
ar
X

iv
:2

40
9.

11
28

0v
1

 [c
s.D

S]
 1

7
Se

p
20

24

Tight Bounds for Classical Open Addressing

Michael A. Bender∗

Stony Brook University and RelationalAI
William Kuszmaul†

CMU
Renfei Zhou‡

CMU

Abstract

We introduce a classical open-addressed hash table, called rainbow hashing, that supports a
load factor of up to 1− ω, while also supporting O(1) expected-time queries, and O(log log ω−1)
expected-time insertions and deletions. We further prove that this tradeoff curve is optimal:
any classical open-addressed hash table that supports load factor 1−ω must incur Ω(log log ω−1)
expected time per operation.

Finally, we extend rainbow hashing to the setting where the hash table is dynamically resized

over time. Surprisingly, the addition of dynamic resizing does not come at any time cost—even
while maintaining a load factor of ≥ 1 − ω at all times, we can support O(1) queries and
O(log log ω−1) updates.

Prior to our work, achieving any time bounds of the form o(ω−1) for all of insertions, deletions,
and queries simultaneously remained an open question.

1 Introduction

Open-addressing is a simple framework for hash-table design that captures many of the most widely-
used hash tables in practice (e.g., linear probing, quadratic probing, double hashing, cuckoo hashing,
graveyard hashing, Robin-Hood hashing, etc). What these hash tables share in common, and indeed,
what makes them examples of open addressing, is that in each case:

1. The data structure itself is just an array of some size N containing elements, free slots, and
(in some hash-table designs) tombstones.1

2. Each element x has a probe sequence h1(x), h2(x), . . . ∈ [N] that is fully determined by x,
N , and random bits (i.e., hash functions).

3. And the procedure for querying x is to simply examine the array positions h1(x), h2(x), . . .
either until x is found or until the query is able to conclude, based on what it has seen, that
x is not present.

In the decades since open addressing was first introduced, there have been dozens (or possibly
even hundreds) of hash-table designs proposed within the open-addressing model. However, the
most basic question that one could have remained open: What is the best space-time tradeoff that
any open-addressed hash table can achieve?

∗Partially supported by NSF grants CCF 2247577 and CCF 2106827 and John L. Hennessy Chaired Professorship.

bender@cs.stonybrook.edu.
†Partially supported by a Harvard Rabin Postdoctoral Fellowship and by a Harvard FODSI fellowship under NSF

grant DMS-2023528. kuszmaul@cmu.edu.
‡renfeiz@andrew.cmu.edu.
1In some hash tables, when an element is deleted, it is replaced with a tombstone. Then, once there are sufficiently

many tombstones in the hash table, they are all removed at once in a single batch, and the hash table is rebuilt. The

constructions in this paper will not make use of tombstones, but we include hash tables that do in our discussions of

prior work.

1

http://arxiv.org/abs/2409.11280v1

The space vs. time tradeoff. A hash table is said to support a load factor of 1 − ω if it
supports sequences of insertions/deletions/queries with up to $(1−ω)N% elements present at a time.
As ω decreases, the space efficiency improves, but the time per operation gets worse. The space-

time tradeoff for a hash table is the relationship between ω and the expected time for each type
of operation (insertions, deletions, and membership queries).

In some hash-table constructions, the hash table supports dynamic resizing , meaning that the
hash table changes the size N of the array that it uses, over time, in order to maintain a load factor
of at least 1−ω at all times. Hash tables that do not do this (i.e., that use a fixed N) are referred to
as having a fixed-capacity . We will be interested in both fixed-capacity and dynamically-resized
hash tables in this paper.

The historical barrier: Achieving o(ω−1)-time operations. It is relatively straightforward
to construct an open-addressed hash table that achieves O(ω−1) expected-time operations (e.g.,
by using uniform probing with tombstones [25]). With more sophisticated techniques [9, 18, 31,
16, 13], one can achieve expected query time o(ω−1) while supporting insertions and deletions in
f(ω) = Ω(ω−1) time for some f . In fact, if all that one cares about are positive queries (and if one
disregards insertion/deletion time entirely), then the expected query time can even be reduced to
O(1) [9, 18, 31].

It has remained an open question whether one might be able to achieve an expected time
bound of o(ω−1) for all operations simultaneously. This is not to say that there is no hope. It is
conjectured, for example, that bucketed cuckoo hashing [13] with buckets of size Θ(

√
ω−1) (and using

random-walk insertions) can support Õ(
√
ω−1)-time operations—but even bounding the insertion

time by f(ω−1) for any function f remains an open question [13, 17]. If one further brings down
the target time to o(

√
ω−1) per operation, then there are not even any conjectured solutions. All

known solutions that achieve O(t)-time queries for some t ≤ ω−1 require insertions to spend at least
Ω(ω−1/t) time even just deciding which free slot to consume [9, 18, 31, 16, 13].

It is worth remarking that there is an additional bottleneck if one wishes to support dynamic
resizing. The standard approach to maintaining a dynamic load factor of ≥ 1 − ω is to rebuild the
hash table every time that Θ(ωn) insertions or deletions occur. These rebuilds require Ω(n) time
(even just to read through the entire data structure), thereby contributing at least ω−1 amortized
expected cost per insertion/deletion. Even if one could achieve o(ω−1)-time operations for a fixed-
capacity table, it is not clear whether such a guarantee could be extended to the dynamic-resizing
case.

This paper: Optimal open-addressing. In this paper, we introduce rainbow hashing , an
open-addressed hash table that achieves expected query time O(1) and expected insertion/deletion
time O(log log ω−1). The name of the data structure refers to the way in which it assigns colors to
elements in order to decide the layout of the hash table.

Our second result is an extension of rainbow hashing that supports dynamic resizing without
changing the time bounds. That is, even while maintaining the invariant the N ≥ (1 − ω)n at all
times, the hash table is able to support O(1) expected-time queries and O(log log ω−1) expected-time
insertions/deletions.

An interesting consequence is what happens at a load factor of 1. Here, our construction yields
an open-addressed hash table with constant expected-time queries, with O(log log n) expected-time
insertions/deletions, and where the hash table is fully compacted at all times—that is, the number
of slots N that the hash table uses is always the same as the number of elements n that it contains.

Finally, we conclude the paper by proving a matching lower bound: we show that, in any open-

2

addressed hash table that supports positive queries in O(log log ω−1) expected time, the amortized
expected time per insertion/deletion must be at least Ω(log log ω−1). At a technical level, our
lower bound can be viewed as a (highly nontrivial) extension of the potential-function techniques
previously developed in [6] for analyzing the average log-probe-complexity in a hash table.

Interestingly, the lower bound applies not just to insertion/deletion time but also to the number
of items that the insertion/deletion rearranges. Thus the result applies even to hash tables that
go beyond ‘pure’ open addressing, and that store arbitrary amounts of additional metadata to help
with the operation of the data structure.

Combined, our results fully resolve the optimal time complexity of open addressing.

Other related work. It is not possible to describe the entire body of work on open addressing,
so we will focus instead on summarizing the high-level trajectory of the area. Early work [24,
35, 25, 2, 10, 26], spanning the late 1950s through the early 1970s, focused largely on evaluating
variations of linear probing [24, 35, 26, 26], quadratic probing [32], and uniform probing [35, 25].
In a significant 1973 breakthrough [9], Brent showed that one could support O(1)-expected-time
positive queries regardless of ω. Brent’s result prompted a large body of work on query-optimized
hash tables. This included both lower bounds [42, 1] on restricted classes of hash tables, alternative
techniques for obtaining fast queries [18, 31], and in the past few decades, the emergence of cuckoo
hashing [16, 13, 34]. Cuckoo hashing, when implemented with the appropriate parameters [16, 13],
can be used to support O(log ω−1)-time queries, not just in expectation, but even in the worst case.
Although this time bound is worse than the O(1)-bound achieved by Brent and others [9, 18, 31],
it is notable for applying to both positive and negative queries.

A common feature among many open-addressing schemes is that, even in cases where the hash
table’s behavior is intuitively easy to understand, it is often quite difficult to analyze. The variants
of cuckoo hashing that achieve O(log ω−1)-time queries, for example, are conjectured to also achieve
O(ω−1)-time insertions [13, 16, 17, 4], but even bounds of the form poly(ω−1) remain open. Another
example is quadratic probing [32, 21], which despite widespread use since the early 1970s [41], has
resisted time bounds of the form f(ω−1) for any f . Other examples, still, include double hashing,
the analysis of which remained open for decades [20, 30], and robin-hood hashing [10] (a.k.a. ordered
linear probing [2]), which was only very recently revealed to yield much better time bounds than
were previously thought to hold [7].

In recent decades, there has also been a great deal of work on hash tables that go beyond the
classical open-addressing model. This includes work on succinct data structures [6, 28, 29, 5, 8, 36, 3],
hash tables with high-probability time guarantees [19, 27, 5], and dictionaries in the external-memory
model [22, 11, 23, 38]. In the area of succinct data structures, in particular, there have been a series
of recent breakthroughs [6, 28, 29] that, together, fully characterize the optimal time-space tradeoff
curve of any unordered dictionary. Interestingly, many of the data structures introduced in this
line of work share a subtle connection to open addressing: they can be viewed as classical open-
addressed hash tables in which the probe position of each item x is cached in a secondary data
structure. Roughly speaking, this allows one to take an open-addressed hash table in which a key
x would have required t time to find, and to instead store log t-bit number t explicitly (in the
secondary data structure), so that x can be found in constant time. This connection led Bender
et al. [6] to study a variation of open addressing in which the goal is to minimize the average log
query time over all elements. Not surprisingly, this leads to a very different tradeoff curve than
the one in this paper—for example, O(1) log query time corresponds to O(log∗ n)-time insertions.
Nonetheless, as we show in Section 7, the lower-bound techniques from [6] can actually be extended
to our setting, albeit, with several significant changes.

3

2 Preliminaries

Open addressing. At a high level, an open-addressed hash table with capacity N is a
hash table that stores its keys (elements of some universe U) in an array of size N , and that uses a
probe-sequence function h(x) = 〈h1(x), h2(x), . . .〉 ∈ [N]∞ to perform queries.

The state of the hash table is an array A of N slots, where each slot either stores a key or is a
free slot. Specifically, if S ⊆ U is the current set of keys, then each key x ∈ S appears exactly once
in A, and the remaining N − |S| slots are left empty.

In addition to its state A, the hash table gets to store the capacity N of the array and the
current number n = |S| of elements. The hash table can also invoke a fully random hash function
which it is not responsible for storing. These are the only things that the hash table has access to.

Queries Query(x) for a key x are implemented by scanning a probe sequence h(x) = 〈h1(x), h2(x), . . .〉
of positions in the array, until either x is found or until some stopping condition is met. The probe
sequence for x must depend on only x, N , and random bits (i.e., hash functions). Insertions and
deletions are permitted to rearrange the elements in the hash table however they wish, so long as
they preserve the correctness of queries.

The load factor of the hash table is defined to be n/N , and is typically denoted by 1− ω. The
goal is to design insertion, deletion, and query algorithms that allow for time-efficient operations as
a function of ω−1.

Fixed capacity vs. dynamic resizing. A classical open-addressing hash table is said to have
fixed capacity if N remains the same over time, and is said to be dynamically resized if N
changes over time (so that, at any given moment, the hash table resides in the first N slots of
an infinite array). We will be interested in proving upper bounds for both the fixed-capacity and
dynamically-resized cases. Our lower bounds will be for the fixed-capacity case but using inputs in
which the total number of elements changes by only ±1 over time.

When discussing fixed-capacity hash tables, we will aim to support a large maximum load factor.
When discussing dynamically-resized hash tables, we will aim to support a continual load factor—
that is, as n changes, N will also change to preserve the load factor.

Other variations. The flavor of open addressing studied in this paper is the most classical version
of the problem—the one typically referred to simply as open addressing [33, 25]. However, there
are also many other variations that have been studied, some of which have also been referred to
as open addressing: notable examples include greedy open addressing, where each insertion must
use the first free slot it finds [37, 42]; and non-oblivious open addressing, where the querier can
probe the hash table adaptively rather than using a fixed probe sequence [15, 14]. Thus the term
open addressing is not always unambiguous in the literature, and to emphasize the fact that we are
focusing on standard open addressing (rather than the greedy or non-oblivious variations), we will
refer to the class of hash tables that we are studying as classical open addressing for the rest of
the paper.

3 The Rainbow Cell

In this section, we describe a simple hash table called the rainbow cell . The rainbow cell operates
continuously at a load factor of 1. That is, the hash table is initialized to contain n elements in
n slots, and then each update to the hash table both deletes some element and inserts some new

4

element, so that every slot is still occupied. One could also extend the rainbow cell to support load
factors less than 1, but as we shall see, this will not actually be necessary for our applications of it.

What makes the rainbow cell a bit unusual, as a hash table, is that it prioritizes update time
over query time. Indeed, whereas updates will take expected time O(1), queries will be permitted to
take expected time O(n3/4). This may seem counterproductive, given that our final data structure,
the rainbow hash table (Section 4), will support constant-time queries and (slightly) super-constant-
time insertions/deletions. Nonetheless, the rainbow cell will end up serving as a critical building
block in constructing the full rainbow hash table.

Finally, for this section, we will assume that deletions already know the position of the element
being deleted. In many hash tables, including those constructed in later sections, this assumption is
without loss of generality, because the expected time to query an element is less than the intended
expected deletion time. The assumption is not without loss of generality for the rainbow cell,
because queries are slower than deletions, but the assumption will turn out to be true (by design)
in our applications of rainbow cells later on.

In the rest of the section, we will define how a rainbow cell works and prove the following
proposition:

Proposition 3.1. The rainbow cell is a classical open-addressed hash table that operates continu-
ously at load factor 1, supports updates in expected time O(1), and supports queries in expected time
O(n3/4). Updates consist of a deletion and insertion pair, and assume that the element being deleted
is in a position already known (i.e., that we do not need to perform a query to find the element).

The data structure. The rainbow-cell partitions an array into n1/4 buckets, each of which has
n3/4 slots. The final n1/2 slots in each bucket will play a special role, and are referred to as sky

slots. Across all n1/4 buckets, there are n3/4 total sky slots.
Each element x will be assigned a status as either heavy or light . The status is given to x by a

status hash function s(x) that sets s(x) = heavy with probability 1−1/(2n1/4) and s(x) = light

with probability 1/(2n1/4). If an element x is heavy, then it is also assigned a random bucket h(x).
Whenever possible, the state of the data structure will be as follows: each heavy element x is

stored in its assigned bucket h(x), and each light element y is stored in some sky slot of some bucket
(any bucket will do). If the elements are stored in this type of configuration, we say the hash table
is in a common-case configuration . An example is given in Figure 1.

