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ABSTRACT 
The study of sustainable design has gained prominence in response to the growing emphasis on 
environmental and social impacts of critical infrastructure. Addressing the different dimensions 
inherent in sustainability issues necessitates the application of many-objective optimization tech-
niques. In this work, an illustrative four-objective design system is formulated, wherein uncertain-
ties lie within two different socially-oriented objectives. A stochastic community detection ap-
proach is proposed to identify robust groupings of objectives. The findings reveal that the modu-
larity of the optimal solution surpasses that of the average graph, thus demonstrating the efficacy 
of the proposed approach. Furthermore, a comprehensive exploration of the Pareto frontiers for 
both the robust and single-scenario best groupings is undertaken, demonstrating that using the 
robust grouping results in little to no information loss about tradeoffs.  
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INTRODUCTION 
Various global events over the past several years 

have made clear the importance of designing new infra-
structure not only at low cost but also that does not neg-
atively impact global climate, that is resilient against dis-
ruptive events such as pandemics and wars, and that 
provides positive social outcomes for all relevant stake-
holders [1]. For many large industries, shareholders are 
increasingly concerned about the significance of envi-
ronmental, social, and governance (ESG) considerations 
within the framework of sustainability. The chemical in-
dustry is no exception to this trend. Consequently, there 
exists a compelling impetus to investigate sustainable 
process designs which perform well both in traditional 
economic metrics, such as net present value, annualized 
cost, or payback period, while also achieving positive so-
cial and environmental outcomes [2]. Moreover, when 
such environmental and social outcomes are considered, 
it is important to consider tradeoffs between different as-
pects of these main pillars. For instance, a socially posi-
tive outcome will consist of outcomes such as added 
jobs, safe operation, equitable outcomes among relevant 
stakeholders, and community acceptance, some of which 
may be in conflict with one another when considering 

design alternatives. To evaluate the potential tradeoffs 
between these various goals, we employ many-objective 
optimization, an approach with widespread applicability 
in chemical process systems research. [3] The result of 
many-objective optimization is not a singular solution but 
a Pareto frontier, illustrating the tradeoffs between dif-
ferent objectives. All points along the Pareto frontier in-
dicate the best one objective can do without hurting an-
other one. 

Unfortunately, for problems with large number of 
objectives, the time that is required to solve the sustain-
able design problem escalates significantly when the 
number of objectives increases, with problems of more 
than three objectives impractical to solve and interpret 
using rigorous solution methods such as the weighted 
sum or epsilon constraint approaches. Additionally, when 
Pareto frontiers can be obtained in these high dimen-
sional spaces, they are challenging if not impossible for 
relevant stakeholders to interpret. To address these is-
sues, our previous work developed a method for system-
atically reducing the dimensionality of a many-objective 
optimization problem on the basis of their competing or 
correlating nature using a network theoretic approach 
[4]. We then extended this framework to process opera-
tions problems where the underlying economic or 
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environmental parameters inherently varied in time (due 
to, for example, varying costs and emissions associated 
with grid-purchased electricity), demonstrating that the 
time-varying natures of these signals can alter the appro-
priate grouping of objectives when repeatedly solving the 
operation problem over time [5]. This work builds upon 
our previous efforts in the many-objective optimization 
space by analyzing how to group objectives which inher-
ently contain a large degree of uncertainty. This phenom-
enon is most commonly seen when considering social ob-
jectives, which are typically ill-defined and difficult to 
quantify, and thus can be subject to large ranges of un-
certainty. 

In this work, we focus on an illustrative four objec-
tive design problem formulated as a linear program (LP). 
The objectives to minimize include net present costs, 
carbon emissions, safety risk and social inequity. We as-
sume the presence of uncertain parameters in the two 
social objectives, risk and equity. The design problem is 
straightforward and illustrative in nature, with all four ob-
jectives being linear combinations of design variables.  

