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Abstract

The presence of heterogeneity in susceptibility, differences between hosts in their likelihood

of becoming infected, can fundamentally alter disease dynamics and public health

responses, for example, by changing the final epidemic size, the duration of an epidemic,

and even the vaccination threshold required to achieve herd immunity. Yet, heterogeneity in

susceptibility is notoriously difficult to detect and measure, especially early in an epidemic.

Here we develop a method that can be used to detect and estimate heterogeneity in suscep-

tibility given contact by using contact tracing data, which are typically collected early in the

course of an outbreak. This approach provides the capability, given sufficient data, to esti-

mate and account for the effects of this heterogeneity before they become apparent during

an epidemic. It additionally provides the capability to analyze the wealth of contact tracing

data available for previous epidemics and estimate heterogeneity in susceptibility for dis-

ease systems in which it has never been estimated previously. The premise of our approach

is that highly susceptible individuals become infected more often than less susceptible indi-

viduals, and so individuals not infected after appearing in contact networks should be less

susceptible than average. This change in susceptibility can be detected and quantified

when individuals show up in a second contact network after not being infected in the first. To

develop our method, we simulated contact tracing data from artificial populations with

known levels of heterogeneity in susceptibility according to underlying discrete or continu-

ous distributions of susceptibilities. We analyzed these data to determine the parameter

space under which we are able to detect heterogeneity and the accuracy with which we are

able to estimate it. We found that our power to detect heterogeneity increases with larger

sample sizes, greater heterogeneity, and intermediate fractions of contacts becoming

infected in the discrete case or greater fractions of contacts becoming infected in the contin-

uous case. We also found that we are able to reliably estimate heterogeneity and disease

dynamics. Ultimately, this means that contact tracing data alone are sufficient to detect and

quantify heterogeneity in susceptibility.

Author summary

Hosts often vary in their likelihood of contracting an infectious disease. This variation is

referred to as heterogeneity in susceptibility, and it can have major public health
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consequences. However, heterogeneity in susceptibility is notoriously difficult to detect

and quantify, and so, it has often been left out of mathematical models and ignored by

decision makers. Here, we present a novel method that can be used to detect and quantify

heterogeneity in susceptibility using only contact tracing data. The premise is that if het-

erogeneity is present, the average individual that did not become infected after appearing

in a contact network would have lower susceptibility to infection than the average individ-

ual that has never appeared in a contact network. By measuring the difference in suscepti-

bility between these two groups of individuals, which we assess with contact tracing data,

it is possible to detect and quantify the level of heterogeneity. We demonstrate the applica-

tion of this method and explore the method’s power and accuracy using simulated contact

tracing data.

Introduction

At the outset of an epidemic, public health responses depend on estimates of the final epidemic

size, the peak number of cases, the timing of the peak, and the herd immunity threshold. Com-

partmental models such as the susceptible-infected-recovered (SIR) model are commonly used

to model infectious disease dynamics and predict outcomes, but there are limitations to this

approach [1–4]. Namely, SIR models tend to oversimplify the complexity of disease dynamics,

resulting in discrepancies between the model predictions and epidemic data [1]. One of the

simplifying assumptions of the standard SIR model is that all host individuals are the same.

However, this is often false: individuals can be heterogeneous in many ways [5, 6] including

with regard to their likelihood of becoming infected, hereafter referred to as heterogeneity in

susceptibility [7].

Heterogeneity in susceptibility can have a large impact on infectious disease dynamics [7–

10]. Increased heterogeneity in susceptibility results in a lower peak number of cases, different

timing of the peak, smaller final epidemic size, and lower herd immunity threshold [10–12].

As a result, disease control programs [13] and epidemiological models [7, 9, 14, 15] may need

to account for heterogeneity in susceptibility if they are to be optimally useful. Accurate early

predictions of disease dynamics could give policy makers critical information to make deci-

sions, but heterogeneity in susceptibility is notoriously difficult to measure [16]. Moreover, the

effects of heterogeneity in susceptibility are typically small during the earliest phases of epi-

demics and only become apparent later, making it even more challenging to estimate heteroge-

neity in susceptibility in real time and account for its effects. It would therefore be useful to

develop new methods for quantifying heterogeneity in host susceptibility early in epidemics.

