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Abstract—Increasing penetration of Smart Inverters (SIs) will
shift the voltage control functionalities to the grid edge. With
the advanced control mechanism and capabilities of SIs to
dynamically adjust Volt-Watt and Volt-VAr droops, better and
granular voltage regulation can be achieved on distribution
feeders. In this context, this paper discusses the application of
Neural Networks (NNs) through which effective setting of SIs’
droops could be obtained leading to better voltage regulation on
distribution feeders. Case studies on the IEEE 123-node feeder
shows effective voltage regulation from SIs with droop settings
obtained from the NNs.

Index Terms—Neural Networks, Photovoltaics, Smart Invert-
ers, Voltage Control, Volt-VAr

I. INTRODUCTION

The advancements of control technologies at distribution
level has opened new opportunities for Distribution System
Operators (DSOs) for better managing and operating active
distribution networks [1]. The global adoption of distributed
energy resources (DERs) is accelerating, providing benefits
such as enhanced flexibility in grid operations. The photo-
voltaic (PV) is the most rapidly expanding energy source
which had the most prominent growth at the distribution level
over the past decade. However, distribution grid posses limited
capacity to accommodate DERs. The substantial increase in
the generation of the PV power may lead to adverse effects,
including backward flow of power and voltage issues. Control
of voltage in distribution grid is a crucial task handled through
distribution management system (DMS) that is designed to
maintain local service voltages within the limit specified by
American National Standards Institute (ANSI). The updated
IEEE-1547 standard permits DERs to assist with voltage
regulation by utilizing droop based control for active and
reactive power at the point of common coupling (PCC).
IEEE-1547 plays a crucial role in the standardizing of the
operational capabilities of the modern DERs, facilitating their
integration into the power grid as valuable assets. Unlike
conventional inverters, Smart Inverters (SIs) possess advanced
self-governing features, allowing them to operate seamlessly
across a broad range of frequency and voltage disturbances
without disconnection during overvoltage incidents. Volt-VAr
Optimization (VVO) based on Distribution Grid Optimal
Power Flow (DOPF) can deliver viable solutions across the
entire network by taking into account the complete topology
of the network, time-based recordings, and the Volt-VAr droop
characteristics of SlIs, as well as reducing the effects of the
variability in PV generation [1]. The control mechanism can
also autonomously regulate the reactive power output of SI

within an established voltage range, in accordance with the
droop functions defined in IEEE 1547 [2]. Specifically, the
utilization of the SI local droop in VVO functionality provides
feasible solutions to mitigate voltage issues and maximize the
hosting capacity of PV, especially with significant penetration
of PV resources in the distribution grid.

In recent days, Neural Network (NN) based approaches has
been widely used in development of voltage control models
and Volt-VAr control in distribution grid. The application of
NN in such control models relies on accurate information
of grid parameters, which can be challenging to obtain in
real-life scenarios. NN, especially Long Short-Term Memory
(LSTM), appears promising for predicting the system states
in the distribution networks [3]. Forehand knowledge of the
voltage at distribution grid network can help the utility service
providers to mitigate the overvoltage condition and ensure the
reliable operations of the grid. This study outlines to show
the performance of LSTM in predicting the droop settings
of SIs in the distribution network. The dynamically adjusted
droop can help in managing the voltage of the power grid
more effectively.

The remainder of the paper is organized as follows. Section
IT outlines the math modeling of Q(V), Section III provides
background information, Section IV discusses the method-
ology, and Section V presents the Case Study and Results.
Finally, Section VI summarizes the conclusion and future
work.

