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Abstract—This study presents machine learning-based dis-
patch strategies for legacy voltage regulation devices, i.e., on-
load tap changers (OLTCs), step-voltage regulators (SVRs), and
switched-capacitors (SCs) in modern distribution networks. The
proposed approach utilizes k-nearest neighbor (KNN), random
forest (RF), and neural networks (NN) to map nodal net active
and reactive injections to the optimal legacy controls and result-
ing voltage magnitudes. To implement these strategies, first, an
efficient optimal power flow (OPF) is formulated as a mixed-
integer linear program that obtains optimal decisions of tap
positions for OLTCs, SVRs, and on/off status of SCs. Then,
training and testing datasets are generated by solving the OPF
model for daily horizons with 1-hr resolution for varying loading
and photovoltaic (PV) generation profile. Case studies on the 33-
node feeder demonstrate high-accuracy mapping between the
input feature and the output vector, which is promising for
integrated Volt/VAr control schemes.

Index Terms—Distribution Grid, Optimal Power Flow, Voltage
Control, Machine Learning.

I. INTRODUCTION

Voltage regulation in distribution networks primarily re-
lies on utility-owned regulation devices, commonly known
as legacy devices, such as on-load tap changers (OLTCs),
step voltage regulators (SVRs), and fixed/switched capacitors
(SCs) [1]. Legacy devices typically operate through mechani-
cal switching, involving on/off status in SCs or discrete tap
positions in OLTCs and SVRs. The need for coordination
among different types of legacy devices has been emphasized
[2] and has a long history in distribution automation. Due to
the integration of renewable-based distributed energy resources
(DERs), i.e. photovoltaics (PV), and new load types such as
electric vehicles induce fast dynamic voltage fluctuations along
the distribution feeders, making voltage regulation a more
challenging task.

In modern distribution systems, voltage regulation assets can
be coordinated by an integrated Volt/VAR control (IVVC),
which is a function of advanced distribution management
systems (ADMS) [3]. The IVVC framework is typically inter-
faced with a telemetry system, collecting network data from
strategically located sensors and sending controls to the field
devices by directly commanding the remote regulation devices
[4] or setting their controller parameters for autonomous
operation [5] based on the voltage and asset control strategy.
Among the conventional strategies, setting gradual time delays
for multiple SVRs cascaded along the feeder or setting time
clock switches for capacitor banks to connect and disconnect
to the distribution system during predetermined times. In this

context, [6] proposes a time-delay strategy coordinating the
simultaneous operation of substation OLTC, feeder SVRs,
and a synchronous machine-based unit for voltage support.
In modern applications, the voltage regulation task is widely
considered as an optimization problem in which the operation
of the legacy devices is coordinated to optimize a certain
network objective, such as minimizing the total system losses
or total voltage violations. In [7], a mixed-integer second-
order cone program (MISOCP)-based optimal power flow
(OPF) is solved to dispatch the legacy devices as well as the
power output of PV-based DERs to optimize the network-wide
voltage profile. Since legacy devices have discrete controls,
solving mixed-integer type OPF problems might be compu-
tationally costly for large-scale networks, even with a few
dispatchable legacy devices. For example, solving a model-
based OPF to dispatch 3 LTCs each of which has 33-tap for 15
minutes horizon with 1 minute resolution incurs 1485 discrete
variables, which challenges the general mixed-integer linear
programming solvers. Thus, model-based optimization natu-
rally face computational challenges. Apart from model-based
optimization, learning-based approaches are being employed
to improve the OPF solution procedure as proposed in [8],
[9], [10]. In [8], a neural network model is trained to solve
AC-OPF cases with significant speedups. In [9], a deep neural
network (DNN) is trained to predict all bus voltages; then,
other variables are computed through power flow equations
for the feasibility of power balance and bus voltages. The
authors in [10] propose a DNN-based model incorporating
topology switching, which has a discrete nature. In [11],
a graph neural network model is proposed to approximate
the AC-OPF solution and a dataset is generated by solving
AC-OPF instances by varying loading conditions. In [12], a
DNN-based AC-OPF solution approach is presented, in which
the DNN model is trained with artificially created network
loading samples and corresponding optimal generation set
points and generator bus voltages. In [13], a neural network
(NN) model is proposed to coordinate an OLTC transformer
and a STATCOM, assuming both are placed at the substation.
The NN model is utilized as an optimal tap position selector,
making the STATCOM output minimum. A training dataset is
created by solving AC power flow instances for each 33 OLTC
tap positions under a given loading condition and taking the
instance that results in minimum STATCOM output.