Existing methods to quantify heterogeneity in susceptibility are not adequate for estimation

in real time because they rely on using data that are either collected later in epidemics or that

typically cannot be collected due to ethical or logistical constraints. Dwyer et al. [7], Ben-Ami

et al. [17], and Langwig et al. [9] used laboratory dose-response and field transmission experi-

ments to estimate heterogeneity in susceptibility, but these experimental methods are not feasi-

ble for application in real time or for human epidemics in general due to time constraints and

ethical concerns. Gomes et al. [15] compared disease incidence across municipalities in several

countries to construct Lorenz curves and fit susceptibility risk distributions, but this method

requires a substantial amount of data that would not be available early in an epidemic. Smith

et al. [18] and Corder et al. [19] used morbidity data to fit models and estimate heterogeneity,

but this method cannot be used until later in an epidemic when there is sufficient data to fit

curves. Gomes et al. [10] also used curve fitting with mortality data that could be implemented
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once at least four months of data were available, but their method is heavily dependent on the

underlying model and assumptions. With the recent increased interest in real-time estimation,

Anderson et al. [20] developed a method to estimate within-household heterogeneity in sus-

ceptibility, but this is not the same as the population-level heterogeneity that drives popula-

tion-level disease dynamics. Here we develop a novel method to identify and quantify host

heterogeneity in susceptibility using contact tracing data, which can be collected early in an

epidemic. Contact tracing is often performed to mitigate the spread of pathogens that are oth-

erwise difficult to control [21, 22], and therefore, our method should not require the collection

of any data beyond that which would already be collected for other purposes.

Contact tracing typically takes one of two forms: forward and backward. Our method is

suitable for use with data from both types. Forward contact tracing attempts to find all the con-

tacts of an infected person to whom the disease could transmit. This is done by identifying

infected individuals and all their known contacts. The contacts are then quarantined and mon-

itored for disease. For any contact that becomes infected, the process is repeated with their

contacts. Backward contact tracing attempts to identify the contact of an infected person from

whom the disease transmitted. In practice, both methods can be employed simultaneously in

an effort to maximize the effectiveness of contact tracing efforts [23], and the data on infected

individuals and their contacts are typically recorded. When done thoroughly, contact tracing

data provide information about the infection status of individuals that have been in contact

with an infected individual. As we will explain, when contact tracing data tracks individuals

through multiple exposure events, it can be used to quantify heterogeneity in susceptibility

given contact through the method that we develop here.

Our method uses the fact that average susceptibility decreases over time in a population

with heterogeneity in susceptibility (Fig 1). This is because individuals with high susceptibility

are more likely to be infected than individuals with low susceptibility for a given exposure

level. Individuals that show up in a second contact tracing network, after not being infected in

the first, should therefore have a lower risk of infection than individuals that show up in a net-

work for the first time. In the rest of the paper, we establish our method and analyze its effec-

tiveness for two cases: a population with two discrete susceptibility levels and a population

with continuous variation in susceptibility. Notably, the selection of these two cases is arbi-

trary, and our method is flexible enough that it can be employed for any distribution of hetero-

geneity in susceptibility.

Methods and results

Our method to detect and quantify heterogeneity in susceptibility exploits the change in aver-

age susceptibility over multiple exposure events that would be expected to occur if a population

had heterogeneity in susceptibility (Fig 1). Given contact with an infectious individual, indi-

viduals with high susceptibility are more likely to be infected than those with low susceptibility.

This creates a selection process in which susceptibility should on average decline in a heteroge-

neous host population following each exposure event. This change in average susceptibility

provides a way to identify and estimate the level of heterogeneity early in an epidemic despite

the seemingly small effects of heterogeneity at the beginning of epidemics. Notably, no change

in average susceptibility should occur in a population that lacks heterogeneity in susceptibility.