The dimensionality reduction approach is systemat-
ically applied in all different scenarios generated from un-
certain parameters. We want to find out the most robust 
grouping of objectives among the scenarios identifying 
the grouping of objectives with the highest expected 
modularity over all scenarios. To achieve this, a novel ap-
proach is developed which treats the community detec-
tion of an uncertain graph as a stochastic optimization 
problem and employs a column generation approach to 
decompose the problem into several interconnected de-
terministic community detection problems with modified 
modularity objectives. The remainder of this paper is 
structured as follows: in the next section, we describe the 
many-objective optimal design problem considered in 
this work. Then, a novel approach for stochastic commu-
nity detection of uncertain graphs is described. Next, we 
present results of solving applying our dimensionality re-
duction approach and solving the many-objective optimi-
zation design problem. Finally, concluding remarks and 
avenues for future work are presented. 

PROBLEM FORMULATION 

 
Figure 1. Two reactor, two separator superstructure 
considered in this work. 

System description  
In this study, we demonstrate a straightforward de-

sign problem with two reaction and two separators as 
shown in Fig. 1, which depicts the superstructure of the 
reactor/separator system. The chemical reaction design 
model considered has two reactants and one product, 
necessitating separation in the designated separators as 
part of the design problem. Flow with both reactants al-
lows for reactions in either Reactor A, Reactor B or both. 
Additionally, there are two choices for separators, and all 
flow resulting from the chemical reaction is directed to-
wards these separators. Each reactor and separator is 
characterized by a unique conversion for both the reac-
tion and separation processes. 
 Moreover, specific carbon emission and operating 
cost parameters are assigned to each unit in the system. 
There are uncertain parameters in the system that are as-
sociated with safety risk and social equity objectives; in 
this problem, we assume that there are two possible re-
alizations of this objective parameter for each unit con-
sidered. 

Objective functions 
 The first objective that we consider is to minimize 
the annualized net present cost N that combines the 
capital cost and operating cost of the design system:   

𝑁𝑁 = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 ∗
1
𝜃𝜃

+ 𝑜𝑜𝑜𝑜𝑖𝑖4
𝑖𝑖=1                                                               (1) 

𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 =  𝑐𝑐𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟( 𝐹𝐹𝑖𝑖

𝐹𝐹𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟)𝛾𝛾                                                        (2) 

𝑜𝑜𝑜𝑜𝑖𝑖 = 𝛼𝛼𝑖𝑖𝐹𝐹𝑖𝑖                                                                   (3)    

where θ is the NPC-scaled lifetime used to annualize the 
capital cost and F is the flow through the reactors or sep-
arators, which acts as a proxy for unit size. The capital 
cost as we can see in equation (2) is a nonlinear func-
tion,where 𝑐𝑐𝑖𝑖

𝑟𝑟𝑟𝑟𝑟𝑟 and 𝐹𝐹𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟 are the sizes and capital costs, 

respectively, of the reference for unit i , and 𝛾𝛾  is the scal-
ing exponent. Unit subscripts I correspond to the four 
units shown in Fig. 1. In order to formulate the problem as 
an LP such that our objective reduction framework can 
be applied, we choose γ as 1; extension of our dimension-
ality reduction framework to nonlinear problems will be 
the scope of future work. The operating cost is given in 
equation (3) and it is proportional to the flow through 
each unit, where 𝛼𝛼𝑖𝑖 are cost parameters and 𝐹𝐹𝑖𝑖 are flow 
in each units. 
 Besides the traditional economic factors, we con-
sider minimization of carbon emissions H, related to the 
usage of all the facilities in the system, where 𝛽𝛽𝑖𝑖 repre-
sent emission parameter of different units: 

 𝐻𝐻 = ∑ 𝛽𝛽𝑖𝑖𝐹𝐹𝑖𝑖4
𝑖𝑖=1                                                                            (4) 

 The emission objective has similar structure with 
operating cost: it is linear combination of the flow through 
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the different units. Moreover, two social objectives, risk 
and inequity, are analyzed in the optimization: 

 𝑅𝑅 =  ∑ 𝛿𝛿𝑟𝑟𝑟𝑟𝐹𝐹𝑖𝑖𝑖𝑖                                                                  (5) 

 𝐸𝐸 =  ∑ 𝛿𝛿𝑒𝑒𝑒𝑒𝐹𝐹𝑖𝑖𝑖𝑖                                                                   (6)   

