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Human studies often rely on wearable lifelogging cameras that capture videos of individuals and their sur-

roundings to aid in visual confirmation or recollection of daily activities like eating, drinking, and smoking.

However, this may include private or sensitive information that may cause some users to refrain from using

such monitoring devices. Also, short battery lifetime and large form factors reduce applicability for long-term

capture of human activity. Solving this triad of interconnected problems is challenging due to wearable em-

bedded systems’ energy, memory, and computing constraints. Inspired by this critical use case and the unique

design problem, we developed NIR-sighted, an architecture for wearable video cameras that navigates this de-

sign space via three key ideas: (i) reduce storage and enhance privacy by discarding masked pixels and frames,

(ii) enable programmers to generate effective masks with low computational overhead, and (iii) enable the

use of small MCUs by moving masking and compression off-chip. Combined together in an end-to-end sys-

tem, NIR-sighted’s masking capabilities and off-chip compression hardware shrinks systems, stores less data,

and enables programmer-defined obfuscation to yield privacy enhancement. The user’s privacy is enhanced

significantly as nowhere in the pipeline is any part of the image stored before it is obfuscated. We design

a wearable camera called NIR-sightedCam based on this architecture; it is compact and can record IR and

grayscale video at 16 and 20+ fps, respectively, for 26 hours nonstop (59 hours with IR disabled) at a fraction

of comparable platforms power draw. NIR-sightedCam includes a low-power Field Programmable Gate Array

that implements our mJPEG compress/obfuscate hardware, Blindspot. We additionally show the potential for

privacy-enhancing function and clinical utility via an in-lab eating study, validated by a nutritionist.
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1 Introduction

Continuous vision analysis with wearable cameras provides a way to unobtrusively record and in-
fer human behaviors with a high level of information and context, including moment-by-moment
details of how the environment, person, and technology are connected [1–3]. This capability is
helpful for researchers in mobile computing, health, and interaction. Researchers often validate
wearable devices by deploying cameras alongside them for ground-truth collection, applying
machine learning to the resulting video to recognize user behaviors. These include wearables
that detect eating episodes [4–11], watch usage [3], breathing [12], fluid intake [13], human
activity [14–16], and life-logging [17].

Despite wearable cameras becoming smaller and more capable, serious issues still prevent the
realization of these exciting applications. Specifically, we see four system requirements that are
not simultaneously satisfied: compactness, system lifetime, system performance, and privacy.
Compactness may be achieved in one of two ways: by reducing the size/number of electrical

components or by limiting the battery size. For instance, although application-grade System-on-

Chips (SoCs) with accompanying external DRAM (like in References [18, 19]) guarantee system
performance, they demand large motherboards and consume significant power. Mass-market
wearable cameras like GoPro [19], Google Clip [18], and the Narrative Clip [20] are compact and
capable of recording high-resolution colour video at high frame rates. However, a few hours of
recording time constitutes a “full day of recording.” Increasing the recording time requires larger
batteries like in the Axon Body 2 [21] it comes at the cost of increased system bulkiness.

System lifetime refers to how long awearable can be usedwithout interruption. For most applica-
tions, like clinical studies, health research, or life-logging, a whole-day system lifetime is necessary.
Shorter lifetimes affect wearer behavior, limit adoption, and restrict studies in populations that
may have difficulty managing the device themselves (like pediatric or geriatric populations). For a
wearable camera to be widely usable in clinical settings, it needs to operate continuously for day-
long wear. No commercial wearable camera that we know of satisfies this lifetime requirement.
Capturing images at a high frame rate and resolution is imperative to discern activity for clini-

cally useful applications. System performance can be increased through a combination of larger non
volatile memory and enhanced computation capability. Current market offerings offer impressive
system performance but an unsatisfactory system lifetime and are often bulky.
Wearable cameras have been deployed in several studies demonstrating privacy concerns as a

crucial reason individuals are unwilling to wear cameras in daily life even when incentivised [22–
24]. Users feel a violation of privacy when their actions or surroundings are recorded [4]. A com-
mon way to address privacy concerns is by masking out parts of the image that are irrelevant to
the study at hand, a process called obfuscation. While this does not perfectly preserve user privacy,
participants report that they feel like their privacy is significantly enhanced [22, 25, 26]. Existing
studies implementing privacy-enhancing obfuscation by offloading the video to a server before
obfuscating it [18, 24, 27, 28]. Although functionally effective, this approach still exposes wear-
ers by storing sensitive pixels until offline post-processing is complete. We believe that on-device
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Fig. 1. The golf ball sized NIR-sightedCam supports programmable obfuscation for personal video collection

in a small form factor with multi-day battery lifetime. Our approach leverages a novel architecture with a

task-specific FPGA that combines selective-compression and obfuscation in a low-power envelope.

obfuscation has not yet been realized due to the computational intensity of generating masks from
image sensor data.
These identified requirements are intertwined. For instance, compactness and system lifetime

are both improved by reducing computational power and system memory, but this adversely
impacts system performance. Compactness and system lifetime are at odds, because a larger battery
or more non-volatile memory will extend system lifetime at the cost of reduced compactness.
Finally, privacy affects compactness and system lifetime as well. Obfuscating images before they are
stored to nonvolatile memory addresses this problem. However, determining which parts of the
image to obfuscate requires more memory and computational performance, which is detrimental
to compactness and system lifetime. No work has tackled this constellation of intertwined issues
towards a long-term and high-utility wearable camera.
This article presents NIR-sighted (pronounced Near-sighted), an architecture for compact and

low-power wearable video cameras. NIR-sighted enables programmable early-discard at a frame-
level (like Reference [29]) and pixel-level granularity for continuous mobile vision. Early-discard is
the notion of only storing those portions of a video stream that are relevant to the application and
discarding the rest before it reaches themicrocontroller (MCU). With NIR-sighted, early-discard
is enabled by image masks that are generated on the fly from sensors in a programmatic way.
Masked portions are discarded as the video streams. NIR-sighted’s early-discard capabilities can be
used to implement on-device obfuscation, which has demonstrated utility for privacy-enhancement

of images [22–24], and for robust attention mechanisms for human machine vision [30, 31]. They
can extend system lifetime by recording less and giving programmers a more fine-grained ability
to control data rate and image streams via sensor signals. Furthermore, NIR-sighted allows for the
use of small and low-power MCUs without sacrificing resolution or frame rate. Our architectural
innovations enable system performance and privacy while maintaining compactness and system

lifetime.
We also present NIR-sightedCam, a camera that implements this architecture. As shown in