II. MATH MODELING
A. Photovoltaic (PV) Inverter Control

PV system is comprised of solar panels which absorbs
sunlight and converts it into a direct current (dc), which is then
transformed into an alternating current (ac) using an inverter.
The term SI in this study refers to a PV-based inverter that
is connected to the grid at the PCC. This inverter operates in
two quadrants, allowing it to both provide and absorb reactive
power as needed. The PV system operates with a power factor
that is leading and behaves like a capacitive generator in the
injection mode. It behaves like an inductive generator, drawing
the reactive power from the grid with a power factor that is
lagging during the absorption mode, as depicted in Fig. 1.
The reactive power the SI can supply is determined by its
apparent power rating, which can be expressed mathematically
as follows:
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Fig. 1: Operating zones of PV Inverter.

where p;© and ¢;© denote active and reactive power outputs
of PV. 5;¢ denotes the apparent power rating. BY represents
the collection of nodes connected to PV, and ¢ represents the
index of the node to which the SI is connected to.

The active and reactive power output capabilities are limited
by the following constraints,
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where p&™ is proportional to the solar irradiation. The net

active and reactive power injections at node ¢ are defined as
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pi =p§ —p¢ and ¢; = ¢F — qF, where p¢ (¢) indicates the

active (reactive) power consumption at node 4.

B. Volt-VAr Droop Function of the Smart Inverters

The voltage at the PCC is defined by the Volt-VAr function
of SIs which determines the reactive power output from the
SIs, represented by Q(V'), commonly referred to as Volt-
VAr curve or droop. The piecewise linear relationship between
reactive power generation and the voltage at PCC for Q(V)
droop configuration is illustrated in Fig. 2. There is no
absorption or injection of reactive power, in the voltage range
of (Vi3,V;4], referred to as the deadband. In the range of
(Vi2, Vi3] the voltage value decreases, and the SI operates in
the modulation of the reactive power generation mode, and
smaller voltage values within [V}, V) pushes the SI into
capacitive saturation zone. Similarly, in the interval (V; 4, V; 5]
the SI operates in the inductive mode along the slope and the
SI continues to operate in inductive saturation in the range of
(Vis, Vi*]. On the basis of these breakpoints, the accessible

voltage operating range is divided into several segments that
determine the control actions of the Sls.
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Fig. 2: Smart Inverter Q(V) droop curve [2].

The piecewise function of the Q(V) droop curve can be
expressed mathematically as,
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where V; represents the voltage at node ¢, with minimum and
maximum limits indicated as V! and V;“, respectively. The
interval from V; 5 to V; 5 represents the voltage thresholds for
V; and Q7" indicates the maximum rating of reactive power

of SI.

III. BACKGROUND
A. Long Short Term Memory

LSTM, which is a variant of the Recurrent Neural Network
(RNN), excels at extracting information from the previous
time step [4]. LSTM was introduced by Hochreiter and
Schmidhuber to address challenges associated with long-term
predictions. The typical structure of the LSTM cell comprises
of input gate, forget gate, and output gate [5], which is
illustrated in Fig. 3.

The input component of the LSTM consists of three el-
ements: the input z; at time ¢, the memory block with state
C,_1 at previous time step t—1 as well as the hidden layer state
of the cell h,—1. The output element consists of memory block
denoted by C} at time ¢ and the hidden layer with state of h;
at time ¢. The input z; is constrained by the sigmoid activation
function within the range of [0,1] to allow for the regulation
of variables and facilitate the influence of x; on C;. The forget
gate’s function is to selectively disregard the information from
the previous time step by utilizing the memory block Cy_; to
manage C}. The output gate evaluates the extent to which CY
impacts h; to generate the output and regulate the variables.
The mathematical steps can be represented as,
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Fig. 3: Architecture of LSTM Unit.
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where sigmoid is the activation function denoted by o, the
computed output of forget gate, input gate, and output gate is
given by f; ,iy and o, respectively. The matrices W, Wy,
Wos and the bias term by, b;, b, correspond to the weights
and biases associated with each LSTM gate. The final output
for the memory block at time ¢ is influenced by the cell state
and output gate [6], and is calculated as,

C,=tanh(W. -hi_1+ Wy -x:+b.), ®)
Ci=f, .Ci1+1 .C}, )

h; = o;. tanh(C}), (10)

where the activation function is tanh() and C', represents state
input of LSTM cell at instant ¢. The bias term and input layer
state weight matrix corresponds to b. and W, respectively.
The “-” operator represents element-wise multiplication.

