

enough to the original and preserving general position. Then,

c(X1, . . . , Xm) = c(X
(n)
1 , X2, . . . , Xm).

Proof. First, we prove the inequality c(X1, . . . , Xm) 6 c(X
(n)
1 , . . . , Xm). Consider arbi-

trary subsets Y1 ⊆ X1, . . . , Ym ⊆ Xm having the same-type property. Take the subset
Y ′

1 ⊆ X
(n)
1 , consisting of all points of clouds corresponding to the points of Y1. Since

the cloud are sufficiently small, Y ′

1 , Y2, . . . , Ym also have the same-type property and

|Y1|/|X1| = |Y ′

1 |/|X
(n)
1 |.

Next, we prove the inequality c(X1, . . . , Xm) > c(X
(n)
1 , . . . , Xm). Suppose that the

subsets (Y ′

1 , Y2, . . . , Ym) of (X
(n)
1 , X2, . . . , Xm) have the same-type property. Define

Y1
def

= {x ∈ X1 : Y
′

1 contains a point of the cloud around x}.

If each cloud lies sufficiently near the original point, the sets Y1, . . . , Ym have the same-type
property, and |Y1|/|X1| is at least |Y

′

1 |/|X
(n)
1 |.

This lemma implies that, in the definition of c(m, d) it is enough to consider only the
sets of the same size, which may be assumed to exceed an arbitrarily large constant.

Polynomial partitioning. For the proof of the lower bound we use the polynomial
partitioning introduced by Guth and Katz. Since the proof in [7] does not track the
dependence on d, we include the relevant calculation. The next lemma is a version of
Theorem 4.1 in [7] with a fully explicit bound.

Lemma 6. If X is a set of n points in R
d and J > 1 is an integer, then there is a

polynomial surface Z of degree D 6 3d22J/d with the following property: each connected
component of Rd \ Z contains at most 2−Jn points of X.
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We rely on the polynomial ham sandwich theorem. We say that the real algebraic
hypersurface {x ∈ R

d : f(x) = 0} bisects a point set X if both sets {x ∈ R
d : f(x) > 0}

and {x ∈ R
d : f(x) < 0} contain at most half of the points of X.

Lemma 7 (Corollary 4.3 in [7]). Let X1, . . . , XM be finite sets of points in R
d with

M =
(

D+d
d

)

− 1. Then there is a real algebraic hypersurface of degree at most D that
bisects each Xi.

Proof of the Lemma 6. Given polynomials p1, . . . , pj and a sign vector ε = (ε1, . . . , εj) ∈
{−1,+1}j, consider the cell of Rd on which the first j polynomials have these signs, i.e.,

Cε
def

= {x ∈ R
d : sign p1(x) = ε1, . . . , sign pj(x) = εj}

Write Xε
def

= X ∩ Cε.
We claim that there are polynomials p1, . . . , pJ of degrees deg pj+1 6 d2j/d such that

|Xε| 6 |X|2−j for every j 6 J and every ε ∈ {−1,+1}j.
We find such polynomials one by one. Suppose that the first j polynomials p1, . . . , pj

have been defined, and that all 2j sets Xε with ε ∈ {−1,+1}j satisfy the condition above.
Observe the inequality

(

d2j/d + d

d

)

=
d−1
∏

i=0

d2j/d + d− i

d− i
>

d−1
∏

i=0

2j/d = 2j.

Taking this into account, Lemma 7 allows us to find a polynomial pj+1 of degree at most
d2j/d + 1 whose zero set bisects each Xε.

Let p be the product of p1, . . . , pJ and let Z be its zero set, we claim that Z is the
desired hypersurface. The degree of p is at most

J−1
∑

j=0

(

d2j/d + 1
)

= d

(

1 +
2J/d − 1

21/d − 1

)

6 3d22J/d.

Since each connected component of Rd\Z is a subset of some Cε, and therefore contains
at most 2−J |X| points of X, the lemma follows.

Also, we we will need the following bound due to Warren. One of its consequences is
that the number of parts into which the surface from Lemma 6 cuts R

d is only slightly
larger than 2J .

Lemma 8 (Lemma 6.2 in [8]). Let f be a real polynomial of degree D in d variables.
Then the number of connected components of Rd \ Z(f) is at most 6(2D)d.
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3 Proof of Theorem 1: the lower bound

Consider any family X1, . . . , Xm ⊆ R
d in general position. Thanks to Lemma 5, we may

assume that all of them have the same size n, which is sufficiently large. Also, since slight
perturbations of points do not change the orientation, by perturbing the sets generically
we may additionally assume that, for any D, no polynomial surface of degree D intersects
more than

(

D+d
d

)

− 1 points.