Figure 1, NIR-sightedCam is a neck-worn, egocentric camera that uses a thermal sensor to enable
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pixel-level obfuscation of the video stream on-the-fly and fully on-device. Enabled by NIR-sighted’s
architectural innovations, NIR-sightedCam has a high frame rate, compact form-factor, multi-day
lifetime, and privacy-enhancing, programmer-definable video obfuscation. NIR-sighted is enabled
by two key ideas as follows:
1. Use another sensor to help with masking. Generating masks directly from high-resolution

image sensor data requires significant memory and computational power, which negatively
impacts system compactness and lifetime. Instead, NIR-sighted’s obfuscation masks are generated
using a different sensor than the primary image sensor, like a low-resolution IR imager [32, 33]
or depth camera [29]. Application-specific and program-defined masks can be crafted with this
data as input. For example, an eating study using a neck-worn egocentric camera can mask out
everything except for a wearer’s face. A study focused on user surroundings can do the exact op-
posite, discarding all pixels belonging to the user’s face before saving video to memory. Whatever
the study goal, we posit that a definition of early-discard can be embedded in a binary, per-frame
two-dimensional mask and that this mask can often be programmatically generated from non-
visual-spectrum cameras. This programmatic mask generation capability enables NIR-sighted to
provide application-specific flexibility to obfuscate any portion of the video without having to
store the obfuscated portion at any time. Currently, no devices in the market offer this feature.
2. Never buffer the whole image, even though you’ve got to compress it. Compression is a necessity

for storing video data (24 hours of uncompressed 15 fps 320 × 240 grayscale video will fill 99.5
gigabytes). Compressing in software at high frame rates is computationally intractable for small
microcontrollers [29, 34]. Commercially available MCUs with hardware JPEG codecs require the
full image to be buffered in memory and do not allow any type of non-MCU transformation of
the image beyond compression. Even for low-resolution imagers, this immediately puts memory
requirements into the 100s of kB, ruling out the most compact MCUs. Furthermore, buffering
prevents the use of imagers with a resolution above 640 × 480 without using external DRAM. In
fact, we found that obfuscating already-compressed JPEG images is almost as computationally
expensive as compressing them in software, as demonstrated by recent work capturing images at
less than 1 Hz using software JPEG compression [35].
NIR-sighted solves this issue by moving video compression off-chip to a bespoke, tunable

motion JPEG (mJPEG) compressor called Blindspot. Blindspot is small (implemented on a 5,280-
LUT iCE40UP5K Field Programmable Gate Array (FPGA) [36]), low-power (takes 5mW to
compress 320 × 240 images at 30 fps), and requires little memory, even for high-resolution video
(it never buffers more than 16 lines of the source image). This enables systems to obfuscate and
compress high-resolution video streams even with very small and low-power microcontrollers
having only a few kB of RAM. Crucially different from other commercially available hardware
JPEG compressors [37, 38], Blindspot’s design takes as input a binary mask that is applied to the
image in-situ as compression occurs.

Contributions: In this article, we expand the notion of early-discard past the removal of
entire frames to include per-pixel masking within frames. To this end, we make three primary
contributions:
(1) We introduce NIR-sighted, a wearable camera architecture that leverages the notion of

streaming mask programming to enable early-discard [29] at a pixel level. We demonstrate
that these masks can be generated cheaply and dramatically reduce nonvolatile memory
requirements. Early-discard of pixels can enable obfuscation, enhance privacy, speed up in-
ference, and save storage space and bandwidth.

(2) We instantiate the system into a tool for researchers: a multi-spectrum (infrared, visual),
compact, wearable prototype, NIR-sightedCam. NIR-sightedCam has 320 × 240 resolution at
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Table 1. Activity Monitoring or Life-logging Applications in the Literature That

Used Cameras and Manual Labeling for Validation
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Life-Logger or Groundtruth Collector

FluidMeter [13] ✗ ✔ ✔ ✗

Thomaz et al. [11] ✗ ✔ ✔ ✗

BodyScope [39] ✗ ✔ ✔ ✗

Ng et al. [2] ✗ ✔ ✔ ✔

Auracle [7] ✔ ✗ ✔ ✗

Earbit [6] ✔ ✗ ✔ ✗

Pizza et al. [3] ✔ ✔ ✗ ✗

SenseCam [27] ✗ ✔ ✔ ✗

Narrative Clip [18] ✗ ✔ ✔ ✗

Glimpse [29] ✔ ✔ ✔ ✗

ZenCam [40] ✔ ✗ ✔ ✗

Privacy Enhancing Video Platforms

Zhang et al. [41] ✔ ✗ ✗ ✔

Pinto [42] ✔ ✗ ✗ ✔

TrustEYE.M4 [43] ✔ ✗ ✗ ✔

CMUcam3 [44] ✔ ✗ ✔ ✔

This Work ✔ ✔ ✔ ✔

We denote the paper and extrapolate based on study descriptions: we claim that “wearable”

means small enough to hang around the neck or easily attach to the body without extra

baggage, if any privacy enhancement function exists, then we denote “private.”

30 fps, on-board obfuscation, and an all-day battery lifetime, useful in a number of applica-
tions including healthcare, privacy, AR, and human activity recognition via auto-generated
attention mechanism.

(3) To enable NIR-sightedCam, we introduce Blindspot, a hardware mJPEG compressor that
obfuscates images before compressing them. Blindspot is low-power and has a small
hardware footprint even when compressing large images.

With NIR-sighted, we aim to equip the health, behavior science, and mobile computing com-
munities with a wearable platform that researchers can field for long-duration experiments on a
diversity of human subjects across varying settings and applications. NIR-sightedCam aims to pro-
vide an alternative to commercial or scratch built systems that are not sufficiently energy-efficient
or privacy preserving [6–8].

2 Background and Motivation

NIR-sighted arose from clinical health researchers’ need to capture complex human behaviors
in free-living situations. Since the early 2010s, researchers have relied on egocentric cameras to
capture complex human activities (Table 1 shows a representative selection). However, as we will
explain in this section, these cameras have deficiencies that make them less than ideal.
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2.1 Satisfying Competing System Requirements

Satisfying the above-mentioned constellation of requirements (compactness, system lifetime, per-
formance, privacy) has proven challenging. For instance, in a law-enforcement body camera as in
Reference [21] compactness is sacrificed for improved system lifetime, but this trade-off is unac-
ceptable for a consumer product that is expected to be portable. Belowwe identify design trade-offs
between these four requirements in the context of clinical research applications.

System complexity increases with frame rate, resolution. Increasing the frame rate and res-
olution drastically increases storage requirements, making data storage infeasible without using
prohibitively large nonvolatile memories. To this end, on-board video compression is needed for
wearable cameras as system performance increases.

Systems using motion picture encoding like H.264 require sophisticated hardware and DRAM
for larger memory capacity to store data structures and multiple frames of video. Even if the video
is coded as a sequence of lossily compressed still images, using compression to enable increased
video quality still increases system complexity. Commercially available microcontrollers integrat-
ing a JPEG encoder [37, 38] require frames to be fully double-buffered in memory for compression
or streaming video to occur. They require significant on-chip SRAM adversely affecting system
size and power consumption making mJPEG compression above VGA resolution impossible with
commercially available microcontrollers.

Discarding pixels increases system complexity. Early-discard of individual pixels and entire
frames [23, 25] can enhance privacy, reduce video storage requirements, and remove irrelevant
details. However, existing methods for early-discard increase system complexity. We believe that
this is due to two main reasons:

(1) Figuring out what parts of the image to obfuscate is typically done by a Deep Neural Net-

work (DNN) [45, 46]. Evaluating a DNN at 20 to 30 fps takes significant memory and com-
puting power; typically, external DRAM will be needed.

