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ABSTRACT

The study of sustainable design has gained prominence in response to the growing emphasis on
environmental and social impacts of critical infrastructure. Addressing the different dimensions
inherent in sustainability issues necessitates the application of many-objective optimization tech-
niques. In this work, an illustrative four-objective design system is formulated, wherein uncertain-
ties lie within two different socially-oriented objectives. A stochastic community detection ap-
proach is proposed to identify robust groupings of objectives. The findings reveal that the modu-
larity of the optimal solution surpasses that of the average graph, thus demonstrating the efficacy
of the proposed approach. Furthermore, a comprehensive exploration of the Pareto frontiers for
both the robust and single-scenario best groupings is undertaken, demonstrating that using the
robust grouping results in little to no information loss about tradeoffs.

Keywords: Sustainability, Multi-Objective Optimization, Network Theory

INTRODUCTION

Various global events over the past several years
have made clear the importance of designing new infra-
structure not only at low cost but also that does not neg-
atively impact global climate, that is resilient against dis-
ruptive events such as pandemics and wars, and that
provides positive social outcomes for all relevant stake-
holders [1]. For many large industries, shareholders are
increasingly concerned about the significance of envi-
ronmental, social, and governance (ESG) considerations
within the framework of sustainability. The chemical in-
dustry is no exception to this trend. Consequently, there
exists a compelling impetus to investigate sustainable
process designs which perform well both in traditional
economic metrics, such as net present value, annualized
cost, or payback period, while also achieving positive so-
cial and environmental outcomes [2]. Moreover, when
such environmental and social outcomes are considered,
it is important to consider tradeoffs between different as-
pects of these main pillars. For instance, a socially posi-
tive outcome will consist of outcomes such as added
jobs, safe operation, equitable outcomes among relevant
stakeholders, and community acceptance, some of which
may be in conflict with one another when considering
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design alternatives. To evaluate the potential tradeoffs
between these various goals, we employ many-objective
optimization, an approach with widespread applicability
in chemical process systems research. [3] The result of
many-objective optimization is not a singular solution but
a Pareto frontier, illustrating the tradeoffs between dif-
ferent objectives. All points along the Pareto frontier in-
dicate the best one objective can do without hurting an-
other one.

Unfortunately, for problems with large number of
objectives, the time that is required to solve the sustain-
able design problem escalates significantly when the
number of objectives increases, with problems of more
than three objectives impractical to solve and interpret
using rigorous solution methods such as the weighted
sum or epsilon constraint approaches. Additionally, when
Pareto frontiers can be obtained in these high dimen-
sional spaces, they are challenging if not impossible for
relevant stakeholders to interpret. To address these is-
sues, our previous work developed a method for system-
atically reducing the dimensionality of a many-objective
optimization problem on the basis of their competing or
correlating nature using a network theoretic approach
[4]. We then extended this framework to process opera-
tions problems where the underlying economic or
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environmental parameters inherently varied in time (due
to, for example, varying costs and emissions associated
with grid-purchased electricity), demonstrating that the
time-varying natures of these signals can alter the appro-
priate grouping of objectives when repeatedly solving the
operation problem over time [5]. This work builds upon
our previous efforts in the many-objective optimization
space by analyzing how to group objectives which inher-
ently contain a large degree of uncertainty. This phenom-
enon is most commonly seen when considering social ob-
jectives, which are typically ill-defined and difficult to
quantify, and thus can be subject to large ranges of un-
certainty.

In this work, we focus on an illustrative four objec-
tive design problem formulated as a linear program (LP).
The objectives to minimize include net present costs,
carbon emissions, safety risk and social inequity. We as-
sume the presence of uncertain parameters in the two
social objectives, risk and equity. The design problem is
straightforward and illustrative in nature, with all four ob-
jectives being linear combinations of design variables.

