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Despite proportional information being ubiquitous, there is not a standard account of proportional reasoning.
Part of the difficulty is that there are several apparent contradictions: in some contexts, proportion is easy and
privileged, while in others it is difficult and ignored. One possibility is that although we see similarities across
tasks requiring proportional reasoning, people approach them with different strategies. We test this hypothesis
by implementing strategies computationally and quantitatively comparing them with Bayesian tools, using data

from continuous (e.g., pie chart) and discrete (e.g., dots) stimuli and preschoolers, 2nd and 5th graders, and
adults. Overall, people’s comparisons of highly regular and continuous proportion are better fit by proportion
strategy models, but comparisons of discrete proportion are better fit by a numerator comparison model. These
systematic differences in strategies suggest that there is not a single, simple explanation for behavior in terms of
success or failure, but rather a variety of possible strategies that may be chosen in different contexts.

1. Introduction

Proportional information is ubiquitous in our everyday lives and has
a prominent role in many cognitive theories, where people’s ability to
make probabilistic inferences from proportional information is a central
learning mechanism (Denison and Xu, 2012; Xu, 2019). Yet, there is not
an accepted, standard account of how people reason about proportion.
Part of the difficulty is that there are many surprising and even con-
tradictory claims. For example, thinking about proportional information
has been called both inherently difficult (Lamon, 1993) and intrinsically
simple (Gillard et al., 2009). It also has a surprising developmental
trajectory, with researchers finding intuitive proportional reasoning in
infancy (e.g., Denison et al., 2013; Denison and Xu, 2010; Xu and
Denison, 2009; Xu and Garcia, 2008; although see Placi et al., 2020;
Téglas et al., 2011) but profound difficulties in older children and adults
(e.g., Boyer et al., 2008; Bryant and Nunes, 2012; Fazio et al., 2016;
Girotto et al., 2016; Hurst et al., 2021; Piaget and Inhelder, 1975;
Schneider and Siegler, 2010; Tversky and Kahneman, 1974).

We argue that these patterns and inconsistencies have a simple
origin: variation in behavior across tasks and development reflects the
use of different strategies, some of which may be entirely non-
proportional. Though we see all these tasks as involving the same un-
derlying concept — proportion — participants interpret the stimuli in
fundamentally different ways across tasks and ages, resulting in the use

of distinct context-dependent strategies. In the current paper, we test
this proposal using a Bayesian model framework which allows us to
formalize and quantitatively compare competing strategies as explana-
tions of behavior. Specifically, we use model comparison to investigate
different patterns in strategy use (i.e., relative model fit) across tasks
with different stimuli formats.

This idea of people using different strategies across contexts is not a
new one. Siegler has shown in many different domains and across
development that people have access to many different strategies for the
same task (e.g., Siegler, 1987; Siegler, 1991, 1994). For example, in the
domain of symbolic fractions, a mathematics topic deeply related to
proportion, self-report data suggest that people use a mix of strategies,
including some that rely on incomplete or incorrect information (Fazio
et al., 2016). Our goal here is to formalize the proposal that variation in
behavior originates from variation in strategies within the domain of
proportional reasoning, providing both a new analytical approach and
novel theoretical insight into how best to interpret behavior in these
tasks.

Children show difficulty with proportional reasoning when propor-
tional quantities are presented as discrete entities (e.g., a set of red and
blue dots, where the target is the proportion of dots that are red) or are
difficult to integrate into a coherent continuous whole (e.g., spatially
separated red and blue components). For example, when asked to
compare two divided game spinners and decide which has a higher
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probability of a winning outcome, children’s responses align with the
number of winning segments, not the overall proportions (Hurst and
Cordes, 2018; Jeong et al., 2007). Similar error patterns are found in
many domains that rely on proportional information, including match-
ing juice mixtures (Boyer et al., 2008), interpreting the quantifier “most”
(Hurst and Levine, 2022), and making social judgements based on
resource distribution (Hurst et al., 2020). These errors, although
pervasive, cannot be attributed to a general difficulty with proportional
reasoning because children in these same studies succeed when the
quantities are continuous and part of an integrated whole. Instead, it
may be that children are using a non-proportional heuristic, such as
attending to just one quantity alone (e.g., the number of winning seg-
ments in a game spinner, the number of items shared) instead of the
proportion (e.g., the relative number of winning segments within the
spinner as a whole, the number shared relative to how many they started
with; Hurst et al., 2020), but doing so selectively with only some kinds of
stimuli (Boyer et al., 2008). Furthermore, this pattern is unlikely the
result of children having low knowledge of when to use proportion,
because adults, like children, also show evidence of interference from
numerical information with discrete non-symbolic displays (Fabbri
et al., 2012; Hurst et al., 2021). Additionally, adults prefer to use frac-
tions to describe discrete proportion displays and decimals to describe
continuous proportion displays, suggesting a conceptual distinction
between number-based and area-based proportion (DeWolf et al., 2015).

Notably, one benefit of formalizing strategies is that we can quan-
titatively compare our different-strategy account with a plausible
alternative explanation. It may be that people are not using different
strategies, but instead are implementing the same strategy with different
levels of accuracy across formats. For example, people’s behavior on
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symbolic and non-symbolic magnitude comparison tasks is impacted by
the values of the proportional magnitudes (Hurst and Cordes, 2016;
Kalra et al., 2020; Park et al., 2020). Thus, it may be that people are
trying to use proportion strategies, but it is harder to encode the pro-
portion magnitude from discrete values than continuous values, leading
to more noise in our mental representations and therefore more errors
with discrete stimuli than continuous stimuli. We incorporate multiple
models of proportion comparison strategies that incorporate noise and
precision as parameters. If people are trying to use the same strategy, but
have different levels of noise or precision, then we would expect to see a
similar pattern of model fit, but differences in the estimated parameters
for a given strategy.

Across three experiments, we compare strategy use on proportion
tasks with different stimuli (Fig. 1). In each experiment, we broadly
characterize the stimuli as continuous (i.e., proportion based on area) or
discrete (i.e., proportion based on discrete countable objects), but it is
worth noting that each experiment uses a different context to situate the
proportion comparison task and uses different kinds of discrete and
continuous stimuli, which also differ in ways other than just the pres-
ence of countable information. In Experiment 1, adults were asked to
judge which of two continuous area-based game spinners or discrete
number-based vending machines had a higher probability of a red
outcome (Fig. 1, top row). In Experiment 2 we re-analyzed data from
Park et al. (2020) in which preschoolers, 2nd graders, 5th graders, and
adults were asked to judge which of two ratios was larger based on the
ratio of separated blue and yellow dot clouds, lines, circles, or blobs
(Fig. 1, middle row). In Experiment 3, adults were asked to judge which
of two stimuli had a higher proportion of a given color based on the
colored area of a single shape (pie chart or blob) or based on the number
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Fig. 1. Examples of stimuli used in Experiment 1 (top row), Experiment 2 (middle row), and Experiment 3 (bottom row).
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of colored intermixed dots (with and without controlling for cumulative
area; Fig. 1, bottom row). To investigate strategy use, we formalized and
tested seven quantitative models, four using proportion strategies and
three using non-proportion heuristic strategies. We then compared the
Bayesian models of each strategy using model comparison at both the
group and individual levels. If it is the case that people use different
strategies, as we predict, then we would expect categorically different
models to best fit data from different stimuli. In contrast, if people use
the same strategies across formats and development but are simply
better or worse at using the strategy, then model comparisons should
reveal that the same or similar models best fit data from different
stimuli, but that the parameters differ.

1.1. Model development

We generated seven models (see Table 1) that differ in the underlying
theoretical strategy and the assumed process through which that strat-
egy is carried out. Three models (a, b, ¢) assume people use only non-
proportional information and four models (d, e, f, g) assume people
compare proportions but differ in what is encoded and how that infor-
mation is represented. Each strategy was motivated by prior work with
symbolic fractions and non-symbolic proportion (e.g., Boyer et al., 2008;
Faulkenberry and Pierce, 2011; Fazio et al., 2016) and formalized based
on existing psychophysical models. For all strategies, we model the
participant’s choice using a Bernoulli function with the probability of
selecting the correct response as the probability of success. The proba-
bility of selecting the correct response differs across each of the strate-
gies, based on the model assumptions relevant to that strategy.

Table 1
Model parameterizations for each strategy.