(2) If an existing architecture is used, then obfuscating the image before it is compressed requires
it to be double-buffered in memory. This increased demand on memory inevitably leads to
a bulkier system with low battery life.

Some systems [29] successfully use low-power sensors to discard entire frames of video, but a
large amount of irrelevant and privacy-violating information remains.

2.2 Limitations in State-of-the-Art Personal Mobile Vision Systems

Current camera systems are not suitable for wearable vision. They are not simultaneously compact,
long-lasting, or performant enough, and they cannot discard sensitive information. Figure 2 shows
how different architectures conduct compression, to save storage, and obfuscation to enhance pri-
vacy or speedup offline inference, and their effects on performance, cost, and power draw. Typical
blocks in the processing pipeline consist of an imager, compression, decompression, processing
(i.e., face recognition), and storage/communication.

Current video collection methods fall into roughly two categories: high-performance multi-
media processors and low-powered triggering-based video loggers as shown in Figure 2(a) and
Figure 2(b), respectively.
High-performance multimedia processors shown in Figure 2(a) are in high-end smartphones

[47], GoPros [19], and wearables like the Ray-Ban Meta smart glasses [48], which achieve high
compression performance and may conduct extensive AI/ML operations on images. Like the older
TI OMAP 4430 [49, 50] in Google Glass or the more recent Qualcomm Snapdragon QCS605 [51],
these processors are expensive, dissipate significant heat, and draw >1 W when capturing and
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Fig. 2. (a) high-performance and highly integrated systems found in high-end phones and GoPros [19]. (b)

Low-end, low-power, cheap microcontroller-based systems exemplified by Glimpse [29] and SenseCam [27].

(c) Where dedicated, low-power obfuscation+compression hardware sits between imager and compute.

processing video. These state-of-the-art SoCs have extensive resources, including externalmemory
over 1 GB, clock speeds exceeding 1 GHz, and numerous on-chip accelerators but at the expense
of bulk, thermal comfort, battery life, cost, and design complexity.
As shown in Figure 2(b), researchers have explored low-power MCU-based imaging devices

for specific applications like life-logging [27, 52] and outdoor environmental/habitat monitor-
ing [53, 54]. Exemplified by the Narrative Clip 1 [20] (broken down by notable maker Limor Fried
in Reference [52]), these systems sacrifice performance but are compact and achieve 24+ hour
battery lifetime, often operating at 1 fps or less.
Recent work has attempted to bridge this gap, recording high-quality video in short bursts to

save power. Memento [55] is emotion based, using EEG signals; and ZenCam [40] triggers with an
IMU-based activity classifier. However, eachmethod discards images that may have been useful for
ground truth. Worse, as the complexity of the triggering scheme grows, so does the system’s bulk
and power consumption. Glimpse [29] is a Mobile vision system designed to perform computa-
tional cloud offloading by doing crude image pre-processing on their hardware. It uses low-power
sensors (motion, light) for triggering framewise discard of the image stream. This architecture is
thus computationally heavy and at the same time the overall power saving in this system is limited
to the use case. The framewise discard may result in the elimination of critical information in the
frame. Thus the challenges that need to be addressed are presented in the following.

C1: Reducing Storage Requirements. To enable all-day video, memory budgets must be kept
low: systems using DRAM require large board space; furthermore, data movement to and from
memory contributes significantly to energy costs [29].

C2: Compression. Motion video compression requires storage of multiple raw video frames
in memory, compromising bulkiness and system lifetime. The smallest commodity MCUs lack
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hardware JPEG compressors and the SRAM to support mJPEG. Therefore, to realize mJPEG
obfuscation and compression on systems with the smallest available MCUs, new architectures are
needed.

C3: Obfuscation. Making it possible to remove parts of an image on-platform is beneficial for
several reasons: Not only does it enable privacy-enhancing obfuscation [25, 30], it also allows us
to record less data, extending the lifetime of systems that are bound by power or storage capacity.

3 System Design

NIR-sighted is an architecture for wearable cameras. NIR-sighted-based cameras integrate a
microcontroller, an FPGA or ASIC implementing a low-memory-footprint obfuscation-aware
mJPEG compressor, a CMOS imager, and a low-resolution non-visual-spectrum imager (like an in-
frared array). By adding a low-resource, obfuscation-aware compressor and non-visible-spectrum
imager, wearable cameras following NIR-sighted’s architecture require dramatically less memory
and computation resources than privacy-preserving cameras integrating only a CMOS imager
and a commodity SoC. This reduced memory and compute burden paves the way for smaller, less
obtrusive, and easier-to-deploy wearable cameras while still preserving privacy.

3.1 Privacy Enhancement through Early Discard of Frames and Pixels

In a human-centered study with day-long recording, billions of irrelevant pixels are collected that
not only take up unnecessary space but also contain private information that is not relevant to the
study. The NIR-sighted architecture enables systems to discard parts of frames and entire frames
containing low-utility pixels.
Determining which pixels to remove is challenging. Definitions of "pixel utility" vary widely

across system deployments. Consider these studies with different aims: a user study evaluating a
gesture detection wearable would only need to capture the wearer and could obfuscate the scene
(like in a video call); however, in a life-logging setting, blurring/masking people (including the
wearer) but cataloging the environment and places visited, might be sufficient. The same pixels
that have high utility in one scenario may have low utility in a different scenario.
The concept of privacy is amorphous [56, 57]; it changes based on location and context, personal

values, and surrounding technology. One individual may be comfortable with a wearable that cap-
tures their surroundings as long as it obscures their face; another might find full-video recording
acceptable but only when he or she is smoking a cigarette. For one platform to be useful across
studies with varying definitions of pixel utility and participants with varying notions of privacy,
a high level of flexibility in discarding pixels and frames is needed.
NIR-sighted allows for the discarding of specific pixels within a frame throughmasking. A mask

is a low-resolution, binarized image where “false” values denote pixels that should be obfuscated
(either blurring or zeroing out the pixels) and “true” values denote blocks of pixels to store. Masks
are generated by code on the MCU and sent to Blindspot, where pixels are discarded before image
compression occurs. The MCU gets the obfuscated and compressed images; it only ever sees the
pixels it asks for. NIR-sighted accommodates discarding full frames to save battery life and storage
time. Just as with pixel-level discard, the system can use the secondary imager.
NIR-sighted targets human-centered studies, so we adopt secondary non-visible-light imagers

(e.g., infrared or depth), which are inherently sensitive to human wearers allowing for the gen-
eration of human-centered masks. Figure 4 explains this process of modification and movement
of an image through the pipeline. Masks are generated with simple, computationally lightweight
algorithms running on the MCU. Changing the mask involves writing a new mask generation
algorithm (which, as discussed, is made easy by sensor choice) and flashing it to the MCU,
something that’s made easy by widely available open source programming tools. This enables

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 6, Article 101. Publication date: September 2024.



NIR-sighted 101:9

Fig. 3. The hardware architecture of the system. The MCU calculates the obfuscation mask from thermal

imaging that is sent to Blindspot. Blindspot reads images from a camera and then obfuscates and compresses

them.