  In this work, the coefficients for the two social ob-
jectives, 𝛿𝛿𝑟𝑟𝑟𝑟 and 𝛿𝛿𝑒𝑒𝑒𝑒, are uncertain parameters. Note that 
for this illustrative example, the emissions, risk, and ineq-
uity objectives are a linear combination of all design var-
iables, which for this problem are simply the flows. Thus, 
while it's uncommon to find that social objectives are de-
termined by the same variables as cost and emission ob-
jectives in practical applications, the approach shown 
here is generalizable for linear objectives as variables 
which do not impact a given objective can have the cor-
responding coefficient set to zero. The extension of this 
approach to more realistic nonlinear problems is still on-
going work which is beyond the scope of this paper. 

Model Constraints 
 The chemical design system should follow physical 
and practical limitations. First, we set a total amount of 
initial feed in the system (Ft) that equals to the sum of the 
flow in the reactors (F1, F2): 

  𝐹𝐹1 + 𝐹𝐹2 = 𝐹𝐹𝑡𝑡                                                    (7) 

 𝐹𝐹𝑡𝑡 ≥ 𝐹𝐹𝑖𝑖 ≥ 0       

Since an A+B->C reaction is assumed, total amount 
of flow (on a molar basis) will reduce after the reaction 
based on different conversions (E1, E2) of the reactors: 

�1 −  𝐸𝐸1
2
� 𝐹𝐹1 + �1 −  𝐸𝐸2

2
� 𝐹𝐹2 =  𝐹𝐹3 + 𝐹𝐹4                            (8) 

We assume that the separators can distinguish the 
specific product that we want but can’t totally remove the 
product from the flow. Thus, here we use the flow from 
the reactors to the respective separators (F3, F4) and pa-
rameters for efficiency of the separators (E3, E4), which 
are all based on the mixture of reactants and products.  

𝐸𝐸3𝐹𝐹3 + 𝐸𝐸4𝐹𝐹4 ≥ 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚                                                       (9) 

Equation (9) indicates that a minimum requirement 
of the product (Fmin) needs to be satisfied in the reaction 
system. 

Case study data 
As this problem acts to serve as an illustrative ex-

ample, problem parameters are chosen by the research-
ers and not necessarily meant to be representative of a 
real process. We aim to apply our method to analyze ob-
jective tradeoffs for different practical process designs 
from the literature as future work. 

The conversions of the two reactors are 80% and 95% 
which means that 80% or 95% of the reactants are trans-
formed into product. The two separators can obtain 25% 

and 40% of the product from the flow relatively. The total 
feed flow into the reactors is constrained as 100mol/h 
and the total flow goes into the separators is calculated 
from the conversions of the reactors.  

For annualized net present cost, cost references of 
2000, 5000, 700, 1200 dollars are set for the capital cost 
of the facilities. Operating cost and carbon emission pa-
rameters of all the facilities are set as 2, 0.9, 0.2, 0.15 
dollar per mol/h and 80, 50, 80, 35 kg CO2 per mol/h rel-
atively. 

Table 1: uncertain parameters in Risk and Equity ob-
jectives. 

Facility Risk parameter Equity parameter 
  or   or  

  or   or  

  or   or  

  or   or  
 
Risk and equity objectives are linear combination of 

the flow in each facility with uncertain parameters. Pos-
sible values of the parameters are shown in the Table 1. 
As social objectives such as equity can be difficult to 
quantify, we consider that these values can differ by a 
large amount. Each facility has two possible values of 
both risk and equity parameters, all 256 scenarios from 
their combinations are considered in the optimization. 
Despite having only two uncertain parameters, we note 
that the wide range of uncertainty and large number po-
tential scenarios resulting from their combination show-
cases the ability of our proposed approach to deal with 
highly undertain objectives. We also note that our pro-
posed approach also allows for the quantification of un-
certain parameters with a larger number of values. 