Assuming a common-case configuration, queries are straightforward to implement: Heavy el-
ements x are queried by scanning the single bucket h(x), and light elements can be queried by
scanning the sky slots of all buckets. Both cases result in O(n3/4)-time queries.

Update operations will keep the data structure in a common-case configuration whenever it is
possible to do so. If it is not possible, because some bucket has either fewer than n3/4 − n1/2 or
greater than n3/4 (heavy) elements that hash to it, then the hash table is said to have incurred a
full failure . Whether or not the hash table is incurring a full failure is indicated to queries by the
relative order of the final two elements in each bucket (i.e., whether the final two elements a and b
satisfy a < b or b < a). If a query observes that a full failure has occurred, then after it has finished
the n3/4 probes that it would normally perform, it performs n additional probes to check the entire
hash table for the element being queried. Thus the query time is O(n3/4) whenever a full failure
has not occurred, and is O(n) whenever a full failure has occurred.

Finally, we must describe how to implement updates so that (1) the hash table is in a common-
case configuration whenever possible; (2) the update detects whenever a full failure occurs; and (3)
the expected time for the update is O(1).

5

n3/4

n1/2

n1/4 buckets

Figure 1: A rainbow cell in a common-case configuration. The red elements are heavy elements,
each of which is in their assigned bucket; the blue elements are light elements, each of which is in a
sky slot of some bucket.

To describe the update operation, it is helpful to first assume what we call a update-friendly

input : such an input is one in which every bucket j ∈ [1, n1/4] has between n3/4 − 2
3

√
n and

n3/4 − 1
3

√
n heavy items that hash to it. What is nice about update-friendly inputs is that the sky

slots in each bucket are are guaranteed to be at least 1/3 heavy items and at least 1/3 light items.
This means that if we wish to find a light (resp. heavy) item within the sky slots of some bin, we
can do so in O(1) expected time by simply sampling random sky slots in the bin until we find a
light (resp. heavy) item. We call this the sampling trick .

Assuming an update-friendly input, we can implement updates as follows. Suppose we wish
to delete some item x, currently in some bucket j, and insert some item y. The update can be
performed as follows:

• We begin by removing x, which creates a free slot s in bucket j.

• If s is not a sky slot, then we find some heavy element x′ that is in a sky slot of bucket j
(we can do this in O(1) expected time using the sampling trick). We then move x′ to slot s,
freeing up some sky slot s′. For notational convenience, if s was already a sky slot, then we
simply define s′ = s. Thus, at the end of this step, we have created a free sky slot s′ in bin j.

• If y is a light element, then we complete the update by placing it in slot s′. If y is a heavy
element, then we need to create a free slot s′′ in bin h(y) and place y there. To do this, we find
a light element z in some sky slot s′′ of bin h(y) (again, this step takes O(1) expected time
using the sampling trick). We then move z to slot s′, and place y in slot s′′. This completes
the update, while keeping the hash table in a common-case configuration.

Whenever the hash table is in a common-case configuration, each update will attempt to use the
above protocol. If the protocol succeeds, then the hash table will continue to be in a common-case
configuration, as desired. The protocol is said to fail if it runs for time n without completing. In
this case, the update swaps to a more naive method: it scans the entire hash table, determines
whether we are experiencing a full failure, and rebuilds the entire hash table appropriately. This
failure mode guarantees that the update takes worst-case O(n) time.

Finally, whenever the hash table is not in a common-case configuration (i.e., it is already ex-
periencing a full failure), the updates default to the O(n)-time failure mode: they scan the entire

6

hash table and rebuild it in whatever way is appropriate based on whether the hash table is still
experiencing a full failure or not.

Analyzing the rainbow cell. Having described how the rainbow cell works, the analysis follows
from a straightforward application of Chernoff bounds.

Lemma 3.2. Each input is update-friendly with probability 1− n−ω(1).

Proof. The expected number of heavy elements that hash to a given bucket is n3/4 − 1
2n

1/2. It
follows by a Chernoff bound that, with probability 1− n−ω(1), the number of such elements will be
between n3/4 − 2

3

√
n and n3/4 − 1

3

√
n. Moreover, by a union bound, the probability of this bound

failing for any bucket j is at most n3/4 · n−ω(1) = n−ω(1).

Lemma 3.3. The expected time to perform an update is O(1).

Proof. If the input is update-friendly, then the sampling trick allows us to complete the update in
O(1) expected time. If the input is not update-friendly, then the update may take time as much as
O(n). Thus, by Lemma 3.2, the expected update time is at most

O(1) + Pr[non-update-friendly input] ·O(n) = O(1) + n−ω(1) ·O(n) = O(1).

Lemma 3.4. The expected time to perform a query is O(n3/4).

Proof. If the hash table is in a common-case configuration, then the query takes time O(n3/4). If
the hash table is in a non-common-case configuration, then it is experiencing a full failure, and the
query may take time as much as O(n). The probability of a full failure occurring is at most the
probability that the input is non-update-friendly. Thus, by Lemma 3.2, the expected update time
is at most

O(n3/4) + Pr[non-update-friendly input] ·O(n) = O(n3/4) + n−ω(1) · O(n) = O(n3/4).

Since the rainbow cell is, by design, a classical open-addressed hash table that operates at load
factor 1, we can combine Lemmas 3.3 and 3.4 to obtain a proof of Proposition 3.1.

4 The Rainbow Hash Table

In this section, we describe the most basic version of rainbow hashing . For now, we will confine
ourselves to the setting where the hash table operates continually at a load factor of 1 (we will
support other load factors later on in Section 6), and where the hash table does not resize (we will
add dynamic resizing in Section 5). Subject to these restrictions, we will achieve O(1) expected-time
queries and O(log log n) expected-time updates.

Proposition 4.1. Basic rainbow hashing is a classical open-addressed hash table that operates
continually at load factor 1, achieves O(1) expected-time queries, and achieves O(log log n) expected-
time updates.

7

Level-i subproblem, size ni

Level i− 1 subproblem, size ni−1 = (ni − bi)/fi = Θ(n0.99
i)

Level-i buffer, size bi = n0.51
i

Fanout fi = n0.01
i

Figure 2: The recursive structure of a rainbow hash table.

Defining a recursive structure. To describe basic rainbow hashing, we will think of the array
as being broken into the recursive tree structure shown in Figure 2. The root of the tree, which
occurs at some level ε = Θ(log log n), is a single subproblem that contains the entire array—its size
is denoted by nε := n. The leaves of the tree, which occur at level 1, are subproblems that consist
of a buffer of b1 = n1 = O(1) elements. For every level i ∈ (1, ε], the subproblems in level i have
the following structure: each level-i subproblem has size ni, and it consists of a level-i buffer of
size bi = n0.51

i as well as fi = n0.01
i children that are each level-(i− 1)-nodes of sizes

ni−1 := (ni − bi)/fi = Θ(n0.99
i).

Note that the recursive relationship between ni and ni−1 determines all of the values {ni}, {bi}, {fi}
in the tree. Finally, it will be helpful to also define m1,m2, . . . ,mε so that mi = Θ(n/ni) is the
number of level-i subproblems.

Each item x will hash to a random color C(x) ∈ {2, 3, . . . , ε} (we will specify the distribution
on C(x) in a moment), and to a uniformly random subproblem h(x) out of the mC(x) subproblems
with level C(x). The probability distribution for C(x) is given by Pr[C(x) = i] = pi for a set of
values p2, p3, . . . , pε satisfying

∑
i pi = 1 and such that, for 1 < i < ε,

(p2 + · · ·+ pi)n ∈




i∑

j=1

mj · bj



− [0.4, 0.6] ·mi · bi. (1)

It may be helpful to think about this inequality at a per-subproblem level: It is equivalent to say
that, for a subproblem s in level 1 < i < ε, if we define ts to be the sum of the sizes of the buffers
of s and all of s’s descendants, and we define qs to be the total number of elements that hash to s
and s’s descendants, then

E[qs] = ts − [0.4, 0.6] · bi. (2)

The use of the range [0.4, 0.6] in (1) and (2) will not be important in this section (we could just as
well use the concrete value 0.5), but it will be important later on in Section 5 where, in order to
support resizing, we will allow mi to change over time.

We conclude the definition of the {pi}’s by noting their asymptotic relationship to ni, bi:

8

Lemma 4.2. For i > 1, each pi satisfies pi = Θ(bi−1/ni−1).

Proof. For i = 2 (or i = O(1)), the lemma is trivial. By (1), we have for 2 < i < ε that

pin ∈ mibi − [0.4, 0.6] ·mibi + [0.4, 0.6] ·mi−1bi−1,

and that for i = ε,

pin ∈ mibi + [0.4, 0.6] ·mi−1bi−1.

Either way,

pin = Θ(mibi) +Θ(mi−1bi−1)

= Θ(mi−1bi−1),

where the final step uses the fact that the buffers in level i − 1 have a larger cumulative size than
those in level i. It follows that

pi = Θ

(
bi−1

n/mi−1

)
= Θ(bi−1/ni−1).

The role of rainbow cells. For each subproblem s in the tree, we implement s’s buffer as a
rainbow cell. This means that updates to the buffer can be implemented in O(1) expected time and
that queries can be implemented in O(b3/4i) expected time. The fact that queries to s’s buffer take
time polynomially smaller than bi will end up being critical to the data structure.

Separating insertions and deletions. So that we can discuss insertions and deletions sepa-
rately, we will allow the hash table to take intermediate states containing a free slot in some (known)
position. Deletions create such a free slot, and guarantee that the free slot appears in the buffer of
the root subproblem; and insertions consume such a free slot, assuming that it was initially in the
buffer of the root subproblem. Thus, several of the definitions that follow (namely the definitions
of common-case configurations and of the Common-Case Invariant) should be viewed as applying
both in the context where there is a free slot somewhere in the hash table and in the context where
there is not.

High-level overview: the common-case behavior of the data structure. To motivate the
data structure, let us take a moment to describe how the data structure will behave when certain
rare (at a per-subproblem level) failure events do not occur. Precluding such failure events, the data
structure will look as in Figure 3: for each level-i subproblem s, a constant fraction of the elements
in s’s buffer will be color-i elements that hash to s (unless s is a leaf), and the remaining will be
color-(i + 1) elements that hash to s’s parent (unless s is the root). Notably, all of the elements in
the table that hash to s will be stored in either s’s buffer or in s’s children’s buffers.

It follows that, to query an element x that hashes to h(x) = s, we can simply query s’s buffer
and s’s children’s buffers. Since each of these buffers is implemented as rainbow cells, this takes
expected time

O
(
b3/4i + fi · b

3/4
i−1

)
.

This may seem large, but remember that most elements x hash to very low-level nodes s. By Lemma
4.2, for i > 1, the probability that x hashes to a level-i node is pi = Θ(bi−1/ni−1) , so the expected
time to query an element is

9

Level i + 1

Level i

Level i− 1

= item with color i + 1

= item with color i

= item with color i− 1

= item with color i + 2

Figure 3: For i < ε, the common-case state of a level-i node s will be that a constant fraction of
the elements in its buffer have color i (and hash to s) and the rest of have color i+ 1 (and hash to
s’s parent).

O

(

1 +
∑

i>1

bi−1

ni−1
·
(
b3/4i + fi · b

3/4
i−1

))

= O

(

1 +
∑

i>1

n0.99·0.51
i

n0.99
i

·
(
(n0.51

i)3/4 + n0.01
i · ((n0.99

i)0.51)3/4
))

= O

(

1 +
∑

i>1

n0.99·0.51
i

ni
·
(
n0.01
i · (n0.51

i)3/4
))

= O

(

1 +
∑

i>1

n0.99·0.51−1+0.01+0.51·3/4
i

)

= O

(

1 +
∑

i>1

n−0.1
i

)

= O(1).

Again, this is all assuming that certain rare failure events do not occur, but we will come back
to that later.

To implement insertions and deletions, an important insight is that we can make use of a
“sampling trick” similar to the one we used in rainbow cells. Suppose that we are looking at a
subproblem s (that is not a leaf) and that we wish to find an element y in s’s buffer that hashes
specifically to s. Since a constant fraction of the elements in s’s buffer hash to s, we can use random
sampling to find such an element in O(1) expected time. Likewise, if s is not the root, and if we
wish to find an element in s that hashes to s’s parent, we can also do this in O(1) expected time
using random sampling.

As we perform the insertion/deletion, we need to preserve the invariant that, for each subproblem
s, all of the elements that hash to s are stored in either s’s buffer or in s’s children’s buffers (again,
this ignores certain rare failure events). How can we implement insertions and deletions while
preserving this invariant?

10

Suppose we wish to insert an element x that hashes to some subproblem h(x). We want to
place x in the buffer of h(x), but we currently have a free slot in the buffer of the root subproblem
r. Let s1 = h(x), s2, s3, . . . , sj = r be the path from subproblem h(x) to the root subproblem r.
We can use the sampling trick to find elements y1, y2, . . . , yj−1 in the buffers of s1, s2, . . . , sj−1 with
the properties that h(yi) = si+1. We can then place yj−1 in the free slot in the root’s buffer, place
yj−2 in yj−1’s former position, place yj−3 in yj−2’s former position, and so on, ultimately freeing up
the position where y1 resided. Finally, we can put x in this position. With this augmenting-path
approach, we can complete the insertion while preserving the invariant that every item appears in
the buffers of either the subproblem it hashes to or one of that subproblem’s children.

Likewise, suppose we wish to delete an element x that is currently in the buffer of some sub-
problem s. By removing x, we create a free slot in s’s buffer that we need to move to the root. Let
s1 = s, s2, s3, . . . , sj = r be the path from subproblem h(x) to the root subproblem r. We can use
the sampling trick to find elements y2, y3, . . . , yj in the buffers of s2, s2, . . . , sj with the properties
that h(yi) = si. We can then place y2 in the free slot in s’s buffer, place y3 in y2’s former position,
place y4 in y3’s former position, and so on, ultimately freeing up a slot in r’s buffer. Critically,
we have once again preserved the invariant that every item appears in the buffers of either the
subproblem it hashes to or one of that subproblem’s children.