Fig. 4. NIR-sighted’s on-device processing pipeline. Each RGB frame is obfuscated using a program-

generated mask and then compressed. The pipeline is split across the FPGA and MCU to allow flexibility

and high performance. NIR-sighted can create privacy-enhanced video on device; private data never make

it to storage.

a programmable definition of pixel utility (and therefore privacy), bringing programmer-defined
masking to compact, long-lifetime wearable cameras.
Masking is the most powerful tool that NIR-sighted offers for discarding low-utility pixels, but

the programmer also has other tools at their disposal: (1) frame-level discard, where entire frames
can be discarded, dynamically changing frame rate; (2) adjusting resolution; and (3) compression
aggressiveness. By modulating these in response to sensor data, further improvements to wearer
privacy and system lifetime can be realized.

3.2 NIR-sighted System Architecture

We present an overview of NIR-sighted’s architecture in Figure 3. By using a non-visible-spectrum
imager as an information source for generating privacy masks and by performing compression in
a hardware IP block that requires minimal memory, NIR-sighted enables the design of extremely
compact wearable cameras.
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NIR-sighted-based systems involve cooperation between a microcontroller and our compres-
sion IP block, called Blindspot: The microcontroller reads spatial data from a non-visible-spectrum
imager (like an IR camera or depth camera). The onboard firmware on the microcontroller uses
this data to generate a privacy mask. This mask is sent to Blindspot, which reads the camera data
from the system’s CMOS visible-light image sensor and then obfuscates and compresses the read
video. This obfuscated and compressed video is sent back to the microcontroller for optionally
adding final post-processing on the data like adding timestamps, auxiliary sensor data (e.g., IMU,
visible light, etc.), and/or encryption. Once the microcontroller has completed these optional tasks,
the final obfuscated and compressed video stream is stored in onboard flash memory for later
retrieval by clinical researchers. We elaborate upon the component-wise flow of data through this
architecture below.

Secondary Non-Visible-Spectrum Imager. Enhancing wearer privacy for the body-worn appli-
cations that NIR-sighted targets involves identifying which pixels of the video stream are occupied
by humans (i.e., the wearer themselves or bystanders) and creating an obfuscation mask from this
information. Themost straightforwardway of identifying humans in the video stream is to operate
directly on the video stream itself; however, known methods for doing this incur massive mem-
ory and computation costs. These costs limit how far privacy-preserving wearable cameras can
be miniaturized. To overcome this issue, we turn to low-resolution non-visible-spectrum imagers.
Our work focuses primarily on thermal infrared imagers, but NIR-sighted’s insights apply to other
similar imagers (e.g., ToF depth cameras) as well. Although these imagers consume more power
per pixel than visible-spectrum CMOS imagers, much less compute and memory are required to
extract human-sensitive obfuscation masks from their data streams.

Mask Generation. With the thermal scene information on the MCU, a binarized mask is
generated by executing a programmer-defined function that determines which pixels to keep
and which ones to remove. This way, the generated mask embeds a privacy definition specified
by the programmer. Mask generation can range from speedy threshold-based setting methods,
to region of interest identification, to more intensive machine learning-based approaches such
as FastGRNN [58]. Because masks generated from secondary imagers using computationally
efficient methods are typically low-resolution, each binary “pixel” in the mask corresponds to an
8 × 8 block of pixels in the video stream.
The resulting mask is sent to Blindspot via an implementation-defined on-system control

interface. The programmer defines the frequency of mask updates; this will typically be limited
by the frame rate of the secondary imager. Because masks are binary, only 1,200 bits are needed
to transfer each mask, and therefore the control interface will only require 10s of kb/s of
bandwidth.

Raw Video Stream Read, Obfuscate, and Compress. Concurrent to the mask creation and
loading process, Blindspot reads image data from the camera and compresses each frame accord-
ing to the jpeg specification [59]. Before an 8 × 8 block of pixels is coded, Blindspot checks the
loaded mask if it is to be obfuscated, in which case its corresponding DCT coefficients are left at
0, rendering that part of the image as a gray box.

Video Stream Sent to MCU and Stored. After the FPGA obfuscates and compresses the video
stream, it is sent to the MCU. At this point, the MCU might perform some post-processing
operations on the video stream like timestamping, encryption, or association with auxiliary
sensors. Once this has been done, the video stream can be sent to flash memory for storage and
later retrieval by the clinical team for use in the intended application, study, or research evaluation.
This step requires very little computational effort from the microcontroller; in a commodity MCU,
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almost everything in this data transfer step can be handled by DMA, allowing for use of a smaller,
lower-power MCU.

3.3 Combining Obfuscation and Compression in Blindspot

While systems like Glimpse [29], ZenCam [40], and others discard entire frames to save energy,
NIR-sighted discards individual pixels within privacy-sensitive frames. We focus on redesigning
the compression pipeline to enable obfuscation without requiring images to be buffered. NIR-
sightedwasmotivated by constraints that we encounteredwhile designing NIR-sightedCam; video
had to be compressed, but commodity hardware only offered three ways to do it: software (which
is far too slow [54, 60]), compression hardware integrated into a commodity MCU (which is not
available on most MCUs and also requires images to be double-buffered [37, 38]), or compression
hardware integrated into the image sensor itself [61] (which makes on-camera obfuscation impos-
sible without de-compressing and re-compressing the image). For the reasons mentioned, we felt
that none of these options were appropriate for the system we were trying to design.
Instead, we move compression off-chip to Blindspot, our dedicated hardware mJPEG encoder.

This frees up implementations of NIR-sighted to use low-performance commodity MCUs. Al-
though JPEG compression hardware is certainly not a new idea [62, 63], techniques described
in the literature are prohibitively difficult for system designers to integrate unless they have the
budget and expertise to design a custom ASIC.
By introducing Blindspot, an open source design that has minimal memory requirements, we sig-

nificantly expand the low-power design space, even for teams unable to tape out their own chips.
Blindspot has reduced memory requirements when compared to commodity hardware-JPEG-
enabled MCUs, because it obfuscates the image in a streaming fashion: Obfuscation and compres-
sion are achieved without ever storing more than 16 lines of the image at once. This is important
when scaling video resolution: double-buffering a raw HD image with 16-bit color depth requires
over 8 MB of space, far exceeding the available SRAM of all low-cost commodity microcontrollers,
and certainly exceeding the available SRAM of the most compact options. By dramatically reduc-
ing the power draw andmemory requirements of compression, we can reduce battery size without
giving up multi-day lifetime and reduce hardware size without giving up on high frame rates.

3.4 How NIR-sighted Shrinks Systems Designed with COTS Components

Miniaturizing a system like this would be relatively straightforward for a group with extensive
expertise and a large budget: They could simply combine system functions into an ASIC whose
area is optimized for this specific application. However, this avenue is not open to small research
groups without the money, manpower, or extensive know-how and connections required to fabri-
cate an ASIC. As we established before, using COTS components in a non-NIR-sighted-style design
would result in a bulky and power-hungry circuit. By using a secondary non-visible-spectrum im-
ager to generate privacy masks, we avoid the need for DRAM and high-performance processors
that would be needed to generate privacy masks directly from video data. Furthermore, Blindspot
frees up designers to use extremely tiny and low-performance MCUs. Setting aside the issue of
mask generation (which is addressed by the non-visible-spectrum imager), they no longer need to
worry about whether the MCU will have the hardware and SRAM buffer space needed to perform
JPEG compression. It is through these two merits that NIR-sighted allows researchers to build
smaller and lower-power cameras that still preserve privacy without turning to prohibitively dif-
ficult methods. In fact, we found that the power needed to generate a mask from a low-resolution
non-visible-light imager was less than the power needed to generate amask from a high-resolution
CMOS sensor, even when the higher power consumption of the non-visible-light imager was taken
into account.
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Fig. 5. To reduce costs and sourcing difficulties and enable easier debugging, and reconfigurability, NIR-

sighted is composed of three separate PCBs that share an interconnect via low-profile stackable headers.