Fix r
def

= md2d30d
3

. For each i between 1 and m apply Lemma 6 with J = ⌈log2 r⌉ to

obtain polynomial surface Zi of degree at most D0
def

= 6d2r1/d such that each connected
component of Rd \ Zi contains at most n/r points of Xi. By Lemma 8, the total number

of such components is at most k
def

= 6 · 12dd2dr 6 md2d50d
3

/4. Denote by Ci the set of these
components. Having taken n large enough, we observe that each Zi contains at most
(

D0+d
d

)

− 1 6 n/2 points of Xi. Some components have at most n/4k points of Xi; these
account for at most n/4 points of Xi in all. Let C ′

i be the set of components containing
more than n/4k points. Then, |C ′

i| > (n− n/4− n/2)/(n/r) = (n/4)/(n/r) = r/4.
Next, we define an auxiliary (d + 1)-uniform m-partite hypergraph H with parts

C ′

1, C
′

2, . . . , C
′

m. For any distinct i1, i2, . . . , id+1 and any Ci1 ∈ C ′

i1
, C ′

i2
∈ C ′

i2
, . . . , Cid+1

∈
C ′

id+1
put an edge between vertices Ci1 , Ci2 , . . . , Cid+1

if and only if these components can
be pierced by a single hyperplane. The key observation is that the hypergraph H is sparse,
thanks to the polynomial partitioning.

Lemma 9. Any d+ 1 parts of H span at most d20d
2

rd+1−1/d edges.

Proof. Without loss of generality, consider parts indexed by 1, . . . , d + 1. Denote the
polynomials defining Zi by fi.

Consider the following d+ 1 linear maps from R
d2+d−1 = (Rd)d × (R1)d−1 to R

d.

l1(x1, . . . , xd, α1, . . . , αd−1)
def

= x1,

l2(x1, . . . , xd, α1, . . . , αd−1)
def

= x2,

...

ld(x1, . . . , xd, α1, . . . , αd−1)
def

= xd,

ld+1(x1, . . . , xd, α1, . . . , αd−1)
def

=
d−1
∑

i=1

(αixi) +
(

1−
d−1
∑

i=1

αi

)

xd.

Denote by Z the algebraic hypersurface in R
d2+d−1 = (Rd)d × (R1)d−1 defined by the

polynomial

h(x1, . . . , xd, α1, . . . , αd−1)
def

=
d+1
∏

i=1

fi

(

li(x1, . . . , xd, α1, . . . , αd−1)
)

,

and denote by C the set of corresponding connected components.
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By the definition of h, the image of R
d2+d−1 \ Z under any li belongs to R

d \ Zi.
Moreover, since li is continuous and the image of a connected set under a continuous map
is connected, the image of any set in C is contained in exactly one of the sets in Ci. This
way ℓ1 × ℓ2 × · · · × ℓd+1 induces a well-defined map L : C → C1 × · · · × Cd+1.

We observe that any tuple (C1, . . . , Cd+1) ∈ C ′

1 × · · · × C ′

d+1 ⊆ C1 × · · · × Cd+1 that
forms an edge in H is in the image of L. Indeed, the sets C1, C2, . . . , Cd+1 are open; so
if some hyperplane pierces them, one can find points x1 ∈ C1, x2 ∈ C2, . . . , xd+1 ∈ Cd+1

such that xd+1 is an affine combination of x1 through xd, say xd+1 =
∑d

i=1 αixi with
∑d

i=1 αi = 1. In this case, the image of (x1, . . . , xd, α1, . . . , αd−1) under l1 × l2 × · · · × ld+1

lies in C1 × C2 × · · · × Cd+1.
The reasoning above implies that the number of edges spanned by sets C ′

1, . . . , C
′

d+1 in
H does not exceed |C|. Since polynomial h depends on d2+d−1 variables and has degree at
most 12d3r1/d, Lemma 8 gives the bound of 6(24d3)d

2+d−1r(d
2+d−1)/d 6 d20d

2

rd+1−1/d.

From each C ′

i pick an element Ci independently at random. We claim that, with
positive probability, the d + 1 vertices C1, . . . , Cd+1 form an independent set in H. This
would imply that the sets C1∩X1, C2∩X2, . . . , Cd+1∩Xd+1 have the same-type property.
Since each of these has at last n/4k elements, that would conclude the proof.