This method employs contact tracing data. With contact tracing data, there are multiple

contact networks that are each composed of an infected individual and the known contacts the

infected individual had during their infectious period. This means each contact network is a

set of exposure events where contacts are exposed to a pathogen and have a chance of being

infected. In order for our method to work, there must be individuals that show up in at least
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two separate contact networks such that they are exposed but not infected in the first of these

networks. At the start of the second exposure event, these individuals would have been previ-

ously exposed but not infected (henceforth called focal individuals). This contact network

must also contain naive contacts: individuals that have not been previously exposed to the

pathogen. The basis of our method is to compare the fraction of naive individuals and focal

individuals that become infected in the second contact network; if there is no heterogeneity in

susceptibility, focal individuals should have the same susceptibility as naive individuals,

whereas if there is heterogeneity in susceptibility, focal individuals should on average be less

susceptible than naive individuals. This difference in susceptibility arises due to the selection

process for infection of more susceptible individuals (Fig 1). While in practice it is always pos-

sible that unknown to contact tracers, an individual classified as naive was exposed in the past,

our method is fairly insensitive to such misclassification (S12 Text).

To compute the number of naive and focal individuals infected, there must be data on which

specific individuals are infected and which individuals are showing up in a contact network for

a second time, which would be available for example if individuals were identifiable between

contact networks. This requirement should be easily met as unique identifiers are often collected

or assigned during contact tracing [24, 25]. There must also be a sufficient sample size to detect

heterogeneity in susceptibility. Here we explore the effects of sample size, level of heterogeneity,

and infection probability on our ability to detect and quantify heterogeneity in susceptibility.

We apply this method to two underlying models describing the distribution of individuals’

susceptibilities. In one underlying model (discrete case), it is assumed that the population is

composed of two host types where each host type has a different susceptibility or probability of

Fig 1. Average susceptibility decreases over exposure events in a heterogeneous population. The figure depicts individuals infected and not infected

over two exposure events in a heterogeneous population with more susceptible (red) and less susceptible (blue) individuals. The pie charts show the

composition of the not infected population. Average susceptibility in the not infected population decreases after each exposure event as the highly

susceptible individuals are infected more frequently than the lowly susceptible individuals. Note that if the population lacked heterogeneity in

susceptibility, all individuals would be either red or blue, and thus, susceptibility would not change.

https://doi.org/10.1371/journal.pcbi.1012310.g001
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being infected given contact. Discrete susceptibility types might be expected when heterogeneity

in susceptibility is predominantly accounted for by a small number of factors that create groups

in the population with distinct susceptibilities. For example, genetic polymorphisms could be

selected for that increase resistance to a pathogen, resulting in populations containing a mixture

of individuals with and without the mutation such as was seen for HIV [26]. Likewise, prior

exposure, whether natural or vaccine-induced, to a pathogen or related pathogen could create

more resistant subpopulations such as with milkmaids not developing smallpox after contract-

ing cowpox [27]. Behaviors like handwashing and mask wearing [28, 29] or host nutritional sta-

tus [30] could also produce approximately binary outcomes for susceptibility to infection.

In the other underlying model (continuous case), it is assumed that the population is com-

posed of hosts with a continuous range of susceptibilities such that each host’s probability of

being infected given contact is unique. This situation might be expected when there is a com-

plex combination of factors dictating heterogeneity in susceptibility or when the cause of het-

erogeneity is a trait that continuously varies across individuals. For instance, variability in gene

expression, which could be affected by epigenetics, copy number variations, and sequence

polymorphisms, is associated with disease susceptibility [31]. In addition, some of the factors

that lead to discrete variation in susceptibility could also have a continuous effect such as the

degree of cleanliness achieved by handwashing [28] or continuous variation in nutrients.

Beyond a complex combination of factors, there could also be situations where a continuously

varying trait like body mass [32], the level of antibodies induced in an immune response [33],

or age [34] explains the heterogeneity in susceptibility in the population.

Methods

Our method is comprised of two parts: detecting heterogeneity in susceptibility and quantify-

ing it if present. The former is a hypothesis testing problem, and the latter is a parameter esti-

mation problem. For the detection of heterogeneity, we test the hypothesis that there is

heterogeneity in susceptibility against the null hypothesis that there is homogeneity in suscep-

tibility. Fig 2 summarizes the steps of our method, and Table 1 provides descriptions of the

parameters used.

Detection of heterogeneity in susceptibility. We consider F contact networks that each

contain Ni − 1 naive individuals and one focal individual where i is the set of contact networks.