B. Performance Evaluation of LSTM

The effectiveness of the LSTM model to predict the voltage
across different temporal contexts was assessed by computing
the Root Mean Squared Error (RMSE) between the predicted
and true voltage values. RMSE is widely employed metric for
quantifying the error between true and predicted values and
can be expressed mathematically as,
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Here, k, N represents the sample index and total number of
data sample respectively. The forecasted value of k*" data
sample is given by f(zj) and y; denotes the true value of
the k" sample of the dataset. Models with the lower RMSE
indicates improved accuracy since RMSE offers numerical
assessment of model’s prediction accuracy.

IV. METHODOLOGY

The study is divided into two parts. First, the voltage
measurements were collected from 13 nodes of the IEEE 123-
node test feeder. Then, the second stage involves utilizing the
NN to forecast the droop settings for future time using LSTM.

A. Simulation Setup

The Python programming acts as the platform for extracting
data from the IEEE test feeder with PV systems, each con-
nected to SIs with droop control that complies with the IEEE
1547 (see Fig. 4). Voltage conditions within the environment
are determined at specific instances through the integration of
OpenDSS software with Python, facilitated by the COM inter-
face. This integration enables smooth control of the OpenDSS
software from Python, streamlining the data retrieval process.
The distribution feeder designed in the OpenDSS is 123-node
test feeder with 7 PVs of 600kW each as shown in the Fig. 5.
The OpenDSS solves the network for the given parameters and
the resulting voltage solution is extracted through the interface
of Python and OpenDSS. The data is collected with varying
droop setpoint of the Sls, irradiation, and load shape curve
in time series format. The droop settings were identical for
all 7 SIs, and were varied every 30 minutes for 17,520 times,
which is equivalent to 365 days with 30-min time resolution.
The collected 17,520 inputs were the data used in the training,
validation, and testing of the LSTM NN in the split ratio of
80%, 10%, and 10%, respectively. The LSTM model used for
this case study is shown in Fig. 7. Thirty two input parameters
are fed to NN and the network predicted two outputs. The input
parameters were nodal voltage V' (in p.u.) and droop setpoint
of SIs. The outputs were the droop set points of the SIs. The
location of buses where the voltage is measured in the IEEE
123-node test feeder in OpenDSS as input data for NN model
is shown in Fig. 6.

1) Architecture of LSTM: In this study, multi input LSTM
network is proposed for predicting the volt-VAr droop settings
of the SIs. A total of 30 voltage values from different buses
and 2 droop setpoint values were given as input to the LSTM,
making it a total of 32 inputs to the model, which predicts
2 output droopset point values. LSTM NN in our study has
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Fig. 4: Schematic representing Data Extraction Method.



Fig. 6: Location of Monitoring Units in IEEE 123-Node Test Feeder.

feedback connections, which enhances its ability to process
data sequences and predict time-series data. It consists of four
number of LSTM layer and single dense layers at the end.
Inorder to improve the training process, four dropout layer
one after each LSTM layer has been added. The architecture
of the LSTM NN model is shown in Fig. 7.

The LSTM input voltage data were subjected to pre-
processing normalization, scaled to a range of 0 to 1 by em-
ploying the min-max normalization (F';,,,,,) equation in (12),
where F' denotes the true value of the feature being normal-
ized, F',,, represents the maximum value of the feature F'
in the dataset and F',,,;,, represents the minimum value of the
feature F' in the dataset. This normalization step is essential
to make the input data in a uniform scale, and enhance the
performance of the NN model.