3.5 Blindspot: A Memory-constrained, Obfuscation-aware Hardware JPEG
Compressor

In this section, we present Blindspot, a hardware mJPEG compressor. Blindspot is open source and
was designed from the ground up specifically for size-constrained, privacy-preserving systems. To
make sure that Blindspot could be used by teams without the ability to tape out IC’s, we imple-
mented it to fit in a compact and affordable iCE40UP5K FPGA [36]. Blindspot achieves this small
size and low-power operation through three primary techniques:

— A streaming architecture: In contrast to hardware JPEG compressors integrated into off-the-
shelf MCUs, Blindspot never buffers more than 16 lines of an image. This allows for the use
of very little SRAM, letting us use small FPGAs. This has further benefits when scaling up

camera sizes. Blindspot’s memory usage scales withO(
√
N ) in the number of pixels, meaning

that larger imagers can be used without incurring massive SRAM costs.
— Parallelization of DSP operations: The central operation of JPEG compression (the DCT) is
calculated by many small cores in parallel, shrinking hardware size.

— Reduction of division precision: Quantization—the critical step in JPEG where data loss ac-
tually takes place—relies on notoriously expensive division hardware. Instead of using full-
precision integer division (which we found would occupy half of our FPGA), we allow for
division by numbers of the form k2q for k ∈ [0, 2l ]. This lets us substitute a 16 × 8 bit divider
for an l-bit divider and a q-bit barrel shifter.

While hardware JPEG compressors are certainly not new, we believe that Blindspot occupies a
unique point in design space. Because of its low memory footprint, Blindspot stands on its own as
a useful piece of hardware to design ultra-compact cameras, even without the inclusion of a mask
sensor as prescribed by NIR-sighted. Furthermore, Blindspot upends the notion that transform
coding is not possible in the lowest-powered systems [54].

4 NIR-sightedCam Implementation

In collaboration with human behavior researchers, we designed and fabricated NIR-sightedCam, a
camera that meets the compactness, system lifetime, performance, and privacy needs demanded by
clinical applications demand by implementing the NIR-sighted architecture described in Section 3.
The hardware implemented is shown in Figure 5 and the FPGA firmware architecture is described
in Figure 6. The hardware is designed to be modular, comprising a thermal imager, a camera board,
and motherboard. In the following sections, we detail implementation decisions balancing the
architecture design, application, and energy requirements.

4.1 Hardware Design

Figure 5 shows the components making up the hardware platform, which is described below. The
system consists of boards vertically stacked via mezzanine connectors; the decision to stack boards
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vertically was made for two primary reasons: form factor and modularity. Vertical stacking im-
proves form-factor, because it reduces the footprint of the hardware. While laying all of the com-
ponents out on a single PCBmight improve overall camera volume, verbal feedback from clinicians
indicated that such a design would sit uncomfortably on the body because of its shape. Second, we
were interested in a modular design, where some parts of the hardware could be upgraded (for
example by swapping out the non-visible-spectrum imager or replacing the camera board with a
higher resolution one) without having to completely redesign the board.

Motherboard. The motherboard is the central controller, which hosts an ST Microelectronics
STM32L4S9ZI microcontroller, which is an Arm Cortex-M4 running at 120 MHz, with 2 MB of
Flash memory and 640 KB of SRAM onboard [64]. The motherboard includes an SD card, an IMU,
and compact connectors for the addition of arbitrary i2c sensors if needed. The motherboard con-
nects to the camera board via a stackable connector that contains an i2c control bus for the FPGA
and camera, a separate i2c bus for the non-visible-spectrum imager, and an 8-bit wide parallel
data bus for receiving compressed video from the FPGA. The i2c control connection is sufficient
bandwidth for control signals; as mentioned in Section 3, streaming obfuscation masks to the
FPGA only requires 10s of kb/s, only a few percentages of the i2c bus’s bandwidth. The board also
includes battery charge and management circuits, user buttons and programming ports. While
implementing these mask-generation and system management functions inside the FPGA itself
could improve system integration, we found that it made sense for NIR-sightedCam to implement
these in an MCU instead. Implementing them in-FPGA would require a larger, more expensive
FPGA and would be less efficient for the tasks in question. Furthermore, flexibility and researcher
usability are important for this platform; changing a mask generation algorithm implemented in
hardware would be more difficult (and implementing a soft-core on the FPGA would likely be too
inefficient for the reasons mentioned above). By splitting these responsibilities between an FPGA
and MCU, we can use smallest-in-class chips for both.

FPGA and Camera Board. The vision board contains a Lattice iCE40 UP5K FPGA) and a Himax
HM01B0. The iCE40 is an affordable, ultra-low-power FPGA that is suitable for compact, low-
power applications. The Himax HM01B0 image sensor is able to capture 30 QVGA resolution (320
× 240 pixels) frames per second while only consuming 1mW of power.

Thermal Imager.Amid-resolution thermal imager is a good way to identify humans in a scene in
a way that is robust to light/dark cycles and other environmental effects of images and depth sen-
sors. This imager is used to create masks to hide private features of images. We use the MLX90640,
which has a 110◦ × 75◦ field of view with a temperature measurement range of −40◦C to 85◦C and
a resolution of 32 × 24 pixels.

4.2 Software

NIR-sighted is a complete platform in the sense that it also comes with supporting software and
firmware for managing each stage of the image processing pipeline on the MCU. The on-device
pipeline is shown in Figure 4. The implementation details of each piece of software is described
below.

Operating system. On the MCU, separate threads are responsible for reading the thermal
imager, extracting masks from thermal images, transferring data from the FPGA, and processing,
batching, and storing privacy-enhanced images to the SD card. We use FreeRTOS to manage
these multiple threads and to save power when the MCU core is asleep. We also make extensive
use of the MCU’s DMA features to so that <1% of CPU time is dedicated to coordinating data
movement.

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 6, Article 101. Publication date: September 2024.



101:14 J. Mamish et al.

Fig. 6. Implementation of Blindspot. Streaming blocks of pixels are put into parallel channels that are obfus-

cated on the fly (masked completely or blurred) by the DCT core followed by JPEG specified compression

routines.

CMOS and Thermal Imager Co-Calibration. In order to apply masks generated from the ther-
mal imager’s data to video data from the CMOS sensor, we must know how their fields of view
overlap. To perform this alignment, a one-time, design time registration is needed. While an exact
process using focal length equations and projection drawing from the exact placement of the im-
agers on the PCB would be best, we found that a manual alignment process was sufficient for our
low-volume prototype.