This completes the description of how the data structure would behave if certain rare (at a per-
subproblem level) failure events never occurred. The expected time per query would be O(1) and
the expected time per update would be O(log log n). In general, however, we must be able to handle
failure events that break our desired invariants (i.e., that cause the population in the buffer of a
node to not simply be a constant fraction of elements that hash to the node and a constant fraction
of elements that hash to the parent). Most of the effort in formalizing the data structure will be in
designing and maintaining an invariant (that we will call the Common-Case Invariant) that lets us
handle these failure events cleanly. We now continue in the rest of the section by presenting and
analyzing the full data structure.

Storing a boolean in each buffer. We shall assume for the sake of discussion that, for each
subproblem s, we can store a boolean (called the failure indicator) indicating whether s is in a
certain type of failure mode (to be specified later). This boolean will not affect the probe sequence
that queries perform (since, after all, queries must be oblivious), but will help queries determine
when they can terminate. We emphasize that the failure indicator can easily be encoded implicitly
in the relative order of, say, the first two elements of s. Thus it is only for ease of discussion that
we treat the boolean as being stored explicitly.

The Common-Case Invariant. A subproblem s is said to be in a weakly common-case

configuration if:

• For each child c of s, all of the elements that hash to c and its descendants are stored in the
buffers of c and its descendants.

• The only elements in s’s descendants’ buffers that do not hash to s’s descendants are elements
that hash to s and are in s’s children’s buffers.

The subproblem s is further said to be in a strongly common-case configuration if both s and
s’s ancestors are all in weakly common-case configurations. Critically, this implies that all of the
elements that hash to s are in the buffers of s and s’s children, and that all of the elements in s’s
buffer that do not hash to s are elements that hash to s’s parent.

11

A subproblem s is said to be weakly feasible if it is possible to arrange the elements in the
tree so that s is in a weakly common-case configuration, and so that any free slot in the tree (if we
are in an intermediate state between a deletion and an insertion) is not contained in the buffers of
s’s descendants. The subproblem s is said to be strongly feasible if all of s and its ancestors are
weakly feasible.

Our algorithm will maintain what we call the Common-Case Invariant:

• For each subproblem s, the failure indicator correctly identifies whether or not s is strongly
feasible.

• If a subproblem s is strongly feasible, then s is in a strongly common-case configuration.

Before continuing, it is worth establishing three lemmas about the Common-Case Invariant:

Lemma 4.3. Suppose that the Common-Case Invariant holds. For a given level-i subproblem s,

we have with probability 1 − n−ω(1)
i that s is strongly feasible, that s is in a strongly common-case

configuration, and that:

(i) all of the elements in s’s buffer have colors i and i+ 1;

(ii) if s is neither the root nor a leaf, then the fraction of elements in s’s buffer that have color i
(as opposed to color i+ 1) is in the range [0.3, 0.7].

Moreover, all of this is true even if we pick s based in part on the hash of some specific element x
(this part will be straightforward, since knowing h(x) can only change how many items hash to a
given subtree by ±1).

We remark that, in Lemma 4.3, we are using n−ω(1)
i to denote n−f(ni)

i for some f ∈ ω(1),
meaning that the ω-notation is in terms of ni rather than, say, n.

Proof. For a given level i and level-i subproblem s, define ts to be the sum of the sizes of the buffers
of s and all of s’s descendants; and define qs to be the total number of elements that hash to s and
s’s descendants. By construction, E[qs] ∈ ts − bi · [0.4, 0.6] ± 1 (the ±1 comes from the role of x in
the last sentence of the lemma statement). If 1 < i < ε, then by a Chernoff bound, we know that
with probability 1 − n−ω(1)

i , we have |qs − E[qs]| ≤ Õ(
√
ni) < 0.1bi. Thus, if i < ε, then we have

with probability 1− n−ω(1)
i that

qx =

{
0 if i = 1

ts − bi · [0.3, 0.7] otherwise.
(3)

We can apply a union bound to conclude that, for any 1 ≤ i ≤ ε and any level-i subproblem s,
we have with probability 1− fi ·n

−ω(1)
i−1 = 1−n−ω(1)

i that (3) is true for all of s’s children (note that
level-1 subproblems have f1 = 0 children). Applying another union bound, we can conclude with
probability

1−
∑

j≥i

n−ω(1)
j = 1− n−ω(1)

i

that (3) is true not just for all of s’s children but also for all of s’s parents’ children, all of s’s
grandparents’ children, etc. We will assume this for the rest of the proof.

The fact that (3) holds for all of s’s children and s’s ancestors’ children implies that all of s and
its ancestors are strongly feasible. By the Common Case Invariant, it follows that all of s and its
ancestors are in strongly common-case configurations.

12

The fact that both s and its parent (if the parent exists) are in (even weakly) common-case
configurations implies condition (i). Finally, if s is neither the root nor a leaf, then condition (ii)
follows from the second point along with (3).

Lemma 4.4. Let T be the entire recursive tree and let T ′ be a subtree. Suppose that every subproblem
s ∈ T \ T ′ that is strongly feasible is in a strongly common-case configuration, but that this is not
necessarily the case for every s ∈ T ′. Then, in |T ′| log log n time, one can rearrange the elements in
T ′ (in-place) so that the Common-Case Invariant holds; and so that, if there is a free slot in T ′, it
appears in the buffer of the root subproblem.

Proof. Let s be the root subproblem of T ′. We can check in time O(|T ′|+ log log n) if s is strongly
feasible. If s is not strongly feasible, then neither will any of its descendants be, and we can complete
the lemma by (1) moving any free slot in T ′ to be in s’s buffer and (2) setting all of the failure
indicator bits of s and its descendants to be true. If s is strongly feasible, then s’s parent (if it has
one) is in a strongly common-case configuration, which implies that all of the elements that hash to
s or s’s descendants are already in T ′. Since s is weakly feasible, it follows that we can rearrange the
elements in T ′ alone so that s is in a weakly common-case configuration and so that any free slot in
T ′ appears in s’s buffer—this can be done in place in time O(|T ′|). At this point, because all of s
and its ancestors are in weakly common-case configurations, we can conclude that s is, in fact, in a
strongly common-case configuration (and we can update s’s failure indicator appropriately). Having
placed s in a strongly common-case configuration (and placed any free slot in T ′ in s’s buffer), we
can recurse on s’s children’s subtrees in order to complete the lemma. It is straightforward to see
that each of the O(log log |T ′|) layers of recursion takes time at most O(|T ′|+log log n) time, making
for a total of O(|T ′| log log |T ′|+ (log log |T ′|) · log log n) = O(|T ′| log log n) time.

Lemma 4.5. Call a subproblem s well supplied if every (strict) ancestor q of s contains at least
one element that hashes to q in its buffer. If the Common-Case Invariant holds, then the following
modifications to the data structure cannot violate it:

(i) For a subproblem s that is strongly feasible and contains a free slot in its buffer, insert an
element x satisfying h(x) = s into that free slot.

(ii) For a subproblem s that is strongly feasible and well-supplied, delete an element x satisfying
h(x) ∈ {s, parent(s)} from s’s buffer.

(iii) Move an item x between the buffers of the subproblem h(x) that it hashes to and one of h(x)’s
children.

Proof. Critically, the types of modifications described in all three items have the properties that:
they do not change for any subproblem in the tree whether the subproblem is in a weakly common-
case configuration.

Thus, for subproblems that were already strongly feasible (and thus already in a strongly
common-case configuration), those subproblems continue to be in strongly common-case config-
urations. We will complete the proof by showing that the modifications described in each bullet
point do not change which subproblems in the tree are weakly feasible. This means that, if the
Common-Case Invariant held before the modification, then it continues to hold after.

The insertion in (i) risks changing the weak feasibility of one of s’s ancestors. However, we
know that each of s’s ancestors q are already in strongly common-case configurations prior to the
insertion, and we know that the insertion does not change this, so s’s ancestors are still in strongly
(and thus weakly) common-case configurations. Since, after the insertion, there is no free slot in

13

table, this implies that s’s ancestors are all still weakly feasible—their feasibility statuses have not
changed after all.

The deletion in (ii) also risks changing the weak feasibility of one of s’s ancestors. Once again,
we know that s’s ancestors are already in strongly common-case configurations prior to the deletion,
and we know that the deletion does not change this, so s’s ancestors are still in strongly (and thus
weakly) common-case configurations. Furthermore, since s is well-supplied, each of s’s ancestors q
contains at least one element in its buffer that hashes to q. So, via moves of the third type, we
could move the free slot that is currently in s (due to our deletion) to be in the root’s buffer without
changing which subproblems are in weakly common-case configurations. Thus it is possible for s
and its ancestors all to be in weakly common-case configurations while having the free slot appear
only in the root’s buffer. This, in turn, implies that s and its ancestors are all still weakly feasible,
so, once again, the feasibility statuses have not changed for any subproblems.

Finally, the modification in (iii) does not change the set of elements present overall. Thus it also
cannot change for any subproblem whether that subproblem is weakly feasible.

Implementing queries. We can now describe how to implement queries. Suppose we wish to
query an element x, and let s = h(x) be the level-C(x) subproblem that x hashes to.

To query x, we begin by querying s’s buffer and the buffers of s’s children. Since these buffers
are each implemented as rainbow cells, this takes expected time

O
(
b3/4C(x) + fC(x) · b

3/4
C(x)−1

)
.

If any of these queries finds x, then we are done. Otherwise, we continue with the following logic.
Having examined s’s failure indicator, we know at this point whether or not s is strongly feasible.

If s is strongly feasible, then by the Common-Case Invariant, s must be in a strongly common-case
configuration. This means that the only way x could be in the hash table would be for it to appear
in one of s’s or s’s children’s buffers—since this is not the case, we can conclude that x is not
present. On the other hand, if s is not strongly feasible, then we complete the query with the
following failure-mode probe sequence .

In the failure mode, the query scans the entirety of s (including all of the buffers of all of s’s
descendants). It then checks whether s’s parent s(1) is strongly feasible. If so, then the query is
complete; otherwise, the query scans the entirety of s(1) (including all of the buffers of all of s(1)’s
descendants). It then checks whether s(1)’s parent s(2) is strongly feasible. If so, then the query is
complete; otherwise, the query scans the entirety of s(2), etc. The query continues like this until
either it finds x or it encounters an ancestor of s that is strongly feasible, at which point the query
can conclude by the Common-Case Invariant that x is not present.

Before continuing with our description of rainbow hashing, it is worth taking a moment to verify
the correctness and running time of queries.

Lemma 4.6. Supposing the Common-Case Invariant, rainbow-hashing queries will be correct.

Proof. If s = h(x) is strongly feasible, and thus is in a strongly common-case configuration, then
every element that hashes to s is guaranteed to be in the buffer of either s or one of s’s children.
Thus, by querying these buffers, the query will succeed.

Suppose s ∈ h(x) is not strongly feasible. Let y be the lowest ancestor of s that is strongly
feasible. (If y does not exist, then the query scans the entire hash table and is thus necessarily
correct.) Let z be the child of y whose subtree contains s. Then the query scans the entirety of z’s
subtree, so it suffices to show that all x satisfying h(x) = s are contained in the subtree. The fact
that y is strongly feasible implies by the Common-Case Invariant that y is in a strongly common-case

14

configuration, which implies that every element x that hashes to z or z’s descendants is contained
in the buffers of z and its descendants. Therefore, if x is in the hash table, it is contained in z and
its descendants, so the query will correctly ascertain whether x is present.

Lemma 4.7. Supposing the Common-Case Invariant, the expected time per query, overall, will be
O(1).

Proof. If we condition on C(x), then since s and s’s children are implemented as rainbow cells, the
expected time to query s = h(x)’s and s’s children’s buffers is

O
(
n3/4
C(x) + fC(x) · n

3/4
C(x)−1

)
.

Recalling that, for i > 1, Lemma 4.2 tells us that Pr[C(x) = i] = pi = Θ(bi−1/ni−1), the expected
time to query s’s and s’s children’s buffers is

O

(

1 +
∑

i>1

bi−1

ni−1
·
(
b3/4i + fi · b

3/4
i−1

))

= O

(

1 +
∑

i>1

n0.99·0.51
i

n0.99
i

·
(
(n0.51

i)3/4 + n0.01
i · ((n0.99

i)0.51)3/4
))

= O

(

1 + 1
∑

i>1

n0.99·0.51
i

ni
·
(
n0.01
i · (n0.51

i)3/4
))

= O

(

1 +
∑

i>1

n0.99·0.51−1+0.01+0.51·3/4
i

)

= O

(

1 +
∑

i>1

n−0.1
i

)

= O(1).

Additionally, to handle the case where s may not be strongly feasible, the query will spend
additional time O(nj), where j is the largest j such that the level-j subproblem containing s is
not strongly feasible. Define Xj to be the indicator random variable that the level-j subproblem
containing s is not strongly feasible. Then our time contribution from cases where s is not strongly
feasible is at most

O




∑

j

Xj · nj



,

which by Lemma 4.3 has expectation

O




∑

j≥i

n−ω(1)
j · nj



 = O(1).

Thus the overall expected query time is O(1).

15

A helper method for updates: the “sampling trick”. Before we describe how to implement
updates, let us first describe a sub-task that will prove useful. Given a level-i subproblem S, and a
color ε ∈ {i, i+1}, the Sample(s, c) protocol either returns an element in s’s buffer with color ε or
declares that no such element exists. (If i = ε, then the only valid value for ε is i, and if i = 1 then
the only valid value is 2.)

The protocol is implemented by simply performing (up to) bi random samples from the buffer
(returning if it ever finds an element with color ε), and then, if none of those samples succeed,
scanning the buffer in O(bi) additional time.

The following basic lemma will allow us to reason about the behavior of Sample.

Lemma 4.8. Let x be an element, let s be the level-i ancestor of h(x) for some i, and let ε ∈
{max(i, 2), min(i + 1, ε)}. If the Common-Case Invariant holds, then Sample(s, ε) takes O(1)
expected time.

Proof. By Lemma 4.3, we have with probability 1− n−ω(1)
i that at least a constant-fraction of the

elements in s’s buffer have color ε. If this is the case, then the expected number of random samples
needed to find such an element is O(1). If this is not the case, which happens with probability
n−ω(1)
i , then the Sample procedure may take time as much as O(bi). Thus the overall expected

time is
O(1) +O(n−ω(1)

i bi) = O(1).