This study contributes to the existing works by showing
the discrete controls in voltage regulation applications can



be learned via basic machine learning (ML) methods such
as k-nearest neighbor (KNN), random forest (RF) and neu-
ral networks with high accuracy by training the data-driven
methods using the optimal solutions of an efficient mixed-
integer linear OPF model. The rest of this paper is organized
as follows. Section II describes the mathematical models of the
distribution network and major component models. Section III
presents the proposed approach with ML methods. Section IV
describes the test feeder setup and discusses the results based
on the case studies. Section V concludes the paper.

II. MATHEMATICAL MODELS

A. Distribution Network and Power Flow Models

A radial distribution network can be represented as a di-
rected graph, G = (N , E), where N is the set of nodes and E
is the set of branches. Notation-wise, the electrical quantities
and variables associated with a node are indexed by a single
subscript, while double subscripts are for the branch variables.
A linear relationship between branch power flows and node
voltage can be represented by LinDistFlow [14] model as,
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where t denotes the time interval index, i, j are nodes on the
feeder. The total active (reactive) power generation is denoted
by pg,tj (qg,tj ), and the active (reactive) power demand is
represented by pd,tj (qd,tj ). The sending-end active and reactive
power flowing on the line (i, j) are denoted by P t

ij and Qt
ij ,

respectively. The voltage of node i at time interval t is denoted
by V t

i .
The mathematical relationship of the terminal voltages of

an OLTCs and SVRs can be defined as,

V t
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where Tij denotes the tap position, δV is the step voltage per
tap change. Note that (2a) is a nonlinear equation as the prod-
uct of voltage and tap variables, which can be replaced with a
new variable W t
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ij . Then McCormick relaxation can
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where V l
i , V

u
i and T l

ij , T
u
ij denote the upper and lower limits

of the corresponding variables. The OLTCs and SVRs can be
collected by a set Er = {(i, j)|i, j ∈ N}.

SCs are another type of legacy devices that can improve the
feeder voltages and operation by injecting reactive power. SCs
can be modeled in mixed-integer linear form as,

uj,t Q
C
j = qc,tj (3)

where QC
j represents VAr rating of each capacitor, whose

switching operation is modeled by binary variable uj . SCs
can be collected by the set Nc = {i|i ∈ N}.

B. Operational Model of Distributed Generation

Fig. 1 shows a typical capability curve of a distributed
generator, which defines the operational mathematical model
with the corresponding power output limits.
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Fig. 1. Capability curve of a distributed generator

where pPV,t
i is the produced PV power by the PV system,

pcurt,t
i is the curtailed power by the PV inverter, active (pg)

and reactive (qg) power outputs can be adjusted within the
allowed operating region or with respect to a specified power
factor angle (φ). The operating region can be defined by a set
of constraints as,

pg,ti = pPV,t
i − pcurt,t

i (4a)

0 ≤ pcurt,t
i ≤ pg,ui (4b)

qg,li ≤ qg,ti ≤ qg,ui (4c)

−tan(φmin) p
g,t
i ≤ qg,ti ≤ pg,ti tan(φmax) (4d)

(pg,ti )2 + (qg,ti )2 ≤ (sg,ratedi )2 (4e)

where sg,ratedi denotes the apparent power limit of the gen-
erating unit. To obtain a fully linearized model, the quadratic
inequality (4e) can be linearly approximated, as proposed [15],
by making use of a 32-vertex polygon (k = 16) and defining
a polyhedral norm as,

−sg,ratedi ≤ cos(hγ) pg,ti + sin(hγ) qg,ti ≤ sg,ratedi (4f)

γ =
π

k
, h = 1, . . . , k.

The index of DG units can be collected by the set Ng =
{i|i ∈ N}. The operational model of a DG unit can be linearly
modeled by (4a) - (4d) and (4f).