Model Formalization Parameter Priors
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Note: numerators (n), denominators (d), and non-numerator components (r =
d - n) are set by the trial stimuli and subscripts 1 and 2 refer to each of the two
stimuli in the comparison; @ is the cumulative normal distribution.

! The equation presented here is the probability correct when the relevant
quantity is congruent with the overall proportion (i.e., the larger proportion also
has the larger numerator, smaller non-numerator component, or larger de-
nominator). When the relevant component and the overall proportion are
incongruent, the complementary probability (i.e., 1 — the equation) is used
instead.
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For the non-proportion strategies, we assume that people rely on
comparing only a single value or quantity across the two stimuli as a
heuristic, with each of the three strategies differing in terms of which
component people use: numerator (model a), non-numerator compo-
nent (model b), and denominator (model c). In symbolic fractions, the
numerator and denominator refer to the quantities represented above
and below the fraction line, respectively (i.e., a/b, a = numerator and b
= denominator) and we are defining the non-numerator component as
the “left-over” non-numerator amount (i.e., b — a). In general, the
numerator represents the amount to be taken out of the denominator or
to be divided by the denominator and the denominator represents the
whole for the numerator to be taken out of or in reference to. In each
experiment, which visible quantity should be treated as the numerator
and what is represented as the denominator is defined by the procedure
and instructions the participants were given (see each separate Pro-
cedure section). In all experiments, we defined the numerator and de-
nominator heuristic strategies as selecting the option with the larger
component (i.e., larger numerator or larger denominator, respectively),
regardless of the other components. For the non-numerator component
(i.e., the left-over amount, model b) we defined the strategy as selecting
the smaller component, with the rationale that participants may be
trying to minimize this component, either because it is the unwanted
amount or as a strategy to minimize the difference between the
numerator and the total (Obersteiner et al., 2022).

For each model, regardless of which component is being compared,
we assume that people use an approximate magnitude system for
comparing the two quantities. The approximate magnitude system is
dependent on Weber’s law, with each quantity represented as a normal
distribution centered on the true quantity with scalar variability (e.g.,
Gallistel and Gelman, 1992; Meck and Church, 1983). The true quanti-
ties were based on the number of items for discrete sets and visual area
(using an arbitrary unit, as described in the Method) for continuous
stimuli. The probability of selecting the target option on each trial is
modeled as the difference between the two normal distributions using a
cumulative normal distribution centered on the absolute value of the
difference between the two quantities and standard deviation as the sum
of the squared quantities scaled by a constant parameter, commonly
referred to as the Weber fraction (w in Table 1), modeled with an
exponential prior (Piantadosi, 2016).

Using these assumptions, we mathematically modeled the probabil-
ity of getting a given trial correct (i.e., selecting the largest proportion
that is the target color). For these non-proportion strategies, however,
the probability of getting the trial correct depends on the congruency
between the quantity being used as a heuristic and the overall propor-
tion. For example, on a trial of 2/3 versus 4/9 the numerator and pro-
portion are incongruent because someone who uses a numerator only
strategy would (incorrectly) select 4/9 as being larger (i.e., 4 > 2). In
contrast, on a trial of 2/3 versus 3/4, someone who uses a numerator
only strategy would select 3/4, which is also the largest proportion.
Thus, on incongruent trials the probability of selecting the larger
numerator is the complementary probability to selecting the larger
proportion. Thus, the equations presented in Table 1 are the probability
of selecting the larger proportion (i.e., the correct response) when the
larger proportion also has the larger numerator, larger denominator, or
smaller non-numerator component (i.e., congruent trials). When the
larger proportion has the smaller numerator, smaller denominator, or
larger non-numerator component the equation in Table 1 describes the
probability of selecting the smaller proportion and therefore the com-
plementary probability (i.e., one minus the equation) was used instead.

For the proportion strategies, we use four models that are theoreti-
cally similar but differ conceptually and/or mathematically from each
other. Specifically, all four models assume participants compare the two
proportions, rather than comparing only absolute sub-components of the
quantities. But, they are conceptually different in terms of what infor-
mation is encoded in order to represent the proportion (e.g., the
numerator and non-numerator component separately represented
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versus the relational proportion as a single value), the mathematical and
psychophysical assumptions about how that information is represented
(e.g., following Weber’s law vs. Stevens’ law), and the way the com-
parison between the two proportions is mathematically modeled. In the
current manuscript, we include all four models because there is not
consensus in the literature of which best describes behavior on pro-
portion comparison tasks, either theoretically or mathematically. We
also note that it is difficult to adjudicate between these models, because
they make very similar predictions.

In the Weber-dependent comparison strategy (model d), we assume
that people represent the proportion as a single value using a magnitude
representation system with the same properties as the absolute magni-
tude systems described for the non-proportion strategies. There is evi-
dence of ratio-dependent responding for symbolic and non-symbolic
fractions, which is typically associated with this model of magnitude
representation (Hurst and Cordes, 2016; Kalra et al., 2020; Park et al.,
2020). Specifically, we assume that the proportions are represented as
normal distributions centered on the true value with scalar variability.
We then modeled the probability of selecting the correct (i.e., larger)
proportion as a cumulative normal distribution with mean as the dif-
ference between the two proportions and standard deviation as the sum
of the squared proportions scaled by a constant parameter (w in Table 1)
with an exponential prior.

The one-cycle power model (model e) is based on substantial prior
work suggesting that the numerator and non-numerator (i.e., “left over”)
components are each encoded separately in accordance with Stevens’
power law and then combined to create a proportion (Hollands and
Dyre, 2000; Spence, 1990). Stevens’ power law describes the relation
between the actual magnitude of a stimulus and the perceived magni-
tude of the same stimulus as a power function (e.g., Stevens, 1957). In
Hollands and Dyre’s one-cycle power model, each of the two sub-
components of the proportion (i.e., the numerator and the leftover dif-
ference between the denominator and the numerator) are represented as
separate absolute quantities, with the perceived quantity modeled as a
power of the true quantities (i.e., using the psychophysics of Stevens’
power law), using a parameter § with an exponential prior. These
components are then combined to compute the proportion as perceived
numerator / (perceived numerator + perceived non-numerator
component). Given that the one-cycle power model has been devel-
oped only as a model of proportion encoding based on estimation data, it
does not provide a theoretically informed way of modeling the com-
parison process (i.e., deciding which of two proportions is larger, after
they are represented). Thus, after each proportion is computed following
the one-cycle power model, we modeled the probability of correctly
comparing two proportions using a simple logistic function on the dif-
ference between the two computed values, with a normal(0,3) prior on
the slope parameter B;, We will also note that the one-cycle power model
described by Hollands and Dyre (2000) includes a general form that can
incorporate multiple cycles caused by using additional benchmarks.
Given that the stimuli used in the current study did not provide any
benchmarks, we only use the simple one-cycle form.

The Beta Binomial model (model f) is a foundational model in
Bayesian probability when modeling unknown proportions. As with the
one-cycle power model (e), this model assumes that both the numerator
and non-numerator leftover components are encoded separately. How-
ever, this model differs in the mathematical instantiation of both how
each component is represented and how they are compared. Specif-
ically, we assumed both the numerator and non-numerator sub-
component were encoded with adjustment parameters o and ,each with
an exponential prior. The components were then combined to compute
the proportion (adjusted numerator/(adjusted numerator + adjusted
non-numerator subcomponent)), with a beta distribution based on the a
and pparameters. To compare the two proportions, we calculated the
cumulative normal distribution based on the difference between the
beta distributions using a normal approximation with mean and stan-
dard deviation as described in Table 1 (Cook, 2012). Thus, this approach
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models the comparison process in a way that is similar to how the
comparison process is instantiated in Weber dependent models
described above.

Finally, we also report a simplified model of comparison, without
theoretically informed assumptions about how the proportions are
encoded or compared. In this model (g), each proportion is represented
veridically (e.g., % is represented as 0.75) and we model the probability
of correctly comparing the two proportions as a logistic function on the
absolute difference between the two proportions, scaled by a slope
parameter with a normal(0,3) prior. Given that there is not a clear
consensus of the psychophysical model that is best for modeling pro-
portion comparison tasks, we include this simplified model as a baseline.

