Distributed Optimization and Learning with Automated Stepsizes

Ziqin Chen and Yongqiang Wang, Senior Member, IEEE

Abstract—The selection of stepsizes has always been an
elusive task in distributed optimization and learning. Although
some stepsize-automation approaches have been proposed in
centralized optimization, these approaches are inapplicable in
the distributed setting. This is because in distributed optimiza-
tion/learning, letting individual agents adapt their own stepsizes
unavoidably results in stepsize heterogeneity, which can easily
lead to algorithmic divergence. To solve this issue, we propose
an approach that enables agents to adapt their individual
stepsizes without any manual adjustments or global knowledge
of the objective function. To the best of our knowledge, this is
the first algorithm to successfully automate stepsize selection in
distributed optimization/learning. Its performance is validated
using several machine learning applications, including logistic
regression, matrix factorization, and image classification.

I. INTRODUCTION

We consider a group of m agents communicating through
a network to cooperatively solve the following optimization
problem:

1 m
i = i\T), 1
min f0) = 53 A ®
where f;(z) : R® — R,i € {1,---,m} is a local objective

function known to agent 7 only.

Nowadays, substantial progress has been made in solving
the above distributed optimization/learning problem [1]-[8].
In all existing results, the stepsize is a crucial parameter
that determines the performance of convergence. However,
determining a good stepsize usually incurs tedious manual
adjustments [9]-[11]. The distributed setting further com-
plicates stepsize selection because in this case, each agent
independently adapts its stepsize using its partial view of the
objective function, which leads to stepsize heterogeneity that
can easily lead to algorithmic divergence. Our experimental
results in Fig. 1 show that the divergence issue becomes
even more acute when the data distribution is heterogeneous
across the agents. Moreover, existing distributed optimiza-
tion and learning algorithms typically choose a constant or
diminishing stepsize, whose selection requires knowledge of
the communication graph or the Lipschitz constant of the
global objective function, which is generally hard to obtain
in practical distributed applications.

Recently, some stepsize-adaptation approaches have been
proposed in distributed optimization and learning. For ex-
ample, [12] introduced a backtracking line-search method
to adapt stepsizes in distributed optimization. However, it

The work was supported in part by the National Science Foundation under
Grants ECCS-1912702, CCF-2106293, CCF-2215088, CNS-2219487, and
CCF-2334449.

Ziqin Chen and Yonggiang Wang are with the Department of Electrical
and Computer Engineering, Clemson University, Clemson, SC 29634 USA
(e-mail: yongqiw @clemson.edu).

requires execution of another subroutine with additional
evaluation of gradients, and hence incurs heavy computa-
tional overheads. [13] used the Barzilai-Borwein stepsize
in a gradient-tracking-based algorithm, which, unfortunately,
requires knowledge of the global Lipschitz constant and the
strongly convex coefficient. Several adaptive gradient meth-
ods have also been proposed to automate stepsize selection in
distributed learning [14]-[16]. Nevertheless, these methods
still require laborious tuning for learning-rate parameters. To
the best of our knowledge, we still lack a solution which
is capable of automating stepsize selection in distributed
optimization and learning without any manual adjustments.

In this paper, we propose an approach that can automate
stepsize selection in distributed optimization and learning
without any manual adjustments or global knowledge of
the objective function. Our basic idea is inspired by a re-
cently proposed stepsize-automation approach for centralized
optimization [17]. It is worth noting that directly apply-
ing the centralized stepsize-automation method in [17] to
the distributed setting will unavoidably make the stepsize
heterogeneous across the agents, which can easily lead to
divergence. Hence, we propose to adjust the centralized
stepsize automation approach in [17] and then combine the
adjusted version with gradient tracking to automate stepsize
selection in distributed optimization and learning. To the best
of our knowledge, this is the first algorithm that successfully
automates stepsize selection in distributed optimization and
learning without any manual adjustments. Our numerical
experiments with logistic regression, matrix factorization,
and image classification confirm the effectiveness of the
proposed approach in real-world machine learning problems.
In fact, the proposed algorithm was shown to have better
learning and test accuracies than existing popular algorithms
for distributed optimization and learning.