STOCHASTIC OBJECTIVE REDUCTION 
ALGORITHM 

In this section, a process for systematically reducing 
the dimensionality of a MILP with many uncertain objec-
tives into a problem with three or fewer objective func-
tions is presented. The core of the algorithm, which con-
siders deterministic objectives, was originally developed 
in our group’s previous work  and is summarized as fol-
lows [4]. First, cost vectors (the gradient vector of the 
objective function) are projected onto the constraint sur-
faces. Strength of interaction is defined as the inner 
product of the projected vectors and a weighted sum of 
the constraint interaction strengths is used to determine 
the total objective correlation strength. Objective corre-
lation strength is scaled to be between 0 and 1. This in-
formation is embedded into an objective correlation 
graph, which consists of nodes corresponding to the 
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different objectives and edges weighted by the objective 
correlation strength. Community detection is applied to 
identify groups of objectives that are strongly correlated 
within the group and competing with objectives in other 
groups. For more details about the objective reduction 
algorithm, please reference our previous works [4,5]. 

For problems with uncertain objective functions, this 
uncertainty will manifest itself as uncertainty in the edge 
weights of the objective correlation graph. For each real-
ization of uncertainty, a different objective correlation 
graph can be obtained. Since the true realization of un-
certainty is not known a priori, it is essential to identify a 
grouping of objectives that performs robustly well for all 
realizations of uncertainty to be able to obtain a full un-
derstanding of the tradeoffs between the many objec-
tives. 

Stochastic community detection 
The community structure within a network mani-

fests as a statistically significant configuration of edges 
which can be evaluated through the value of the modu-
larity. [6] The modularity is described by the number of 
edges falling within groups minus the expected number 
in an equivalent network with edges placed at random, as 
depicted in formulation (10): 

max
𝑧𝑧

  ∑ �𝐴𝐴𝑖𝑖𝑖𝑖′
𝑚𝑚
− 𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖′

𝑚𝑚2 � 𝑧𝑧𝑖𝑖𝑖𝑖′𝑖𝑖𝑖𝑖𝑖𝑖, 𝑖𝑖′𝜖𝜖𝜖𝜖   (10a) 

s.t.    𝑧𝑧𝑖𝑖𝑖𝑖 = 1 ∀ 𝑖𝑖 ∈ 𝐼𝐼 (10b) 

𝑧𝑧𝑖𝑖𝑖𝑖′ + 𝑧𝑧𝑖𝑖𝑖𝑖′′ −  𝑧𝑧𝑖𝑖′𝑖𝑖′′  ≤  1 ∀ 𝑖𝑖 ∈ 𝐼𝐼, 𝑖𝑖′ ∈ 𝐼𝐼\{𝑖𝑖}, 𝑖𝑖′′ ∈ 𝐼𝐼\{𝑖𝑖, 𝑖𝑖′}  

 (10c) 

𝑧𝑧𝑖𝑖𝑖𝑖′ ∈ {0, 1}  ∀ 𝑖𝑖 ∈ 𝐼𝐼, 𝑖𝑖′ ∈ 𝐼𝐼  (10d) 

where I is the set of nodes in the graph, A is the graph 
adjacency matrix, 𝑎𝑎𝑖𝑖 =  ∑ 𝐴𝐴𝑖𝑖𝑖𝑖′ 𝑖𝑖′𝜖𝜖𝜖𝜖  is the degree of node i,  
𝑚𝑚 =  ∑ 𝑎𝑎𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖  is twice of the total number of edges in the 
network, and 𝑧𝑧𝑖𝑖𝑖𝑖′ is a binary partitioning variable that is 
one if nodes i and i’ are assigned to the same community, 
and zero otherwise. The community detection is accom-
plished by maximizing modularity. 