To test how well our stimulus sets were able to distinguish these
models, we first generated simulated datasets that corresponded to the
use of a given strategy (with some preset parameter values) and then
applied our analysis approach to each simulated dataset. If each model
was fully discriminable from the others, then we should find that the
strategy used to generate a given dataset fit the data substantially better
than all other models and the inferred parameters for that strategy
should also correspond to the parameter values used to generate the
dataset. For the stimuli used in Experiments 1 and 2, we found that the
four proportion models (d, e, f, g) made very similar predictions and
were rarely fully discriminable. In general, the heuristic models were
more separable, but for some extreme parameter values (i.e., relatively
small or large values of w), they became less discriminable. However, we
retained all seven strategies given their theoretical interest and, for the
proportion models specifically, because it is unclear which would be the
most appropriate model to retain to represent the proportion strategies.
Importantly, this does suggest that any null differences (i.e., overlapping
predictions and model fitting metrics) among the proportion models (d,
e, f, g) should be interpreted as not being able to distinguish between
them with these stimuli.

2. Experiment 1
2.1. Method

2.1.1. Participants

One hundred and nine adults (M,ge = 26 years, Range: 18 to 63 years;
76 women, 33 men) are included in the analyses. Adults participated
entirely online and were recruited from participant databases that
included university students and community members. Adults received
course credit or $5. Eight participants completed the study twice and
only their first response is used in the analyses. Prior to completing this
task, participants completed a separate experiment investigating their
use of quantitative information when making social evaluations of
others (Hurst et al., 2020) and the sample size was chosen to provide
adequate power for this other study.

2.1.2. Stimuli and materials

Adults completed 80 trials across two blocks, with each block pre-
senting stimuli with a different format (Fig. 1). The order of the two
blocks was counterbalanced and the order of trials within a block was
randomized. Each block contained 40 unique trials, 10 from each of four
ratio bins to ensure variability in closeness between the two proportions
(larger proportion of red/smaller proportion of red): 1.06, 1.25, 1.5, and
2.

Discrete stimuli were presented as red and blue dots intermixed
within a dispenser. The number of dots of a single color ranged from 6 to
41 and the total number of dots ranged from 14 to 50. The sizes of the
dots within a stimulus varied so that the red:blue ratio in terms of sur-
face area did not correspond to the red:blue ratio in terms of number.
Proportion comparisons were selected so that the stimulus with the
higher number of red items also had the higher proportion of red items
on half the trials. Continuous stimuli were presented as circular spinners
with a red portion and a blue portion, and a black arrow extending
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upward from the center of the circle along a red-blue boundary. The
same proportion magnitudes used in the discrete trials were used in the
continuous trials. However, on each trial the sizes of the two spinners
differed so that the stimulus with the higher red area also had the higher
proportion of red on approximately half the trials (see Fig. 2 for exam-
ples of these different stimulus features).

This means that the corresponding trial did not have the same ab-
solute component values across format. For example, a discrete com-
parison of 2/3 vs. 4/8 might correspond to a continuous comparison of
60 pixels / 90 pixels vs. 40 pixels / 80 pixels. Given that the continuous
pie charts can be quantified using any unit for the area of each color (e.
g., 1 cm /10 cm =10 mm / 100 mm), for analysis we used an arbitrary
unit that ensured the continuous values were in a similar range as the
counts used in the discrete trials (total dots ranged from 16 to 50 dots;
total continuous amount ranged from 16 to 62 units).

To ensure all strategies were equally available in the stimulus set, we
removed trials that prevented the use of some strategy. In the discrete
stimuli, one trial included two stimuli that had the same non-numerator
subcomponent (i.e., difference between the numerator and denomina-
tor; 18/35 vs. 14/31), making the model b strategy useless. In the
continuous stimuli, after scaling and rounding the values to be better
aligned with the discrete counts, one trial included stimuli with the same
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numerator value, making the numerator comparison strategy (model a)
useless. Each of the two trials was excluded from their respective format
type for all modeling analyses, resulting in 39 useable trials for each
format.

2.1.3. Procedure

Adults completed both the discrete and continuous blocks and were
randomly assigned to complete the discrete block first (n = 54) or the
continuous block first (n = 55). The procedure within each block was
identical and all that differed was the format of the stimuli (see Fig. 3).
Written instructions were provided on the screen prior to each block.
The instructions introduced participants to the color machines (dis-
pensers in the discrete block and spinners in the continuous block) and
instructed participants to select the color machine that had a higher
probability of resulting in red. Participants responded by pressing the
right or left arrow key for the right or left stimulus, respectively, and
were told to respond as quickly as possible. Stimuli remained visible
until a response was selected. Adults participated online through Gorilla
(www.gorilla.sc; Anwyl-Irvine et al., 2020). We did not restrict the type
of device participants used to participate in the study.

X

Fig. 2. Examples of different trial types from Experiment 1. A: A comparison of 28 red out of 47 total dots (~ 60 % red; right stimulus) versus 17 red out of 33 total
dots (~52 % red; left stimulus). This is a numerator congruent trial because the larger proportion of red dots (right) also has the highest number of red dots (right).
Dot size varies so that in each stimulus the cumulative area of blue and red is about the same. B: A comparison of 7 red out of 20 total dots (35 % red; left stimulus)
versus 12 red out of 40 total dots (30 % red; right stimulus). This is a numerator incongruent trial because the larger proportion of red dots (left) has a fewer number
of red dots. Dot size varies so that in each stimulus the cumulative area of blue and red is about the same. C: A comparison of a spinner with 77 % red (scaled to have
~48 arbitrary units of red, see text) versus 63 % red (scaled to have ~22 arbitrary units of red, see text). This is a numerator congruent trial because the larger
proportion of red (left) also has the larger red area (left). D: A comparison of a spinner with 52 % red (scaled to have ~18 arbitrary units of red, see text) versus 60 %
red (scaled to have ~9 arbitrary units of red, see text). This is a numerator incongruent trial because the larger proportion of red (right) has a smaller red area. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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A Instructions
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Trials

You will see two color machines that look like the image on the right.

Your job will be to decide which of the two color machines has the higher
probability of resulting in red, by pressing the left arrow key for the color machine
presented on the left side of the screen or the right arrow key for the color
machine presented on the right side of the screen

Try to decide as quickly as you can.

Press the continue key when you're ready to start.

N ——

Each token has the same probability of
being chosen, regardless of the size

Instructions

[

—
leftarrow rightarrow

... continues

Trials

You will see two color machines that look like the image on the right.

Your job will be to decide which of the two color machines has the higher
probability of resulting in red, by pressing the left arrow key for the color machine
presented on the left side of the screen or the right arrow key for the color
machine presented on the right side of the screen.

Try to decide as quickly as you can.

Press the continue key when you're ready to start.

The arrow has an equal probability of
landing anywhere on the circle

leftarrow rightarrow

... continues

Fig. 3. Schematic of the paradigm used in Experiment 1, separated across the discrete block with integrated dots (Panel A) and the continuous block with pie charts
(Panel B). The instructions were shown at the beginning of the block, followed by the trials alternating between the stimuli, with a reminder of the keys to press

(visible until response selected) and a blank screen between trials (500 ms).

2.1.4. Analytical details

All data analyses and visualizations were done with R version 4.0.2
(R Core Team, 2020) and R Studio version 2022.07.1 (R Studio Team,
2016). Data cleaning and organization used the tidyverse 1.3.0 (Wick-
ham, 2017), models were written and fit using rstan version 2.21.3 (Stan
Development Team, 2020), model comparison was completed using loo
version 2.5.1 (Vehtari et al., 2022), and plots were created using ggplot2
version 3.3.6 (Wickham, 2016).

2.1.5. Group-level models

Each model in Table 1 was separately fit to the data from each
format. Parameters of each model were inferred using a No-U-Turn
sampler (Hoffman and Gelman, 2014) sampling four chains each with
5000 iterations (except for the Beta Binomial Model, which had 10, 000
iterations to consistently converge), with 50 % as warm up. Model di-
agnostics showed no divergent transitions, appropriately large effective

sample sizes (minimum = 1028), and all R = 1, suggesting the models
did converge.

Point-wise log likelihoods were generated during model fitting and
were extracted for computing both LOO and WAIC model comparison
metrics. We also use the ELPD (expected log pointwise predictive den-
sity) as a measure of predictive accuracy (Vehtari et al., 2017). These
values are not independently meaningful but can be compared for

different models when estimated on the same data, with lower WAIC or
LOO values and higher ELPDs suggesting a better fitting model. Note
that this means that only the ordinal pattern and not the specific values
can be compared across formats, age groups, and experiments, because
the models are estimated using different datasets or subsets of the
datasets.