The claim follows from Lovász Local Lemma. Indeed, for the set I ⊂ [m] of size
d + 1 denote by BI the event that vertices Ci ∈ C ′

i with i ∈ I form an edge in H. Since
|C ′

i| > r/4, Lemma 9 shows that probability of such event is at most 4d+1d20d
2

r−1/d. If
I ∩ J = ∅, then the events BI and BJ are defined by disjoint sets of random choices.
Hence, the natural dependence graph has degree at most (d + 1)

(

m
d

)

6 (d + 1)(me)d/dd.
Since with our choice of the constant r we have

e
(d+ 1)(me)d4d+1d20d

2

r1/ddd
6

d30d
2

md

r1/d
= 1,

the condition of the symmetric Local Lemma (see e.g., [1, Corollary 5.1.2]) is satisfied
and the event

⋂

I BI holds with positive probability.

4 Proof of Theorem 1: the upper bound

To prove an upper bound on c(r,m), we provide a series of constructions of arbitrarily
large sets X1, . . . , Xm without large subsets with the same-type property. A set P ⊂ R

d

of size
(

n
d

)

is a grid set if there exist n hyperplanes in R
d whose set of d-wise intersections

is P . Our constructions will be suitable small perturbations of grid sets. The purpose of
the perturbation is to ensure general position.

Convex sets intersect the grid sets and their perturbations slightly differently. The
next lemma says that the difference is small, because the boundary of a convex set meets
a grid set in a negligible fraction of points.

Denote by ∂C the boundary of a set C ⊂ R
d.

Lemma 10. Suppose that P ⊂ R
d is a grid set of size

(

n
d

)

. Then for any compact convex
set C we have |∂C ∩ P | 6 2

(

n
d−1

)

.
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Proof. We prove this by induction on d. If d = 1, then C is a segment, which has two
boundary points. So, assume that d > 1 and that the lemma holds for d− 1 in place of d.
Let H1, . . . , Hn be the n hyperplanes generating the grid set P . Put Ci

def

= C ∩Hi. Write
∂Ci for the relative boundary of Ci inside the hyperplane Hi.

Consider an arbitrary point x ∈ ∂C ∩ P . Since x ∈ ∂C, we can find a hyperplane H
passing through x such that C lies on one side of H. Then, at least d − 1 hyperplanes
among H1, . . . , Hn pass through x but differ from H. For each such Hi, the codimension-2
subspace Hi ∩H contains x and bounds Ci inside Hi, implying that x ∈ ∂Ci.

Since this holds for every x ∈ ∂C ∩ P , it follows that

|∂C ∩ P |(d− 1) 6
n

∑

i=1

|∂Ci ∩ P |. (1)

Observe that Ci ∩ P is itself a grid set inside the (d− 1)-dimensional hyperplane Hi.
Therefore, bounding |∂Ci ∩ P | by induction, we obtain

|∂C ∩ P | 6
n

d− 1
· 2

(

n− 1

d− 2

)

= 2

(

n

d− 1

)

.

Fix a grid set X of size
(

n
d

)

. Let X1, . . . , Xm be small perturbations of X chosen so
that the family X1, . . . , Xm is in general position. We shall show that these m sets do not
contain large subsets with the same-type property.

For x ∈ Xi, write P (x) for its predecessor, the point of X that x is a perturbation of.
Similarly, write P (Y ) for the set of predecessors of a set Y ⊂ Xi. Let H be the set of n
hyperplanes generating the grid set X.

Consider any sets Y1, . . . , Ym with the same-type property such that Yi ⊆ Xi. Writing
intA for the interior of a set A, define, for each i = 1, 2, . . . ,m,

Zi
def

= X ∩ int conv Yi.

Breaking the set P (Yi) into the boundary and the interior parts we obtain

P (Yi) =
(

P (Yi) ∩ int convP (Yi)
)

∪
(

P (Yi) ∩ ∂ convP (Yi)
)

⊆
(

X ∩ int convP (Yi)
)

∪
(

X ∩ ∂ convP (Yi)
)

.

If the perturbation defining Yi is sufficiently small, X ∩ int convP (Yi) ⊆ Zi, and so

P (Yi) ⊆ Zi ∪
(

X ∩ ∂ convP (Yi)
)

.