To apply this approach to uncertain graphs, such as 
those obtained from our objective reduction approach 
with uncertain objectives, the traditional community de-
tection problem must be recast as a stochastic optimiza-
tion problem. In this case, a reasonable goal is to pursue 
the most robust partition that has consistently high mod-
ularity across all realizations of uncertainty. Here, we use 
expected value of modularity to evaluate partitions: 

max
𝑧𝑧

    𝐸𝐸𝛴𝛴[∑ �𝐴𝐴𝑖𝑖𝑖𝑖′
𝑚𝑚
− 𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖′

𝑚𝑚2 � 𝑧𝑧𝑖𝑖𝑖𝑖′𝑖𝑖𝑖𝑖𝑖𝑖, 𝑖𝑖′𝜖𝜖𝜖𝜖 ]  (11) 

s.t.     (10𝑏𝑏 − 𝑑𝑑) 

Note that other stochastic metrics, such as conditi-
onal value at risk, may also be used in place of expected 
value; we will assess how this proposed approach 

extends to other metrics in future work. To simply the 
equation, we assume all scenarios are equally likely and 
replace the expectation operator with an average over all 
scenarios: 

max 
𝑧𝑧

     1
|𝐾𝐾|
∑ ∑ �

𝐴𝐴𝑖𝑖𝑖𝑖′𝑘𝑘
𝑚𝑚𝑘𝑘

−
𝑎𝑎𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖′𝑘𝑘
𝑚𝑚𝑘𝑘
2 � 𝑧𝑧𝑖𝑖𝑖𝑖′𝑖𝑖𝑖𝑖𝑖𝑖, 𝑖𝑖′𝜖𝜖𝜖𝜖 𝑘𝑘𝑘𝑘𝑘𝑘   (12) 

s.t.       (10𝑏𝑏 − 𝑑𝑑) 

Set 𝐾𝐾 indicates all the scenarios from the uncertain 
parameters. Unfortunately, fast algorithms for commu-
nity detection such as spectral partitioning [7], fast un-
folding [8], or the Leiden algorithm [9] are not directly ap-
plicable to the problem. However, this problem can be 
decomposed into a set of single-scenario community de-
tection problems with a slightly modified objective. First, 
copy variables corresponding to each scenario are intro-
duced to generate exploitable structure: 

max 
𝑧𝑧

   1
|𝐾𝐾|
∑ ∑ �

𝐴𝐴𝑖𝑖𝑖𝑖′𝑘𝑘
𝑚𝑚𝑘𝑘

−
𝑎𝑎𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖′𝑘𝑘
𝑚𝑚𝑘𝑘
2 � 𝑧𝑧𝑖𝑖𝑖𝑖′𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖, 𝑖𝑖′𝜖𝜖𝜖𝜖 𝑘𝑘𝑘𝑘𝑘𝑘   (13) 

s.t.     𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖 = 1 ∀ 𝑖𝑖 ∈ 𝐼𝐼, 𝑘𝑘 ∈ 𝐾𝐾 

𝑧𝑧𝑖𝑖𝑖𝑖′𝑘𝑘 +  𝑧𝑧𝑖𝑖𝑖𝑖′′𝑘𝑘 −  𝑧𝑧𝑖𝑖′𝑖𝑖′′𝑘𝑘  ≤  1 ∀ 𝑖𝑖 ∈ 𝐼𝐼, 𝑖𝑖′ ∈ 𝐼𝐼\{𝑖𝑖},  

 𝑖𝑖′′ ∈ 𝐼𝐼\{𝑖𝑖, 𝑖𝑖′}, 𝑘𝑘 ∈ 𝐾𝐾  

𝑧𝑧𝑖𝑖𝑖𝑖′𝑘𝑘 ∈ {0, 1}  ∀ 𝑖𝑖 ∈ 𝐼𝐼, 𝑖𝑖′ ∈ 𝐼𝐼, 𝑘𝑘 ∈ 𝐾𝐾  

𝑧𝑧𝑖𝑖𝑖𝑖′𝑘𝑘 =  𝑧𝑧𝑖𝑖𝑖𝑖′𝑘𝑘′   ∀ 𝑖𝑖 ∈ 𝐼𝐼, 𝑖𝑖′ ∈ 𝐼𝐼, 𝑘𝑘 ∈ 𝐾𝐾, 𝑘𝑘′ ∈ 𝐾𝐾  

In this problem, the non-anticipativity constraints 
𝑧𝑧𝑖𝑖𝑖𝑖′𝑘𝑘 =  𝑧𝑧𝑖𝑖𝑖𝑖′𝑘𝑘′ are complicating, such that if they were re-
moved, the stochastic problem could be treated as |𝐾𝐾| 
independent community detection problems. Using  co-
lumn generation [10] can help to solve formulation (13). It 
can be transformed into the following master problem:  