4.3 Hardware JPEG Compressor Design

The FPGA comprises the selective compression and obfuscation circuit that takes in a mask pro-
vided by the MCU and outputs a privacy enhanced, obfuscated JPEG image back to the MCU. The
design of the circuit embedded in the FPGA is shown in Figure 6.
The FPGA is a modified circuit level implementation of the JPEG image compression algorithm:

Pixels are consumed via a parallel port CMOS image sensor interface before they are processed by
parallel DCT cores (comprising a micro-coded multiplier and adder), a quantizer, and a Huffman
encoder before they are buffered in an output FIFO and transmitted over a parallel port. Blindspot
allows for the obfuscation of 8 × 8 blocks of pixels by greying out or blurring them. There is also
an interface to the MCU over I2C, through which the obfuscation mask and configuration settings
(i.e., quality-table updates) are captured and stored in embedded FPGA SRAM.

JPEG Pipeline. As shown in Figure 6, first the image is processed in 8 × 8 pixel blocks, called
Minimum Coded Units; these are fed into DCT cores running in parallel, each of which is
responsible for processing its own stream of Minimum Coded Units. Each DCT core has a FIFO
at its input and output for buffering. To achieve obfuscation, the DCT cores can be gated. This
means that when processing Minimum Coded Units that are to be obfuscated, they will output
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coefficients representing a blurred or greyed-out Minimum Coded Unit. Once the DCT operation
is complete, results from all of the parallel DCT cores are interleaved for the quantization step.
The quantization step relies on pre-set quantization tables, and will quantize high frequency
components of the images. These components are less obvious to the human eye, producing long
runs of easy to encode low entropy data. This quantized stream is fed into a Huffman encoder;
the fixed codebook used by the Huffman encoder prioritizes the most common symbols, giving
them shorter codewords. Because of the quantization step, some symbols are much more likely
to appear than others, making Huffman coding highly effective.
To enable pixel level discard, the DCT core uses the obfuscation map stored in the RAM as a

mask (more on this mask generation is described down below). As each pixel block is processed,
it is blurred or masked if the corresponding bit in the mask is 1.

Blur levels To obfuscate a block of pixels, Blindspot can either fully mask or blur the correspond-
ing block. We implement blurring pixel blocks in a JPEG-friendly way by throwing away high
frequency coefficients when doing JPEG compression. This is the same as aggressively reducing
the quality for that pixel block, quantizing away all DCT coefficients except the DC component.

Scaling and Resolution. The current FPGA has five channels/DCT cores and runs at 12 MHz.
The DCT cores and input/output buffering comprise the majority of the chip area. The only thing
that grows linearly with image width is the size of the buffers just before and after the DCT cores.
The number of cores is a factor of image width, since the base pixel block size is 8 × 8. We observe
that five cores at 12 MHz is sufficient to achieve a frame rate of 30 frames per second if all other
I/O operations proceed at speed. Frame rate can be increased by increasing the number cores or
clock frequency. In our implementation of Blindspot, each DCT core takes 915 clock cycles to do
an 8 × 8 transform. With 1,200 transforms per image, the DCT cores require 18.3 ms to process
320 × 240 image when running at 12 MHz.

5 Evaluation

In this section we characterize the overhead associated with NIR-sighted’s proposed mechanisms
and evaluate NIR-sightedCam’s performance. Specifically, we (1) measure Blindspot’s power
consumption in situ when implemented in an FPGA and in simulation when synthesized as an
ASIC in modern flows, (2) explore the CPU and memory requirements of some effective masking
algorithms, (3) describe NIR-sightedCam’s performance and power consumption, and (4) use
NIR-sightedCam to record video in demonstration use cases, submitting the resulting video to a
dietitian for commentary.
We find that NIR-sightedCam’s "obfuscate and compress" architecture, enabled by Blindspot,

reduces power by an order of magnitude over A-type systems (Integrated) (Figure 2(a)), increases
performance and frame rate over B-type systems (low-power MCU) (Figure 2(b)), and still enables
obfuscation.

5.1 NIR-sightedCam Cost, Size, and Weight

NIR-sightedCam’s design choices were made with careful consideration of system cost. Table 2
shows a system cost breakdown by component when ordering systems at qty 100. No one compo-
nent dominates the cost of the system; the most expensive component—the thermal imager—only
accounts for 21% of system cost, the FPGA and its associated flash memory are less than 10% of
system cost.
The entire prototype, when fully assembled without batteries, weighs only 13 grams. When two

500-mAh battery packs are added, the prototype has a 26-hour battery life (49 hours with its IR
imager disabled). As Figure 5 shows, it is the size of a golf ball and slightly lighter, at 35 grams
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Table 2. Cost of System Components at qty 100

Component Cost % of sys cost

Complete System $165.11 100%
Thermal Imager $ 34.50 20.9%
FPGA $ 15.65 9.5%
MCU $ 19.64 11.9%

Table 3. SWaP and Performance Comparison for Different Systems

System
Size (XYZ, camera
points at Z)

Volume Weight
System
Runtime∗

Video Quality Obfu-
scates?

SenseCam [27, 66] 6×8×3 cm 144 cm3 175 g 12.0 hr RGB×640×480 0.2 fps ✗

Narrative Clip 2 [20] 3.6×3.6×1.1 cm 14.3 cm3 20 g 1.3 hr∗∗ RGB1920×1080 30 fps ✗

GoPro Hero 10 [19] 7.2×5.1×3.4 cm 125 cm3 153 g 2.0 hr RGB×1920×1080 30 fps ✗

Axon Body 2 [21] 8.7×7.0×2.6 cm 158 cm3 142 g >12 hr RGB×1920×1080 30 fps ✗

NIR-sightedCam 3.7×3.3×2.9 cm∗∗∗ 35.4 cm3 35 g 23.4 hr L×320×240 30 fps ✔
Optimized NIR-sighted-
based system∗∗∗∗ < 2.0×2.0×2.0 cm <8 cm3 < 35 g > 20 hr L×320×240 30 fps ✔

∗This denotes how long the system can run for without charging or offloading data. If there are different

configurations (e.g., the GoPro Hero 10 can record in different resolutions and frame rates), we give the value for the

configuration with the highest runtime and specify the corresponding image quality.
∗∗Narrative Clip 2’s battery life may be longer, but it only has memory space for 1.3 hr of video so cannot be used for

longer lifelogging stretches.
∗∗∗Size without case.
∗∗∗∗This represents a worst-case estimate for an ideal system designed using the NIR-sighted architecture and the

smallest available and compatible COTS components.

(a golf ball is ∼45 grams and a diameter of ∼43 mm). This combination of size and battery life is
ideal for long-term clinical studies.
As discussed in Section 3, a fundamental motivation of NIR-sighted was to make NIR-

sightedCam very compact while still using COTS components. Although relying on a custom IC
would have allowed for a significantly smaller platform, it would have largely defeated the purpose
of this project by making it inaccessible for small research groups.
In Table 3, we compare NIR-sightedCam’s SWaP (size, weight, and power) and performance

with related research efforts and commercial products. Although NIR-sightedCam has lower video
resolution than similar commercially available products, it can obfuscate video and has better size,
weight, and power characteristics.