For simplicity, we assume Ni are equal for all i and thus drop the subscript, but this assumption

can be easily relaxed and does not influence any of our conclusions (S11 Text). We therefore

have a total of F(N − 1) naive individuals and F focal individuals. Also, although we consider

contact networks containing one focal individual, there could be more focal individuals in a

network in reality as any individuals that have been previously exposed but not infected would

be considered focal. For our method, we first compute the fractions of naive, focal, and total

individuals infected. The fractions of naive and focal individuals infected are estimates for the

probability of a naive or focal individual being infected (pn and pf respectively). The fraction of

total individuals infected is an estimate for the average probability of being infected (�p). We

then calculate the log-likelihood of the data (numbers of individuals infected) under each

hypothesis as a sum of the log-likelihoods for the number of each type of individual infected

where

Lhom ¼ ln½PðxnjFðN � 1Þ; �pÞ� þ ln½Pðxf jF; �pÞ� ð1Þ

Lhet ¼ ln½PðxnjFðN � 1Þ; pnÞ� þ ln½Pðxf jF; pf Þ�: ð2Þ
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Lhom is the log-likelihood of the data under the null hypothesis that there is homogeneity in

susceptibility, so we assume all individuals have the same probability of being infected, regard-

less of whether they are naive or focal (pn ¼ pf ¼ �p). Lhet is the log-likelihood under the alter-

native hypothesis that there is heterogeneity in susceptibility, so we assume naive and focal

individuals have different probabilities of being infected due to the infection selection process

that occurs when heterogeneity is present (pn 6¼ pf). These log-likelihoods are calculated identi-

cally regardless of whether the heterogeneity is discrete or continuous. P(x|y, p) is the probabil-

ity of observing x individuals infected out of y individuals exposed with probability p of being

infected and is distributed according to a binomial distribution. The number of naive individ-

uals infected has distribution Binom(y = F(N − 1), pn), and the number of focal individuals

infected has distribution Binom(y = F, pf). xn and xf are the numbers of naive and focal

Fig 2. Method flowchart. The figure summarizes the steps of our method from simulating contact tracing data to detecting heterogeneity in

susceptibility to estimating the level of heterogeneity and predicting disease dynamics. The diagram depicts a toy example going through the steps of

our method. At step 7, we show the log-likelihoods in terms of the R code that would be used to calculate them. With real contact tracing data, the

simulation section would be skipped.

https://doi.org/10.1371/journal.pcbi.1012310.g002
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individuals infected respectively where xn 2 [0, F(N − 1)] and xf 2 [0, F]. pn, pf, and �p are esti-

mated from the data as pn ¼
xn

FðN�1Þ
, pf ¼

xf
F , and �p ¼

xf þxn
FN . The log-likelihoods of the data under

each hypothesis were compared using a likelihood ratio test with one degree of freedom and

significance level α = 0.05.

Here, we simulated data to test our method. To do so, we first set parameters dictating the

sample size and heterogeneity present in the population. Then, we simulated initial exposure

events with N individuals in each network and kept uninfected individuals as our focal individ-

uals. For each focal individual, we then simulated a second exposure event with that focal indi-

vidual and N − 1 naive individuals. The susceptibilities of the naive individuals were drawn

randomly from the same heterogeneity distribution set for the starting population. We

recorded the fraction of each type of individual (i.e. focal or naive) infected in the second expo-

sure event and calculated the log-likelihood of the simulated data under our two hypotheses.

Then, we compared the hypotheses using a likelihood ratio test. We ran 1, 000 simulations for

each set of parameters to determine our statistical power (the percent of simulations in which

we reject the null hypothesis) to detect heterogeneity in susceptibility with that parameter

combination. All simulations and data analyses were performed in R version 4.0.3 [35].

Table 1. Descriptions of all parameters used in our method. The parameters’ values are either set by input data, assumed, calculated from other parameters, or estimated

via MCMC, which is specified in the Source column. Parameters in the first section are used universally across the cases, those in the second section are used for the dis-

crete case, and those in the third section are used for the continuous case. Note that in the table, all probabilities of infection, risks of infection, and expected fractions

infected are conditional on an individual showing up in a contact network and therefore do not depend on the overall force of infection in the population.