Notation: We use R, N, and NT to represent the sets
of real numbers, nonnegative integers, and positive integers,
respectively. We denote an m-dimensional column vectors
whose elements are 0 and 1 as 0,,, and 1,,, respectively. We
write an n-dimensional vector as x € R™, with ||z|| denoting
its Euclidean norm. For vectors z1,: - -, x,,,, we denote their
stacked column vector by & =col{z1, - ,z,,}. We add an

overbar to a variable to denote the averaged version of all
agents, e.g., z= L 3" z;.

II. PROBLEM STATEMENT

We assume that a network of m agents interact on an
undirected graph G([m], &), where [m] is the set of agents
and £ is the set of edges. The interaction strength is described
by a weight matrix W = {w;;} € R™*™, in which w;; > 0
if the edge (¢,j) € & exists, and w;; = 0 otherwise. The

neighbor set A; of agent 7 is defined as the set of agents
{jlw;; > 0}, which always includes itself. We make the
following standard assumption on the interaction:
Assumption 1: W = w;; € R™*™ satisfies 17 W =
17, W1,, = 1,,, and p = max{|A2|, [Am|} < 1, where
Am < Ap—1 < --- < A; =1 denote the eigenvalues of W.
In most existing distributed optimization and learning
algorithms [1]-[6], [18]-[23], the stepsize is selected as a
constant value (usually denoted as 1) or a decaying sequence
like t%, where ¢ is the iteration index and v is some positive
constant. However, the selection of such 1 and v requires la-
borious manual adjustments to achieve effective convergence.
Generally, to ensure provable convergence, the stepsize has
to be below a threshold value which is determined by the
interaction graph or the Lipschitz constant of the global
objective function, which, in general, is difficult to obtain
in the distributed setting. To make things worse, even if
a good stepsize is obtained after tedious adjustments, it is
usually highly dependent on the network size, topology, and
datasets, making it hard to migrate to other applications or
even datasets.

III. DISTRIBUTED STEPSIZE-AUTOMATION ALGORITHM

To avoid tedious and repetitive stepsize tuning, we propose
a stepsize-automation approach for distributed optimization
and learning, as summarized in Algorithm 1.

Algorithm 1 Stepsize-Automated Distributed Optimization
and Learning (from agent ¢’s perspective)

1: Input: Random initialization z; o € R" and 7,9 > 0;
yi,0 = Vfi(zio).

2. fort=0,---,T—1do

3 Ty L = Tig — NitYist

4: Tit4+1 = E;nzl wijl‘j’%

5 Yi,t = Yit + Vfi(zitt1) — Vi(zir)

6: Yitr1 = Z;'n:l WijYj, L

7 m=min /2 b grem el)

8: end for

In Algorithm 1, the stepsize for each agent ¢ € [m] is
updated locally according to the following rule:

. 1 lZit41 — @il

e mm{ﬂm*“ Tvicetl 20V (i) - Vfim,t)(lz})

In (2), the first argument of the min function is used
to guarantee that the stepsize does not increase too fast.
The second argument is used to estimate the inverse of the
average gradient of all agents, and the third argument is
used to approximate the inverse of the Lipschitz constant
of the local gradient. It can be seen that the stepsize strategy
in (2) only uses local gradients and variables, and is tuning-
free. This approach differs from existing distributed adaptive
stepsize approaches in [13]-[16], which require knowledge
of the global Lipschitz constant. Moreover, unlike distributed
optimization algorithms [18]—[22] that restrict the stepsize
to be below the reciprocal of the global Lipschitz constant,

1012
Distributed gradient descent using
10'0F stepsize-automation method (3)
8
o
@ 108+
0]
)
& 10°f
[
>
<
10* WW
102

0 20 40 60 80 100 120 140 160 180 200
lteration Index

(a) Gradient evolution

1723
(0]
N
17}
Q.
2
%) |l
§%)
z Agent1 Agent6 “‘T
g Agent2 Agent? It
< Agent3 Agent8 " |
108k Agentd Agent9 10 A
Agent5 Agent10| |
10790 192 194 196 198 200
10-10 1 1 1 1 1 1 L L L
0 20 40 60 80 100 120 140 160 180 200
Iteration Index
(b) Stepsize evolution of all agents
Fig. 1. Matrix factorization using distributed gradient descent [1] with

10 agents. Each agent runs the centralized stepsize-automation approach
in [17]. We use the “MovieLens 100k™ dataset under heterogeneous data
distribution.

the stepsize strategy in (2) is not subject to this limitation,
thereby offering potentially fast convergence, as evidenced
in our experimental results in Fig. 2-Fig. 4.