The dimensionality reduction approach is systemat-
ically applied in all different scenarios generated from un-
certain parameters. We want to find out the most robust
grouping of objectives among the scenarios identifying
the grouping of objectives with the highest expected
modularity over all scenarios. To achieve this, a novel ap-
proach is developed which treats the community detec-
tion of an uncertain graph as a stochastic optimization
problem and employs a column generation approach to
decompose the problem into several interconnected de-
terministic community detection problems with modified
modularity objectives. The remainder of this paper is
structured as follows: in the next section, we describe the
many-objective optimal design problem considered in
this work. Then, a novel approach for stochastic commu-
nity detection of uncertain graphs is described. Next, we
present results of solving applying our dimensionality re-
duction approach and solving the many-objective optimi-
zation design problem. Finally, concluding remarks and
avenues for future work are presented.

PROBLEM FORMULATION

1. Reactor A 3. Separator A

Flow

Figure 1. Two reactor, two separator superstructure
considered in this work.
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System description

In this study, we demonstrate a straightforward de-
sign problem with two reaction and two separators as
shown in Fig. 1, which depicts the superstructure of the
reactor/separator system. The chemical reaction design
model considered has two reactants and one product,
necessitating separation in the designated separators as
part of the design problem. Flow with both reactants al-
lows for reactions in either Reactor A, Reactor B or both.
Additionally, there are two choices for separators, and all
flow resulting from the chemical reaction is directed to-
wards these separators. Each reactor and separator is
characterized by a unique conversion for both the reac-
tion and separation processes.

Moreover, specific carbon emission and operating
cost parameters are assigned to each unit in the system.
There are uncertain parameters in the system that are as-
sociated with safety risk and social equity objectives; in
this problem, we assume that there are two possible re-
alizations of this objective parameter for each unit con-
sidered.

Objective functions

The first objective that we consider is to minimize
the annualized net present cost N that combines the
capital cost and operating cost of the design system:

N =3, cap; * 5+ op; (1)
cap; = ¢! () (2)
op; = a;F; (3)

where 6 is the NPC-scaled lifetime used to annualize the
capital cost and F'is the flow through the reactors or sep-
arators, which acts as a proxy for unit size. The capital
cost as we can see in equation (2) is a nonlinear func-
tion,where ¢/’ and F/*/ are the sizes and capital costs,
respectively, of the reference for unit 7, and y is the scal-
ing exponent. Unit subscripts / correspond to the four
units shown in Fig. 1. In order to formulate the problem as
an LP such that our objective reduction framework can
be applied, we choose yas 1; extension of our dimension-
ality reduction framework to nonlinear problems will be
the scope of future work. The operating cost is given in
equation (3) and it is proportional to the flow through
each unit, where a; are cost parameters and F; are flow
in each units.

Besides the traditional economic factors, we con-
sider minimization of carbon emissions H, related to the
usage of all the facilities in the system, where B; repre-
sent emission parameter of different units:

H =X}, BiF; (4)

The emission objective has similar structure with
operating cost: it is linear combination of the flow through
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the different units. Moreover, two social objectives, risk
and inequity, are analyzed in the optimization:

R = %;6.F (5)

E = Y;6,F; (6)

In this work, the coefficients for the two social ob-
jectives, §,; and §,;, are uncertain parameters. Note that
for this illustrative example, the emissions, risk, and ineq-
uity objectives are a linear combination of all design var-
iables, which for this problem are simply the flows. Thus,
while it's uncommon to find that social objectives are de-
termined by the same variables as cost and emission ob-
jectives in practical applications, the approach shown
here is generalizable for linear objectives as variables
which do not impact a given objective can have the cor-
responding coefficient set to zero. The extension of this
approach to more realistic nonlinear problems is still on-
going work which is beyond the scope of this paper.