Implementing insertions. Suppose we wish to insert an element x. If the root r is not strongly
feasible, then we perform the insertion by rebuilding the entire table from scratch. Otherwise, we in-
voke a recursive function Insert(r, x) that we will now define. In general, the function Insert(s, x)
takes two inputs:

• a strongly feasible subproblem s that currently contains the hash table’s only free slot;

• and an element x that hashes to either s or one of s’s descendants.

It then implements the insertion of x while preserving the Common-Case Invariant. The protocol
for Insert(s, x) is:

1. If x hashes to s, then insert x into s’s free slot, and return. By Lemma 4.5, this preserves the
Common-Case Invariant.

Otherwise, let c be the child of s on the path from s to h(x). Compute y = Sample(c, j),
where j is the level of s.

2. If either c is not strongly feasible or y = null, then rebuild s from scratch to perform the
insertion and preserve the Common-Case Invariant. This is possible by Lemma 4.4.

3. Otherwise, move y into the free slot in s, creating a free slot in c. (By Lemma 4.5, this
preserves the Common-Case Invariant.) Now c is a strongly feasible subproblem that contains
the hash table’s only free slot, so we can complete the insertion by calling Insert(c, x).

Implementing deletions. Now suppose we wish to delete an element x (and create a free slot in
the root subproblem). We will assume that we already know where the element is in the hash table,
since this can be determined with an O(1)-expected-time query. If the root r is not strongly feasible,
then we perform the deletion by rebuilding the entire table from scratch. Otherwise, we invoke a
recursive function Delete(r, x) that we will now define. In general, the function Delete(s, x)
takes two inputs:

16

• a strongly feasible subproblem s that is well-supplied, as defined in Lemma 4.5;

• and an element x that hashes to either s or one of s’s descendants.

It then implements the deletion of x and creates a free slot in s’s buffer, all while preserving the
Common-Case Invariant. The protocol for Delete(s, x) is:

1. If x is in s, then delete x and return. By Lemma 4.5, this preserves the Common-Case
Invariant.

Otherwise, let c be the child of s on the path from s to the subproblem whose buffer contains
x. Compute y = Sample(s, j), where j is the level of s.

2. If either c is not strongly feasible or y = null, then rebuild s from scratch to delete x, place
a free slot in s’s buffer, and preserve the Common-Case Invariant. This is possible by Lemma
4.4.

3. Otherwise, since s is well-supplied and y exists, we can conclude that c is well-supplied. Since,
furthermore, c is strongly feasible, we can legally invoke Delete(c, x). Doing so creates a free
slot in some position p of c’s buffer and (by induction) preserves the Common-Case Invariant.
Finally, we move y from s’s buffer to position p of c’s buffer. This move creates a free slot in
s’s buffer, as desired, and preserves the Common-Case Invariant by Lemma 4.5.

Analyzing insertions and deletions. Because the Insert and Delete protocols are so similar,
we combine their analyses into a single lemma:

Lemma 4.9. The insertion and deletion protocols each take O(log log n) expected time and preserve
the Common-Case Invariant.

Proof. The preservation of the Common-Case Invariant has already been established via Lemmas
4.4 and 4.5. So it suffices to prove the time bounds.

The slow case for insertions/deletions is if the operation is forced to rebuild an entire subtree.
This can happen if either the root r is not strongly feasible, or if a call to either Insert(·, ·) or
Delete(·, ·) triggers a rebuild of a subproblem in Step 2 of either protocol.

Let T1 denote the time spent on rebuilding entire subtrees and T2 denote the other time spent
on the insertion/deletion. The second quantity T2 is dominated by making O(log log n) calls to the
Sample function, each of which we know by Lemma 4.8 takes O(1) expected time. So E[T2] ≤
O(log log n). To complete the proof, we must also show that E[T1] ≤ O(log log n).

To bound E[T1], we must first prove the following claim.

Claim 4.10. In the Insert(s, x) protocol, if Step 2 performs a rebuild because Sample(c, j) = null,
then s is not strongly feasible after the insertion.

Similarly, in the Delete(s, x) protocol, if Step 2 performs a rebuild because Sample(s, j) =
null, then s is not strongly feasible after the deletion.

Proof. We begin by proving the claim for insertions. If Sample(c, j) = null, then (prior to the
insertion) there are no color-j elements in c’s buffer. Since (prior to the insertion) s is in a strongly
common-case configuration, we know that all of the non-color-j elements in the buffers of c and its
descendants hash to c and its descendants. It follows that, after the insertion, the total number of
items that hash to c and its descendants will be nj−1+1. It is therefore not possible for s to be in a
strongly (or even weakly) common-case configuration after the insertion, so s is no longer strongly
(or weakly) feasible.

17

Next, we prove the claim for deletions. If Sample(s, j) = null, then (prior to the deletion) there
are no color-j elements in s’s buffer (and therefore no elements that hash to c or its descendants).
Since (prior to the deletion) s is in a strongly common-case configuration, all of the elements that
hash to s and s’s descendants are contained in the buffers of s and s’s descendants. Since there
are no such elements in s’s buffer, it follows that the total number of elements that hash to s and
s’s descendants is at most ni − bi. After the deletion, the number of such items will be at most
nj − bi−1, which means that the buffers of s’s descendants cannot be occupied only by these items.
It follows that (after the deletion) s is no longer strongly (or weakly) feasible.

From the preceding claim, we can conclude that, if either Insert(s, x) or Delete(s, x) performs
a rebuild in Step 2, then at least one of s or its child c must be non-strongly-feasible either before
or after the insertion or deletion. We know from Lemma 4.3 that the probability of this happening
for s in a given level j is at most n−ω(1)

j−1 = n−ω(1)
j . If a rebuild is performed, then it takes at most

poly(nj) time, so the expected contribution of each level j to T1 is at most

n−ω(1)
j · poly(nj) ≤ O(1/2j).

This allows us to bound
E[T1] ≤

∑

j

O(1/2j) = O(1).

Putting the pieces together, we have proven Proposition 4.1.

5 Dynamic Resizing Without Increasing Update Time

In this section, we will extend Basic Rainbow Hashing to support dynamic resizing. As in the
previous section, we shall continue to focus on hash tables that operate at load factor 1. In this
context, what dynamic resizing means is that, as the total number n of elements changes over time,
the hash table automatically reconfigures itself to use exactly the first n slots in memory. Perhaps
surprisingly, we shall see that this seemingly stringent resizing property can be achieved without
changing the timing characteristics of the hash table. In particular, we will prove the following
proposition:

Proposition 5.1. The basic rainbow hash table can be extended to support dynamic resizing with a
continual load factor of 1, while preserving an expected query time of O(1) and an expected update
time of O(log log n), where n denotes the current size of the hash table.

The main challenge in resizing is to allow n to change by a constant factor, that is to support n
changing within a range of the form, say, [N, 1.1 ·N] for some N . This will be our focus for most
of the section.

Embedding the recursion tree into an array with bit-reversed ordering. In order to
describe our resizing approach, it will be helpful to adopt a specific layout for how we embed the
buffers in the recursion tree into an array of size n. We will refer to this layout as the bit-reversed

layout for reasons that will become clear shortly.
Without loss of generality, we can choose bi,mi to all be powers of two for all i > 1. We

can also defer any rounding errors to the leaf subproblems. That is, we can ensure that every
level-i subproblem, i > 1, has buffer size exactly bi and fanout exactly fi, while allowing some leaf
subproblems to have sizes that differ by ±1 from each other. Finally, just to simplify our discussion

18

of the layout, we will think of every slot in the bottom layer of the tree as representing its own
subproblem (notice that this doesn’t change the behavior of the data structure at all), and we will
think of the fanout of any level-2 subproblem as being simply the sum of the sizes of the level-1
subproblems that it contains. (Note that, in doing this, we are implicitly redefining f2 to be what
was formerly f1 · n1, we are redefining n1 = b1 = 1, and we are allowing the fanouts of level-2
subproblems to be within 1 of f2.)

With these WLOG assumptions in mind, place the buffers in levels ε, ε − 1, . . . in sub-arrays
Aε, Aε−1, . . . that appear one after another from left to right. Each Ai with i > 1 will have a
power-of-two size, but A1 may not.

We label the subproblems in level i using integers 0, 1, . . . ,mi − 1, and refer to them as “the
j-th subproblem in Ai” for 0 ≤ j < mi. For i < ε, it is tempting to declare the parent of the j-th
subproblem in Ai to be the +j/fi+1,-th subproblem in Ai+1. Rather than using the standard layout,
however, we will use a bit-reversed layout : for i < ε, the parent of the j-th subproblem in Ai is
the k-th subproblem in Ai+1, where k is given by the low-order logmi+1 bits of j. Conversely, the
k-th subproblem in Ai+1 has as children the subproblems with indices of the form r ·mi+1 + k in
level i. But important subtlety here is the relationship between levels 1 and 2. If level 1 has size
m1, then the children of subproblem k in level 2 are the level-1 subproblems (i.e., slots in A1) with
indices

{j = r ·m2 + k | 0 ≤ j < m1}.

Conveniently, the restriction j < m1 automatically handles rounding errors—it guarantees that the
total number of subproblems/slots in level 1 is exactly m1, and dictates the assignment of those
subproblems to level-2 parents. We can confirm that the layout handles rounding errors correctly,
giving each level-i subproblem the same total number of leaf slots up to ±1, with the following
lemma.

Lemma 5.2. Using a bit-reversed layout, every level-i subproblem has the same total number of leaf
slots up to ±1.

Proof. For the k-th level-i subproblem in Ai, the leaf slots in k’s subtree are the slots in A1 whose
low-order bits are given by k, that is, the indices of the form

{j = r ·mi + k | 0 ≤ j < m1}.

The number of such indices is exactly

1 + +(m1 − k)/mi,.

Since k ∈ {0, 1, . . . ,mi − 1}, this value varies by at most ±1 for different subproblems k in Aj .

What is nice about this layout is not just that it handles rounding errors cleanly (a fact that
should be viewed as a minor detail), but rather that, as we will now see, it enables a surprisingly
simple resizing approach.

Resizing by changing m1 only. Suppose we wish to allow n to change within the range [N, 1.1 ·
N] for some N . We will achieve this by simply changing the value of m1 (i.e., the number of slots in
A1). Before an insertion, we first increment n (and thus m1). This creates a free slot in some leaf,
which we can then migrate to the buffer of the root subproblem using the same protocol that we
used to migrate free slots up the recursion tree for deletions. Similarly, after deletion, we decrement
n (and thus m1). This removes a slot from some leaf—the element that gets evicted from that slot

19

can be re-inserted using the standard insertion procedure (notice, in particular, that because we
have just performed a deletion, there is a free slot in the root buffer of the tree).

With these modifications in mind, the only point that we must be careful about is that, as n
changes within the range [N, (1+0.1)N], the values of pi do not change. For each subproblem s, let
ts denote the size of the subproblem. Note that when we change n and thus m1, this also implicitly
changes some values of ts.

The only parts of the probabilistic analysis in Section 4 that use the relationship between the
pi’s and the other parameters are the proofs of Lemmas 4.2 and 4.3. The fact that Lemma 4.2 holds
for n = N directly implies that it holds for n ∈ [N, 1.1 ·N]. Lemma 4.3 requires a bit more care,
however, as it needs the pi’s to satisfy (2), which for a level-i subproblem s, with 1 < i < ε, expands
to

(p2 + · · ·+ pi)n/mi ∈ ts − [0.4, 0.6] · bi. (4)

To recover the proof of Lemma 4.3, it suffices to show that, as n changes within the range
[N, 1.1 ·N], even though the values {pi} do not change, (4) continues to hold.

Lemma 5.3. Let 1 < i < ε and let s be a level-i subproblem. Let Ts be the value of ts when n = N ,
and suppose that

(p2 + · · ·+ pi)N/mi = Ts − 0.5 · bi ± 1.

Then, we claim that for all n ∈ [N, 1.1 ·N], if we change m1 so that the total number of slots is n
(and calculate the values of ts based on n), then we have

(p2 + · · ·+ pi)n/mi ∈ ts − [0.4, 0.6] · bi.

Proof. Observe that

(p2 + · · · + pi)n/mi

=
n

N
(p2 + · · · + pi)N/mi

=
n

N
· Ts −

n

N
· 0.5 · bi ±O(1)

∈
n

N
· Ts − [0.5, 0.55] · bi ±O(1).

To complete the proof, we will show that

n

N
· Ts = ts ±O(1).

Since, by Lemma 5.2, ts = n/mi ± 1 and Ts = N/mi ± 1, it suffices to show that

n

N
·
N

mi
=

n

mi
±O(1),

which holds trivially.

Having recovered Lemma 4.3, the rest of the analysis from Section 4 holds without modification.
This gives us the following proposition:

Proposition 5.4. Given a parameter N , the basic rainbow hash table can be extended to support
dynamic resizing with a continual load factor of 1 and with n varying in the range [N, 1.1 ·N]. Fur-
thermore, this preserves an expected query time of O(1) and an expected update time of O(log log n),
where n denotes the current size of the hash table.

20

Allowing n to change by more than a factor of 1.1. Finally, we can use standard rebuilding
techniques to allow for n to change by more than a factor of 1.1. Let r ∈ (0.99, 1) be uniformly
random. Let Ni := +1.09i · r,. Whenever n crosses from ≤ Ni to > Ni for some i, we will
rebuild the entire hash table to use N = Ni. Such a rebuild can be performed in place and in
O(n log log n) expected time using Lemma 4.4 (with T ′ equal to the entire tree). Since each value n
has probability Θ(1/n) of being within ±1 of some Ni, the probability of a given update triggering
a rebuild is Θ(1/n). The expected time spent per update on these rebuilds is therefore

Θ(1/n) · O(n log log n) = O(log log n).

Thus, we can extend Proposition 5.4 to allow n to change arbitrarily over time, while only adding
O(log log n) additional expected time per update, as desired. This completes the proof of Proposition
5.1.

6 Supporting Load Factor 1− ε

In this section, we give a black-box transformation that takes the resizable rainbow hash table
construction from Proposition 5.1 (which operates at load factor 1) and uses it to construct a
dynamically-resized hash table that operates at load factor 1 − ω, supports O(1) expected-time
queries, and supports O(log log ω−1) expected-time updates.

Our main result will be the following theorem:

Theorem 6.1. There exists a classical open-addressed hash table that is dynamically resized to
maintain a load factor of ≥ 1 − ω while supporting queries in O(1) expected time and updates in
O(log log ω−1) time.