Our stepsize-automation approach in (2) is inspired by the
centralized stepsize automating approach in [17]:

Ui [Ze41 — 24| }
b

= mi 1
Mes1 mm{ T " 2T () — VI @])

However, directly applying the centralized stepsize-
automation approach (3) to the distributed setting can easily
lead to algorithmic divergence. The reason lies in that
allowing each agent to implement (3) using its own local
gradients and optimization variables will lead to heteroge-
neous stepsizes across the agents. What’s even worse is
that this stepsize heterogeneity is time-varying as agents
adapt their stepsizes over iterations, which may easily lead
to divergence, as confirmed in our numerical experimental
results in Fig. 1.

IV. MAIN RESULTS

In this section, we prove that Algorithm 1 can indeed
avoid algorithmic divergence even when individual agents’
stepsizes are heterogeneous and time-varying. To this end,
we make the following standard assumption, which is com-
monly used in distributed optimization under heterogeneous
stepsizes [18]-[21]:

Assumption 2: Each local objective function f;(z) is
differentiable, /;-smooth with some constant [; > 0, and ;-
strongly convex with some constant p; > 0.

Lemma 1: [17] Under Assumption 2, the stepsize 7; ¢

in Algorithm 1 satisﬁes s < i < g

Let us define 1y = maxteNﬂZe[m]{m’t} <

s With

/Lmln £ minze[m]{uv} and 7min 2 mingen+ ze[m]{nii} >
with Lpax = max;e(m{li}, respectively.

Lemma 2: Under Assumption 1 and Assumption 2, the

following inequalities always hold for Algorithm 1:

2lmax

S C2,

4)

lim ||act—1m®5ct\|2 < ¢y and lim Hyt—1m®gtH2
t—o0

with ¢; = 7= =
Proof: The standard consensus result in [24] implies

8(3 12
8m p)z and ¢y — (3+p)® mmaxp]

it — 1 @ Typqa]| < P||$g 1, ®@T4|,)

Hyt+1 - 1m 0y gt-i-l” < pHy% - 1m (29 ?jt—&-l”- (6)

Based on the 3rd step of Algorithm 1, we have

||$% —]-m & .’ft+1||

_ o (7
<z — L @ T || + Iy |l + |1 @ 727

The update in the 7th step of Algorithm 1 implies ||n,y,|| <
v/m and

||iL’é — 1m (9 i’t+1|| S ||:1:t - 1m ®.’Z’t|| + 2\/% (8)

Combing (8) and (5), and then iterating the obtained relation
from O to ¢ yield

|ze — L, @ || — b1 < p' ([0 — Lo, ® To|| — b1), (9)

with b1 = 21_@. Taking squares and then the limit on both
sides of (9), we arrive at the first inequality in (4).

We proceed to prove the second inequality in (4). Step 5
of Algorithm 1 implies §; = —+ > V f;(z;;). Combing
this relationship and Assumption 2, we obtain

lys =1 @ Gesall < MYy — Lo @ Gell + 2maxcl[@e 41 — 24
(10)
Next, we characterize ||x;+1 — ;|| in (10):
[@i1 — @] < (|1 — e | + (| — @]
< @41 = L @ Tega || + [Lin ® Tegr — 24 || + Vim0
ST +p)ley — L @ Zeqa || + vm

< (L4 p)(€ + 2v/m) + vim, (1
where € is given by & = %@—&-pt(ﬂwo— m®Tg||— 2\/7))'

Note that in the derivation, we have used the update mle in
step 3 of Algorithm 1 and the relation ||n,y,| < 1/m in the
second inequality. Moreover, we have used (5) in the third
inequality, and have used (8) and (9) in the last inequality.
Substituting (11) into (10), and then using (6), we obtain