Model Constraints

The chemical design system should follow physical
and practical limitations. First, we set a total amount of
initial feed in the system (F:) that equals to the sum of the
flow in the reactors (F1, F2):

Fi+F,=F (7)
F,2F >0

Since an A+B->C reaction is assumed, total amount
of flow (on a molar basis) will reduce after the reaction
based on different conversions (E1, Ez) of the reactors:

(1-2)R+(1-2)F = F+F, (8)

We assume that the separators can distinguish the
specific product that we want but can’t totally remove the
product from the flow. Thus, here we use the flow from
the reactors to the respective separators (F3, F4) and pa-
rameters for efficiency of the separators (Es, Es), which
are all based on the mixture of reactants and products.

EsF3 + E4Fy 2 Fyp (9)

Equation (9) indicates that a minimum requirement
of the product (Fmin) Nneeds to be satisfied in the reaction
system.

Case study data

As this problem acts to serve as an illustrative ex-
ample, problem parameters are chosen by the research-
ers and not necessarily meant to be representative of a
real process. We aim to apply our method to analyze ob-
jective tradeoffs for different practical process designs
from the literature as future work.

The conversions of the two reactors are 80% and 95%
which means that 80% or 95% of the reactants are trans-
formed into product. The two separators can obtain 25%
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and 40% of the product from the flow relatively. The total
feed flow into the reactors is constrained as 100mol/h
and the total flow goes into the separators is calculated
from the conversions of the reactors.

For annualized net present cost, cost references of
2000, 5000, 700, 1200 dollars are set for the capital cost
of the facilities. Operating cost and carbon emission pa-
rameters of all the facilities are set as 2, 0.9, 0.2, 0.15
dollar per mol/h and 80, 50, 80, 35 kg CO: per mol/h rel-
atively.

Table 1: uncertain parameters in Risk and Equity ob-
jectives.

Facility Risk parameter Equity parameter
1 100 or 80 800 or 40
2 50 or 30 500 or 30
3 200r 15 500r70
4 100r5 300 or 20

Syst Control Trans 3:920-926 (2024)

Risk and equity objectives are linear combination of
the flow in each facility with uncertain parameters. Pos-
sible values of the parameters are shown in the Table 1.
As social objectives such as equity can be difficult to
quantify, we consider that these values can differ by a
large amount. Each facility has two possible values of
both risk and equity parameters, all 256 scenarios from
their combinations are considered in the optimization.
Despite having only two uncertain parameters, we note
that the wide range of uncertainty and large number po-
tential scenarios resulting from their combination show-
cases the ability of our proposed approach to deal with
highly undertain objectives. We also note that our pro-
posed approach also allows for the quantification of un-
certain parameters with a larger number of values.

STOCHASTIC OBJECTIVE REDUCTION
ALGORITHM

In this section, a process for systematically reducing
the dimensionality of a MILP with many uncertain objec-
tives into a problem with three or fewer objective func-
tions is presented. The core of the algorithm, which con-
siders deterministic objectives, was originally developed
in our group’s previous work and is summarized as fol-
lows [4]. First, cost vectors (the gradient vector of the
objective function) are projected onto the constraint sur-
faces. Strength of interaction is defined as the inner
product of the projected vectors and a weighted sum of
the constraint interaction strengths is used to determine
the total objective correlation strength. Objective corre-
lation strength is scaled to be between 0 and 1. This in-
formation is embedded into an objective correlation
graph, which consists of nodes corresponding to the
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different objectives and edges weighted by the objective
correlation strength. Community detection is applied to
identify groups of objectives that are strongly correlated
within the group and competing with objectives in other
groups. For more details about the objective reduction
algorithm, please reference our previous works [4,5].

For problems with uncertain objective functions, this
uncertainty will manifest itself as uncertainty in the edge
weights of the objective correlation graph. For each real-
ization of uncertainty, a different objective correlation
graph can be obtained. Since the true realization of un-
certainty is not known a priori, it is essential to identify a
grouping of objectives that performs robustly well for all
realizations of uncertainty to be able to obtain a full un-
derstanding of the tradeoffs between the many objec-
tives.