2.1.6. Individual models

To test whether the overall pattern was consistent across individuals,
we used the same modeling approach on each individual participant’s
data separately. These analyses rely on smaller datasets, resulting in
issues with model fitting for some participants and the LOO and WAIC
estimates using importance sampling were more susceptible to outlying
trials (see Supplemental Materials C for details).

2.1.7. Transparency and openness

The sample size and basic design was pre-registered (https://aspred
icted.org/bx523.pdf). An analysis plan was also pre-registered; howev-
er, the analysis plan was based on a traditional frequentist approach to
investigating adults’ behavior when comparing discrete versus contin-
uous proportion (the pre-registered analyses can be found in Hurst and
Piantadosi (2022) and at https://osf.io/bescn. In the current manu-
script, we re-use this data (Hurst, 2022) with the different, and not pre-
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registered, goal of quantitatively comparing adults’ strategy use with
Bayesian models of behavior. All models' and decision criteria are
transparently reported throughout the manuscript. Data and analysis
scripts (https://osf.io/2rtdq) and materials (https://osf.io/bescn) are
publicly available. Participants provided informed consent and the
study was approved by the University of Chicago Institutional Review
Board IRB 17-1599, “Relational Math Reasoning”.

2.2. Results and discussion

Data from each format was separately fitted with each of the models
in Table 1 and compared using information criteria and expected log
predictive density (ELPD) model comparison estimates calculated using
the Widely Applicable Information Criterion (WAIC) and leave-one-out
procedure (LOO). Parameter estimates from each model and model
comparison metrics are reported in Supplemental Materials A and B,
respectively. The differences between ELPD of the best fitting model and
all other models are presented in Fig. 4 and throughout we will interpret
this difference (ELPDyjf) relative to the estimated standard error of the
difference (SEqjifr). For ease of reporting, we define the difference ratio as
D = ELPDyjiff / SEgifr, so that D can be interpreted as the number of
standard errors between the model fit metrics of the best fitting model
and the comparison model. Additionally, for a subset of the models, trial
level model predictions of accuracy, empirical accuracy (i.e., proportion
correct), and the ratio between the two numerators (larger numerator/
smaller numerator) or the two proportions (larger proportion/smaller
proportion) are provided in Fig. 5, as well as R? estimates from linear
regressions predicting empirical accuracy from model predictions at the
trial level. Although we cannot directly assess absolute model fit, the R?
estimates, combined with qualitative visual inspection of the relation
between empirical data and model predictions, can provide some
insight.

For pie chart stimuli, the proportion models better fit the data than
the non-proportional heuristic models. Within the proportion models,
the one-cycle power model (e) best fit the data, with most of the other
proportion models being indistinguishable (e vs. d, g: Ds < 3), except for
the beta binomial model (f), which was moderately worse (D = 6.1). The
non-proportion heuristic models (a, b, c) all fit the data substantially
worse than the best fitting model (Ds > 16). For the integrated dot
stimuli, in contrast, the numerator comparison model (a) best fit the
data, followed by the beta binomial proportion model (f) (D = 4.9), with
all other models worse fitting (Ds > 7).

All model parameters are reported in Supplemental Materials A and
here we briefly discuss parameter estimates from the most relevant
models. With integrated dot stimuli, the Weber estimate from the
numerator comparison model (a) (w = 0.66) is higher than typically
reported for number comparisons in other studies, which tend to be
around 0.1 for educated adults in the USA (e.g., Odic et al., 2013). With
pie chart stimuli, the proportion weber estimate (d) (w = 0.25) is lower
than that found for numerator comparisons in the current dataset but is
still fairly high for adults. It must also be noted, however, that this value

! previous versions of our analysis also included additional models: (1) a
comparison of the sums of the numerator and denominator, (2) a modified one-
cycle-power model of the numerator and denominator rather than the numer-
ator and non-numerator component, and (3) area-based comparisons using
perceived area estimates based on Yousif and Keil (2019). The sum model was
included because it has been hypothesized as a possible incorrect strategy used
with symbolic numbers, but the structure of visually presented proportional
information makes it a non-sensical strategy in this case. The modified one-
cycle-power model and the additive-area models were included as possible al-
ternatives to the typical one-cycle power model and for modeling perceived
area. However, neither were as theoretically justified and did not fit the data
meaningfully differently than the models included here. For clarity, and given
the low theoretical motivation for either model, we have opted to exclude them
from the manuscript, but report them here for transparency.
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should be interpreted on a bounded proportion scale, making it difficult
to compare to absolute judgements. That is, unlike numerical repre-
sentations, which can scale infinitely, the bounded nature of proportion
(i.e., values are between 0 and 1) impacts the estimate of the noise
parameter. For the one-cycle power model (e), the beta parameter es-
timate (beta = 1.36) is surprising because it is greater than one. Typical
beta estimates for area based or number-based proportions are less than
one, which accounts for the typical bias seen in estimation data of
overestimation of values under half and underestimation of values
above half (Hollands and Dyre, 2000). Beta estimates greater than one
correspond to a reversal of this bias pattern, which is not typically found
for number or area (although, there are some exceptions, see Shuford,
1961).

Finally, at the individual participant level, there was substantial
variability within and between people, with smaller differences between
ELPD estimates making it more difficult to distinguish the strategies (i.
e., there was rarely a single best fitting model with D > 3; see Supple-
mental Materials C for details). Overall, however, the ordinal relation
between model fit estimates (i.e., regardless of similarity between
models) shows the same general pattern: on pie chart data, for most
adults a proportion model (d, e, f, g) was numerically the best fitting
model (98/109), but on the integrated dots data, adults were more
evenly split between the numerator model (a) (47/109, which was the
modal best fitting model) and a proportion model (d, e, f, g) (44/109,
although the specific proportion model varied substantially). However,
when considering the similarities between model fits, for most adults
both the numerator model (a) and at least one proportion model (d, e, f,
g) similarly fit the integrated dots proportion data (Ds < 3, 87/109). For
a smaller group, none of the proportion models (d, e, f, g) fit as well as
the numerator model (a) (Ds > 3, 11/109) or the numerator model (a) fit
worse than a proportion model (Ds > 3, 11/109). For pie chart data,
again for most adults both the numerator model (a) and a proportion
model (d, e, f, g) similarly fit the continuous proportion data (Ds < 3,
63/109), but, in contrast to integrated dots stimuli, there was another
sizeable group where the numerator model (a) fit worse than a pro-
portion model (Ds > 3, 45/109) and for only a single participant did the
numerator model (a) fit better than all proportion models (d, e, f, g).

3. Experiment 2
3.1. Method

3.1.1. Participants

In our re-analysis, we analyzed data from 36 preschoolers (4-5-year-
olds), 28 2nd graders (approximately 6-7-year-olds), 29 5th graders
(approximately 9-10-year-olds), and 32 adults (approximately 19-20-
year-olds). This includes more data than the analyzed sample in Park
et al. (2020) because we did not exclude individual trials based on re-
action times or entire participants based on their overall accuracy. Given
that the goal of Park et al. (2020) was to determine precision differences
across formats and age groups, excluding trials and participants that are
likely guessing is a sensible approach to isolate data that more likely
capture people’s actual ratio comparison ability. However, for our
purposes of strategy discovery, these trials and participants are impor-
tant for analyzing the full set of possible behaviors. More details about
the sample can be found in Park et al. (2020).

3.1.2. Stimuli and materials

On each trial of the ratio comparison task, two stimuli were pre-
sented, one each on the left and right side of the screen. The ratio stimuli
were presented as yellow and blue line lengths, circles, blobs, or sets of
dots, with each format in a separate block (Fig. 1). In each stimulus, the
ratio ranged from 1:5 (i.e., 0.2) to 4:5 (i.e., 0.8). The ratio of ratios used
on each trial came from one of five ratio bins: 3:1, 2:1, 2:3, 3:4, and 5:6.
The stimuli remained visible for 1500 ms for adults, 6000 ms for 2nd and
5th grade children, or until a response was selected for preschoolers.
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Fig. 4. Differences in Expected Log Predictive Densities (ELPD) from the best fitting model, separately for the continuous pie charts (left panel) and discrete dots
(right panel). The best fitting model is represented as an x and has a value of zero. Error bars are estimated standard errors of the difference from this model. Non-
proportion heuristic models (a, b, ¢) are in orange and proportion models (d, e, f, g) are in green (see Table 1 for details of each lettered model). a = Weber-Dependent
Comparison of Numerators; b = Weber-Dependent Comparison of Non-Numerator Components; ¢ = Weber-Dependent Comparison of Denominators; d = Weber
Dependent Comparison of Proportions; e = One-Cycle Power Model of Proportions; f = Beta Binomial Model of Proportions; g = Logistic Model on the Difference

Between Proportions.

