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Abstract. Signal peptides (SP) play a crucial role in protein localiza-
tion in cells. The development of large protein language models (PLMs)
provides a new opportunity for SP prediction. We applied a prompt-
based learning framework, Parameter-Efficient Fine-Tuning (PEFT) for
SP prediction, PEFT-SP, to effectively utilize pre-trained PLMs. We
integrated low-rank adaptation (LoRA) into ESM-2 models to better
leverage the protein sequence evolutionary knowledge of PLMs. Experi-
ments show that PEFT-SP using LoRA enhances state-of-the-art results,
leading to a maximum MCC gain of 0.372 for SPs with small train-
ing samples and an overall MCC gain of 0.048. Furthermore, we also
employed two other prompt-based learning methods, i.e., Prompt Tun-
ing and Adapter Tuning, into ESM-2 for SP prediction. More elaborate
experiments show that PEFT-SP using Adapter Tuning can also improve
the state-of-the-art results with up to 0.202 MCC gain for SPs with
small training samples and an overall MCC gain of 0.030. LoRA requires
fewer computing resources and less memory than the Adapter during
the training stage, making it possible to adapt larger and more powerful
protein models for SP prediction. The PEFT-SP framework is available
at https://github.com/shuaizengMU/PEFT-SP. The web server for SP
predic-tion leveraging the PEFT-SP framework is publicly available at
https://www.mu-loc.org/peftsp/.
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1 Introduction

Signal Peptides (SPs), short amino acid sequences typically located in the
N-terminals of nascent polypeptides, play a crucial role in directing proteins
through various translocation pathways. These pathways, such as the secretory
(Sec) and the twin-arginine translocation (Tat) pathways, differ in their handling
of protein conformation during translocation, with the Sec pathway transporting
unfolded proteins and the Tat pathway translocating fully folded proteins. Upon
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successful translocation across the membrane, signal peptidase (SPase) precisely
cleaves the SP, releasing the mature protein. SPases are categorized into three
groups (SPase I, II, III), each dedicated to specific types of signal peptides.
Precisely, SPase I (Sec/SPI) is responsible for cleaving general secretory signal
peptides, while SPase II (Sec/SPII) and SPase III (Sec/SPIII) specialize in the
cleavage of lipoprotein and prepilin signal peptides, respectively. Tat substrates
are exclusively processed by SPase I (Tat/SPI) or SPase II (Tat/SPII).

Although these SP regions are recognizable, the absence of clearly defined
consensus motifs presents a significant challenge to SP prediction. Advances
in machine learning and deep learning have led to the development of various
SP prediction tools, such as SignalP versions, SPEPlip, Deep-Sig, and SignalP
6.0. Large protein language models (PLMs), such as ProTrans and ESM-1 [4],
have become foundational tools for various biological modeling tasks related to
proteins. However, there is room for improvement. This paper presents a novel
SP prediction framework, PEFT-SP, designed to harness the capabilities of PLM
for signal peptide and cleavage site prediction. PEFT-SP consists of the ESM-2
model, a linear Conditional Random Fields (CRF) model, and PEFT modules,
including Adapter Tuning [1], Prompt Tuning [3], and Low-Rank adaptation
(LoRA) [2]. Our end-to-end solution performs better than SignalP 6.0, especially
in SP types with limited training data. We evaluate different PEFT methods,
including LoRA, and highlight the efficiency of our framework in utilizing PLMs
for SP prediction. This study contributes to the exploration of PEFT on PLMs
for SP prediction, emphasizing the importance of efficient PLM utilization in
advancing prediction performance.

2 Methods

2.1 Pre-trained Large Protein Language Models

The recent surge in Protein Language Models (PLMs) has brought notable exam-
ples like ProtTrans, ESM-1, and the ESM-2 family. Among these models, the
ESM-2 model family stands out, offering varying model sizes ranging from 8
million parameters to a substantial 15 billion parameters. The ESM-2 model
family, encompassing ESM2-150M, ESM2-650M, and ESM2-3B, has showcased
outstanding performance in structure prediction, surpassing many counterparts
from ProtTrans and the ESM-1 model family in protein sequence-related tasks.