Fno’r‘m - (F - szn)/(Fmaz - szn) (12)

Istm_8 input | input: | [(None, 30, 32)]
InputLayer | output: | [(None, 30, 32)]
A
Istm_8 | input: | (None, 30, 32)
LSTM | output: | (None, 30, 50)
Y
dropout_8 | input: | (None, 30, 50)
Dropout | output: | (None, 30, 50)
A
Istm_9 | input: | (None, 30, 50)
LSTM | output: | (None, 30, 50)
A
dropout_9 | input: | (None, 30, 50)
Dropout | output: | (None, 30, 50)
Y
Istm_10 | input: | (None, 30, 50)
LSTM | output: | (None, 30, 50)
A
dropout_10 | input: | (None, 30, 50)
Dropout output: | (None, 30, 50)
A
Istm_11 | input: | (None, 30, 50)
LSTM | output: (None, 50)
Y
dropout_11 | input: | (None, 50)
Dropout output: | (None, 50)
A
dense_2 | input: | (None, 50)
Dense | output: | (None, 2)

Fig. 7: Architecture of LSTM.

V. CASE STUDY AND RESULTS

For the evaluation of overall performance of the obtained
droop settings of Sls, the voltage at bus-13 and bus-101 of the
IEEE 123-node test feeder is shown. Bus-13 is closer to the
substation, while bus-101 is away from the substation; how-
ever, both buses lie nearby the node where SIs are connected to
(please refer to Fig. 5 and Fig. 6). The obtained droop setting
are dynamic that changes every 30 minutes, and two time
series voltage plot for 2 hours time on Phase a at bus-13 and
bus-101 are shown in Fig. 8 and Fig. 9. The droop time-frame
selected has droop setpoints predicted by NN at ¢t — 2, ¢t — 1,
t, t + 1. The droops obtained from NN are used in OpenDSS
Python Interface under the similar setting of irradiation, load
shape to evaluate whether the predicted droop setpoints result
in satisfactory output voltages. It can be inferred from the
plot that the voltages in the bus are well within the range
for different predicted droop settings, different scenarios of



load shapes and solar irradiation. The predicted droop setting
of volt-VAr seems to maintain the voltage most of the time
except some instances as shown by Vmax (max voltage limit)
in Fig. 9. An example output volt-VAr droop value predicted
from the proposed NN is shown in Fig. 10. The predicted
droop setting obtained from NN confirms the droop setting
recommended in the IEEE 1547.
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Fig. 8: Voltage vs. time plot with predicted Droop Setpoints at bus-
13.
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Fig. 9: Voltage vs. time plot with predicted Droop Setpoints at bus-
101.

It can be observed from Fig. 11 and Fig. 12, the y distribu-
tion of voltage measurement at bus-13 and bus-101 lies around
1.02 p.u which can be interpreted as in the normal range.
This underlying data distribution also indicates that dynamic
droop setting mechanics is effective in maintaining the system
voltage on varying grid conditions.

Fig. 13 shows the progress of the RMSE loss against
the epoch number for NN model. Figure shows that RMSE
loss decreases for training and validation data set with final
RMSE loss value of 0.0141 and 0.0077, respectively. This
performance of the RMSE loss on training and validation data

ascertains that LSTM NN is good in predicting the droops
of SIs. Furthermore, the accuracy of the model was validated
using the RMSE as the metric for the first 2 hours of predicted
voltage data at bus-13 and bus-101 against the actual voltage
data, and was found to have RMSE of 0.024677 and 0.02497,
respectively. This low value of RMSE shows our approach of
using NN for droop prediction for effective voltage regulation
of active distribution network.
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VI. CONCLUSIONS AND FUTURE WORK

Accurate and dynamic droop settings enable effective volt-
age regulation and reactive power support in the power grid.
The SIs plays a critical role for supporting and enhancing
grid capability as well as enabling the integration of higher
level of DER in the grid. The prediction of the set point
of the Volt-VAr curve has been observed in this work using
the LSTM Network through the use of historical time series
voltage measurements. Two observation has been presented,
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proving the efficacy of the predicted droop values using the
NN. From the observed voltage, a normal distribution curve
is presented which gives underlying voltage data distribution
based on the location of the bus in the test feeder when the
Volt-VAr droop setting is dynamically varied. This paper has
laid the foundation for the application of the prediction of
the droop control, to ensure effective voltage and reactive
power control on distribution feeders. However, other various
features such as optimal droop settings that follow IEEE 1547
guidelines without any undervoltage or overvoltage issue needs
to be carried out in the future studies.
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