During the task, children completed 40 trials per format and took a
break every 10 trials, while adults completed 60 trials per format and
took a break every 20 trials.

Dots were presented as two sets of dots inside black squares that were
spatially separated and aligned vertically with the yellow set on top and
blue set on the bottom. Area was controlled such that the cumulative
area was equated across the two ratios. The number of yellow dots (i.e.,
numerator) ranged from 12 to 92 and the number of blue dots (i.e.,
denominator; see Procedure) ranged from 20 to 120. Lines were pre-
sented next to each other, with the yellow on the left and blue on the
right. The blue lines were vertically centered, and the yellow line was
given random vertical jitter to be unaligned with either the top, bottom,
or center of the blue line. The yellow line ranged from 35 to 228 pixels
long and the blue line ranged from 50 to 304 pixels long. Circles were
presented vertically, with the yellow on the top and blue on the bottom.
The circles were horizontally centered relative to each other. The yellow
circle ranged from 1602 to 11, 540 square pixels and the blue circle
ranged from 2289 to 15, 386 square pixels. Blobs were presented
vertically, with the yellow on the top and blue on the bottom. The blobs
were horizontally centered relative to each other. The yellow blobs
ranged from 1467 to 3518 square pixels and the blue blobs ranged from
4891 to 29, 348 square pixels.

3.1.3. Procedure

In addition to the ratio comparison task, participants completed an
absolute magnitude comparison task and an inhibitory control task.
These tasks were administered before the ratio comparison task, in the
same session for adults or in a different previous session for children.
However, performance on these tasks is not relevant to the current
manuscript and so we do not discuss them further (see Park et al., 2020
for details).

On the ratio comparison task, the line and circle tasks were always
completed first followed by the blob and dot tasks, with the order of each
task within these pairs counterbalanced. Prior to each format, children
received format-specific instruction on ratios. This instruction included
an introduction to ratios and described how ratios get larger as the
components (i.e., the blue and yellow pieces) become more similar.

Notably, the task instructions describe the process of comparing ratios,
not proportions (e.g., there is no part/whole structure). To map these
stimuli onto our terminology and the way we have operationalized the
strategies, we define the smaller component (yellow) as the numerator
and the larger component (blue) as the denominator. Additionally, all
participants completed 12 practice trials per format, which were
repeated if children’s accuracy was lower than 50 % on the first set of
practice.

3.1.4. Analytical details
Data was analyzed as described for Experiment 1. Again, model di-
agnostics showed no divergent transitions, appropriately large effective

sample sizes (minimum = 1470), and all R = 1, suggesting the models
did converge.

3.1.5. Transparency and openness

This is a re-analysis of previously published data, not collected by the
current authors. Data was retrieved in a CSV file from the original au-
thors (Park et al., 2020). Data, materials, and additional information
about the original paper can be found in their publicly available re-
pository (linked in Park et al., 2020). Data and analysis scripts used for
the current manuscript can be found in our OSF repository (https://osf.
io/2rtdq). The original data was collected and disseminated according
to the original authors IRB protocols. Re-use of data from Park et al.,
(2020) was deemed not human subjects research by the University of
Chicago IRB.

3.2. Results and discussion

In Experiment 2, we used the same analytical strategy but now have
data from four stimuli formats (dots, lines, circles, blobs) and four age
groups (preschoolers, 2nd graders, 5th graders, adults). Point estimates
of the model parameters and model comparison metrics are presented in
Supplemental Materials A and B, respectively. Differences in ELPD
values, as described in Experiment 1, are presented in Fig. 6 and com-
parisons of model predictions versus empirical accuracy are presented in
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Fig. 5. Model predicted probability correct (x-axis) and empirical accuracy (proportion correct; y-axis), colored as a function of the ratio between the numerators
(larger numerator/smaller numerator) for the numerator comparison model (a) and between the proportions (larger proportion/smaller proportion) for the pro-
portion models. Model estimates were based on models using the best fitting parameter point-estimates. Each point is summary data across participants for a single
trial. The dotted diagonal line is along x = y, as an indicator of what perfect agreement would look like. The R? estimates were calculated from linear regression
models predicting empirical accuracy from model predicted accuracy, summarized at the trial level.

Fig. 7.

For line ratio comparisons, the best fitting model for all age groups
was the Weber dependent proportion model (d), which was indistin-
guishable from most of the other proportion models for all age groups (d
vs. e, g: Ds < 4), except the Beta Binomial model (f), which varied by age
group (preschool D = 5.1; 2nd grade D = 4.6; 5th grade and adults D <
3). In contrast, the numerator comparison model (a) was worse fitting
for all age groups and the difference was much larger for adults than for
children (preschool D = 5.1; 2nd grade D = 6.2; 5th grade D = 6.4;
Adults grade D = 15.6). All other non-proportional heuristic models (b,
¢) were substantially worse fitting (all Ds > 5), except the comparison of
the non-numerator component (b) for 2nd graders, which was only
moderately worse fitting, D = 4.4.

For blob ratio comparisons, the best fitting model for all age groups
was the Weber dependent proportion model (d). For preschoolers and
5th graders, this model was similar to the other proportion models (d vs.
e, g; all Ds < 4), except the Beta Binomial model (f) which was
moderately worse fitting (4 < D < 6). For 2nd graders and adults, all
other proportion models were moderately worse fitting (d vs. e, f, g; 4 <
D < 7). The pattern was more mixed across development for the
numerator comparison model. For preschoolers, the numerator com-
parison model (a) was indistinguishable from the best fitting model (d
vs. a; D = 0.7), for 2nd graders and 5th graders it was moderately worse
fitting (2nd grade D = 6.1; 5th grade D = 7.7), and for adults it was
substantially worse fitting (D = 18.5). All other non-proportion heuris-
tics were at least moderately worse fitting (all Ds > 5).
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Fig. 6. Differences in Expected Log Predictive Densities (ELPD) from the best fitting model, separately for each format and age group. The best fitting model is
represented as an x and error bars are estimated standard errors of the difference from this model. Non-proportion heuristic models (a, b, ¢, d) are in orange and
proportion models (e, f, g, h) are in green (see Table 1 for details of each lettered model). a = Weber-Dependent Comparison of Numerators; b = Weber-Dependent
Comparison of Non-Numerator Components; ¢ = Weber-Dependent Comparison of Denominators; d = Weber Dependent Comparison of Proportions; e = One-Cycle
Power Model of Proportions; f = Beta Binomial Model of Proportions; g = Logistic Model on the Difference Between Proportions. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

For circle ratio comparisons, data from preschool and 2nd grade
children was best fit by the numerator comparison model (a), followed
by the Weber dependent proportion model (d; D < 3). The remaining
proportion models were also indistinguishable or at most moderately
worse fitting (e, f, g; D < 5). Data from 5th graders and adults were best
fit by the Weber dependent proportion model (d), which was similar to
or only moderately better than the other proportional models (e, f, g; D
< 6). Only in the adult sample was the best fitting proportion model (d,
for adults) substantially better than the numerator comparison model
(a) (D = 16.6). All other non-proportion heuristic models (b, c) were
substantially different from the best fitting model in all age groups (Ds >

10

7), except the non-numerator component model for preschoolers which
was only moderately worse fitting than the best fitting model (a, for
preschoolers; D = 4.5).