Unlike existing signal peptide prediction models that necessitate appending
an organism identifier to the protein sequence, PEFT-SP with ESM-2 backbone
streamlines the process by taking only the protein sequence as input. It encodes
the sequence into token embeddings, which are then fed into a stack of multiple
Transformer layers designed to capture contextual relationships between amino
acids. These layers incorporate a self-attention mechanism and Position-wise
Feed-Forward Networks (FFN) surrounded by separate residual connections.

The linear chain Conditional Random Field (CRF) is commonly employed
in sequence labeling tasks, capturing relationships between labels and observed
data. Viterbi decoding computes the most probable state sequence, including SP
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regions (n, h, c, twin-arginine). Cleavage site (CS) prediction identifies CS based
on the last SP class state. The forward-backward algorithm calculates marginal
probabilities per sequence position. Predicting signal peptide type sums marginal
probabilities of states and divides by sequence length.

2.2 Parameter-Efficient Fine-Tuning Methods for ESM-2

PEFT methods for ESM-2 can enhance the model’s performance in various
downstream tasks. PEFT introduces tunable parameters while freezing the orig-
inal parameters in the backbone model, enabling the model to be tailored to new
tasks with reduced computational overhead and fewer labeled examples. Unlike
the original configuration of Adapter Tuning and LoRA, which integrates related
modules into all Transformer layers, they are specifically inserted into the bot-
tommost Transformer layers within the ESM-2 model, inspired from LLaMA-
Adapter. Adapter Tuning involves incorporating adapter modules with a bot-
tleneck architecture within the Transformer layer of the ESM-2 model. These
modules compress the input data into a bottleneck layer with reduced dimen-
sionality and reconstruct it to match the original input size. Prompt Tuning adds
trainable embeddings, referred to as soft prompts, into the sequence embed-
dings, serving as inputs to the ESM-2 model. Soft prompts are continuously
updated using gradients, while all parameters within the ESM-2 model remain
fixed throughout the training process. LoRA enhances the fine-tuning of ESM-
2 by introducing trainable rank decomposition matrices into the Transformer
architecture. This reparameterization is applied to the projection matrices of
the Query, Key, Value, and FFN modules within the Transformer.

2.3 Model Evaluation and Experiment Setting

We utilized the Matthews correlation coefficient (MCC), standard in SP pre-
diction methods, for a fair assessment. Since most methods involve binary SP
classification, we computed MCC1 using samples of transmembrane and soluble
proteins. Additionally, MCC2 was calculated using a dataset where a specific SP
type was the positive sample, and all other SPs and non-SPs as negatives. Our
CS prediction depends on the last SP class region, outputting the cleavage site
position rather than probabilities. Precision and recall evaluate CS prediction
within a 3-position window. Precision is the correct CS ratio to predicted CSs,
while recall is the correct CS ratio to true CSs. Accurate CS predictions must
align with SP labels.

Our SP dataset is sourced from SignalP 6.0, comprising diverse protein
sequences: 3,352 Sec/SPI, 2,261 Sec/SPII, 113 Sec/SPIII, 595 Tat/SPI, 36
Tat/SPII, 16,421 intracellular, and 2,615 transmembrane sequences. Sec/SPIII
and Tat/SPII have limited samples. Each sequence is labeled with SP type and
region details, with the final label indicating the CS. Initially obtained from
Archaea, Eukarya, Gram-positive, and Gram-negative bacteria, the dataset is
partitioned into three subsets for fairness and robustness. We used a nested
three-fold cross-validation, resulting in six distinct test sets.
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3 Results

3.1 Comparisons with State-of-the-Art

We employed PEFT-SP using LoRA for each model from the ESM-2 model
family and trained them independently. We evaluated the MCC1 and MCC2
scores for each SP type within each organism group across test sets. Additionally,
we calculated the mean MCC scores for MCC1 and MCC2 across all SP types
and organisms.