C. Optimal Power Flow as A Network Controller

The operation of a distribution system can be considered
within a time horizon that is decomposed into multiple
quasi-static time intervals, which are collected by the set



T = {1, . . . , |T |}. During each interval, all state and control
variables are assumed constant.

A specific OPF model can be devised and then solved
periodically to dispatch the controllable network equipment
with optimal set points such that a certain objective function
is minimized. It is important that an OPF has tractable
formulation, that is, efficiently solvable within a reasonable
time and computational resources. In this study, such an OPF
formulation given compactly as in (5)

argmin
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g
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Vi, T
t
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t
ij
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Subject to :

Power balance : (1a) − (1b), ∀j ∈ N ,∀t ∈ T (5b)
Voltage drop : (1c), ∀(i, j) ∈ E \ Er,∀t ∈ T (5c)
LTC model : (2a) − (2b), ∀(i, j) ∈ Er,∀t ∈ T (5d)
Capacitor model : (3), ∀j ∈ Nc,∀t ∈ T (5e)
DG model : (4a) − (4d), (4f) ∀i ∈ Ng,∀t ∈ T (5f)

pg,tj ∈ [pg,lj , pg,uj ], ∀j ∈ N ′\ Ng,∀t ∈ T (5g)

qg,tj ∈ [qg,lj , qg,uj ], ∀j ∈ N ′\ Ng,∀t ∈ T (5h)
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where l and u denote the lower and upper limit of the variables,
N ′ is the set of nonslack nodes. J denotes the objective
function. We adopt an objective function as in (5j), where ω1

and ω2 denote the weights on the individual objective term.
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III. PROPOSED APPROACH

Fig. 2 shows the input and output relations of a general
framework that we follow in each ML method. For NN, we
selected Bayesian Regularization with 72 inputs, 5 hidden and
41 outputs layers. We used training rate as %70, test rate and
validation rate are selected as %15. In KNN-based approach,
we selected K as 5. In RF model, sample size is assumed as
100. In both KNN, and NN our models are multi-input, multi
output models. In RF-based approach, each single output was
calculated independently.

Fig. 2. ML framework.

A. K-nearest neighbors

We first use a non-parametric supervised learning method,
K-nearest neighbors (KNN) [16]. The method aims to find the
relation between the input and outputs of a given dataset. In

other words, the output variables may be determined using
the historical values of the inputs and outputs. For this a
function h : X → Y is used to find the output value of
h(x) where, X represents the inputs, and Y represents the
outputs. Since the approach is based on the historical values,
it uses similarity measures such as Euclidean, Mannhattan, and
Chebyshev based on proximity between data points for making
predictions or classifications. The distances are computed for
all data points in the entire dataset. The K nearest points to
the desired output value are identified, and in classification
problems, the new point is assigned to the class with the
majority of nearby values among these K nearest points. In the
case of value estimation, if the algorithm predicts a numerical
value, the initial approach often involves taking the arithmetic
mean of the values associated with the K nearest points.

B. Neural Networks

The neural networks excel particularly when there are non-
linear relationships between inputs and outputs by simulating
the emulation of biological neural networks [17]. Neurons
simulating biological counterparts receive signals from neigh-
boring neurons and can process them using predefined simple
functions. Based on the outcome of this process, a neuron
can generate an output signal. If the artificial neurons in
question can take real-number values, the output value can
be any number between 0 and 1; otherwise, it is either 0 or 1.
The function that computes the output using M-dimensional
input values has two main components: one processes input
values, and the other transfers input values to output values
nonlinearly. Then, this value is inputted into the transfer
function known as the activation function [17], which takes
the input to a neuron and produces the output.

C. Random Forests

Random forest structures classification trees based on nu-
merous randomly distributed vectors. Breiman introduced the
method [18], who defined the Random Forest as a collection
of independently distributed random vectors comprising a
structure of classifiers in a tree format. The vector representing
the new data is placed in each tree within the forest to
classify new data. Each tree produces a classification result. In
summary, the results produced by the decision trees created in
the forest are examined, and it is assumed that the new data
belongs to the class that yields the most frequent results.

IV. NUMERICAL RESULTS

A. Test Network

To test the proposed OPF formulation and generate a dataset
for training and testing purposes, the well-known 33-node
feeder is modified as shown in Fig. 3, by placing two SC units
and SVRs and an OLTC at the substation bus. The network
line parameters and base loading are used as provided in the
reference [19]. In addition, identical 5 utility-scale PV units,
each of which is rated as 550 kVA with |cos−1φ| ≤ 0.95, and
two 500 kVAr capacitor units are connected to the feeder.