For dot ratio comparisons, in all age groups the numerator model (a)
was the best fitting model. However, only in 2nd graders were all other
models worse fitting (Ds > 5). In 5th graders and adults, the proportion
models (d, e, f, g) fit similarly to the numerator model (a) (Ds < 5) and
the other non-proportional heuristic models were substantially worse
fitting (a vs. b, ¢; Ds > 7). For preschoolers, most of the models fit
similarly with proportional and non-proportional models intermixed (a
vs. all; 3 < Ds < 8).
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Fig. 7. Model predicted probability correct (x-axis) and empirical accuracy (proportion correct; y-axis) at the trial level from Experiment 2, colored as a function of
the ratio between the numerators (larger numerator/smaller numerator) for the numerator comparison model (a) and between the proportions (larger proportion/
smaller proportion) for the proportion models (d, e, f). Model estimates are based on models using the parameter point-estimates for each age group and format
separately. Each point is summary data across participants for a single trial. The dotted diagonal line is along x =y, as an indicator of what perfect agreement would
look like. The R? estimates were calculated from linear regression models predicting empirical accuracy from model predicted accuracy, summarized at the trial level.

11



M.A. Hurst and S.T. Piantadosi

With dot stimuli, the Weber parameter estimate from the numerator
comparison model (a) shows the developmental trend we would expect
(i.e., decreasing with age) but are higher than typically reported for
absolute number comparisons, wprex = 0.67, wapq = 0.34, wsy, = 0.29,
Wadults = 0.27. With continuous stimuli (lines, circles, blobs), the pro-
portion Weber estimates (d) also decrease developmentally and are
lower for lines than circles or blobs (range: 0.18 to 0.52), consistent with
typical developmental patterns and with the pattern found in our results
of more consistent proportional reasoning behavior with lines than
circles and blobs. For the one-cycle power model (e), the beta parameter
estimates are generally below one and around the values typically re-
ported in other studies using an estimation task (Range: 0.68-0.82;
Hollands and Dyre, 2000), except for adults whose parameter estimates
are around or slightly above one (Range: 0.98-1.35), as was found in
Experiment 1.

When looking at each individual separately (see Supplemental Ma-
terials C), the same general pattern was found, but again with substan-
tial variability and smaller differences in ELPD between models (i.e., the
models were less distinguishable at the individual level). Based on just
the ordinal pattern between models, most adults and 5th graders were
best fit by a proportion model (d, e, f, g) on the continuous stimuli
(Adults: lines 27/32; circles 27/32; blobs 27/32; 5th graders: lines 22/
29, circles 18/29, blobs 21/29). Preschool aged children and 2nd
graders showed more variation across the three kinds of continuous
stimuli. Most of these children were best fit by a proportion model (d, e,
f, ) when comparing lines (Preschool 19/27; 2nd grade 19/27) and
blobs (Preschool 7/18, 2nd grade 16/27), but there was a mix between
numerator (a) and proportion models (d, e, f, g) for circles (Preschool
17/34 numerator vs. 12/34 proportion; 2nd grade 17/27 numerator vs.
8/27 proportion). When comparing dots, preschoolers showed a mix of
strategies, without a clear modal preference. Most 2nd and 5th graders
were best fit by a numerator model (a) (2nd grade 24/27; 5th grade 19/
29), while adults were almost equally split (16/32 numerator vs. 16/32
proportion strategies).

As a final way to explore these patterns, we looked at older children’s
and adults’ tendency to use the same strategy type when comparing lines
(as a representative of “continuous” stimuli) and dots (we omit pre-
school children here because they did not show robust strategy prefer-
ences). Most 2nd graders used a proportion strategy (d, e, f, g) with lines
but a numerator strategy (a) with dots (17/27), and most 5th graders did
the same (15/29), but a small group used a proportion strategy (d, e, f, g)
with both (7/29). Adults showed the most variability with almost half
the adult sample using a proportion strategy (d, e, f, g) for both lines and
dots (14/32) and most of the remaining using a proportion strategy (d, e,
f, g) when comparing lines and a numerator strategy (a) when
comparing dots (13/32).

4. Experiment 3

Together, Experiments 1 and 2 provide initial evidence that the
strategies people use vary as a function of the format of the stimulus used
to present the proportional information. However, in both experiments,
data was collected primarily for another purpose and the procedures
involved additional tasks and features that are unnecessary — or poten-
tially confounding — for our purposes. Thus, we collected new data with
more trials that better balance a range of proportion comparisons,
include two sets of continuous and discrete stimuli, and pre-registered
our model comparison analysis.

4.1. Method

4.1.1. Participants

One hundred and fifty-seven adults (Mage = 39 years, Range: 21 to
70 years (4 missing data); 69 women, 84 men, 2 nonbinary, 2 missing
data) are included in the analyses. Three additional adults participated
and were excluded following our pre-registered exclusion criteria (see
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Data Analysis). Our analyzed sample was 68 % white and not Hispanic
or Latine, 14 % Black or African American, 6 % Asian, 7 % Hispanic or
Latine, and 5 % more than one race and/or ethnicity. Most participants
were educated, with only 34 % having less than a Bachelor’s degree (or
equivalent), 41 % having a Bachelor’s degree (or equivalent), and 25 %
having more than a Bachelor’s degree (e.g., some graduate training, a
graduate degree).

Adults participated entirely online and were recruited from Prolific.
The study lasted approximately 12 min and adults were compensated
$2.40 (for a rate of about $12/h). Adults were randomly assigned to see
either area-based proportion stimuli (pie charts and blobs, order coun-
terbalanced; N = 78) or number-based proportion stimuli (dots, with
and without area control, order counterbalanced; N = 79).

4.1.2. Stimuli and materials

There were four types of stimuli: blobs, pie charts, equal sized dots,
and varied dots. Each participant completed two blocks. Participants
assigned to see area-based proportion completed a block of blobs and a
block of pie charts (order counterbalanced). Participants assigned to see
number-based proportion completed a block of equal sized dots, without
controlling for cumulative area, and varied dots that did control for
cumulative area (order counterbalanced). Each block included 120 tri-
als? (60 unique proportion comparisons, shown once with the correct
answer on the right and once with the correct answer on the left), pre-
sented in a random order.

Identical proportion comparisons were used across all four stimulus
types and each proportion was defined as the proportion of the shape
(area-based) or set of dots (number-based) that was orange (or blue,
target color was randomly assigned and counterbalanced across partic-
ipants). Proportion comparisons were selected so that on half the trials
the stimulus with the larger proportion (i.e., the correct answer) also had
the larger numerator (e.g., 28/52 vs 33/43) and on the remaining trials
the stimulus with the larger proportion had the smaller numerator (e.g.,
13/33 vs 8/14). The ratio between the two proportions (i.e., larger
proportion/smaller proportion) ranged from 1.005 to 2.467, M = 1.44.
The ratio between the two numerators ranged from 1.026 to 3.75, M =
1.52.

Number-based proportion stimuli were presented as orange and blue
dots intermixed on a grey background. The number of dots of a single
color ranged from 4 to 41 and the total number of dots ranged from 14 to
53. In one block of trials, the dots were all equal in size (radius = 10
pixels), so that the proportion of orange (or blue) area was equal to the
proportion based on number. In the other block of trials, the area of
orange and blue within a stimulus was approximately equal so that area-
based proportion could not be used as a cue for number-based propor-
tion judgements. To equate area, we varied the size of the dots allowing
for up to five distinct radii.

Area-based proportion stimuli were presented as a shape (blob or
circle, in two separate blocks) partially colored orange and partially
colored blue, on a grey background. The pie chart stimuli were pre-
sented as a circle divided into two segments (one orange, one blue). The
blob stimuli were presented as an irregular blob with a straight line
dividing the blob into two portions (one orange, one blue). In both cases,
the absolute location of the stimulus and the orientation of the stimulus
was random so that the relative position of the orange and blue portions
and the absolute position of the shape within the grey rectangle were not
predictable. To equate proportion comparisons across stimuli formats,
each unit was given a value equal to the area of a single dot in the equal
sized dot stimuli described above. For example, a fraction of 3/10 would
have three orange dots and seven blue dots (or vice versa) in the
number-based stimuli and an area of approximately 942 orange pixels

2 Because of an error, one trial included the same quantity as the non-
numerator component and was excluded from analyses since model b would
not apply to that trial.



M.A. Hurst and S.T. Piantadosi
and 2199 blue pixels (or vice versa) in the area-based stimuli.

4.1.3. Procedure

Participants were randomly assigned to see either both area-based
proportion stimuli or both number-based proportion stimuli. The pro-
cedure within each condition and each block was identical and all that
differed was the format of the stimuli. Written instructions were pro-
vided on the screen prior to each block. Participants were told to
compare the proportion of the set of dots, pie chart, or blob (based on
block and condition) that is orange (or blue, counterbalanced). Partici-
pants responded by pressing the right or left arrow key for the right or
left stimulus, respectively, and were told to respond as quickly as
possible. Stimuli remained visible for 1200 ms and adults were given
unlimited time to respond. Prior to completing the task, participants
were given four practice trials with accuracy feedback (i.e., on-screen
text telling them they were correct or incorrect). On test trials, partici-
pants were not given accuracy feedback and between trials were pre-
sented with a visual mask (1000 ms).