max 
𝑧𝑧,𝜆𝜆

   1
|𝐾𝐾|
∑ ∑ 𝜆𝜆𝑐𝑐𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐∗𝑐𝑐𝑐𝑐𝑐𝑐 𝑘𝑘𝑘𝑘𝑘𝑘   (14) 

s.t.               ∑ 𝜆𝜆𝑐𝑐𝑐𝑐𝑧𝑧𝑖𝑖𝑖𝑖′𝑐𝑐𝑐𝑐
∗

𝑐𝑐𝑐𝑐𝑐𝑐 =  𝑧𝑧𝑖𝑖𝑖𝑖′   ∀ 𝑖𝑖 ∈ 𝐼𝐼, 𝑖𝑖′ ∈ 𝐼𝐼, 𝑘𝑘 ∈ 𝐾𝐾  (𝜋𝜋) 

∑ 𝜆𝜆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 1 ∀ 𝑘𝑘 ∈ 𝐾𝐾  (𝜇𝜇)  

𝜆𝜆𝑐𝑐𝑐𝑐  ∈ {0, 1}  ∀ 𝑘𝑘 ∈ 𝐾𝐾, 𝑐𝑐 ∈ 𝐶𝐶  

where C is the set of columns generated which corre-
spond to a specific partitioning of the graph into commu-
nities, 𝑓𝑓𝑐𝑐𝑐𝑐∗  is the modularity of column c in scenario 𝑘𝑘, 𝑧𝑧𝑖𝑖𝑖𝑖′𝑐𝑐𝑐𝑐

∗  
is the partitioning variable in the corresponding modular-
ity. 𝜋𝜋  and 𝜇𝜇  are the dual variables corresponding to the 
constraints in the same line, which are used to generate 
new columns (potential partitions) via the following set of 
|𝐾𝐾| subproblems, one per scenario 𝑘𝑘: 

max
𝑧𝑧

∑ (
𝐴𝐴𝑖𝑖𝑖𝑖′𝑘𝑘
𝑚𝑚𝑘𝑘

−
𝑎𝑎𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖′𝑘𝑘
𝑚𝑚𝑘𝑘
2 − 𝜋𝜋𝑖𝑖𝑖𝑖′𝑘𝑘)𝑧𝑧𝑖𝑖𝑖𝑖′𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖, 𝑖𝑖′𝜖𝜖𝜖𝜖 + 𝜇𝜇𝑘𝑘  (15) 

𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖 = 1 ∀ 𝑖𝑖 ∈ 𝐼𝐼, 𝑘𝑘 ∈ 𝐾𝐾  

𝑧𝑧𝑖𝑖𝑖𝑖′𝑘𝑘 +  𝑧𝑧𝑖𝑖𝑖𝑖′′𝑘𝑘 −  𝑧𝑧𝑖𝑖′𝑖𝑖′′𝑘𝑘  ≤  1 ∀ 𝑖𝑖 ∈ 𝐼𝐼, 𝑖𝑖′ ∈ 𝐼𝐼\{𝑖𝑖},  

 𝑖𝑖 ′′ ∈ 𝐼𝐼\{𝑖𝑖, 𝑖𝑖′},𝑘𝑘 ∈ 𝐾𝐾  
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𝑧𝑧𝑖𝑖𝑖𝑖′𝑘𝑘 ∈ {0, 1}  ∀ 𝑖𝑖 ∈ 𝐼𝐼, 𝑖𝑖′ ∈ 𝐼𝐼, 𝑘𝑘 ∈ 𝐾𝐾  

Formulation (15) is the modularity in scenario 𝑘𝑘 with 
two Lagrangian terms resulting from the column genera-
tion decomposition. Since both are constants obtained 
from the dual solution of the master problem, only the 𝜋𝜋𝜋𝜋 
term needs to be considered when implementing the ob-
jective change into a community detection algorithm. Do-
ing so is straightforward: using Newman’s spectral parti-
tioning algorithm [7], which makes use of the eigenvalues 
and eigenvectors of the modularity matrix M, we modify 
the modularity matrix by subtracting the symmetric part 
of the 𝜋𝜋 matrix: 