At the end of the section, we will also prove the analogous result for fixed-capacity hash tables.
Throughout the section, we will assume that ω = n−o(1), since when ω = n−Ω(1), we are okay

with O(log log n)-time updates, so we can keep the hash table at load factor 1. Furthermore, as
in Section 5, it suffices to handle n ∈ [N, 1.1 ·N] for some known parameter N , since we can use
the random-threshold rebuild technique from Section 5 to handle larger changes in n. Finally, we
will satisfy ourselves with a load factor of the form 1−Θ(ω), since this is equivalent to 1− ω up to
constant-factor changes in ω.

The basic setup: rainbow hash tables with overflow handling. Our basic construction will
be as follows. Let k = poly ω−1. We will maintain N/k dynamically resized rainbow hash tables
H1,H2, . . . ,HN/k that are each allocated space (1− ω) n

N · k± 1 at any given moment. (The slots of
the hash tables can be interleaved so that, if we wish to increase the space in each hash table by 1,
we just need to extend the size of our array overall by N/k.) As a convention, we will set k′ = n

N k
(so k′ changes over time).

Each element x uses a random hash g(x) ∈ [N/k] to select which hash table Hg(x) it belongs
in. If the hash table Hg(x) is full when x is inserted (which will be the common case), then x is
placed in a overflow buffer Og(x) (whose implementation we will specify later). If an element
in some Hi is deleted, and the overflow buffer Oi is non-empty, then an element in Oi is moved
to Hi. Similarly, if the amount of space allocated to Hi is incremented, and |Og(x)| > 0, then an
item from Og(x) is moved to Hi (so that the increase in the size of Hi corresponds to an insertion
from Hi’s perspective); and if the amount of space allocated to Hi is decremented (and Hi was
full beforehand), then a random item will be deleted from Hi (so that the decrease in size of Hi

corresponds to a deletion from Hi’s perspective) and that item will be placed in Oi.

21

The overall rule will be that, if Oi is non-empty, then Hi is full. Thus, if we use zi to denote the
capacity of Hi at any given moment, and ri to denote the number of elements x satisfying g(x) = i
at any given moment, then |Oi| = max(0, ri − zi).

Lemma 6.2. With probability 1− k−ω(1), we have

|Oi| ∈ [0.5 · ωk′, 1.5 · ωk′].

Furthermore, E[max(0, |Oi|− 2ωk)] = o(1).

Proof. Let oi = Xi − |Hi|, and note that |Oi| = max(0, oi). By design, oi = Xi − |Hi| = Xi − (1−
ω)k′±O(1) where Xi is a binomial random variable with mean k′. The amount that oi deviates from
its mean of ωk′±1 is at most the amount that Xi deviates from its mean of k′. By a Chernoff bound,
the probability of Xi deviating from its mean by Ω(ωk′) > Ω((k′)3/4) is at most (k′)−ω(1) = k−ω(1);
it follows that, with probability 1 − k−ω(1), we have oi ∈ [0.5 · ωk′, 1.5 · ωk′] and therefore also
|Oi| ∈ [0.5 · ωk′, 1.5 · ωk′].

To obtain the final claim in the lemma, we can again apply a Chernoff bound to Xi to obtain
that the expected value of max(0, Xi − E[Xi]− Ω(ωk)) is o(1). Finally, since

oi − 2ωk = Xi − (1− ω)k′ − 2ωk ± 1 = Xi − E[Xi]− 2ωk + ωk′ = Xi − E[Xi]− Ω(ωk),

it follows that E[max(0, |Oi|− 2ωk)] = E[max(0, oi − 2ωk)] = o(1).

Handling under-filled Hi’s. If Hi is full, at any given moment, it can be implemented directly
as a resizable rainbow hash table. If Hi is not full (which by Lemma 6.2 happens with probability
k−ω(1)), then Hi is said to incur an under-fill error . In this case, slot 1 of Hi is left empty so that
queries and updates can examine it and determine that an under-fill error has occurred. When an
under-fill error has occurred, queries to elements x satisfying g(x) = i read all of Hi; and updates
to Hi spend O(poly |Hi|) time checking if Hi is still experiencing an under-fill error, and rebuilding
Hi appropriately based on whether it is or is not still experiencing an under-fill error.

For any given element x, the probability that Hg(x) is incurring an under-fill error at any given
moment is k−ω(1) by Lemma 6.2. So the increase in expected query and update times due to
under-fill errors is o(1).

Implementing the overflow buffers. The only tricky part of the data structure is implementing
the overflow buffers. We can afford to use O(ωN) total space to implement the Oi’s, and we wish
to implement them in such a way that we can support the following operations in O(1) expected
time each:

• Sample(Oi): samples a random element from Oi, if |Oi| > 0, and returns null if |Oi| = 0.

• Query(Oi, y): determines if y ∈ Oi.

• Insert(Oi, y): inserts y into Oi.

• Delete(Oi, y): deletes y from Oi.

Each Oi is allocated a 2ωk-size array Ai that it uses to store its elements (unless |Oi| > 2ωk).
The elements stored in Ai treat Ai as a linear-probing hash table. By Lemma 6.2, the load factor
of Ai is between 0.1 and 0.9 with probability 1 − k−ω(1). Thus, the expected time to perform
queries/inserts/deletes in Ai is O(1). Additionally, if we wish to sample a random element from

22

Ai, we can just randomly sample slots until we find one that is occupied; since, with probability
1 − k−ω(1) the number of occupied slots in Ai is ≥ 0.1 · |Ai|, the expected time of this sampling
procedure is O(1).

The only question is what we should do when Ai itself overflows, that is, when |Oi| ≥ |Ai| = 2ωk.
Note that, since this occurs with only a small probability (k−ω(1)), we are okay with having relatively
expensive (say, poly(k)-time) operations in this case.

To handle overflowed Ai’s, we allocate an array B of size ωN . If Ai overflows, its overflow
elements x treat B as a linear-probing hash table, where the hash of x within B is calculated by a
“hash function”

h(i) := ω · k · i.

Note that, since Ai is indexed by i ranging over i ∈ [N/k], the quantity h(i) is a valid index in
[|B|] = [ωN].

Since all of the overflow elements x from Ai have the same hash h as each other, it suffices
to show that, even if we condition on Ai overflowing, the expected length of the run in B that
contains the overflow elements is at most poly(k). This will allow us to implement operations on
Oi in poly(k) expected time when Ai overflows, as desired.

Thus, to complete our discussion of how to implement the Oi’s, it suffices to prove the following
lemma:

Lemma 6.3. Conditioned on Ai overflowing, the expected length of the run in B that contains the
overflow elements from Ai is at most poly(k).

Proof. It suffices to show that, conditioned on Ai overflowing, we have for each run-length t >
poly(k) (where poly(k) is a large polynomial of our choice) that: the probability that the overflow
elements from Ai are in a run in B of length t is at most

e−ω(log t). (5)

In order for the elements to be in a run of length t, there must be some contiguous interval I - h(i)
of t slot indices in B such that the number of elements in B that hash into I is exactly |I| = t. As
there are only t options for I satisfying |I| = t and h(i) ∈ I, it suffices to show that each individual
option has probability at most e−ω(log t) of occurring. Since t > poly(k) for a polynomial of our
choice, this, in turn, reduces to bounding the probability of a given interval I occurring by, say,

e−Ω(
√
t/poly(k)).

For the rest of the proof, fixing some interval I of t slots in B containing h(i), we wish to bound
the probability that, conditioned on Ai overflowing, there are at least t elements that overflow from
Aj ’s satisfying h(j) ∈ I.

Define Xj as the number of items that hash to Hj. (So, if we were to not condition on anything,
then Xj would be a binomial random variable with mean k′.) Define Yj as the number of items
that overflow from Aj , that is,

Yj = max(0, Xj − |Aj |− |Hj|).

Recall that we are conditioning on Yi ≥ 1.
There are O(ωt/k) values of j such that h(j) ∈ I. Let J be the set of such values j, excluding

i. Then, in order for I to have t elements in it, we would need

Yi +
∑

j∈J

Yj ≥ t,

23

which implies either that
Yi ≥ t/2 (6)

or that ∑

j∈J
Yj ≥ t/2. (7)

Again, we are interested in the probabilities of these events conditioned on Yi ≥ 1.
To bound the probability of (6), observe that the random variable (Yi−1 | Yi ≥ 1) is dominated

by Xi (not conditioned on anything).2 Therefore,

Pr[Yi ≥ t/2 | Yi ≥ 1] ≤ Pr[Xi ≥ t/2− 1].

Since Xi is a binomial random variable with mean Θ(k), this latter probability is, by a Chernoff
bound, at most e−Ω(t/k).

To bound the probability of (7), observe that

Pr




∑

j∈J
Yj ≥ t/2


Yi ≥ 1



 < Pr




∑

j∈J
Yj ≥ t/2



,

where the latter probability does not condition on anything.
The values {Yj | j ∈ J} are negatively associated random variables that each has expected

value o(1) (by Lemma 6.2) and that are each bounded above by a geometric random variable with
mean O(k) (since even Xj is, by even a very weak Chernoff bound, bounded above by such a
geometric random variable). By a Chernoff bound for sums of negatively associated geometric
random variables [40], the probability that

∑
j∈J Yj exceeds its mean by more than r ·


|J |k, for a

given r > 0, is at most e−Ω(r). Since the mean of this sum is |J | · o(1) ≤ |J |, it follows that

Pr




∑

j∈J
Yj > |J |+ r ·


|J |k



 ≤ e−Ω(r).

Since |J | = O(ωt/k) = o(t), this lets us bound

Pr




∑

j∈J

Yj ≥ t/2



 < Pr




∑

j∈J

Yj ≥ |J |+ t/4





= e−Ω(t/(k
√

|J |))

= e−Ω(t/(k
√

εt/k))

= e−Ω(
√
t/poly(k)),

as desired.

In the case where B overflows, which is an extremely rare event, we say the global failure

has occurred. When this happens, we keep the entire hash table in an arbitrary state (i.e., placing
all keys in arbitrary slots), and for each insertion/deletion/query, we spend Θ(n) time scanning
through the table and checking if it can return to the normal case. A special boolean is stored to

2This is an application of the more general fact that, for a binomial random variable X, Pr[X ≥ r | X ≥ r − 1] is

a monotonically decreasing function in r.

24

indicate whether the global failure is occurring, which is again encoded by the relative order of two
special elements. According to (5), at any given moment, the probability that B overflows is at
most e−ω(log(εN)) = N−ω(1), so the global failure contributes a negligible amount to the expected
insertion/deletion/query time.

Putting the pieces together. We can now summarize the full procedure for implementing
insertions/deletions/queries.

To query an element x, we must query Og(x) and Hg(x). The expected time needed to query
Hg(x) is O(log log k) = O(log log ω−1); and the expected time needed to query Og(x) is O(1). To keep
the query within the model of classical open addressing, we can simply interleave the two probe
sequences and stop when both queries have completed. Overall, the expected query time is O(1).

To insert an element x, we first check if Hg(x) is under-filled. If so, we follow the protocol
described earlier to handle under-fill errors. Otherwise, we insert x into Og(x). Each of the above
steps takes O(log log k) = O(log log ω−1) expected time.

To delete an element x, we first determine where it is. If x ∈ Og(x), we delete it in O(1) expected
time. Otherwise, if x ∈ Hg(x), we delete it from Hg(x); we use Sample(Og(x)) to find an element
y that we can move from Og(x) into Hg(x); and we insert y into Hg(x) in order to keep Hg(x) at
load factor 1. If y does not exist, then the free slot in Hg(x) is placed in its slot 1 to indicate that
it is experiencing an under-fill error. Each of the above steps takes O(log log k) = O(log log ω−1)
expected time.

Finally, as insertions and deletions are performed, we must not only implement those operations,
but also add/remove slots to the Hi’s in order to maintain the invariant that each Hi is given
(1− ω) n

N · k ± 1 slots at any given moment.
Adding a slot to some Hi is implemented as follows. A call to Sample(Oi) is made to either get

a random element of Oi or determine that |Oi| = 0. If |Oi| = 0, then the addition of a slot to Hi

will cause it to be under-filled. In this case, Hi is rebuilt from scratch (but remember that, since
under-filled Hi’s are very rare, this contributes negligibly to our expected time bound). In the more
common case where |Oi| > 0, we move an item from Oi into Hi—this allows Hi to view its increase
in size as being due to an insertion, which in turn takes O(log log k) = O(log log ω−1) expected time.

Deleting a slot from some Hi, on the other hand, is implemented as follows. If Hi is under-filled,
then Hi is simply rebuilt (again, since under-filled His are very rare, this contributes negligibly
to our expected time bound). Otherwise, a random element is removed from Hi and placed into
Oi. This allows Hi to view its decrease in size as being caused by a deletion, which in turn takes
O(log log k) = O(log log ω−1) expected time.

Putting the time bounds together, we have proven Theorem 6.1.

Supporting all load factors < 1 − ω for the fixed-capacity case. Finally, we conclude the
section by describing how to handle arbitrary load factors in a fixed-capacity hash table.

Theorem 6.4. There exists a classical open-addressed hash table that has a fixed capacity N , and
that allows for load factors of up to 1−ω while supporting queries in O(1) expected time and updates
in O(log log ω−1) time.

Proof. Let us begin by assuming that the size is guaranteed to stay in [0.95N, (1 − ω)N]. Then,
we will implement our fixed-capacity data structure, which we will call D, by actually using the
dynamically resized data structure, which we will call D′, already described earlier in the section.
The data structure D′ lives in a prefix of the memory allocated to D, and is parameterized to preserve
a load factor of 1 − ω as the number of elements varies within the range [N ′, (1 − ω)N < 1.1N ′]

25

for N ′ = 0.95N . As we have already established, D′ supports O(1) expected-time queries and
O(log log ω−1) expected-time updates.

There is one point that we must be very careful about, however. One cannot, in general, use
a dynamically-resized classical-open-addressed hash table to implement a fixed-capacity classical
open-addressed hash table. This is because, in the dynamic-resizing case, the probe sequence for an
item x is permitted to depend on both x and the current value of N ; but in the fixed-capacity case,
the probe sequence must depend on only x and a fixed N . Fortunately, in our construction of D′,
the probe sequences that we use for n ∈ [N ′, 1.1 ·N ′] are subsequences of the probe sequences that
we use for n = 1.1 ·N (and the difference for each probe sequence is just the addition/removal of
O(1) probes in the first O(1) entries of the sequence). Therefore, in our case, we can use D′ within
D.