Stochastic community detection

The community structure within a network mani-
fests as a statistically significant configuration of edges
which can be evaluated through the value of the modu-
larity. [6] The modularity is described by the number of
edges falling within groups minus the expected number
in an equivalent network with edges placed at random, as
depicted in formulation (10):

max Yier, i'er (% - a;fzi,)zii’ (10a)
st. z;=1Vi €1 (10b)
Zir + zgr — zpn < 1ViQ € Li € IN{i},i" € I\{i,i"}
(10c)
z;7€{0,1} Vi €L,i' €l (10d)

where [ is the set of nodes in the graph, A is the graph
adjacency matrix, a; = Y, ;¢ 4;7 is the degree of node i,
m= Y ;g a; is twice of the total number of edges in the
network, and z;;s is a binary partitioning variable that is
one if nodes i and i’ are assigned to the same community,
and zero otherwise. The community detection is accom-
plished by maximizing modularity.

To apply this approach to uncertain graphs, such as
those obtained from our objective reduction approach
with uncertain objectives, the traditional community de-
tection problem must be recast as a stochastic optimiza-
tion problem. In this case, a reasonable goal is to pursue
the most robust partition that has consistently high mod-
ularity across all realizations of uncertainty. Here, we use
expected value of modularity to evaluate partitions:

Ay ia;
max  Ep[Ye, i'ez( i 28 )Zii’] (1
z

m m2
st. (10b—d)
Note that other stochastic metrics, such as conditi-

onal value at risk, may also be used in place of expected
value; we will assess how this proposed approach
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extends to other metrics in future work. To simply the
equation, we assume all scenarios are equally likely and
replace the expectation operator with an average over all
scenarios:

1 A Ajxa;,
max mstK il iel ( i —Lk zlk) Zy (12)

my mp
st. (10b—d)

Set K indicates all the scenarios from the uncertain
parameters. Unfortunately, fast algorithms for commu-
nity detection such as spectral partitioning [7], fast un-
folding [8], or the Leiden algorithm [9] are not directly ap-
plicable to the problem. However, this problem can be
decomposed into a set of single-scenario community de-
tection problems with a slightly modified objective. First,
copy variables corresponding to each scenario are intro-
duced to generate exploitable structure:

A

1 aja.”
max — el i’ L"——”‘)z--' 13
b |K|ZkeK ZLEI,LE[ (mk mi ii k ( )

s.t. Ziik=1Vi El,k EK

Zii’k+ Zii"k — Zi'i"k <1Vi El,llel\{l},
i"eN{i,i'L,k €K

zin. €{0,1} Vi el,i'e Lk €K

Zii'k = Zii'g! Vi EI,l'EI,k EK,k'GK

In this problem, the non-anticipativity constraints
Zii'e = Zii'x @re complicating, such that if they were re-
moved, the stochastic problem could be treated as |K|
independent community detection problems. Using co-
lumn generation [10] can help to solve formulation (13). It
can be transformed into the following master problem:

1 *
max — Yyex Lcec Ackfik (14)
z,A |K|
s.t. YeecAekZie = zir Vi €LiI' €Lk €K (m)

Yeechax =1V k €K (1)
A €{0,1} Vk €K,c €C

where C is the set of columns generated which corre-
spond to a specific partitioning of the graph into commu-
nities, f; is the modularity of column cin scenario k, z;;,
is the partitioning variable in the corresponding modular-
ity. = and p are the dual variables corresponding to the
constraints in the same line, which are used to generate
new columns (potential partitions) via the following set of
|K| subproblems, one per scenario k:

