
Poster: HarvNet: Battery-Free Device Network Simulator
Hrishikesh G. Kusneniwar

Department of CS&IS,
BITS Pilani, Goa Campus, India

Sougata Sen
Department of CS&IS, APPCAIR,
BITS Pilani, Goa Campus, India

Josiah D. Hester
College of Computing,

Georgia Institute of Technology, USA

ABSTRACT
Ubiquitous sensing technologies, leveraging a network of intercon-
nected sensors and devices, offer multifaceted benefits to society.
However, the use of batteries has persistently posed a challenge
to their advancement. In recent years, researchers have explored
establishing communication between battery-free nodes. The pri-
mary objective of this work is to expedite the testing of algorithms
for multiple battery-free interconnected nodes by isolating the al-
gorithm from the underlying hardware. Isolating the hardware
allows faster tuning of algorithms, and enables testing on a large
scale. We developed a novel python-based simulation framework,
HarvNet. Simulations using real-world power traces demonstrated
a success rate of 81% in establishing connections between nodes
which closely emulates the success rate achieved using hardware.

CCS CONCEPTS
• Human-centered computing → Ubiquitous computing; •
Networks → Network simulations.

KEYWORDS
Ubiquitous computing, Battery-Free device networks

1 INTRODUCTION
Utilizing a network of interconnected sensors and devices provides
a wide array of benefits inmultiple domains [5]. This has led the pro-
liferation of such inter-connected devices. But the reliance of these
devices on batteries has consistently posed a deployment challenge.
The innovation in the area of battery-free systems has enabled
cheap and lightweight devices to perform the same tasks using
harvested energy [4]. These devices commonly have inter-device
communication requirements, and novel network communication
algorithms are being developed for them. However, such algorithms
often have hardware dependence and testing them on devices is a
challenge. Thus needed is a framework that enables testing network
communication for intermittently powered battery-free IoT nodes.

A battery-free device cannot avoid power failures, giving rise to
its intermittent nature of operation. To be able to communicate, a
sender and a receiver must be active and have enough energy for at
least one complete packet transmission at the same time. Since the
nodes’ activity phases are generally interleaved and short, it often
takes thousands of wake-ups until two nodes encounter each other

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0581-6/24/06. . . $15.00
https://doi.org/10.1145/3643832.3661444

Figure 1: HarvNet System Design

and communication becomes possible. Find is a neighbor discovery
protocol for battery-free wireless devices that uses randomized
waiting to minimize discovery latency [2]. Bonito is another inter-
device communication protocol that learns the the charging time
distribution and develops a connection protocol that enables reliable
and efficient bi-directional communication between intermittently
powered nodes [1]. However, Bonito only achieves communication
between a pair of devices. Various trade-offs and challenges emerge
from each potential approach to transitioning from a two-node
scenario to larger networks, warranting exploration in the field [1].

To address this gap, we developed HarvNet, a python-based sim-
ulation framework that currently leverages the Bonito protocol to
enable research of coordinating tasks across a network of inter-
mittent nodes. In this paper, we describe the design of HarvNet,
and approaches that we undertook to validate the system. The key
contributions of this work are as follows. First, we developed a
simulation framework (HarvNet) that enables coordination of tasks
in a network of intermittent nodes. Second, we translated the entire
Bonito protocol to python validated using simulations on real world
power traces that provides a convenient setup to swiftly gauge the
impact of tuning parameters or making subtle modifications. Al-
though we currently tested Bonito with HarvNet, however HarvNet
can easily enable deployment and testing of other protocols.

2 SYSTEM DESIGN OF HARVNET
Figure 1 presents the system design of HarvNet. HarvNet consists
of multiple nodes, each of which aims to communicate with an-
other node in the network for any application related tasks. Each
HarvNet node is an intermittently powered device that is aware of
the existence of other nodes in the network. However, a node has

732

https://doi.org/10.1145/3643832.3661444
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3643832.3661444&domain=pdf&date_stamp=2024-06-04


MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan Hrishikesh G. Kusneniwar, Sougata Sen, and Josiah D. Hester

Table 1: Actual Data vs HarvNet simulation

Node Total no. of
wakeups

Successful
Connections

Success Rate

nRF52805MCU 63,072 61,868 99.89%
HarvNet BFD 63,995 51,751 80.87%

no prior information about other node’s energy levels or their wake
up cycles. One must note that every node can wake up at different
times and they do not have the same energy capacity. Each HarvNet
node has the following functionalities implemented. (1) A utility
that manages the entire lifecycle of the node, involving charging
and discharging itself, and running the desired communication
protocol. This utility currently manages the Bonito protocol. (2) A
dedicated callback that executes every time the node wakes up
after recharging. This callback is responsible for running the task
allocated to a node. Users can conveniently define a separate task
for each node in the HarvNet’s task script. (3) Bonito protocol
implementation which will allow a node to form and maintain
connections with a target node in the network.