Symbol Description Source

Universal F Number of focal individuals; Number of contact networks Data input

N Number of contacts in each network Data input

xn Number of naive individuals infected Data input

xf Number of focal individuals infected Data input

pn Probability of infection for a naive individual;
xn

FðN�1Þ
Calculated from xn, F, N

pf Probability of infection for a focal individual;
xf
F

Calculated from xf, F

�p Probability of infection for an average individual;
xf þxn
FN

Calculated from xf, xn, F, N

ri Risk of infection for the ith individual; − ln(1 − pi) Calculated from pA, pB, fA or k, θ
pi Probability of infection for the ith individual; 1 � e�ri Calculated from ri
c Contact rate for SIR model Calculated from R0,d or R0,c

γ Recovery rate for SIR model Assumed γ = 0.1

Discrete case pA Probability of infection for a type A, more susceptible individual Estimated

pB Probability of infection for a type B, less susceptible individual Estimated

fA Fraction of the initial population that is type A Estimated

Cd Coefficient of variation of the risk of being infected;
ðrA�rBÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
fAð1�fAÞ

p

rAfAþrBð1�fAÞ

Calculated from rA, rB, fA

Ed Expected fraction of naive individuals infected; pAfA + pB(1 − fA) Calculated from pA, pB, fA
R0,d Basic reproduction number for SIR model;

ðpAfAþpBð1�fAÞÞcðS0þI0Þ

g
Assumed R0,d = 3

βA, βB Transmission rates for SIR model; βA = pAc, βB = pBc Calculated from pA, pB, c
Continuous case k Shape parameter for the distribution of individuals’ risks Estimated

θ Scale parameter for the distribution of individuals’ risks Estimated

Cc Coefficient of variation of the risk of being infected; 1ffiffi
k

p Calculated from k

Ec Expected fraction of naive individuals infected; 1 − (1 + θ)−k Calculated from k, θ
R0,c Basic reproduction number for SIR model;

rcðS0þI0Þ

g
Assumed R0,c = 3

β Transmission rate for SIR model; ρc Calculated from ρ, c
ρ Probability of infection given contact for SIR model; 1 − (1 + θ)−k Calculated from k, θ

https://doi.org/10.1371/journal.pcbi.1012310.t001
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For the discrete case, we simulated data using two types of individuals (denoted A and B),

but we note that the aforementioned factors could potentially be combined to result in more

than two distinct groupings, and similar methods could be applied for these situations. At the

beginning of each simulation, we set the probability of being infected for each type of individ-

ual, pA and pB, where pA 2 [0, 1] and pB 2 [0, pA]. pA and pB are the probabilities of infection

given contact between that type of individual and a particular infected individual and therefore

are independent of group size. We also set the fraction of the starting population that is type

A (fA) where fA 2 [0, 1]. All three parameters pA, pB, and fA affect the level of heterogeneity in

susceptibility in the population.

We later calculated the coefficient of variation of the risk of being infected for this discrete

case (Cd) and the expected fraction of naive individuals infected (Ed) from pA, pB, and fA to bet-

ter summarize the results. The risks of being infected for type A and B individuals, rA and rB
respectively, are shown below. These equations are derived from the formula for the probabil-

ity of being infected pi ¼ 1 � e�ri , i = A, B.

rA ¼ �lnð1 � pAÞ ð3Þ

rB ¼ �lnð1 � pBÞ: ð4Þ

The coefficient of variation is defined as the standard deviation divided by the mean.

Hence, Cd is the standard deviation of risk divided by the mean risk (S1 Text) and is given by

Cd ¼
ðrA � rBÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fAð1 � fAÞ

p

rAfA þ rBð1 � fAÞ
: ð5Þ

Ed is the same as the mean probability of being infected �p, which is given by

Ed ¼ �p ¼ pAfA þ pBð1 � fAÞ: ð6Þ

We additionally defined the sample size for the simulation by setting the number of individ-

uals in each exposure group N and the number of focal individuals F. For our simulations, we

used N = 5 and F = 50 or 200.

For the continuous case, in contrast to the discrete case just discussed, each individual in

the population has a different risk of being infected. Here, we assume that individuals’ risks for

being infected follow a gamma distribution, but as in the discrete case, other distributions

could be used. We chose to use a gamma distribution for illustration purposes because it is

flexible and has been used to model heterogeneous populations previously [7, 9].