𝑀𝑀�𝑖𝑖𝑖𝑖′ =  𝐴𝐴𝑖𝑖𝑖𝑖′𝑘𝑘
𝑚𝑚𝑘𝑘

− 𝑎𝑎𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖′𝑘𝑘
𝑚𝑚𝑘𝑘
2 − 𝜋𝜋𝑖𝑖𝑖𝑖′𝑘𝑘+𝜋𝜋𝑖𝑖′𝑖𝑖𝑖𝑖

2
    (16) 

The eigenvalues and eigenvectors of the new matrix 𝑀𝑀� 
are then used to partition the graph in the same way as 
before. Alternatively, when using the fast unfolding (Lou-
vain) [8] and Leiden [9] algorithms, we take grouping 
steps which give the largest increase in the modularity 
augmented with the Lagrangian 𝜋𝜋𝜋𝜋 terms, rather than just 
the modularity. As in any column generation approach, 
the algorithm proceeds by iteratively solving the master 
problem and subproblems until no subproblem returns a 
partition with positive objective value, indicating that no 
partition not already in the set of columns has the poten-
tial to improve the objective value. 

RESULTS AND DISCUSSION 
To study the stochastic design problem, objective 

correlation graphs are generated for all 256 possible sce-
narios of the social objective parameters. We then com-
pare the results of community detection applied to each 
individual graph and show the resulting grouping fre-
quencies are in Table 2. Notably, [[N, H], [R, E]] and [[N, 
E], [H, R]] emerge as the most common partitions, where 
the symbols N, E, H, and R refer to the four different ob-
jectives as introduced in the problem formulation section 
and defined again in Table 2. However, we observe that 
four different “best” objective groupings occur depend-
ing on which scenario is actually realized, and it is unclear 
which performs best, on average, over all possible sce-
narios with this approach. It's essential to highlight that 
there aren’t any uncertain values in the annualized net 
present cost and emission objectives in our system, sig-
nifying a constant correlation strength between them. 
The established correlation strength, determined through 
our previous algorithm, is 0.813, a relatively but not over-
whelmingly high value which explains the prevalence of 
111 instances where annualized net present cost and 
emission fall within the same group. 

In contrast, the introduction of uncertain parameters 
in risk and equity objectives brings variability to the cor-
relation strengths between different objectives. For in-
stance, with risk parameters set at [100, 50, 20, 10] and 

equity parameters at [800, 500, 70, 20], the correlation 
strength between risk and equity is notably high at 0.991, 
resulting in the grouping [[N, H], [R, E]]. Conversely, when 
using [80, 30, 20, 10] and [40, 500, 50, 20] as risk and 
equity parameters, the correlation strength significantly 
decreases to 0.094, leading to the grouping [[N, E], [H, 
R]]. Thus, the frequencies that risk and equity are in the 
same group or not depends on the realization of uncer-
tain parameter set of the two objectives. In this case, 
these two objectives are in the same group over half of 
the scenarios. 

Table 2: Community detection results of the uncertain 
system. N: annualized net present cost, H: carbon emis-
sions, R: risk, E: Equity.  

Grouping Frequency 
[[N H] [R E]]  

[[N E] [H R]]  

[[N] [H R E]]  

[[R] [N H E]]  

 
Figure 2. Grouping and expectation results of the 
average graph (left) and the most robust grouping (right) 

Despite this variability, to address the tradeoffs 
within the uncertain design problem effectively, it is ra-
tional to identify the most robust partition across all sce-
narios as defined by the expected modularity over all 
scenarios. The results, as depicted in Fig. 2 through the 
application of the stochastic algorithm, reveal that the 
optimal grouping is, [[N, E], [H, R]]. It is important to note 
that this grouping differs from what one would find by 
just averaging the edge weights from the objective cor-
relation graphs generated from all 256 scenarios, [[N], [H, 
R, E]]. The expectation of the modularity in the optimal 
solution is 0.0649, and the expectation of the second-
best partition, [[N, H], [R, E]] is 0.0615. Both are higher 
than the partition of the average graph, which gives an 
expected modularity of 0.0475, suggesting that a 
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deterministic approach of averaging edge weights is not 
an effective mechanism for identifying objective group-
ings that preserve tradeoff information in as many sce-
narios as possible. 