Since |Yi| = |P (Yi)|, Lemma 10 tells us that

|Yi| 6 |Zi|+ |X ∩ ∂ convP (Yi)|

6 |Zi|+ o(|X|) as n → ∞.
(2)

Since Zi ⊂ conv Yi, Lemma 4 implies that no hyperplane in H intersects more than d
sets among Z1, . . . , Zm. By the pigeonhole principle, for some i, set Zi intersects at most
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dn/m hyperplanes of H. Hence, this Zi is contained in the grid set generated by dn/m
hyperplanes, implying that

|Zi| 6

(

dn/m

d

)

= (d/m)d
(

n

d

)

(

1 + o(1)
)

= (d/m)d|X|
(

1 + o(1)
)

as n → ∞.

From this and (2), it follows that c(m, d) 6 (d/m)d.

Remark. The preceding argument also shows that the upper bound of (d/m)d holds for
the non-partite version of the same-type lemma. Precisely, if X is a slight perturbation of
a grid set of size

(

n
d

)

, and Y1, . . . , Ym ⊂ X are disjoint sets with the same-type property,

then at least one of Yi is of size at most
(

dn/m
d

)(

1 + o(1)
)

.

5 Arbitrarily good approximations to c(m,d)

We now turn to the task of computing arbitrarily good approximations to c(m, d). We
use the following well-known result of Vapnik and Červonenkis about the existence of
ε-approximants.

Lemma 11 (Section 1.5 of [17]). Let F ⊆ 2X be a set family of VC-dimension D. Then,
for any 0 < ε < 1 there exists a set A ⊆ X of size at most 32

ε2
D ln 16D

ε2
such that

∣

∣

∣

∣

|F ∩X|

|X|
−

|F ∩ A|

|A|

∣

∣

∣

∣

6 ε for all F ∈ F .

For the purpose of estimating c(m,n), this allows us to limit the search to bounded-size
families.

Proposition 12. For any natural numbers m, d and any ε > 0 there exist sets
A1, . . . , Am ⊆ R

d of size bounded by a computable function of m, d, ε such that
|c(A1, . . . , Am)− c(m, d)| 6 ε.

Proof. Pick finite sets X1, . . . , Xm ⊂ R
d in general position such that c(X1, . . . , Xm) <

c(m, d) + ε/2. Let F be the family of open polytopes in R
d with at most m facets, its

VC-dimension is at most O(dm logm) (see [10, Lemma 10.3.1 and Proposition 10.3.3]).
Apply Lemma 11 to each Xi and F with ε/2 in place of ε to obtain sets Ai of size bounded
by some function of m, d, ε.

We claim that c(m, d) 6 c(A1, . . . , Am) 6 c(m, d) + ε. Since the former inequality
follows from the definition of the constant c( · · · ), it remains to show the latter one. To
that end, consider arbitrary subsets Y1 ⊆ A1, . . . , Ym ⊆ Am with the same-type property.
By Lemma 4, for each i the set Yi is separated from Y1 ∪ · · · ∪ Yi−1 ∪ Yi+1 ∪ · · · ∪ Ym by
some hyperplane, which we denote by Hi. The hyperplanes H1, . . . , Hm form a hyperplane
arrangement; each Yi is contained within a single cell of this arrangement, which we denote
by Pi. Since Pi is an intersection of m halfspaces, each Pi is an open polyhedron with
at most m facets. Observe that the sets P1, . . . , Pm have the same-type property; this
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implies that P1 ∩X1, . . . , Pm ∩Xm have the same-type property as well, and so, for some
i, we have

|Pi ∩Xi|

|Xi|
6 c(m, d) + ε/2.

Therefore, for this value of i, we have

|Yi|

|Ai|
6

|Pi ∩ Ai|

|Ai|
6

|Pi ∩Xi|

|Xi|
+ ε/2 6 c(m, d) + ε.

Since the sets Y1, . . . , Ym are arbitrary, this completes the proof.

The approximability of the constants c(m, d) now follows from the famous result of
Tarski on the decidability of the theory of real closed fields [16] (see for example [3,
Theorem 2.77] for a modern exposition). Indeed, the value of c(A1, . . . , Am) depends only
on the orientations of (d + 1)-tuples from A1 ∪ · · · ∪ Am. The existence of A1, . . . , Am

with specified orientations of (d + 1)-tuples can be expressed as an existential sentence
in the language of ordered fields. This sentence is decidable by the aforementioned result
of Tarski (though deciding existential sentences can be done more efficiently than general
sentences; see, e.g., [3, Algorithm 13.1]). So, the largest value of c(A1, . . . , Am), subject
to |Ai| = Bi, can be computed by iterating over all possible sign patterns and checking if
they are realizable by point sets in R

d.
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