At the beginning of each simulation, we set the parameters k and θ, respectively the shape

and scale of the gamma distribution, that dictate the risk distribution where k, θ > 0. For ease

of interpretation, we present our results with respect to the coefficient of variation of risk for

continuous variation Cc and expected fraction of naive individuals infected Ec. As in the dis-

crete case, the risk ri for the ith individual being infected given contact between that individual

and a particular infected individual is related to the probability of being infected such that pi ¼

1 � e�ri and thus

ri ¼ �lnð1 � piÞ: ð7Þ
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As it is gamma distributed, the risk distribution has standard deviation s ¼ y
ffiffiffi
k

p
and mean

μ = kθ. So, Cc can be simplified to

Cc ¼
1
ffiffiffi
k

p : ð8Þ

Ec is the same as the mean probability of being infected �p and is derived in [7] as

Ec ¼ �p ¼ 1 �
St
S0

¼ 1 � 1 þ yð Þ
�k

; ð9Þ

where S0 and St are the number of susceptible individuals at the beginning and end of an expo-

sure round respectively.

We additionally defined the sample size for the simulation by setting the number of individ-

uals in each exposure group N and the number of focal individuals F. As in the discrete case,

we use N = 5 and F = 50, 200, or 1000.

We tested the ability of our method to detect heterogeneity in susceptibility for each poten-

tial combination of fA, F, Cd 2 [0, 3] with step size 0.02, and Ed 2 [0.02, 0.98] with step size 0.02

in the discrete case and F, Cc 2 [0, 3] with step size 0.02, and Ec 2 [0.02, 0.98] with step size

0.02 in the continuous case. This was done for 1, 000 simulations to compute the statistical

power of the method. We did not simulate Ed = 0, 1 or Ec = 0, 1 because such values preclude

heterogeneity in susceptibility. We examined Cd, Cc 2 [0, 3] because this captures most of the

range of published values for the coefficient of variation of risk we could find: 0.0007 to 3.33

[7, 9, 10, 14–19, 36–38].

We also generated sets of contact tracing data by using a Gillespie algorithm to simulate a

stochastic dynamic disease model. While these data were substantially more time consuming

to generate than our other simulated data and thus not suitable for use in the the full suite of

power and estimation analyses conducted, the datasets that were analyzed yielded consistent

results to that of our other simulation method (S11 Text).

Quantification of heterogeneity in susceptibility. Given the detection of heterogeneity

in susceptibility, the next question is whether that heterogeneity will substantially impact dis-

ease dynamics. To determine whether it will, we need to ask whether contact tracing data is

sufficient to estimate the parameters of SIR models that include heterogeneity in susceptibility

and whether those parameter estimates accurately capture disease dynamics. To do so, we fit

the parameters of our underlying risk distributions using simulated contact tracing data as

above. Parameter values used to simulate the contact tracing data for the discrete and continu-

ous heterogeneity cases are provided in Table 2.

Table 2. The 95% CIs, medians, and true values for parameters estimated from MCMC in the discrete and continuous cases with F = 1000 and N = 5.

Parameter 95% CI Median True

Discrete case pA [0.437,0.958] 0.599 0.748

pB [0.005,0.172] 0.085 0.125

fA [0.102,0.543] 0.321 0.2

Cd [0.842,1.845] 1.093 1.3

Ed [0.236,0.263] 0.249 0.25

Continuous case k [0.364,1.024] 0.584 0.592

θ [0.321,1.257] 0.647 0.626

Cc [0.988,1.657] 1.309 1.3

Ec [0.237,0.269] 0.252 0.25

https://doi.org/10.1371/journal.pcbi.1012310.t002
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We generated posterior distributions for both models using Metropolis-Hastings MCMC.