As discussed in Section 3.4, NIR-sighted and Blindspot allow wearable camera designers to use
the smallest available COTS components to design their systems. We designed our NIR-sighted-
based system, NIR-sightedCam, to be a research platform, sowe sacrificed system size for flexibility.
The final column of Table 3 represents estimates for a NIR-sighted-based system that is fully opti-
mized for size. The size and weight estimates are based off of specific ultra-small COTS MCUs [65]
and FPGAs [36] whose use is only made possible through the NIR-sighted architecture.

5.2 Characterizing Blindspot’s Performance

To characterize Blindspot’s performance, we designed a custom instrumented board for the Lattice
iCE40 FPGA used in NIR-sightedCam (More details are in the appendix). The breakout board is out-
fitted with onboard trans-impedance amplifiers to measure the current consumption of the iCE40
FPGA. To remove variability inherent in natural images coming from the onboard camera, we sup-
plied a static test image over the board’s GPIO pins. The FPGA’s core consumed 5.67mW when
compressing images at 12.5 fps. Increasing the mask’s infill percentage does not cause the FPGA’s
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Fig. 7. NIR-sightedCam battery life as a function of frame rate assuming a 1.000-mAh battery. To produce

this graph, we used an Otii Arc to measure NIR-sightedCam’s current consumption at 3.7 V across a variety

of frame rates.

power consumption to increase. In fact, we found that adding the obfuscation mask decreases the
power consumption; as mask infill increases from 0% to 100%, power consumption drops by 4.1%,
likely due to decreased FPGA activity factor.
With a 12-MHz system clock, Blindspot can achieve a maximum frame rate of 57 fps when

compressing 320 × 240 video. Implemented in an iCE40 FPGA with the Yosys open tool chain [67],
Blindspot has a max clock rate of 15.8 MHz, accommodating a maximum frame rate 78 fps at an
image resolution of 320 × 240.
To compare Blindspot to software solutions, we implemented a baseline JPEG compressor in C

on an ARM Cortex-M4 MCU at 96 MHz (Ambiq Apollo 3). The microcontroller consumed around
15mW, but frame rate was only slightly higher than 2 fps. This is faster than in Reference [54],
which can achieve 1 fps in software, but slower than in Reference [60] (an open source JPEG
library), which can achieve 7 fps in software on the same microcontroller.
We synthesized Blindspot using an industry-standard Synopsys design flow for a Nangate 45-

nm process. Simulation results estimated a static and dynamic power consumption of 260 and
35 µW, respectively. We estimate that a version of the system using an ASIC would have a cur-
rent consumption of 14–15 mA and a battery life of 64–66 hours with masking disabled. Note that
this is not a major gain over the non-ASIC version, because—with the MLX enabled—power con-
sumption is dominated by the microcontroller and flash memory. Selecting a lower performance
microcontroller and different flash could alleviate this issue. The integrated version is significantly
lower power, and estimated footprint, even if scaled for HD video, consumes less than 1.0 mm2 of
die space, proving its suitability for compact, low-cost vision systems with high performance.

5.3 Masking Program Performance

The ability to cheaply generate effective mask programs from non-visible-spectrum imagers
(mask sensors) is central to NIR-sighted. To determine whether this could be feasibly done, we
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Fig. 8. Video frames with different masks; (a) none, (b) threshold (med.), (c) flood fill, and (d) random.

Table 4. Mask Algorithm Benchmarks

Mask Algorithm CPU % Exec. (ms) Mem. (B)

Constant. (No MLX) N/A 0.1 N/A
None. (MLX Calc) 1.4 0.80 3,856
Threshold (med.) 6.2 4.1 7,680
Threshold (avg.) 4.3 2.8 4,608
Wearer Flood Fill 6.7 4.6 7,680
Random 1.7 0.2 1,552

implemented three thermal-based masking algorithms, running them on NIR-sightedCam’s CPU
at 72 MHz and using a 32 × 24 mlx90640 IR array for sensor data. The mask algorithms we
implemented are (shown in Figure 8): (i) threshold (med.): pixels far from the median temperature
are kept (capturing the wearer, nearby bystanders, and hot/cold objects); (ii) threshold (avg.): pixels
far from the average temperature are kept; (iii) wearer flood fill: a heat-based flood fill is used to
keep; and (iv) random noise: a tester mask, where points are randomly selected to be masked.
These masks can further be modified with little overhead through morphological erosion/di-

lation and inversion. These masks can be changed dynamically via the program based on gating
sensors or other program logic. We found that mask generation incurs very little CPU andmemory
overhead, even on a low-performance microcontroller; the results of which is recorded in Table 4.
We also collected five different unmasked sequences of ego-centric video, about 10 minutes each,
and applied different masks offline to test the effect on video size. We found that masking—even
when video is still compressed with baseline JPEG—reduces file size by 50–70% (Figure 9). We
shared the resulting clips with a dietitian trained in performing diet recalls, who indicated that the
video would be useful even with masking enabled.

5.4 NIR-sightedCam System Lifetime

We characterized the performance of our full NIR-sightedCam prototype by recording masked 15
fps video and using an Otii Arc to measure power consumption. The measured average current
draw of NIR-sightedCam at 3.7 V is 36–39 mA, indicating a 26-hour battery life. An additional
battery pack would keep the size and weight of that of a golf ball, but increase the lifetime by
another 7–15 hours. Regardless, users can get all-day or even multi-day battery lifetime depending
on usage in a day and sleep cycle. Removing the thermal imager and recording unobfuscated video
doubles the battery life (a current consumption of 19–20 mA gives a 49-hour battery life), and
reducing frame rate further extends battery life.
Figure 7 shows how system battery life changes with changing frame rate. With the MLX dis-

abled, the frame rate has a significant impact on battery life; however, when enabled, the MLX
dominates power consumption so reducing the frame rate does not significantly improve battery
life.
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Fig. 9. Five different video scenes, all about 10 minutes long, were recorded and masks were added offline.

Masking reduces video frame size by up to 70% across scenes.

Fig. 10. Captures (using grayscale imager) and masks for eating and drinking, shown to dietitian (PhD, RD).

5.5 Demonstration Use Case: Eating Studies

In this section, we conduct a real-world case study by applying NIR-sighted for eating behavior
detection. Shown in Figure 10, we have a camera roll of raw andmasked images of eating and drink-
ing. We have implemented multiple types of masks to exemplify the flexibility that NIR-sighted
offers in image obfuscation, such as masking everything but the wearer (a), masking all human
faces including the wearer (c), and masking everything but the wearer’s hands (d). We asked a
male volunteer to perform a sample of everyday meal-time activity of interest to the health re-
search community (i.e., eating and drinking [39, 68–73]).

Tracking eating behaviors is essential in understanding and managing many health conditions
such as diabetes, cancer, and obesity. However, manual tracking of eating habits suffers from recall
bias and is reported to be burdensome. Although wearers of the camera might see the benefit in
automated tracking, they are often concerned about the non-consented bystanders’ privacy. There-
fore, a masking/obfuscation method similar to what we use in Figure 10(a) and (b) has been shown
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to reduce privacy concerns related to the bystander [22, 24], which can relieve discomfort caused
by the wearable camera and increase wear time. A professional dietitian trained in performing diet
recalls evaluated the camera roll of obfuscated eating and drinking. The dietitian reported:

...in conjunction with 24-hour recall [used] to identify food item[s], [this technology
] will help determine meal timing—no need for reliance on self-reported fasting. Ob-
scuring the participants face may lead to increased likelihood for the camera to remain
on....