Y1 — Lo @ Ul < pllyy — Lo @ Gl (12)
+ 2lmaxp (L4 p)(€ +2vm) + Vm) .
Iterating the inequality (12) from O to ¢ yields
1y = 1 @ Gell = b2 <p" (lyo—1m @ Joll —b2), (13)

with by = Zlmaxp (£+3x/ﬁ+(2\/ﬁ+£)p). Taking squares and
then the limit on both s1des of (13), we obtain the second
inequality in (4). []

We proceed to quantify the distance between z;; and the
optimal solution z*. We first use the following relationship:
= T — 2]

+ 2<j;t+1 — jh Ty — JI*> + 2<i‘t+1 - i’t, i‘t_t,_l - i‘t>. (14)

To bound the right hand side of (14), we need the
following Lemma 3 and Lemma 4.

Lemma 3: Under Assumption 1 and Assumption 2, the

following inequality always holds for Algorithm 1:

|Ze1 — 2*))* = |2 —

2(Tpp1 — T, Ty —) <20:(f (%) — f(Z4)) (15)
+ (a1 +7e(az —)|z — ™[+ Are, VE >0,
2
with a1, az € (0,1) and Ay = lwslimes ||, — 1, @ 7,)|2 +

2
ZT;:Z ||yt -1, ® gtH2'

Proof: Based on the 3rd step of Algorithm 1, we have
<5Ut+1 — jﬁh i‘t — JU*>
—(MeYe — MY, Te — x°) — (Nee, T — 7).
Using the Young’s inequality, the first term on the right hand
side of (16) satisfies following relation for any a; € (0,1):

— (Tt —

2 * 2
< E%Z”mt Yit —)| +—||x I°

(16)

ﬁtgt, Ty —a")
17

Using Assumption 2, the second term on the right hand side
of (16) satisfies the following inequality for any as € (0,1):
= = * l12nax =
= (G0, T — ") < Sy — 1 @ 7|

. - 2a2 (18)
+C§—*)Wrﬂvw+f() 1 (@),
Plugging (17) and (18) into (16) yields (15). |

Lemma 4: Under Assumption 1 and Assumption 2, the
following inequality always holds for Algorithm 1:

1+ ay

2(Tp1 — Ty, Tpg1 — Tp) < (+ag +a7 — \/iﬂﬁt)

- 1+a _ _
X 2 = a2+ (57 + as) 741 — 20l
+2V20(f(Z1-1) = f(Z1)) + Aoy, VE >0, (19)
where a3 to a; are arbitrary numbers within (0,1) and
2
Ay is given by Aoy = (1 + 314 + 727"“2"7[”“) Lz, —
1, ® Cft||2 (nmax + nmax) 2 ||yt -1, ® ytH2 (1 =+

2
a4)71L||mt 1= L @ 7 1”2 (nm“ + n;;x)'riHyt 1

Ly @ i |2+ Zasslis (14 p)¢ + 2/mp + 3y/m)” with
€ =202 4 pt(||lmo — Ly ® To|| — ZL22).

Proof: To prove the inequality in (19), we use the
following decomposition:

m

_ o _ 2 _ _
2Tpq1 — Ty, Ty — Tt) = - z; (MitYit—1, Tegp1 — Ty)
i
2 m
e Mt (Yit — Yirt—1)s Teg1 — Ty - (20)
i—1

Based on step 5 of Algorithm 1, we have

m

2 _ _
o _ 1<77i,t(yi,t - yi,t—l)vxt+1 — Tt)
1=
1 1 _ a2 _ 9
§ 1+7 - (”wt*]-m@xt” + ||wt—1 *]-m,®xt—l||)
a4 m
1+as, _ _ 1+as,_ _
t— 1Ze1 — Ze|* + 5 % — Ze—1 ||

277de
o =L @ Gl lly s —1m @ 3l). @1
Using the Young’s inequality and the definition (2) yields