ikl

A
k

max )jer ief(— —

P Zlel,zel(mk mlzc

= Wi )Ziix + M (15)
Zu-k=1Vi El,k €EK
Zi+ Zye— Zive < 1V ei e \{i},

i"eN{i,i}k €K
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Formulation (15) is the modularity in scenario k with
two Lagrangian terms resulting from the column genera-
tion decomposition. Since both are constants obtained
from the dual solution of the master problem, only the nz
term needs to be considered when implementing the ob-
jective change into a community detection algorithm. Do-
ing so is straightforward: using Newman'’s spectral parti-
tioning algorithm [7], which makes use of the eigenvalues
and eigenvectors of the modularity matrix M, we modify
the modularity matrix by subtracting the symmetric part
of the = matrix:

i Ay Qi Tiirk+Tiri

Miir=m—kk—m—lz(k—% (16)
The eigenvalues and eigenvectors of the new matrix M
are then used to partition the graph in the same way as
before. Alternatively, when using the fast unfolding (Lou-
vain) [8] and Leiden [9] algorithms, we take grouping
steps which give the largest increase in the modularity
augmented with the Lagrangian nz terms, rather than just
the modularity. As in any column generation approach,
the algorithm proceeds by iteratively solving the master
problem and subproblems until no subproblem returns a
partition with positive objective value, indicating that no
partition not already in the set of columns has the poten-
tial to improve the objective value.

RESULTS AND DISCUSSION

To study the stochastic design problem, objective
correlation graphs are generated for all 256 possible sce-
narios of the social objective parameters. We then com-
pare the results of community detection applied to each
individual graph and show the resulting grouping fre-
quencies are in Table 2. Notably, [[N, H], [R, E]] and [[N,
E], [H, R]] emerge as the most common partitions, where
the symbols N, E, H, and R refer to the four different ob-
jectives as introduced in the problem formulation section
and defined again in Table 2. However, we observe that
four different “best” objective groupings occur depend-
ing on which scenario is actually realized, and it is unclear
which performs best, on average, over all possible sce-
narios with this approach. It's essential to highlight that
there aren’t any uncertain values in the annualized net
present cost and emission objectives in our system, sig-
nifying a constant correlation strength between them.
The established correlation strength, determined through
our previous algorithm, is 0.813, a relatively but not over-
whelmingly high value which explains the prevalence of
111 instances where annualized net present cost and
emission fall within the same group.

In contrast, the introduction of uncertain parameters
in risk and equity objectives brings variability to the cor-
relation strengths between different objectives. For in-
stance, with risk parameters set at [100, 50, 20, 10] and
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equity parameters at [800, 500, 70, 20], the correlation
strength between risk and equity is notably high at 0.991,
resulting in the grouping [[N, H], [R, E]]. Conversely, when
using [80, 30, 20, 10] and [40, 500, 50, 20] as risk and
equity parameters, the correlation strength significantly
decreases to 0.094, leading to the grouping [[N, E], [H,
R1l. Thus, the frequencies that risk and equity are in the
same group or not depends on the realization of uncer-
tain parameter set of the two objectives. In this case,
these two objectives are in the same group over half of
the scenarios.

Table 2: Community detection results of the uncertain
system. N: annualized net present cost, H: carbon emis-
sions, R: risk, E: Equity.

Grouping Frequency
[N, H1, [R, E]] 94
([N, E], [H, RI] 95
[IN], [H, R, ElI 50
[[R], [N, H, El] 17

E[Modularity] = 0.0475 Stochastic results = 0.0649

Figure 2. Grouping and expectation results of the
average graph (left) and the most robust grouping (right)

Despite this variability, to address the tradeoffs
within the uncertain design problem effectively, it is ra-
tional to identify the most robust partition across all sce-
narios as defined by the expected modularity over all
scenarios. The results, as depicted in Fig. 2 through the
application of the stochastic algorithm, reveal that the
optimal grouping is, [[N, E], [H, R]]. It is important to note
that this grouping differs from what one would find by
just averaging the edge weights from the objective cor-
relation graphs generated from all 256 scenarios, [[N], [H,
R, E]]l. The expectation of the modularity in the optimal
solution is 0.0649, and the expectation of the second-
best partition, [[N, HI, [R, E]] is 0.0615. Both are higher
than the partition of the average graph, which gives an
expected modularity of 0.0475, suggesting that a
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2. Reactor B

2. Reactor B

Figure 3: lllustration of different design configurations
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Figure 4: Weighted sum Pareto frontier between (left) risk and cost + equity + emission as well as (right) risk+
emission and cost + equity in the scenario of [[R], [H, N, E]] grouping.
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deterministic approach of averaging edge weights is not
an effective mechanism for identifying objective group-
ings that preserve tradeoff information in as many sce-
narios as possible.