HarvNet has a custom GUI displaying real-time node energy
levels and active connections to aid the visual understanding of
communication in intermittent devices. The number of nodes and
their corresponding power traces are predetermined using the in-
put file. The main simulation environment then instantiates these
node as a BatteryFreeDevice that simulates a battery free node in
a distributed setup. Once the simulation starts, HarvNet launches
all these virtual BatteryFreeDevice nodes to work independently
of other nodes in the simulation environment. Nodes are now in-
dependently charging and discharging, forming connections and
performing the dedicated tasks. The initial target of each node for
establishing connections is specified through the GUI by clicking
on specific nodes, and this pairing can be updated in real-time.
Although we currently implemented the Bonito protocol for com-
munication, however HarvNet allows implementing a custom logic
for the orchestration of connections among the nodes.

The connection formation among nodes is simulated using inter-
thread communication. The nodes discover each other by accessing
a specific state maintained by every node indicating whether it is
awake or asleep. A node’s utility sets this variable to high as soon as
the node wakes up. This nodes waits for a certain period of time (In
the current Bonito implementation, two nodes can successfully de-
tect each other if they wake up with an offset between 88 𝜇s and 848
𝜇s.) to establish a connection with other nodes. The confirmation
of a successful connection is simulated by making use of a Barrier,
which is a synchronization primitive in Python. It allows a node to
wait on the same barrier object instance for a certain duration (i.e.
at the same point in code), until the target node arrives.

3 RESULTS
We used the power traces from Stairs Dataset [3] to simulate
Bonito protocol on HarvNet to validate it against the actual tests
performed by the authors of Bonito [1]. The results presented in
Table 1 demonstrate that HarvNet closely emulates the wake ups in
the real world. However, the successful connection rate in HarvNet
is lower. We identified that the thread safe event variable used to
mimic the process of establishing connection between two nodes

has time overhead for acquiring locks to avoid race conditions
results, which results in multiple near misses.

4 APPLICATIONS AND CONCLUSION
Data Ferrying: The ability to transfer data from one from one
distant node to another, not in transmission range of each other
(data ferrying), would be essential. HarvNet can be conveniently
used to test solutions for the above problem. An example strategy
that could be tested on HarvNet involves employing the Breadth-
First Search (BFS) algorithm on this graph of intermittent devices.
Every node has some amount of non-volatile memory to store the
graph and also has the BFS algorithm coded into the task block. To
start transporting the data, the novel communication protocol will
be invoked to establish a connection with the next target node in
the path. Data (including the path) will be transferred in chunks
over several encounters (due to the energy shortage). The target
node then propagates the data in a similar way. We can easily scale
the machine running HarvNet to simulate a network of thousands
of nodes, demonstrating its scalability.
NetworkAwareness: Network awareness is the problem of notify-
ing all the nodes in a network about an event that has occurred. An
intermittent node will not be able to broadcast packets for enough
time for all nodes to be able to receive them. This intermittent
nature will also reduce the listening window of the receiver nodes,
further reducing the chances of receiving the packet. A possible
strategy that could be tested on HarvNet involves sharing informa-
tion by establishing connections instead of broadcasting packets.
On wake-up, a node can attempt to establish connection with any
active node that is not notified yet. It also maintains a list of all
nodes that have already received the information. Now, it updates
the list and shares both the information and the list, so that the
target node can also propagate the data. In this way, a butterfly
effect is achieved.
Conclusion: The present work provides a python-based simula-
tion framework that takes a real-world power trace as an input
and allows the user to run simulations of Battery-free nodes en-
abling tweaks during runtime. This framework tries to imitate the
unpredictability and randomness of the real world. This isolation
of hardware allows for quicker iterations of tuning of the algorithm
and testing on a large scale.

ACKNOWLEDGEMENT
This work is partly sponsored by BITS Pilani’s grant # C1/23/173.
All findings and recommendations are those of the authors and do
not necessarily reflect the views of the funding institute.

REFERENCES
[1] Kai Geissdoefer and Marco Zimmerling. 2022. Learning to Communicate Effec-

tively Between Battery-free Devices. In USENIX NSDI.
[2] Kai Geissdoerfer and Marco Zimmerling. 2021. Bootstrapping Battery-free Wire-

less Networks: Efficient Neighbor Discovery and Synchronization in the Face of
Intermittency. In USENIX NSDI.

[3] Kai Geissdoerfer and Marco Zimmerling. 2022. Time-synchronized energy har-
vesting traces. In [Data set] USENIX NSDI. https://doi.org/10.5281/zenodo.6383042

[4] Josiah Hester and Jacob Sorber. 2017. The Future of Sensing is Batteryless, Inter-
mittent, and Awesome. In ACM Sensys’17.

[5] Dionisis Kandris, Christos Nakas, Dimitrios Vomvas, and Grigorios Koulouras.
2020. Applications of Wireless Sensor Networks: An Up-to-Date Survey. Applied
System Innovation (2020).

733

https://doi.org/10.5281/zenodo.6383042

	Abstract
	1 Introduction
	2 System Design of HarvNet
	3 Results
	4 Applications and Conclusion
	References