2MNinax
asm

2 m
*EZ (Mi,tYit—1, Teg1 —) < [E77
i=1

+ a5 ||Ze1 — Tel)® + (a6 + a7 — V207 |Z — T ||

+ Xy, — 1, © G ||P 4 TRy — 1, @ F?
agm arm
+2v2, (f(Z4—1) — f(Z0)) - (22)

By substituting the results in inequalities (10), (11), (21),
and (22) into (20), we can arrive at (19) in Lemma 4. |
Theorem 1: Under Assumption 1 and Assumption 2,

the optimization error of Algorithm 1 satisfies

lm ||@;¢41 — x*||2
t—o0

1 2 2 2 2
< 6mp ! 8p a2+ 3lmax n
(1=p3? 1-v](1-p) i

+8(3 +p)212,..p* [(36 + 3v2)lmax N
(1 - p)4 \/i,uiqin f/”’min(l - p)2
(23)

for all ¢ > 0, where ~ is given by v = max{vy1,y2,v3} with

_ _ 6lmax—3v2,
Y1 17m,'}/2 #,and73€[+ﬁ,l).

Proof: Incorporating (15) and (19) into (14) yields

3+ 1203
fiu’min

2415, (3 +)

R
+ (277t + 2\/§ﬁt> (f(ze) = f(z7))
< (a1 + Me(az — i) + 1) |2 — 2*|?

1+ay
(4

+2V20, (f(Z4-1) — f(

-) e — 2P

(24)

+ag + a7 — \/il“?t) % — o1 ||
M) 4+ Ary + Aoy

We now select parameters a; (i = 1,---,7) to control
the coefficients of the items on the right hand side of (24):
(i) We set a1 = nmmji and ay = %[, Wthh imply
a1 + min(az — 1) +1 <91 x 1, where 71 = 1 — $0minfl €
(0,1) is always valid since My < % holds according
to Lemma 1. (ii)) We select a3 = a4 = ?ﬂnmin and
as = ag = ay = %ﬂnmin, which imply 1+“4 + ag + a7 —
V 2/ min < 7 (F52 % € (0,1).
(iii) Based on (2), we have 7y < V20 2n:—1, which further
implies 2v/27; < v3(27;_1 4+ 2v/27,_1), where 73 is within

— a5) with Yo =

*]-m & gt—l”2

the interval [ﬁ,l). Defining v = max{~v;, 72,73} and

then iterating (24) from 1 to ¢ 4+ 1, one obtains

_ * 1 \/E,anmin _
@1 — |2+ (5 — S5

5 |Ze1 — Z¢]?
+ (25 +2v30) (F(@) - f(2)
* 1 \/57 min _ _
S A e S [k

2
(A1 + A)1 =~

21+ V2)iio(f(@0) — f(2))| + o
(25)
By taking the limit on both sides of (25) and combining
the definitions of A; ; and As, in Lemmas 3 and 4 with
Lemma 2, we arrive at (23). |
Theorem 1 shows that besides avoiding divergence, Al-
gorithm 1 can ensure convergence to a neighborhood of the
optimal solution x*. The size of this neighborhood is only
determined by the size of the network m, the second largest
absolute eigenvalue p of the weight matrix W, the global
Lipschitz parameter l,,,,, and the global strongly convex
coefficient fiyiy. A larger ppyi, and a smaller [y, will lead
to more accurate convergence.

V. NUMERICAL EXPERIMENTS

In this section, we used three real-world machine learning
problems to evaluate the performance of Algorithm 1, includ-
ing logistic regression using the “Mushroom” dataset and the
“Covtype” dataset, respectively, matrix factorization using
the “MovieLens 100k” dataset, and image classification using
the “MNIST” dataset. For each experiment, we considered

» heterogeneous data distribution (the distribution of data is

non-identical on different agents), which is highly likely in
distributed learning applications. In all experiments, we com-
pared Algorithm 1 with distributed optimization algorithms
DSGD [25], DSGD with Polyak’s momentum (DSGD-
P) [25], and DSGD with Nesterov momentum (DSGD-
N) [25]. We also compared with the distributed stepsize adap-
tation methods DGM-BB-C [13], DADAM [15], DAMS-
Grad [16], and DAdaGrad [16]. The interaction pattern is set
as a ring network, where W ={w;;} is given by w;; = 0.4
and Wi i1 =W; -1 =0.3.