Dietitians rely on self-reported diet assessments without confirmation from objective measures.
NIR-sighted can enhance the dietitians’ ability to validate timing of food intake, understand the
diet quality and energy intake of the patient, remove the need for deletion of recordings, reduce
the burden on the wearer, and improve the design of a medical nutrition therapy plan that will
account for the patient’s naturally occurring behavior.

6 Related Work

NIR-sighted is the first end-to-end platform that enables programmable pixel-level early discard
for mobile vision. In this section, we discuss related work beyond the architectural insights and
devices mentioned in Section 2.

Mobile Vision Acceleration. Heterogeneous CPU-FPGA systems like NIR-sighted mitigate the
challenges posed by the end ofMoore’s Law, providing task-specific acceleration at low energy and
cost point [74, 75]. Everyday vision applications [18, 27, 76, 77] represent a useful target for this
type of acceleration. High power draw, however, has always been a challenge [78, 79] for mobile
cameras. To conserve energy, research considers various approaches. SenseCam and ZenCam used
environmental cues such as change in light, temperature, or audio to automatically trigger image
capture [27, 40]. Glimpse discards "uninteresting" frames to conserve power and similar to NIR-
sighted provides a programmable way to decide what is not of interest [29]. Others have modified
image resolution [80], frame rate [81, 82], and the processing pipeline [83]. Unlike with Glimpse,
NIR-sighted discards uninteresting parts of a frame, determined by a programmer defined mask.
NIR-sighted does not sacrifice latency for computational and image processing actions, but instead
uses a streaming architecture and a low-power, low-cost, and commodity MCU to accomplish all
actions.

Programmable Obfuscation: Surveillance cameras have explored types of obfuscation, with ap-
plication in privacy. TrustEye and TrustCam [84–86] separate layers of the program to bar access
to raw pixels. Another used thermal cameras to guide obfuscation [87]. These are all non-wearable
systems.

Bystander Privacy inVideo:Discomfort is expressed by thewearer [4, 88] and by bystanders [89,
90] when wearing a camera. Researchers have developed systems where bystanders can opt out
from recording [91], while others have proposed computer vision techniques where specific ob-
jects in a photo are obfuscated [92]. Some techniques apply degradation in the image as a whole
[24], while others have utilized activity-oriented wearable cameras to focus on capturing a spe-
cific activity of interest [4]. We enable on-device exploration of all these different privacy schemes,
stemming from our obfuscation capability.
Work done in Reference [31] demonstrates that using mask obfuscation on images results in an

average reduction of only 2% in human activity recognition accuracy. They highlight that despite
the obfuscation, the fine-grained activities can still be accurately detected, which underscores the
potential of obfuscation techniques in addressing privacy concerns. The low reduction in accuracy
due to mask obfuscation indicates that the technique can provide a reasonable trade-off between
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privacy and utility. NIR-sighted allows one to build upon an on-device activity classification system
that can perform well when using masked images.

7 Discussion and Future Work

We built NIR-sighted to fill a hole in mobile vision systems for privacy-enhanced life-logging cam-
eras. This article presents an extensible architecture and prototype device for capturing all-day
video with high energy-efficiency and performance. The article further explores how program-
mers can define obfuscation for a specific application (like privacy). We discuss future work and
periphery issues around NIR-sighted.

Extensions.The current platform could be extended to use alternativemasking sensors (i.e., depth
or time-of-flight instead of thermal, or even motion based) as well as more advanced masking
algorithms. Compression schemes (MPEG-4) and tuning might bear performance improvements.
Finally, higher resolution cameras could enable finer capture detail. Because of the modular design,
the motherboard could be used and only the vision board redesigned. NIR-sighted in its current
state provides a useful jumping off point for these explorations.
Another way to improve the battery life is by doing an activity detected recording. As discussed

in the related work section, Reference [31] proves that activity detection can be done on obfuscated
images too. Using a machine learning model that is trained on these obfuscated images can help
in triggering continuous capture only if a certain activity is detected.

Privacy and Regulatory: Significant bodies of work explore privacy, hardware and software for
enhancing privacy, and how new systems (like NIR-sighted) might fit into emerging laws like
COPPA and GDPR that prohibit the collection of private data, especially of vulnerable children
(COPPA). NIR-sighted provides a first step for in-hardware privacy enhancement via obfuscation
masks, deeper exploration of privacy via NIR-sighted would have merit.

Community Platform. NIR-sighted seeks to empower mobile computing, health and behavioral
researchers to gather rich video data in free-living settings for studies, validation, and novel ap-
plications. We view the NIR-sighted architecture as a useful approach for obfuscation, and one
that can be used immediately, via NIR-sightedCam, with commodity components like low-power
FPGAs, for immediate deployment, without relying on thewhims of the SoC andMCUmarket. NIR-
sighted can be used by usable privacy research to understand in situ considerations of bystander
privacy, as opposed to existing methods using post processing or MTurk online studies [93]. Be-
cause of the sophistication of the platform and tight design requirements due to the small size,
we are exploring Tindie, Macrofab, and Seeed for at-cost distribution of NIR-sighted devices to
researchers. We anticipate immediate future work centered around documentation, tutorials, new
masking algorithms, and engaging in community building and outreach.

8 Conclusion

We began this project as a response to a community of mobile health researchers pushing for better
ways to capture strong visual ground-truth information to validate health-based wearables. While
exploring this space we found an unoccupied niche, where commodity components available did
not provide energy efficient ways for pixel-level early discard while giving multi-day battery life
and high frame rate. We developed a new selective compression architecture, NIR-sighted, that
we instantiated in an FPGA design, Blindspot, and into a prototype camera, NIR-sightedCam, the
size of a golf ball, enabling enhanced image capture at 19 fps or more. Programmers create a mask
program tomake use of the architecture, which generates a two-dimensionalmask based on amask
sensor (thermal in our case), instructing which pixels to discard frame by frame. Our evaluation
showed that: masking reduced image size up to 70%, enabling ultra long deployments with limited
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storage; Blindspot enabled a 6× faster frame rate over a state-of-the art MCU, at only a third of the
power, and was able to run at 78 fps maximum; the ASIC synthesis of Blindspot has only 35 µW
of dynamic power consumption; and finally our NIR-sightedCam prototype had a 49-hour battery
lifetime (26 with masking), recording at 15 fps continuously in a golf ball size form factor, and was
made entirely of commercially available parts.

Appendix

We designed a custom PCB for the Lattice iCE40 FPGA used in NIR-sightedCam to analyze the
performance of the FPGA and aid in performing experiments to characterize the performance of
Blindspot’s performance as shown in Figure 11. Our custom development board is instrumented
with current-sensing amplifiers to measure current consumed by the FPGA.

Fig. 11. Custom development and measurement board for the FPGA vision architecture bench-marking.
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