Finally, we must also handle cases where our size drops below 0.95N . Let T be a random
threshold in [0.9N, 0.95N]. Whenever the number of elements in the hash table crosses below
T , we rebuild the hash table to use standard linear probing. Whenever the number of elements
crosses above T , we rebuild the hash table to use D′ as described above. Each rebuild takes
O(N log log ω−1) time, and the probability of a given insert/deletion crossing the threshold T is
O(1/N), so the contribution of rebuilds to the expected update time is O(log log ω−1).

7 The Lower Bound

In this section, we prove an Ω(log log ω−1) lower bound on the amortized expected time per inser-
tion/deletion in any classical open-addressing hash table that supports (even moderately) efficient
queries.

Theorem 7.1. Suppose the universe size U = polyn is a large polynomial of n. If a classical
open-addressing hash table stores n keys with load factor 1− ω, then the expected amortized time per

operation is at least Ω(log log ω−1). Moreover, as long as the expected query time is O

2
√

log ε−1)
,

the expected amortized time per insertion/deletion is at least Ω(log log ω−1).

The hard distribution used for proving Theorem 7.1 will simply be a sequence of n2 random
insertions and deletions (Distribution 1). Under this operation sequence, we will show that, if a
classical open-addressing hash table has low average probe complexity, it must relocate a large
number of keys to other slots during the operations (hence giving it a large insertion/deletion time).
By Yao’s minimax principle, we also assume the hash table is deterministic.

Distribution 1: Hard distribution
1 Initialize the hash table with n random keys from the universe [U]
2 Repeat M = n2 times:
3 Delete a random element from the current key set S
4 Insert a random element in [U] \ S

Recall that n is the maximum number of keys the hash table can store, and assume the load
factor is 1 − ω for some 1/n ≤ ω ≤ Θ(1), so the number of slots is N = (1 + Θ(ω)) · n. There is a
deterministic function h that maps each key x ∈ [U] to a probe sequence {hi(x)}i≥1. For technical
reasons, we allow each entry hi(x) to be either a slot s ∈ [N] or “null”. Without loss of generality,
we assume that there is a special slot, say slot N : When we insert any key x, key x is first put into
the special slot, then the algorithm will arrange the keys to move x to a normal slot.

26

Recall that a key x storing in slot s = hi(x) is said to have probe complexity i (assuming hi(x)
is the first occurrence of s in the probe sequence). When a key is stored in the special slot, we say
the key has probe complexity N . Any key with probe complexity i will cost the query algorithm
O(i) time. Thus, the average probe complexity over the current key set measures the query time of
the hash table. During insertions and deletions, the hash table may move some keys to other slots,
and we define the switching cost of this operation to be the number of moved keys. The switching
cost is a lower bound of the time spent on the operation.

For any probe-sequence function h, integer i ≥ 1, and slot s ∈ [N], we define

q(h, i, s) := n Pr
x∈[U]

[probe-complexity(x, s) ≤ i] = n Pr
x∈[U]

[hk(x) = s for some k ≤ i].

We say h is nearly uniform if q(h, i, s) ≤ O(i10) for all i and s. We first assume the function h
is nearly uniform and prove the following lower bound. At the end of this section, we will remove
this assumption.

Theorem 7.2. Suppose the universe size U = polyn is a large polynomial of n. Assume there
is a classical open-addressing hash table, which stores n keys with load factor 1 − ω, uses a nearly

uniform probe-sequence function h, and has average probe complexity O

2
√

log ε−1
)

in expectation
at any given moment, then the expected amortized switching cost during each insertion or deletion
must be Ω(log log ω−1).

To prove this theorem, we let the hash table take Distribution 1 as input, and show a lower bound
on the average switching cost per insertion and deletion. We start by setting up main concepts in
our analysis.

Levels. We define L := $(log log ω−1)/2%. Suppose a key x is stored in slot s = hk(x) with probe
complexity k, i.e., k = min{k′ ∈ N+ | hk′(x) = s}. We define the level of key x stored in slot s,
written ε(x, s), as follows:

• If k ≤ 22
L
, the level is ε(x, s) = 0.

• If k > 22
2L

, the level is L. As a special case, any key stored in the special slot has level L.

• Otherwise, if k ∈ (22
L+i−1

, 22
L+i

] for some i ∈ N+, the level is i.

Moreover, we define the level of a slot s in a given state to be the level of the key stored in slot s, if
slot s is not empty; the level of an empty slot is defined as L. It is clear that the level of the special
slot is always L.

When the algorithm moves a key x from one slot to another, it may change the level of the key.
We define the impact of the move to be how much the level of x decreases (negative impact means
the level increases). We have the following lemma from [6] with almost the same proof.

Lemma 7.3 ([6, Lemma 5]). Let Ψ be the sum of impacts of all the moves that the algorithm
performs during the M insertions and deletions. Then

E[Ψ] = Θ(ML).

Proof Sketch. Let J be the sum of levels of all keys stored in the current hash table. When we
insert a key x, it is first placed in the special slot with level L, thus increasing J by L. When we
delete a key x, the expected level of x is O(1) since the expected average probe complexity at any
moment is small, so removing x from the slot containing it will decrease J by O(1) in expectation.
Therefore, the M insertions and deletions will increase J by Θ(ML), implying that the hash table
should rearrange the keys to decrease the sum of levels by Θ(ML). The lemma follows.

27

Potential function. To prove Theorem 7.2, we will construct a potential function Φ of any given
state of the hash table, satisfying three properties:

• Property 1. Each insertion or deletion increases Φ by O(1) in expectation.

• Property 2. If the algorithm performs a move with impact r (i.e., the level of the moved key
is decreased by r), Φ will be decreased by r ±O(1).

• Property 3. 0 ≤ Φ ≤ O(nL) always holds.

Once we have a potential function Φ satisfying all three properties, the following proposition
from [6] will imply Theorem 7.2.

Proposition 7.4 (Implicit in [6]). If Lemma 7.3 holds and there is a potential function Φ satisfying
Properties 1 to 3 above, then Theorem 7.2 holds.

Proof Sketch. At a given moment, let Ψ be the total impact the algorithm has made so far, and let
Φ be the potential function on the current state. By Lemma 7.3 and Property 3 of Φ, the value
Ψ + Φ is increased by Θ(ML) during all M insertions and deletions, but each operation and each
move can only increase it by O(1). Therefore, the number of moves during all operations is at least
Ω(ML).

The only remaining step to prove Theorem 7.2 is to construct such a potential function.

7.1 Constructing the potential function

In this subsection, we construct the potential function Φ based on the concept of stanzas.

Definition 7.5 (Stanzas). Fix a state of the hash table. Let 10 ≤ i ≤ L and j ≥ 2 be integers. We
say a sequence of slots s1, s2, . . . , sj is an i-stanza , if the following conditions hold:

• s1 and sj have level ≥ i, while s2, . . . , sj−1 are distinct slots with level ≤ i − 10 (we allow
s1 = sj).

• Slots s1, . . . , sj−1 are non-empty. Assuming keys x1, . . . , xj−1 are stored in slots s1, . . . , sj−1

respectively, then ε(xk, sk+1) ≤ i− 10 for every k ∈ [j − 1].

In such a stanza, we call s1 the starting slot , s2, . . . , sj−1 the internal slots, and sj the final

slot . We say a collection of stanzas is disjoint if each slot with level ≥ i is used at most once as
the starting slot and at most once as the final slot, whereas each slot with level ≤ i− 10 is used at
most once as the internal slot.

Definition 7.6 (Potential of stanzas). For an (i + 10)-stanza s1, . . . , sj , assuming xk is the key
stored in slot sk for 1 ≤ k ≤ j − 1, we define its potential to be

φ(s1, . . . , sj) := 1−
j−1∑

k=2

√
2
ε(xk,sk)−i

−
j−1∑

k=1

√
2
ε(xk,sk+1)−i

.

Definition 7.7 (Potential function). We define the potential of a collection of disjoint stanzas to be
the sum of potentials of the stanzas in the collection. For 10 ≤ i ≤ L, let Φi denote the maximum
potential of a collection of disjoint i-stanzas in the current state. We define the potential function

Φ :=
L∑

i=10

Φi.

28

To analyze the properties of Φ, we define the key-slot graph G as follows.

Definition 7.8 (Key-slot graph). At any given moment, we use A1 to denote the set of n keys in the
current key set; use A2 to denote n random keys in [U]\A1, in which we will insert a random one in
the next insertion. The key-slot graph of the given state is a bipartite graph G with A := A1 ∪A2

being the left-vertices and the set [N] of all slots being the right-vertices. For each key a ∈ A and
each slot s ∈ [N], if ε(a, s) < L, there is an edge in G connecting them with level ε(a, s).

Definition 7.9. For each vertex x ∈ G, we define its level-i degree as the number of edges
with level at most i associated with x, written degi(x). We say vertex x is low-degree , if for all
0 ≤ i < L, there is degi(x) ≤ 22

L+i+5

. Otherwise, we say x is high-degree .

Note that the level-i degree of a left-vertex a ∈ A is at most 22
L+i

deterministically, so all
left-vertices are low-degree. For right-vertices, the expected level-i degree is also bounded by
Θ

(22

L+i
)10
)

since the probe-sequence function is nearly uniform.

Lemma 7.10. Let S be the set of high-degree (right-)vertices in G. With probability 1− 1/polyL,
the total number of neighbors of vertices in S is

∑

s∈S

degL−1(s) ≤
n

2Ω(22L)
.

Proof. We fix a right-vertex s ∈ [N] and analyze its level-i degree. Since U is a large polynomial of
n, without loss of generality, the left-vertices can be viewed as 2n independently random keys from
[U], written {a1, . . . , a2n}. Let Xk := [ε(ak, s) ≤ i], then

E[Xk] = Pr
ak∈[U]

[
probe-complexity(ak, s) ≤ 22

L+i]
≤ Θ

(
(22

L+i
)10

n

)
≤

22
L+i+4

n

by the near-uniformity of the probe-sequence function. Then, X :=
∑2n

k=1Xk is the level-i degree of
s, whose expectation does not exceed O(22

L+i+4

). By a Chernoff bound, for each D ≥ Ω(22
L+i+4

),

Pr[X > D] ≤ 2−Ω(D). (8)

Substituting D = Θ(22
L+i+5

) into the inequality, we know

Pr[X > 22
L+i+5

] ≤ 2−Ω(22
L+i+5

) ≤ 2−Ω(22
L
).

Taking a union bound over 0 ≤ i < L, we know that

Pr[s is high-degree] ≤ 2−Ω(22
L
) · L = 2−Ω(22

L
). (9)

Moreover, taking summation of (8) over all integers D > 22
L+i+5

, we know

E

[
degi(s) ·

[
degi(s) > 22

L+i+5]]
≤ 2−Ω(22

L
). (10)

To bound the number of neighbors of S (the set of high-degree nodes), we divide S into two
parts: Let S1 be the set of vertices x satisfying degL−1(x) > 22

2L+4

, i.e., they are high-degree
because their level-(L−1) degrees are too large; let S2 = S \S1. We bound the number of neighbors
of the two parts separately.

29

For S1, we take summation of (10) over all right-vertices with i = L− 1, obtaining

E




∑

s∈S1

degL−1(s)



 ≤ n · 2−Ω(22
L
). (11)

For S2, we take summation of (9) to obtain

E




∑

s∈S2

degL−1(s)



 ≤ E[|S2|] · 22
2L+4

≤ n · 2−Ω(22
L
) · 22

2L+4

= n · 2−Ω(22
L
). (12)

Adding (11) and (12) together and applying a Markov inequality, the lemma follows.

i-short paths. Assume s1, . . . , sj is an (i + 10)-stanza with positive potential, and xk is stored
in slot sk for k ∈ [j − 1]. Then, there must be a path in G from x1 to sj consisting of:

• no edges with level > i;

• at most 1 edge with level i;

• at most
√
2 edges with level i− 1;

• at most
√
2
2

edges with level i− 2;

• · · ·

Formally, for every integer 0 ≤ δ ≤ i, the number of edges with level i− δ in the path cannot exceed√
2
δ
. We say a path is i-short if it satisfies this condition.
Next, we show that a random key a1 ∈ A1 or a2 ∈ A2 is unlikely to reach any right-vertex (slot)

s ∈ [N] with level ≥ i+ 10 via an i-short path.

Lemma 7.11. Let a1 ∈ A1 and a2 ∈ A2 be random keys, and 0 ≤ i ≤ L− 10 be an integer. With
probability 1 − 1/polyL, neither a1 nor a2 can reach a right-vertex (slot) in the key-slot graph G
with level ≥ i+ 10 via an i-short path.

Proof. We first build an auxiliary graph G′ from G as follows:

• for every high-degree vertex s, we color all its neighbors in black;

• for each right-vertex s ∈ [N] with level ≥ i+ 10, we color it in black;

• we delete all high-degree vertices.

After these modifications, we call the obtained graph G′, which contains a subset of vertices colored
black. There are two properties of G′:

1. every node in G′ is low-degree;

2. if a node a ∈ A can reach a slot s ∈ [N] in G with level ≥ i+ 10 via an i-short path, then it
can reach a black node in G′ via an i-short path (including the case where a itself was colored
black).

30

The second property is because we have colored all neighbors of the deleted nodes in black, thus
any valid i-short path in G will still lead to a black node in G′.

Next, we count the number of vertices that can be reached from a black node via an i-short
path. Since every node in G′ is low-degree, fixing a black node as the starting node, an i-short path
of length p > 0 can be encoded with the following parameters:

ε1, . . . , εp ∈ [0, L− 10] ∩ Z, tk ∈
[
22

L+!k+5]
for k ∈ [p],

s.t. {k ∈ [p] | εk = i− δ} ≤
√
2
δ

for all 0 ≤ δ ≤ i.