A. Logistic Regression

For the first experiment, we ran an ls-logistic regression
classification problem using the ‘“Mushroom” dataset and
the “Covtype” dataset [26], respectively. The local objective
function for agent i is given by f;(z) = D%_Zf:il(l -
bij)a; jx—log(s(a] ;x))+ % (x|, where D; is the number
of samples, r; > 0 is a regularization parameter, (a; ;,b; ;)
are samples, and s(t)=1/(1+ e ") is the sigmoid function.
Following [17], we made T propomonal to D , and selected
the initial stepsize as f with L; = 4D |42 + 7 for A; =
col{a; j, -~ ,aip,}, 7 € D;. We spread the data across
the agents based on the value of the target, which results
in heterogeneous data distributions. For DSGD, DSGD-P,
and DSGD-N, the stepsize is fixed to L% For DADAM,

1072 %‘M
= W R
Q0
e
-6
© 10
]
S
-10]
©10
['y
j: Proposed algorithm DSGD-N
101 DGM-BB-C DADAM |
DSGD DAMSGrad|
—e—DSGD-P DAdaGrad S

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000
Iteration Index

(a) The “Mushroom” dataset, gradient evolution

108 - - - - -
Proposed algorithm DSGD-N
DGM-BB-C DADAM
DSGD ———DAMSGrad|
z DSGD-P DAdaGrad
2102
5 10
©
<
o
[0}
(=}
s 1
210" 7
) M
10°

.
0 400 800 1200 1600 2000 2400 2800 3200 3600 4000
Iteration Index

(c) The “Covtype” dataset, gradient evolution

4 T T T T T T T T
10 [—+—Proposed algorithm DSGD | DSGD-N DAMSGrad |
—+—DGM-BB-C —+—DsGp-p DADAM —}—DAdaGrad
3
10
[}
N
a
8 102+
2]
[
[
© 10
g
= ool
10°
0 400 800 1200 1600 2000 2400 2800 3200 3600 4000
Iteration Index
(b) The “Mushroom” dataset, stepsize evolution
1072 - - - - -
—+—Proposed algorithm ———DSGD-N
—}—DGM-BB-C DADAM
—+—DsGD —+—DAMSGrad
o ——DAdaGrad
N
[
Q.
2
%]
[}
o
o
@
>
<

10710 5

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000

Iteration Index

(d) The “Covtype” dataset, stepsize evolution

Fig. 2. Comparison of logistic regression results: panels (a) and (c) depict the average gradient, and panels (b) and (d) depict the average stepsize of all

agents.

DAMSGrad, and DAdaGrad, we used the default parameters
with 81 = 0.9 and B3 = 83 = 0.99 given in [16].

Fig. 2 shows that our Algorithm 1 outperforms existing
algorithms in terms of both convergence speed and accuracy.
It is worth noting that in Fig. 2-(c), DGM-BB-C is slightly
faster than our algorithm under the “Covtype” dataset.
However, DGM-BB-C is very unstable even for strongly
convex and smooth objective functions, because in both the
experiment on the “Mushroom” dataset and the experiment
for matrix factorization, it leads to divergence (see details
in Fig. 2-(a) and Fig. 3). Moreover, DGM-BB-C requires
global knowledge of the Lipschitz constant and the strongly
convex coefficient, which makes it hard to implement in
many practical distributed applications.

B. Matrix Factorization

For the second experiment, we performed the matrix fac-
torization problem using the “MovieLens 100k dataset [27],
where gradients are not globally Lipschitz. The local objec-
tive function for agent i is given by f;(U,V) = L|UVT —
Al||§J with A; eR™*" U ¢ R™*10 and V € R"*10. We split
data samples into ten classes and assigned each class to one
single agent. In our comparison, we used the best stepsize
that we could find for existing distributed algorithms such
that doubling the stepsize leads to nonconverging behaviors.

Fig. 3 shows that Algorithm 1 has a faster and more
accurate convergence than existing algorithms even when the
objective functions are non-smooth and nonconvex.