PEFT-SP using LoRA with ESM2-3B backbone achieves the best perfor-
mance (as shown in Fig. 1). It consistently outperforms SignalP 6.0 in the
SP types (Sec/SPIII and Tat/SPII) with limited training samples, except for
Tat/SPII in Gram-positive bacteria. It achieves a maximum MCC1 gain of 79.8%
and an MCC2 gain of 87.3% in Sec/SPIII for Archaea. It attains a mean MCC1
improvement of 5.6% and a mean MCC2 improvement of 6.1%. It performs
slightly worse than SignalP 6.0, with MCC1 differences ranging between 0.3%

Fig. 1. PEFT-SP using LoRA and SignalP 6.0 performance in terms of MCC score
for each SP type across different organisms. The bold text in the x-axis represents
the SP type with small training samples. The MCC1 and MCC2 scores are shown
along with the bars. The sorted mean for MCC1 and MCC2 are listed at the top. (A)
MCC1 scores performance on the negative class composed of soluble and transmem-
brane proteins. (B) MCC2 scores performance on the negative class comprising soluble
and transmembrane proteins and other SP types.
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and 3.0% and MCC2 differences ranging between 0.4% and 11.5% in Sec/SPI and
Sec/SPII for Archaea, and Tat/SPII for both Gram-negative and Gram-positive
bacteria. For SP types (Sec/SPI, Sec/SPII, and Tat/SPII) with sufficient train-
ing data, PEFT-SP using LoRA with ESM2-3B demonstrates superior or closely
comparable performance to SignalP 6.0.

3.2 Comparisons with Fine-Tuning and Other PEFT Methods

We compared PEFT-SP using different PEFT methods with ESM-3B, as well as
SignalP 6.0 and finetuned ESM2-3B model. We trained all models independently
with the same datasets generated from nest cross-validation. The performance
of each model was measured using MCC2 across cross-validation.

Table 1 shows that the fine-tuning approach outperforms SignalP 6. This sug-
gests that the ESM2-3B model holds promise as a potential candidate for other
PEFT methods. The PEFT-SP using LoRA performs better than PEFT-SP
using Prompt Tuning and Adapter Tuning regarding the mean MCC2. More-
over, the PEFT-SP using LoRA has fewer trainable parameters than fine-tuning
and other PEFT methods during the training stage, dramatically reducing the
computing resource and memory storage.

Table 1. Benchmark results of MCC2 for SignalP 6.0, Fine-tuning ESM2-3B, and
PEFT-SP using different PEFT methods with ESM2-3B backbone. The SP type indi-
cated with the symbol † represents SP types with limited training samples. The bold
value indicates the highest value for each SP type among all methods.

Method/Backbone - Fine-tuning Prompt Tuning Adapter Tuning LoRA

SP types SignalP 6.0 ESM2-3B ESM2-3B ESM2-3B ESM2-3B

Archaea Sec/SPI 0.793 0.771 0.777 0.825 0.783

Archaea Sec/SPII 0.825 0.864 0.509 0.783 0.730

Archaea Sec/SPIII † 0.426 0.724 0.500 0.351 0.798

Archaea Tat/SPI 0.563 0.564 0.653 0.538 0.579

Archaea Tat/SPII † 0.718 0.792 0.182 0.660 0.850

Eukarya Sec/SPI 0.958 0.948 0.954 0.954 0.960

Negative Sec/SPI 0.804 0.813 0.723 0.820 0.809

Negative Sec/SPII 0.929 0.946 0.886 0.950 0.945

Negative Sec/SPIII † 0.902 0.982 0.970 0.899 0.919

Negative Tat/SPI 0.962 0.902 0.853 0.899 0.961

Negative Tat/SPII † 0.486 0.358 0.325 0.405 0.520

Positive Sec/SPI 0.770 0.810 0.746 0.814 0.848

Positive Sec/SPII 0.882 0.908 0.833 0.911 0.939

Positive Sec/SPIII † 0.902 1.000 0.951 0.969 1.000

Positive Tat/SPI 0.799 0.746 0.590 0.752 0.850

Positive Tat/SPII † 0.786 0.603 0.148 0.669 0.783

Mean (MCC2) 0.781 0.796 0.663 0.762 0.830
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4 Results

Our study introduced PEFT-SP, a new signal peptide prediction framework
that operates without organism identifiers. Using LoRA with ESM2-3B, PEFT-
SP effectively handles SP types with limited training data and matches or sur-
passes the baseline performance of the model across all SP types. The success
of PEFT-SP with LoRA stems from two key factors: (1) leveraging the evolu-
tionary insights of the ESM2-3B backbone model, and (2) implementing LoRA,
a lightweight fine-tuning method, to adapt PLMs for SP prediction while main-
taining their high quality. To our best knowledge, this is the first study to explore
the effectiveness of PLM using the PEFT approach for SP prediction tasks.
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