Given these parameters, the i-short path is determined edge-by-edge: εk denotes the level of the
k-th edge on the path; tk indicates one of the associated level-εk edges of the k-th node on the
path. We upper bound the number C1 of different configurations for (ε1, . . . , εp) by enumerating
qδ := |{k ∈ [p] | εk = i− δ}| ∈

[
0,
√
2
δ] ∩ Z:

C1 ≤
(
√
2
0)∑

q0=0

(
√
2
1)∑

q1=0

(
√
2
2)∑

q2=0

· · ·
(
√
2
i)∑

qi=0

(
q0 + q1 + · · ·+ qi
q0, q1, . . . , qi

)

≤
i∏

δ=0

√
2
δ
+ 1
)
·
(+

√
2
0,+ +

√
2
1,+ · · ·+ +

√
2
i,

+
√
2
0,, +

√
2
1,, . . . , +

√
2
i,

)

≤ 2O(L2) ·
i∏

j=1

(+
√
2
0,+ · · ·+ +

√
2
j,

+
√
2
j,

)

≤ 2O(L2) ·
i∏

j=1

2O(
√
2
j
)

≤ 2O(L2) · 2O(2L/2) = 2o(2
L).

Given any configuration of (ε1, . . . , εp), the number of configurations for (t1, . . . , tp) is bounded by

C2 ≤
i∏

δ=0


22

L+i−δ+5)√2
δ

= 2(2
5·
∑i

δ=0 2
L+i−δ·2δ/2) = 2(32·

∑i
δ=0 2

L+i−δ/2) ≤ 2
(32· 1

1−1/
√

2
)(2L+i) 0 2110·2

L+i
.

Therefore, the number of reachable nodes from any given black node is at most

C1 · C2 ≤ 2(110+o(1))·2L+i
0 2111·2

L+i
. (13)

Lastly, we bound the number of black nodes, which consist of three parts:

1. The neighbors of high-degree nodes. According to Lemma 7.10, with probability 1−1/polyL,

the number of these black nodes does not exceed n/2Ω(22
L
).

2. The non-empty slots with level ≥ i + 10. Since the expected average probe complexity over
all non-empty slots is at most O


2
√

log ε−1
)
= O(22

L
), with probability 1−1/polyL, the total

probe complexity is at most O

n · 22L · polyL

)
; every non-empty slot with level ≥ i+ 10 has

probe complexity at least 22
L+i+9

, thus the number of such slots does not exceed

O

n · 22L · polyL

)

22L+i+9
0

n

2510·2L+i .

31

3. The empty slots (with level L). There are at most

O(ωn) ≤ O(n/22
2L−1

) ≤ O(n/22
L+i+9

) 0
n

2511·2L+i

empty slots as the load factor equals 1− ω.

Adding them together, we know that the number of black nodes is at most O(n/2510·2
L+i

) with
probability 1 − 1/polyL. Multiplying with (13), we conclude that with probability 1 − 1/polyL,
only n/2399·2

L+i
= n/2Ω(2L+i) nodes can be reached via an i-short path from a black node. Finally,

since a1 ∈ A1 and a2 ∈ A2 are sampled randomly, they do not belong to the reachable nodes with
probability 1− 1/polyL, thus the lemma holds.

Based on Lemma 7.11, we can now analyze the desired properties of Φ.

Lemma 7.12 (Property 1 of Φ). Any insertion or deletion increases Φ by at most 1/polyL in
expectation.

Proof. Suppose we insert a random key a ∈ A2 to the current hash table. For each 0 ≤ i ≤ L− 10,
Φi+10 is increased by at most 1. A necessary condition for Φi+10 to be increased is that there exists
an (i + 10)-stanza, starting with the special slot s1 containing the inserted key a, with positive
potential. Say the stanza consists of slots s1, . . . , sj with x1, . . . , xj−1 residing in slots s1, . . . , sj−1

respectively, where s1 is the special slot and x1 = a. In the key-slot graph G of the state before the
insertion, this implies an i-short path from a = x1 to sj : x1 − s2 − x2 − · · ·− sj−1 − xj−1 − sj . The
last vertex on the path is a slot with level ≥ i+10. Due to Lemma 7.11, the probability of existing
such a path is at most 1/polyL, i.e., Φi increases by 1/polyL in expectation. Taking summation
over all i, we know that Φ increases by 1/polyL in expectation as well.

Similarly, suppose we delete a random key a ∈ A1 from the current hash table. For each
0 ≤ i ≤ L− 10, in order to increase Φi+10 by at most 1, there must be an (i+10)-stanza s1, . . . , sj ,
with xk stored in sk for k ∈ [j − 1], where sj is the slot containing key a before the deletion (sj
becomes empty after the deletion and thus can serve as the final slot). In the key-slot graph G of the
state before the deletion, the stanza corresponds to an i-short path s1−x2−s2−x3−· · ·−xj−1−sj−a.
It is connecting the key a to delete with a slot s1 with level ≥ i+ 10, thus by Lemma 7.11, such a
path exists with probability at most 1/polyL. Taking summation over 0 ≤ i ≤ L−10, we conclude
that each deletion increases Φ by at most 1/polyL, and the lemma follows.

Lemma 7.13 (Property 2 of Φ). If the algorithm performs a move with impact r, Φ will be decreased
by r ±O(1).

Proof. Without loss of generality, we assume the algorithm can only (a) move a key from a non-
special slot to the special slot, and (b) move a key from the special slot to a non-special slot. This
is because any move between non-special slots can be replaced by two moves of types (a) and (b)
respectively. By symmetry, it suffices to analyze the moves of type (b).

Suppose the algorithm moves a key x from the special slot s1 to a non-special slot s2, where
ε(x, s2) = j. The move has impact r = L− j. For the sake of discussion, we denote by Σ the state
of the hash table before the move, and Σ′ the state after the move. Let Φ (resp. Φ′) be the potential
of Σ (resp. Σ′), and let Φi (resp. Φ′

i) be the i-th summation term in Φ (resp. Φ′).
We will show that for each 10 ≤ i ≤ L:

1. if i ≤ j, then Φ′
i = Φi;

2. if j < i < j + 10, then Φ′
i − Φi ∈ [−2, 0];

32

3. if i ≥ j + 10, then Φ′
i −Φi ∈

[
−1−O(

√
2
j−i

), −1 +O(
√
2
j−i

)
]
.

Case 1. If we represent every stanza (s̃1, s̃2, . . . , s̃j) using the tuple (x1, s̃2, s̃3, . . . , s̃j), where
x1 is the key residing in s̃1, then the set of representations of valid i-stanzas in Σ and Σ′ are the
same, also with the same potentials. Therefore, Φ′

i = Φi holds.
Case 2. The only changes from Σ to Σ′ are:

• s1 is no longer a valid starting slot;

• s2 is no longer a valid final slot.

Every valid i-stanza in Σ′ is also valid in Σ with the same potential, so Φ′
i ≤ Φi; each of the above

two changes will invalidate at most 1 stanza from the collection of disjoint i-stanzas in Σ, each
decreasing the potential by at most 1, so Φ′

i ≥ Φi − 2. So the statement also holds.
Case 3. Let C be a collection of disjoint i-stanzas in Σ with the maximum (sum of) potential.

Let s1 ◦ c1 be the stanza in C that starts with the special slot s1, where c1 is a sequence of slots,
if such a stanza exists; let c2 ◦ s2 be the stanza in C that ends with s2, where c2 is a sequence of
slots, if such a stanza exists.

We first adjust C to make sure that both stanzas s1 ◦ c1 and c2 ◦ s2 exist while decreasing the
potential of C by at most O(

√
2
j−i

). If s1 ◦ c1 does not exist, we remove any stanza ending with
s2, decreasing the potential by at most 1; then add the stanza (s1, s2) with potential 1−

√
2
j−i+10

.
Similarly, if c2 ◦s2 does not exist, we remove any stanza starting with s1 and add the stanza (s1, s2).
Further, if s1 ◦ c1 and c2 ◦ s2 are the same stanza, then we replace it with stanza (s1, s2), which
can only decrease the potential by at most

√
2
j−i+10

as well. Below, we assume C is the adjusted
collection of disjoint stanzas with potential at least Φi −O(

√
2
j−i

).
Then, we show Φ′

i ≥ Φi − 1 − O(
√
2
j−i

) by constructing a set C ′ of disjoint stanzas in Σ′. If
(s1, s2) ∈ C, C ′ = C \ {(s1, s2)} has potential at least Φi − 1. Otherwise, C must contain two
different stanzas s1 ◦ c1 and c2 ◦ s2. We let C ′ = C \ {s1 ◦ c1, c2 ◦ s2} ∪ {c2 ◦ s2 ◦ c1} and show the
following facts:

• The new stanza c2 ◦ s2 ◦ c1 is a valid i-stanza in Σ′, because:

– The first slot in c2 and the last slot in c1 have levels ≥ i, as they serve as starting and
final slots of stanzas in Σ, and their accommodated keys are unchanged in Σ′.

– The internal slots of the new stanza have levels at most i − 10. For s2, this is because
ε(x, s2) = j ≤ i − 10; for other slots, it is because they are internal slots of the two
original stanzas.

– Every key in the new stanza (except the key residing in the last slot of c1, if there is one)
can be stored in the subsequent slot with level at most i− 10. For key x in slot s2, this
is because the stanza s1 ◦ c1 requires that ε(x, first slot of c1) ≤ i− 10; for other keys, it
is a requirement of stanzas s1 ◦ c1 and c2 ◦ s2 in Σ′.

• The potential of the new stanza satisfies φ(c2 ◦s2 ◦c1) = φ(s1 ◦c1)+φ(c2 ◦s2)−1−O(
√
2
j−i

),
because if we compare the summations in Definition 7.6 for the three stanzas, there will be
only one extra term for c2 ◦ s2 ◦ c1:

√
2
ε(x,s2)−i+10

=
√
2
j−i+10

= O(
√
2
j−i

).

These facts imply that C ′ is a valid set of disjoint stanzas in Σ′ with potential at least Φi − 1 −
O(

√
2
j−i

).

33

Finally, we show that Φi ≥ Φ′
i + 1−O(

√
2
j−i

). Similar to above, we let C̃ ′ be the collection of
i-stanzas in Σ′ with the maximum sum of potential Φ′. If C̃ ′ does not contain a stanza using slot
s2, we simply set C̃ = C̃ ′ ∪ {(s1, s2)} to be a collection of disjoint i-stanzas in Σ, with potential
Φ′
i + 1 − O(

√
2
j−i

). Otherwise, we suppose there is a stanza c2 ◦ s2 ◦ c1 using s2 in C̃ ′, as s2 can
only serve as an internal slot. We let C̃ = C̃ ′ \ {c2 ◦ s2 ◦ c1} ∪ {s1 ◦ c1, c2 ◦ s2}, and by a similar
reasoning as above, we know the potential of C̃ is at least Φ′

i + 1−O(
√
2
j−i

).
Putting all three cases together, we take a summation of Φ′

i − Φi over 10 ≤ i ≤ L, which gives
Φ′ − Φ = −(L− j)±O(1) = −r ±O(1) and concludes the proof.

Lastly, Property 3 of Φ is true, because each Φi corresponds to a collection of disjoint stanzas,
whose size is at most O(n), while each stanza has potential at most 1, thus Φi ≤ O(n); taking a
summation over i shows Φ ≤ O(nL).

So far, we have proved all 3 desired properties of the potential function Φ. By Proposition 7.4,
these properties imply Theorem 7.2.

7.2 Non-nearly-uniform probe sequences

The previous subsection proves the lower bound on the expected switching cost per operation based
on the assumption of near uniformity. We recall that the probe-sequence function h is nearly

uniform if
q(h, i, s) := n Pr

x∈[U]
[probe-complexity(h, x, s) ≤ i] ≤ O(i10) (14)

for all i and s. For clarity, we use probe-complexity(h, x, s) to denote the probe complexity of key
x storing in slot s under the probe-sequence function h. In this subsection, we reduce every probe-
sequence function h to a nearly uniform one h′, changing the expected average probe complexity by
only a constant factor. This will remove the assumption of near uniformity in Theorem 7.2.

Formally, let A be an assignment of n keys to N slots. We denote by c(A,h) the total probe
complexity of all n balls under the probe-sequence function h.

Lemma 7.14. For every (deterministic) probe-sequence function h, we can construct a nearly uni-
form probe-sequence function h′, such that for any assignment A of n keys to N slots, c(A,h′) ≤
O(c(A,h) + n).

By definition, the probe sequence h(x) = (h1(x), h2(x), . . .) contains at most one slot hi(x) on
its i-th position. However, for the sake of discussion, we introduce generalized probe sequences

(h̃1(x), h̃2(x), . . .), where on the i-th position of the sequence there is a set h̃i(x) of slots. It is
required that, among the first i positions on the generalized probe sequence, the number of slots
should not exceed i.

For a generalized-probe-sequence function h̃, probe-complexity(h̃, x, s) is still defined as the first
position i containing slot s; q(h̃, i, s) and the notion of near uniformity are still defined according to
(14). The proof consists of two steps: first, we construct a nearly uniform generalized-probe-sequence
function h̃ that meets the requirements; second, we show that any (nearly uniform) generalized probe
sequence can be transformed into a (nearly uniform) probe sequence with little overhead.

Step 1: Constructing generalized probe sequences. We construct h̃ by reassigning some
occurrences of slots in the probe sequences to later positions. For each pair (i, s) where q(h, i, s) > i5,
which we call a bad pair , and for each key x where hi(x) = s, we move the occurrence of s from
hi(x) to a later position h⌈√

q(h,i,s)
⌉(x), resulting in generalized probe sequences h̃.

34

Next, we show that h̃ meets our requirements.

Claim 7.15 (Probe complexity of h̃). For any assignment A of n keys to N slots, the total probe
complexity of h̃ is at most c(A, h̃) ≤ c(A,h) +O(n).

Proof. For each integer Q that is a power of two, the number of bad pairs (i, s) where q(h, i, s) ∈
[Q, 2Q) is bounded by

(2Q)1/5∑

i=1



{
s ∈ [N]

 Pr
x∈[U]

[
probe-complexity(h, x, s) ≤ i

]
= Θ(Q/n)

}

≤
(2Q)1/5∑

i=1

O(i · n/Q)

= O

n/Q3/5

)
,

where the first equality is because
∑

s∈[N]Prx∈[U][probe-complexity(h, x, s) ≤ i] does not exceed i.
For each of the bad pairs, moving the occurrence of s to position

⌈
q(h, i, s)1/2

⌉
= Θ(Q1/2) may

increase the probe complexity of at most one key by O(Q1/2) (potentially, the key x stored in slot s
in the assignment A will get a higher probe complexity). Taking a summation over all Q, we upper
bound the increment on the total probe complexity by

c(A, h̃)− c(A,h) ≤
∑

Q≥1 is power of two

O

n/Q3/5

)
· O

Q1/2

)
= O(n).