C. ResNet-18 Training for Image Classification

We used a standard ResNet-18 architecture and trained it
to classify images from the “MNIST” dataset [28] with cross-

entropy loss. We used batch size 60 for all algorithms. In the
comparison, following [25], we set 1, = % for DSGD,
DSGD-P, and DSGD-N. Fig. 4 shows that our algorithm has
better training and test accuracies than existing distributed
algorithms.

108 - - - -
Proposed algorithm DSGD-N
s DGM-BB-C DADAM
10§ DSGD ——DAMSGrad| |
< L |—o—DsGD-P DAdaGrad
[T
5 10
©
o
3
© 10
g
ol
S 10%F]
< A A
10'F 1
10°

.
0 100 200 300 400 500 600 700 800 900 1000
Iteration Index

(a) The “MovieLens 100k™ dataset, gradient evolution

10°
o
N
7]
a
2
n —+—Proposed algorithm ——DSGD-N
1 —}—DGM-BB-C DADAM
© —+—DsGD —+—DAMSGrad|
g 10 —+—DscD-P — | DAdaGrad | 1
<
=
10-12

0 100 200 300 400 500 600 700 800 900 1000
Iteration Index

(b) The “MovieLens 100k dataset, stepsize evolution

Fig. 3. Comparison of matrix factorization results

0.8f

>

(&}

S

0.6

Q

<

o

£04

= Proposed algorithm DSGD-N

[DGM-BB-C DADAM

L DSGD DAMSGrad
02 DSGD-P DAdaGrad | |

0
0 1 2 3 4 5 6 7 8 9 10

Epoches

(a) The “MNIST” dataset, training accuracy

0.8

>

[$)

Sos6

Q

Q

<

304

& Proposed algorithm DSGD-N
DGM-BB-C DADAM

DSGD
DSGD-P

DAMSGrad|
DAdaGrad

0.2

Epochs
(b) The “MNIST” dataset, test accuracy

102 T T T T T T T T T
E ——Proposed algorithm DSGD-N
£ |——bGMm-BB-C DADAM
[|[—+—DseD —1—DAMSGrad

100t | —t—DsGD-P — | DAdaGrad

I3
I

ST AT

Average Stepsize
5
S

o
S
IS

N
S,
&

Epochs
(c) The “MNIST” dataset, stepsize evolution

Fig. 4. Comparison of image classification results

VI. CONCLUSION

In this paper, we have proposed an algorithm that can
automate stepsize selection in distributed optimization and
learning with proven convergence guarantees. Note that in
the distributed setting, allowing individual agents to adapt
their stepsizes results in time-varying stepsize heterogeneity
which can easily lead to divergence, so this problem is
highly nontrivial. To the best of our knowledge, our approach
is the first to successfully automate stepsize in distributed
optimization and learning without any manual adjustment.
Numerical experimental results on several machine learning
problems confirm the effectiveness of the proposed approach.

REFERENCES

[1] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1, pp.
48-61, 2009.

[2] W. Deng, X. Zeng, and Y. Hong, “Distributed computation for solving
the sylvester equation based on optimization,” IEEE Control Syst. Lett.,
vol. 4, no. 2, pp. 414-419, 2019.

[3]

[4]

[5]

[6]

[7]

[8]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

M. T. Toghani, S. Lee, and C. A. Uribe, “Pars-push: Personalized,
asynchronous and robust decentralized optimization,” IEEE Control
Syst. Lett., vol. 7, pp. 361-366, 2022.

S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al., “Distributed
optimization and statistical learning via the alternating direction
method of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1,
pp. 1-122, 2011.

R. Rostami, G. Costantini, and D. Gorges, “ADMM-based distributed
model predictive control: Primal and dual approaches,” in Proc. 56th
IEEE Conf. Decis. Control, 2017, pp. 6598—6603.

R. Carli and M. Dotoli, “Distributed alternating direction method of
multipliers for linearly constrained optimization over a network,” IEEE
Control Syst. Lett., vol. 4, no. 1, pp. 247-252, 2019.

A. Mokhtari, Q. Ling, and A. Ribeiro, “Network Newton distributed
optimization methods,” IEEE Trans. Signal Process., vol. 65, no. 1,
pp. 146-161, 2016.