For further study of the system, we compare the
weighted sum Pareto frontiers for one scenario using
both robust grouping found by community detection and
the grouping that is “best” for the specific scenario con-
sidered, [R], [H, N, E]]. Fig. 3 illustrates all optimal design
configurations occurring along the Pareto frontier. Pareto
frontiers are depicted on the left side of Fig. 4 for the
scenario which uses risk and equity parameters set at
[100, 30, 15, 5] and [40, 30, 70, 300]. Points sharing the
same color on the Pareto frontier represent the same op-
timal design configuration within the Pareto frontier. In
configuration 1, the emphasis is on risk reduction, leading
to the utilization of Reactor B and Separator B, both pos-
sessing the lowest risk parameters. Conversely, Config-
uration 3 aims to minimize the sum of costs, equity, and
emissions. Only Reactor A is constructed due to its lower
cost, emissions, and equity parameters. Separator A and
B are both utilized with specific flow values to optimize
the three objectives.

In the middle of the Pareto frontier, the tradeoff
point results from balancing the sum of costs, equity, and
emissions against risk. In this case, only Reactor B is em-
ployed compared to Configuration 3, and the flow values
in the separators are also different. The Pareto frontier
for the optimal result's grouping, [[N, E], [H, R]], is dis-
played on the right side of Fig. 4. The trade-off point us-
ing the [[R], [H, N, E]] grouping also appears in the Pareto
frontier of [[N, E], [H, R]], suggesting that employing the
most robust grouping can provide valuable insights in a
certain extent, and demonstrating that tradeoff
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information can be preserved in the robust grouping even
when it is not the same as the “best” grouping for a par-
ticular scenario.

However, in numerous other scenarios, the Pareto
frontier of [[N, E], [H, R]] does lose a bit of information
about design tradeoffs in comparison to the individual
scenario’s best grouping. This is not unexpected, as
choosing a grouping of objectives with suboptimal mod-
ularity for a particular scenario inherently means that ob-
jectives with some degree of competition are being
grouped together, which will result in loss of information
regarding tradeoffs between the grouped objectives. The
[[N, E], [H, R]] grouping with 95 times and other scenarios
with no information loss in [[N, E], [H, R]] reveal that opt-
ing for the most robust grouping is a practical choice
when attempting to understand tradeoffs in many-objec-
tive optimization problems with uncertain parameters.

CONCLUSIONS AND FUTURE WORK

Environmental and social considerations for sustain-
ability are essential aspects of optimal design problems
for modern chemical production infrastructure. However,
they can be subject to a great deal of uncertainty making
critical evaluation of tradeoffs between objectives chal-
lenging. In this work, we developed a method for system-
atically identifying groups of objectives that, on average,
tend to be more correlating than competing, forming the
basis of a dimensionality reduction in many-objective op-
timization problems that is robust to uncertainty. Through
the use of an illustrative case study with a two reactors,
two separators superstructure, the efficacy of our ap-
proach towards identifying an objective grouping with
low loss of tradeoff information was demonstrated.
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As future work, we aim to apply this framework to a
set of more practically relevant design problems from the
literature such as a hydrogen production process and
green ammonia production system, in order to better un-
derstand the tradeoffs inherent in designing future
chemical production infrastructure. This analysis will en-
tail further development of our objective reduction algo-
rithm, such that it can be applied to nonlinear, as well as
linear, many-objective optimization problems.
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