Claim 7.16. h̃ is nearly uniform.

Proof. For each i ≥ 1 and slot s, we have

Pr
x∈[U]

[
probe-complexity(h̃, x, s) = i

]

= Pr
x∈[U]

[
probe-complexity(h, x, s) = i and (i, s) is not a bad pair

]
(15)

+ Pr
x∈[U]

[
probe-complexity(h̃, x, s) = i and s ∈ h̃i(x) is a newly-assigned element in h̃

]
. (16)

Eq. (15) is at most i5/n since (i, s) is not bad. When the event in (16) occurs, there must be
a position i′ < i where q(h, i′, s) = Θ(i2), i.e., Prx∈[U][probe-complexity(h, x, s) ≤ i′] = Θ(i2/n).
Thus, we can bound (16) by enumerating i′ < i:

Eq. (16) =
∑

i′<i

Pr
x∈[U]

[
probe-complexity(h, x, s) = i′ and s = hi′(x) is reassigned to h̃i(x)

]

≤
∑

i′<i

O(i2/n) = O(i3/n).

Adding (15) and (16) together, and taking a summation over i ∈ [i0], we get

Pr
x∈[U]

[
probe-complexity(h̃, x, s) ≤ i0

]
≤ O(i60/n),

so h̃ is nearly uniform.

35

Step 2: Transforming into (normal) probe sequences. We have already constructed a
generalized-probe-sequence function h̃ that has low probe complexity and is nearly uniform. The
last step is to transform it into a probe-sequence function.

Claim 7.17. Let h̃ be a nearly uniform generalized-probe-sequence function. There exists a nearly
uniform probe-sequence function h′, such that for any assignment A of n keys to N slots, the total
probe complexity c(A,h′) ≤ 2c(A, h̃).

Proof. The given function h̃ maps each key x to a generalized probe sequence (h̃1(x), h̃2(x), . . .),
where each position accommodates a set of slots (possibly empty). For each h̃i(x) = ∅, we insert a
single element null into it. After that, we write down all elements in the order they appear in the
generalized probe sequence (when a position h̃i(x) contains multiple slots, we write in an arbitrary
order), forming a probe sequence consisting of [N] ∪ {null}. We denote it by h′.

For any slot s that occur in h̃i(x), its position in h′ after the above transformation will be
between i and 2i (both included): it is at least i because we inserted nulls to make sure every
position contains at least one element; it is at most 2i because (1) there can only be i elements
among the first i positions, before we insert any null; (2) the number of nulls we inserted to the
first i positions is at most i. This implies that

probe-complexity(h̃, x, s) ≤ probe-complexity(h′, x, s) ≤ 2 · probe-complexity(h̃, x, s)

for every key x and slot s. So we conclude that (1) h′ is nearly uniform; (2) c(A,h′) ≤ 2c(A, h̃) for
any assignment A of keys.

Combining Claims 7.15 to 7.17 together, we have proved Lemma 7.14.

7.3 Putting pieces together

Combining the results from the previous subsections, we can derive a formal lower bound on classical
open-addressing.

Specifically, for any classical open-addressing hash table, we analyze its performance on Distri-
bution 1. By Yao’s minimax principle, we only need to consider deterministic hash tables, i.e., the
probe-sequence function h is fixed. Then, Lemma 7.14 transforms h to a nearly uniform function
h′ while only losing a constant factor on the average probe complexity on any state of the hash
table. Finally, Theorem 7.2 shows a lower bound on the switching cost per operation, provided that
the expected average probe complexity is small enough. We summarize the result as the following
theorem.

Theorem 7.1 (Restated). Suppose the universe size U = polyn is a large polynomial of n. If a
classical open-addressing hash table stores n keys with load factor 1 − ω, then the expected amor-
tized time per operation is at least Ω(log log ω−1). Moreover, as long as the expected query time is

O

2
√

log ε−1
)
, the expected amortized time per insertion/deletion is at least Ω(log log ω−1).

8 Open Problems

We conclude the paper with several appealing open questions.

36

Non-oblivious open addressing. The first question concerns non-oblivious open addressing

[15, 14]: this is a generalization of open-addressing in which queries are not constrained to follow
any particular probe sequence. Instead, insertions/queries/deletions can be implemented arbitrarily
subject to the constraint that the state of the data structure, at any given moment, is that of an
open-addressed hash table. Formally, this means that, if the hash table is storing n keys, then its
state is an array with n non-empty slots, where the non-empty slots contain some permutation of
the keys being stored.

All classical (a.k.a. oblivious) open-addressed hash tables are also valid non-oblivious open-
addressed hash tables. Thus the upper bounds in this paper also apply to the non-oblivious case.
However, the lower bounds do not. This raises the following question: can a non-oblivious open-
addressed hash table hope to achieve O(1) expected-time queries while also achieving an expected
insertion/deletion time of o(log log ω−1)?

High-probability worst-case query time bounds. One major direction in recent decades has
been to develop open-addressed hash tables that support high load factors while also offering (high-
probability) worst-case query time bounds. Using variations of Cuckoo hashing [13, 4, 16], one can
achieve O(log ω−1) worst-case query time, while also supporting f(ω−1) expected insertion/deletion
time for some function f . One can also show using coupon-collector-style arguments that this
O(log ω−1) bound is the best (worst-case) bound that one can hope for. What is not clear is
whether one might also be able to ask for a very good insertion/deletion time. Can one achieve
O(log ω−1) worst-case queries (w.h.p.) while also supporting o(ω−1) expected insertion/deletion
time? Or, more generally, can one hope to achieve (high-probability) worst-case query time Q and
expected insertion/deletion time I for some Q and I satisfying QI = o(ω−1)? We conjecture that
such a bound should not be possible.

High-probability worst-case time bounds for all operations. Finally, it is also interesting to
consider the task of achieving high-probability worst-case time bounds for all operations (insertions,
deletions, and queries). For example, if we consider a load factor of 1/2, what are the best (worst-
case) bounds that a classical open-addressed hash table can hope to achieve (as a function of n)?
Using results from the power of two choices [39, 12], one can achieve a bound of O(log log n). Is
this the best bound possible?

References

[1] Miklós Ajtai, János Komlós, and Endre Szemerédi. There is no fast single hashing algorithm.
Information Processing Letters, 7(6):270–273, 1978.

[2] Ole Amble and Donald Ervin Knuth. Ordered hash tables. The Computer Journal, 17(2):135–
142, January 1974.

[3] Yuriy Arbitman, Moni Naor, and Gil Segev. Backyard cuckoo hashing: Constant worst-case
operations with a succinct representation. In Proc. 51st IEEE Symposium on Foundations of
Computer Science (FOCS), pages 787–796, 2010.

[4] Tolson Bell and Alan Frieze. O(1) insertion for random walk d-ary cuckoo hashing up to the
load threshold. In Proc. 65th IEEE Symposium on Foundations of Computer Science (FOCS),
2024.

37

[5] Michael A. Bender, Alex Conway, Martín Farach-Colton, William Kuszmaul, and Guido Tagli-
avini. Iceberg hashing: Optimizing many hash-table criteria at once. Journal of the ACM,
70(6):1–51, 2023.

[6] Michael A. Bender, Martín Farach-Colton, John Kuszmaul, William Kuszmaul, and Ming-
mou Liu. On the optimal time/space tradeoff for hash tables. In Proc. 54th ACM SIGACT
Symposium on Theory of Computing (STOC), pages 1284–1297, 2022.

[7] Michael A. Bender, Bradley C. Kuszmaul, and William Kuszmaul. Linear probing revisited:
Tombstones mark the demise of primary clustering. In Proc. 62nd IEEE Symposium on Foun-
dations of Computer Science (FOCS), pages 1171–1182, 2022.

[8] Ioana O. Bercea and Guy Even. Dynamic dictionaries for multisets and counting filters with
constant time operations. Algorithmica, 85(6):1786–1804, 2023.

[9] Richard P. Brent. Reducing the retrieval time of scatter storage techniques. Communications
of the ACM, 16(2):105–109, 1973.

[10] Pedro Celis, Per-Åke Larson, and J. Ian Munro. Robin Hood hashing (preliminary report).
In Proc. 26th IEEE Symposium on Foundations of Computer Science (FOCS), pages 281–288,
1985.

[11] Alexander Conway, Martín Farach-Colton, and Philip Shilane. Optimal hashing in external
memory. In Proc. 45th International Colloquium on Automata, Languages, and Programming
(ICALP), pages 39:1–39:14, 2018.

[12] Ketan Dalal, Luc Devroye, and Ebrahim Malalla. Two-way linear probing revisited. Algorithms,
16(500), 2023.

[13] Martin Dietzfelbinger and Christoph Weidling. Balanced allocation and dictionaries with
tightly packed constant size bins. Theoretical Computer Science, 380(1-2):47–68, 2007.

[14] Amos Fiat and Moni Naor. Implicit O(1) probe search. SIAM Journal on Computing, 22(1):1–
10, 1993.

[15] Amos Fiat, Moni Naor, Jeanette Schmidt, and Alan Siegel. Non-oblivious hashing. In Proc.
20th ACM Symposium on Theory of Computing (STOC), pages 367–376, 1988.

[16] Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul Spirakis. Space efficient hash tables
with worst case constant access time. Theory of Computing Systems, 38(2):229–248, 2005.

[17] Alan Frieze and Samantha Petti. Balanced allocation through random walk. Information
Processing Letters, 131:39–43, 2018.

[18] Gaston H. Gonnet and J. Ian Munro. Efficient ordering of hash tables. SIAM Journal on
Computing, 8(3):463–478, 1979.

[19] Michael T. Goodrich, Daniel S. Hirschberg, Michael Mitzenmacher, and Justin Thaler. Cache-
oblivious dictionaries and multimaps with negligible failure probability. In Proc. 1st Mediter-
ranean Conference on Algorithms (MedAlg), pages 203–218, 2012.

[20] Leo J. Guibas and Endre Szemerédi. The analysis of double hashing. Journal of Computer and
System Sciences, 16(2):226–274, April 1978.

38

[21] F. R. A. Hopgood and J. Davenport. The quadratic hash method when the table size is a
power of 2. The Computer Journal, 15(4):314–315, 1972.

[22] John Iacono and Mihai Pǎtraşcu. Using hashing to solve the dictionary problem. In Proc. 23rd
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 570–582, 2012.

[23] Morten Skaarup Jensen and Rasmus Pagh. Optimality in external memory hashing. Algorith-
mica, 52(3):403–411, November 2008.

[24] Donald E. Knuth. Notes on “open” addressing. Available online at https://jeffe.cs.

illinois.edu/teaching/datastructures/2011/notes/knuth-OALP.pdf, 1963.

[25] Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting and Searching.
Addison-Wesley, 2nd edition, 1998.

[26] Alan G. Konheim and Benjamin Weiss. An occupancy discipline and applications. SIAM
Journal on Applied Mathematics, 14(6):1266–1274, November 1966.

[27] William Kuszmaul. A hash table without hash functions, and how to get the most out of your
random bits. In Proc. 63rd IEEE Symposium on Foundations of Computer Science (FOCS),
pages 991–1001, 2022.

[28] Tianxiao Li, Jingxun Liang, Huacheng Yu, and Renfei Zhou. Dynamic “succincter”. In Proc.
64th IEEE Symposium on Foundations of Computer Science (FOCS), pages 1715–1733, 2023.

[29] Tianxiao Li, Jingxun Liang, Huacheng Yu, and Renfei Zhou. Tight cell-probe lower bounds for
dynamic succinct dictionaries. In Proc. 64th IEEE Symposium on Foundations of Computer
Science (FOCS), pages 1842–1862, 2023.

[30] George Lueker and Mariko Molodowitch. More analysis of double hashing. In Proc. 20th ACM
Symposium on Theory of Computing (STOC), pages 354–359, 1988.

[31] Efrem G. Mallach. Scatter storage techniques: A unifying viewpoint and a method for reducing
retrieval times. The Computer Journal, 20(2):137–140, 1977.

[32] W. D. Maurer. An improved hash code for scatter storage. ACM, 11(1):35–38, 1968.

[33] J. Ian Munro and Pedro Celis. Techniques for collision resolution in hash tables with open
addressing. In Proc. 1986 ACM Fall joint computer conference, pages 601–610, 1986.

[34] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In Proc. 9th European Symposium
on Algorithms (ESA), pages 121–133, 2001.

[35] W. W. Peterson. Addressing for random-access storage. IBM Journal of Research and Devel-
opment, 1(2):130–146, April 1957.

[36] Rajeev Raman and Srinivasa Rao Satti. Succinct dynamic dictionaries and trees. In Proc. 30th
International Colloquium on Automata, Languages and Programming (ICALP), pages 357–368,
2003.

[37] Jeffrey D. Ullman. A note on the efficiency of hashing functions. Journal of the ACM, 19(3):569–
575, 1972.

39

https://jeffe.cs.illinois.edu/teaching/datastructures/2011/notes/knuth-OALP.pdf
https://jeffe.cs.illinois.edu/teaching/datastructures/2011/notes/knuth-OALP.pdf

[38] Elad Verbin and Qin Zhang. The limits of buffering: A tight lower bound for dynamic mem-
bership in the external memory model. SIAM Journal on Computing, 42(1):212–229, 2013.

[39] Berthold Vöcking. How asymmetry helps load balancing. Journal of the ACM, 50(4):568–589,
July 2003.

[40] David Wajc. Negative association – definition, properties, and applications. Available online
at https://www.cs.cmu.edu/~dwajc/notes/Negative%20Association.pdf, 2017.

[41] Wikipedia contributors. Quadratic probing. Available online at https://en.wikipedia.org/
wiki/Quadratic_probing, 2023.

[42] Andrew C. Yao. Uniform hashing is optimal. Journal of the ACM, 32(3):687–693, 1985.

40

https://www.cs.cmu.edu/~dwajc/notes/Negative%20Association.pdf
https://en.wikipedia.org/wiki/Quadratic_probing
https://en.wikipedia.org/wiki/Quadratic_probing

	Introduction
	Preliminaries
	The Rainbow Cell
	The Rainbow Hash Table
	Dynamic Resizing Without Increasing Update Time
	Supporting Load Factor 1 - ε
	The Lower Bound
	Constructing the potential function
	Non-nearly-uniform probe sequences
	Putting pieces together

	Open Problems