R. Tutunov, H. Bou-Ammar, and A. Jadbabaie, “Distributed newton
method for large-scale consensus optimization,” IEEE Trans. Autom.
Control, vol. 64, no. 10, pp. 3983-3994, 2019.

R. A. Jacobs, “Increased rates of convergence through learning rate
adaptation,” Neural Netw., vol. 1, no. 4, pp. 295-307, 1988.

T. Schaul, S. Zhang, and Y. LeCun, “No more pesky learning rates,”
in Int. Conf. Mach. Learn., 2013, pp. 343-351.

S. Xie, M. H. Nazari, G. Yin, et al., “Adaptive step size selection in
distributed optimization with observation noise and unknown stochas-
tic target variation,” Automatica, vol. 135, p. 109940, 2022.

M. Zargham, A. Ribeiro, and A. Jadbabaie, “A distributed line search
for network optimization,” in Am. Control Conf., 2012, pp. 472-477.
J. Gao, X.-W. Liu, Y.-H. Dai, Y. Huang, and P. Yang, “Achieving
geometric convergence for distributed optimization with Barzilai-
Borwein step sizes,” Sci. China Inf. Sci., vol. 65, no. 4, p. 149204,
2022.

X. Li, B. Karimi, and P. Li, “On distributed adaptive optimization with
gradient compression,” in Int. Conf. Learn. Representations, 2021.

P. Nazari, D. A. Tarzanagh, and G. Michailidis, “DADAM: A
consensus-based distributed adaptive gradient method for online opti-
mization,” IEEE Trans. Signal Process., vol. 70, pp. 6065-6079, 2022.
X. Chen, B. Karimi, W. Zhao, and P. Li, “On the convergence
of decentralized adaptive gradient methods,” in Asian Conf. Mach.
Learn., 2023, pp. 217-232.

Y. Malitsky and K. Mishchenko, “Adaptive gradient descent without
descent,” in Int. Conf. Mach. Learn. PMLR, 2020, pp. 6702-6712.
J. Xu, S. Zhu, Y. C. Soh, and L. Xie, “Augmented distributed gradient
methods for multi-agent optimization under uncoordinated constant
stepsizes,” in Proc. 54th IEEE Conf. Decis. Control. 1EEE, 2015, pp.
2055-2060.

G. Qu and N. Li, “Harnessing smoothness to accelerate distributed
optimization,” IEEE Trans. Control Netw. Syst., vol. 5, no. 3, pp. 1245—
1260, 2017.

R. Xin and U. A. Khan, “A linear algorithm for optimization over
directed graphs with geometric convergence,” IEEE Control Syst. Lett.,
vol. 2, no. 3, pp. 315-320, 2018.

Q. Lii, H. Li, and D. Xia, “Geometrical convergence rate for distributed
optimization with time-varying directed graphs and uncoordinated
step-sizes,” Inf. Sci., vol. 422, pp. 516-530, 2018.

Y. Wang and A. Nedi¢, “Decentralized gradient methods with time-
varying uncoordinated stepsizes: Convergence analysis and privacy
design,” IEEE Trans. Autom. Control (Early Access), 2023.

X. Shi, G. Wen, and X. Yu, “Finite-time convergent algorithms for
time-varying distributed optimization,” IEEE Control Syst. Lett., vol. 7,
pp. 3223-3228, 2023.

J. Ma, H. Ji, D. Sun, and G. Feng, “An approach to quantized
consensus of continuous-time linear multi-agent systems,” Automatica,
vol. 91, pp. 98-104, 2018.

H. Yu, R. Jin, and S. Yang, “On the linear speedup analysis of
communication efficient momentum SGD for distributed non-convex
optimization,” in Int. Conf. Mach. Learn., 2019, pp. 7184-7193.

D. Dua, C. Graff, et al., “UCI Machine Learning Repository,” https:
/Iwww.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/, 2017.

F. M. Harper and J. A. Konstan, “The MovieLens datasets: History
and context,” ACM Trans. Interact. Intell. Syst., vol. 5, no. 4, pp. 1-19,
2015.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278-2324, 1998.