For further study of the system, we compare the 
weighted sum Pareto frontiers for one scenario using 
both robust grouping found by community detection and 
the grouping that is “best” for the specific scenario con-
sidered, [R], [H, N, E]]. Fig. 3 illustrates all optimal design 
configurations occurring along the Pareto frontier. Pareto 
frontiers are depicted on the left side of Fig. 4 for the 
scenario which uses risk and equity parameters set at 
[100, 30, 15, 5] and [40, 30, 70, 300]. Points sharing the 
same color on the Pareto frontier represent the same op-
timal design configuration within the Pareto frontier. In 
configuration 1, the emphasis is on risk reduction, leading 
to the utilization of Reactor B and Separator B, both pos-
sessing the lowest risk parameters. Conversely, Config-
uration 3 aims to minimize the sum of costs, equity, and 
emissions. Only Reactor A is constructed due to its lower 
cost, emissions, and equity parameters. Separator A and 
B are both utilized with specific flow values to optimize 
the three objectives.  

In the middle of the Pareto frontier, the tradeoff 
point results from balancing the sum of costs, equity, and 
emissions against risk. In this case, only Reactor B is em-
ployed compared to Configuration 3, and the flow values 
in the separators are also different. The Pareto frontier 
for the optimal result's grouping, [[N, E], [H, R]], is dis-
played on the right side of Fig. 4. The trade-off point us-
ing the [[R], [H, N, E]] grouping also appears in the Pareto 
frontier of [[N, E], [H, R]], suggesting that employing the 
most robust grouping can provide valuable insights in a 
certain extent, and demonstrating that tradeoff 

information can be preserved in the robust grouping even 
when it is not the same as the “best” grouping for a par-
ticular scenario. 

However, in numerous other scenarios, the Pareto 
frontier of [[N, E], [H, R]] does lose a bit of information 
about design tradeoffs in comparison to the individual 
scenario’s best grouping. This is not unexpected, as 
choosing a grouping of objectives with suboptimal mod-
ularity for a particular scenario inherently means that ob-
jectives with some degree of competition are being 
grouped together, which will result in loss of information 
regarding tradeoffs between the grouped objectives. The 
[[N, E], [H, R]] grouping with 95 times and other scenarios 
with no information loss in [[N, E], [H, R]] reveal that opt-
ing for the most robust grouping is a practical choice 
when attempting to understand tradeoffs in many-objec-
tive optimization problems with uncertain parameters. 

CONCLUSIONS AND FUTURE WORK 
Environmental and social considerations for sustain-

ability are essential aspects of optimal design problems 
for modern chemical production infrastructure. However, 
they can be subject to a great deal of uncertainty making 
critical evaluation of tradeoffs between objectives chal-
lenging. In this work, we developed a method for system-
atically identifying groups of objectives that, on average, 
tend to be more correlating than competing, forming the 
basis of a dimensionality reduction in many-objective op-
timization problems that is robust to uncertainty. Through 
the use of an illustrative case study with a two reactors, 
two separators superstructure, the efficacy of our ap-
proach towards identifying an objective grouping with 
low loss of tradeoff information was demonstrated. 

 
Figure 3: Illustration of different design configurations 

 

 
Figure 4: Weighted sum Pareto frontier between (left) risk and cost + equity + emission as well as (right) risk+ 
emission and cost + equity in the scenario of [[R], [H, N, E]] grouping. 
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As future work, we aim to apply this framework to a 
set of more practically relevant design problems from the 
literature such as a hydrogen production process and 
green ammonia production system, in order to better un-
derstand the tradeoffs inherent in designing future 
chemical production infrastructure. This analysis will en-
tail further development of our objective reduction algo-
rithm, such that it can be applied to nonlinear, as well as 
linear, many-objective optimization problems. 
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