Fig. 3. Modified 33-node test network.

B. Dataset Generation Procedure

Fig. 4 illustrates the data generation procedure. The devised
OPF model is solved for each day by using annual loading and
PV capacity profiles. Then, input and output data vectors are
obtained for training and testing stages for the employed ML
methods. The input vector is comprised of the net active and
reactive power injections from each node. The output vector
consists of the node voltages, the tap positions of OLTCs and
SVRs, and the status of SCs.

Fig. 4. Dataset generation procedure.

Each OPF case is solved by using Gurobi solver with
default optimality settings. Hence, the solutions are considered
optimal.

C. Simulation Results

We performed all the trainings using 300 days data, after
creating the models we inputted the remaining 65 days. The
simulations are performed using Matlab on a laptop with
Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz.

Figures 5, 6, 7 show the differences between the actual
voltage magnitudes and those obtained using RF, NN, and
KNN based approaches for a sample daily simulation, con-
secutively. From these three figures, one can easily see that
the best voltage magnitudes are obtained by using KNN
based approach. NN based approach simulation results are
second best, RF based simulation results are the worst for this
sample day. Fig. 8 illustrates the calculated positions of the
SVRs, OLTCs and capacitors using KNN, RF and NN based
approaches for all simulated days. It is seen from the figure
that the simulation results are similar for all three methods.

We used two metrics to measure the performance of the
applied methods. The first one is the mean square error (MSE)
given by

∑D
i=1(xi − yi)

2, where xi and yi represent the real
and forecasted values, and D shows the dimension. Table I
shows the mean square errors for all 3 methods for the whole
simulation time. From the results, it is observed that KNN
based approach outperforms the other methods.

Fig. 5. Hourly voltage differences for RF based approach for a sample day.

Fig. 6. Hourly voltage differences for NN based approach for a sample day.

Fig. 7. Hourly voltage differences for KNN based approach for a sample day.

The second metric is the root mean square error (RMSE)
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Fig. 8. Hourly tap and on/off positions for KNN, RF, and NN based
approaches for all simulated days.

TABLE I
MSE FOR VOLTAGE MAGNITUDES, AND TAP AND SWITCH POSITIONS

MSE Voltage Magnitudes Tap and Switch Positions
RF 0.0086 2.6781
NN 0.0056 1.2875

KNN 0.0017 0.7312

and is calculated as,

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (6)

where, n is the number of observations or data points, yi is the
actual value of the dependent variable for the ith observation,
ŷi is the predicted value of the dependent variable for the
ith observation. Table II shows the RMSE values for all
the methods. RMSE values comply with the MSE values;
KNN-based approach gives the best RMSE values, RF-based
approach is the worst one. The effectiveness of KNN in our
context can be attributed to its ability to capture local patterns
and relationships in the dataset.

TABLE II
RMSE FOR VOLTAGE MAGNITUDES, AND TAP AND SWITCH POSITIONS

MRSE Voltage Magnitudes Tap and Switch Positions
RF 0.0264 0.5732
NN 0.0187 0.4676

KNN 0.0134 0.4087

V. CONCLUSION

This study aims at integrating efficient machine
learning(ML)-based methods for modernizing voltage
regulation applications. To this end, we focused on fast and
accurate dispatching the legacy voltage regulation devices
such as on-load tap changers, step-voltage regulators (SVRs),
and switched-capacitors (SCs). Due to the computational
hardship of dispatching these devices by frequently solving
model-based optimization routines, our approach employs
k-nearest neighbor (KNN), random forest (RF), and neural
networks (NN). To be able to obtain a trustworthy ML model,
a training dataset is generated by solving an efficient optimal
power flow (OPF) to find optimal tap positions for OLTCs,
SVRs and on/off status decisions. Based on the numerical
tests conducted on a modified 33-node test feeder, it is found

that the trained ML models have achieved high-accuracy
mappings between the input feature vector, which comprises
the net active and reactive power injections from each feeder
node, and the output vector involving the legacy controls and
resulting voltage magnitudes.
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