On 8 trials per block, immediately after responding participants were
asked to rate their confidence making the judgement immediately prior.
Participants rated their confidence on a continuous slider scale only
marked with end points of “Very Unsure” (scored as 0) and “Very
Confident” (scored as 100). The same eight proportion comparisons
were selected for all participants so that comparisons with various
properties and levels of difficulty were probed. Note that the
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randomized order of the trials means that when in the sequence par-
ticipants were asked was also randomized.

After the primary task, participants were asked whether they were
paying attention (multiple choice options: yes, sometimes, no), to recall
what they were asked to do (free-response text box), to describe the
strategy they used (free-response), and to provide any comments or
concerns about the study.

The task was programed in jsPsych (de Leeuw et al., 2023) and
presented to participants via Pavlovia (https://pavlovia.org/).

4.1.4. Analytical details
As pre-registered, we excluded individual trials that had reaction
times less than 200 ms (139/37680 trials, i.e., 0.004 %) and entire
participants that reported not paying attention to the study (N = 0) or
who had more than 50 % of their trial-level data excluded (N = 3).
Data was analyzed as described for Experiments 1 and 2. Model di-
agnostics showed 1 divergent transition, appropriately large effective

sample sizes, and all R = 1, suggesting the models did converge.

4.1.5. Transparency and openness

The sample size, design, hypotheses, and analysis plan were pre-
registered (https://osf.io/4g7fq). Additional exploratory analyses
involving confidence judgements are also included and are specifically
described as exploratory. All stimuli, materials, data, and analysis scripts
are publicly available (https://osf.io/2rtdq). Participants provided
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informed consent and the study was approved by Rutgers University IRB
(Pro2023001930, “Characterizing Quantiative Development”).

4.2. Results and discussion

In Experiment 3, we used the same analytical strategy, with data
from four stimuli formats: two area-based continuous and two number-
based discrete. Point estimates of the model parameters and model
comparison metrics are presented in Supplemental Materials A and B,
respectively. Differences in ELPD values are presented in Fig. 8 and
comparisons of model predictions versus empirical accuracy are pre-
sented in Fig. 9.
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For pie chart comparisons, the Beta Binomial proportion model (f;
which numerically best fit the data) and the Weber Proportion model (d)
were almost identical (D = 0.15), and the remaining proportion models
were also indistinguishable (f vs. e, g: Ds < 4). In contrast, all three non-
proportional heuristic models (a, b, ¢) were substantially worse fitting
(all Ds > 28). For blob comparisons, the Beta Binomial proportion model
(f) best fit the data and all other models were substantially worse fitting,
both the other proportion models (f vs. d, e, g; Ds > 13) and the non-
proportional heuristic models (f vs. a, b, ¢; Ds > 19).

When comparing sets of equal sized dots, the numerator model (a)
best fit the data, and was indistinguishable from the Beta Binomial
proportion model (f; D = 2.59). All other models, both proportional and
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non-proportional heuristic models, were substantially worse fitting (all
Ds > 12). When comparing sets of dots that varied in size (and equated
cumulative area), the numerator model (a) best fit the data and all other
models were substantially worse fitting (all Ds > 9).

Parameter estimates were similar to those reported for adults in
Experiments 1 and 2 (see Supplemental Materials A). The Weber
parameter estimate from the numerator comparison model (a) when
comparing dots was again higher than typically reported for absolute
number comparison tasks (equal sized w = 0.38 and varied dots w =
0.43). For area-based comparisons, the proportion Weber estimate (d)
was in a similar range (Pie Chart: w = 0.23, Blob: w = 0.25) and the beta
parameter estimates in the one-cycle power model (e) were also slightly
above one (Pie Charts: beta = 1.10, Blob: 1.22).

When looking at each individual separately (see Supplemental Ma-
terials C), the same general pattern was found, but again with substan-
tial variability and smaller differences in ELPD between models (i.e., the
models were less distinguishable at the individual level). In fact, for
none of the participants was there more than three standard errors be-
tween the best fitting model and the other models. For completeness and
consistency with the other studies, we report the best fitting models
based on the ordinal pattern. Most adults were best fit by a proportion
model (d, e, f, g) when comparing pie charts (72/78), with the remaining
best fit by the numerator model (a; 6/78). Similarly, when comparing
blobs, most adults were best fit by a proportion model (53/78), though a
sizeable number were best fit by the numerator model (a; 25/78). In
contrast, when comparing equal sized dots, most adults were best fit by
the numerator model (49/79), with the remaining mostly best fit by a
proportion model (26/79). When comparing varied dots, most adults
were best fit by the numerator model (37/79) or the denominator model
(24/79), with the remaining best fit by a proportion model (13/79) or
the non-numerator component model (5/79).

Finally, we explored adults’ confidence ratings across different
stimuli and when the numerator and proportion were congruent (i.e.,
the larger proportion also had the larger numerator) or incongruent (i.e.,
the larger proportion had the smaller numerator; see Fig. 10). Overall,
adults were most confident when comparing pie charts (vs. all others, p
< .01), followed by blobs (vs. both dot condition, ps < 0.05), and equal
sized and varied dots, which were not significantly different (p = .732).
Additionally, when making judgements about pie charts (Mcongr = 75.6,
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Mincongr = 71.2), blobs (Mcongr = 70.2, Mincongr = 62.7), and equal sized
dots (i.e., not area controlled; Mcongr = 63.5, Mincong- = 58.0), but not
varied dots (Mcongr = 60.1, Mincong- = 59.5), adults were more confident
on numerator congruent trials than numerator incongruent trials (ps <
0.01; varied dots, p = .627).

5. General discussion

We used a Bayesian model comparison approach to investigate dif-
ferences in strategy use when people were asked to compare proportions
in different formats. Using three datasets generated from tasks with
different instructions and stimuli, but the same general paradigm
structure, our results (summarized in Table 2) reveal systematic differ-
ences in strategy use across discrete versus continuous displays of pro-
portion, with additional nuances within discrete and continuous stimuli.
In general, we found that people tended to use a proportion comparison
strategy when asked to compare continuous proportion but were more
likely to use a numerator comparison strategy when asked to compare
discrete proportion. This suggests that people are drawing upon
fundamentally different strategies that rely on different information
when asked to compare proportions in discrete and continuous formats,
even though the task instructions, structure, and goal remained constant
(within an experiment). To be clear, we do not interpret these findings as
suggesting that future work on proportional reasoning should exclu-
sively use part-whole, area-based stimuli as a “true” measure of pro-
portion. Instead, we suggest that domains involving proportional
reasoning should systematically incorporate variation (e.g., different
stimuli, different contexts) into their paradigms and use strategy dis-
covery methods to move beyond overall behavior and toward thinking
about variation in the underlying strategies and processes people use. In
doing so here, we provide a potential framework to understand the
contradictory and surprising results in the proportional reasoning
literature.

One motivating puzzle for this approach is that infants seem to have
proportional reasoning abilities that they can use to make inferences
about the world around them (e.g., Denison and Xu, 2012; McCrink and
Wynn, 2007), yet older children and adults demonstrate substantial
difficulty with proportional information (e.g., Boyer et al., 2008; Hurst
et al., 2021). One possible explanation is that across development,
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Table 2
Summary of results across all three experiments, grouped by stimulus category.
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Proportion Strategy

Numerator Strategy Inconclusive and/or a mixture of strategies

Continuous Stimuli Pie Charts El: R = 0.38
E3: R? = 0.57
Integrated Blobs E3: R? = 0.62

E2, 2nd: R = 0.31

Separated Line Ratios

Separated Circle Ratios

E2, 5th: R? = 0.40
E2, adults: R = 0.64

E2, adults: R = 0.59

E2, 2nd: R? = 0.59

Separated Blob Ratios

Integrated, Equal Sized Dots

Integrated Varied Dots

Discrete Stimuli

Separated Dot Ratios

E2, 5th: R? = 0.54
E2, adults: R? = 0.51

E2, PreK:

RZm = 0.44

Rest prop = 0.53

E2, PreK:

Rﬁum = 0.69; Rgesr prop = 0.46

E2, 2nd:
Rium = 0.70; Riest prop = 0.24

E2, 5th:
Rium = 0.60; Rfegt prop = 0.48
E2, PreK:
Rium = 0.47; Rfest prop = 0.27
E3:
RZym = 0.73; Rest prop = 0.64
El: R = 0.76
E3: R = 0.84

E2, PreK:
Rium = 0.58; Rfzt prop = 0.16

E2, 5th:
E2: 2nd: R? = 0.73 ’
RZum = 0.69; Riegt prop = 0.30
E2, adults:
RZum = 0.70; Riegt prop = 0.30

Note: E1 = Experiment 1, E2 = Experiment 2, E3 = Experiment 3.

For E2, age groups are separated as PreK = preschool, 2nd = 2nd graders, 5th = 5th graders, and adults.

For each dataset, the adjusted R? from the linear regression predicting empirical accuracy from model predicted accuracy on each trial is reported for the best fitting
model, as determined by our model comparison approach using ELPDg;sr. When the ELPD ;¢ between the numerator model and the best fitting proportion model was
within five standard errors, the results are categorized as inconclusive and/or a mixture of strategies, and the R? from both the estimated numerator model and best

fitting proportion model are reported.

people use different strategies — even within the same stimulus format.
In the current study, we found very similar patterns across 4- to 5-year-
olds, 2nd graders, 5th graders, and adults. The general pattern of using
proportion strategies for continuous stimuli (in particular, line lengths)
and using numerator strategies, or a mix of numerator and proportion
strategies, for discrete stimuli was found across age groups. These results
highlight that some of children’s and adults’ behavioral difficulties with
discrete proportion tasks may be explained by them using non-
proportional heuristic strategies, rather than due to poor proportional
reasoning, per se. With our current data, we cannot speak to whether
differences in strategy use across development may also explain some of
the puzzling developmental patterns, though this is an important ques-
tion for future work. In other words, it may be that rather than people
experiencing a decrease in proportional reasoning ability with age
(something that would be surprising), people are learning different
kinds of strategies and when to use them, resulting in them misapplying
a heuristic in commonly used discrete contexts (Boyer et al., 2008).
Importantly, however, it may be that this incorrect heuristic-based
strategy is not used early in development. More work is needed to test
this account of the developmental data, including applying a strategy-
based analysis to data from a much wider age range, both before and
after we expect children to have learned certain strategies.

Although we primarily focused on the distinction between discrete
proportion stimuli and continuous proportion stimuli, it is important to
note that discreteness, per se (i.e., the availability of numerical infor-
mation) is not the only difference between the discrete and continuous
stimuli used here. The discrete stimuli in Experiments 1 and 3 were
composed of intermixed dots of varying sizes (to de-confound cumula-
tive area). It may be that the intermixing of the two components or the
irregularity of the different sized dots impact strategy use, rather than or
in addition to the discreteness. In fact, when the dots were equated in
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size, allowing area and number to be confounded in Experiment 3, we
see a mix of numerator and proportion strategies, Furthermore, there
were also differences in strategy use within the “continuous” stimuli. In
Experiment 2, younger children showed a different pattern of strategy
use for circles and blobs compared to lines, suggesting that there may be
some feature of the circle and blob comparisons (e.g., the vertical
arrangement) that evoked numerator strategies, in addition to propor-
tion strategies. Additionally, in Experiment 3, adults’ data were best fit
by different formalizations of the proportion strategies for blobs versus
pie charts, which may suggest a different psychological process under-
lying the proportion comparison strategies. Together, these results lead
to a more general argument that people’s strategies differ as a function
of the stimulus and that these different strategies may be evoked by
conceptual distinctions (e.g., the availability, or not, of numerical in-
formation) and perceptual distinctions (e.g., spatial organization and
structure of the information). Exploratory analyses involving adults’
subjective confidence also raise the question of whether adults might be
modulating their strategies because of differences in perceived diffi-
culty. Although we cannot speak to a causal pattern with the current
data, it may be that adults switch to a heuristic based numerator strategy
in cases where they are less confident in their judgements, as was the
case for the discrete dot comparisons in Experiment 3.

Beyond model comparison, the parameter estimates in each of the
best fitting models provide insight into interpreting these strategies. The
Weber estimates from the numerator comparison strategy on discrete
data decreased across development, as we would expect, but were
higher than those typically reported on absolute number comparison
tasks (e.g., Odic et al., 2013). This might suggest that comparing abso-
lute numbers in this context was more difficult than in other tasks
designed specifically to measure the approximate number system.
Alternatively, it may be that the numerator comparison model alone is
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not a perfect model of behavior on this task. For example, it may be that
people’s comparisons are highly influenced by the numerator value but
in a way that also incorporates other quantitative information about the
display, resulting in a hybrid model (Alonso-Diaz et al., 2018;
Braithwaite and Siegler, 2018). Another possibility is that there is
additional variability across people or trials that is not well captured
here. Our analysis of individuals provides support for this account,
revealing that some people were similarly fit by both the proportion
models and the numerator heuristic model, which may be due to using
different strategies on different trials.

For continuous stimuli, the parameters on each proportion model
were generally consistent across the experiments for adults and showed
the developmental patterns we would expect. It is worth noting that
although the beta parameter estimates from the one-cycle power models
were below one for children, they were above one for adults, which is
surprising given prior work revealing estimates below one for categor-
ically similar stimuli in adults (Hollands and Dyre, 2000). However,
these prior psychophysical estimates were generated from estimation
tasks, not comparison tasks. Here, we assume people use the one-cycle
power model as an estimation strategy, but we used a logistic model
to approximate the comparison process. It is possible that this parameter
estimate is biased because it is incorporating additional noise in the
comparison process that is not well captured by our logistic model.
Together, the similar model fits across proportion strategies and the
interpretation of these parameter estimates highlight the need for sub-
stantially more psychophysical and computational research on propor-
tional estimation and comparison across different quantitative displays.

It is important to note three (non-exhaustive) limitations of our
modeling approach. First, we could not differentiate between most of
the proportion models. One possibility is that the comparison context, as
opposed to estimation contexts that have been historically used in the
psychophysical literature of numerical and proportional reasoning, is
less sensitive to the small differences in each of the proportion models.
To better differentiate these strategies, future work could create a more
specific set of stimuli that capitalizes on the cases where the differences
in noise and bias in each model would make different predictions, as in
approaches to optimal experimental design (Smucker et al., 2018).
Second, our results focused primarily on which model fit the data better,
but we did not provide an estimate of absolute model fit. Furthermore,
visualizations comparing empirical data and model predictions provide
some insight into this issue and reveal that for some formats and age
groups, it seems like none of the models provided a particularly
compelling (qualitative) fit with the data. It may be that alternative
proportion models or a hybrid model that incorporates both absolute
components and proportion magnitude are necessary for better
explaining people’s behavior across formats. Finally, despite increasing
the number of trials in Experiment 3, we were unable to provide high
quality model fits that disambiguated different strategies at the indi-
vidual level. It is likely that there are substantial individual differences
in strategy use, and that at least some participants use multiple strategies
within a session. More individual data, and potentially different
analytical methods, are needed to better capture this individual
variability.

Thus, systematically manipulating the perceptual and conceptual
structure of the proportion stimuli, beyond just discreteness, while also
capturing individual strategy use and the relations with more general
individual and developmental differences (e.g., math ability, executive
functioning, spontaneous focusing on number), is necessary to get a
better picture of why some formats evoke numerator heuristic strategies
in some people and at some points in development.

When proportional information is presented with different types of
quantities people use different strategies, even to complete the same task
of comparing proportions. These findings suggest that the typical goal of
investigating the cognitive strategy underlying people’s approach to
proportion tasks is likely misguided because the fundamental assump-
tion - that there is a single cognitive strategy to find - is incorrect.
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Instead, behavioral differences may stem from the use of different
strategies entirely. This explanation requires pairing computational
strategy discovery methods with human experiments to systematically
investigate the factors that prompt the use of some strategies over
others. Our approach joins a recent and growing call for considering
heterogeneity in cognitive science (Bryan et al., 2021; Lewis, 2022;
Newcombe et al., 2022), and provides a framework for considering
heterogeneity in strategy use across problem contexts, even within the
same individuals.
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