In the discrete case, our MCMC chain had length 30, 000, 000 with a burn-in of 15, 000, 000

and thinning interval 1, 500. For all three parameters, we used flat priors and uniform proposal

distributions. Our proposal distributions were pA * Unif(0, 1), pB * Unif(0, pA), and

fA * Unif(0, 1). There is not a simple, analytic likelihood function for the likelihood of the

data given a proposed parameter set, so the likelihood was estimated by simulation with

Approximate Bayesian Computation (ABC), where the likelihood estimate was determined by

comparing the fraction of simulations that provided results that were within a pre-specified

error tolerance of the actual data [39]. To do so, we ran 100 simulations of the number of focal

and naive individuals infected across F contact networks for a proposed parameter set. We

then calculated the fraction of simulations where the number of individuals infected was

within a 1% error tolerance of the number infected in the true data. Note that our results are

fairly insensitive to this error tolerance (S4 Text). This simulation was done separately for focal

and naive individuals. We then computed the overall log-likelihood as a sum of the logs of

those fractions. We assessed convergence of the chains by visually inspecting the resulting

trace plots and marginal posterior distributions for each parameter. In the continuous case,

our MCMC chain had length 600, 000 with a burn-in of 200, 000 and thinning interval 100.

We used an exponential prior Exp(2) for k because known values of Cc suggest that k is likely

to be small [7, 9, 10, 14–19, 36–38]. We used a flat prior for θ for all values [0, 1) and a multi-

variate lognormal proposal distribution

ðk; yÞ � MLogNorm m ¼
0

0

 !

; S ¼
0:01 �0:008

�0:008 0:05

 ! !

. We assessed convergence of

the chains by visually inspecting the resulting trace plots and marginal posterior distributions

for each parameter [40].

We then used these parameter estimates to generate SIR dynamics. Notably, the system of

differential equations describing the discrete and continuous cases differ. For the discrete case,

we implemented the following system of ordinary differential equations:

dSA
dt

¼ �bASAI ð10Þ

dSB
dt

¼ �bBSBI ð11Þ

dI
dt

¼ ðbASA þ bBSBÞI � gI: ð12Þ

SA and SB are the susceptible individuals of types A and B, and I is the infected individuals

where I includes infected A and infected B individuals such that I = IA + IB. At the start of each

SIR simulation, we determine the fraction of the population to allocate as A and B from fA. We

also set the basic reproduction number R0;d ¼
�bðS0þI0Þ

g
¼

ðpAfAþpBð1�fAÞÞcðS0þI0Þ

g
at an assumed “true”

value where �b is the average transmission rate and S0+ I0 is the population size. R0,d is often a

reasonably well approximated value, and it does not change with heterogeneity in susceptibil-

ity as initial average susceptibility remains the same regardless of heterogeneity [41, 42]. βA
and βB are the transmission rates for types A and B respectively and were calculated as

βA = pAc and βB = pBc where c is the contact rate. Note that c was calculated from R0,d. γ is the

recovery rate and was kept constant between the types of individuals at an assumed “true”

value.
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For the continuous case, we implemented the following system of ordinary differential

equations derived in [16]:

dS
dt

¼ �bSI
S
S0

� � Cc2

ð13Þ

dI
dt

¼ bSI
S
S0

� � Cc2

� gI: ð14Þ

S0 is the number of susceptible individuals at the beginning of the simulation, S is the num-

ber of susceptible individuals at time t, and I is the number of infected individuals. At the start

of each simulation, we set the basic reproduction number R0;c ¼
rcðS0þI0Þ

g
at an assumed “true”

value where ρ is the average probability of being infected given contact for a naive individual, c
is the contact rate, S0 + I0 is the population size, and γ is the recovery rate. ρ was computed

from the sampled parameters as ρ = 1 − (1 + θ)−k, c was calculated from R0,c, and γ was fixed at

an assumed “true” value. β is the transmission rate and was calculated as β = ρc.
For each case, we randomly sampled 1, 000 parameter sets from the posterior distribution

to run SIR model simulations, and we compared this to the dynamics generated by the “true”

parameter set used to generate our contact tracing data. Using these simulations, we deter-

mined 95% central credible intervals for the SIR dynamics for each model by finding the 2.5%

and 97.5% percentiles of the 1, 000 simulated dynamics at each time point over the epidemic.

For our SIR simulations, we set R0,d = R0,c = 3, S0 = 20, 000, I0 = 10, and γ = 0.1.

Results

Detection of heterogeneity in susceptibility. Figs 3 and 4 illustrate that the sample size,

level of heterogeneity, and fraction of individuals infected affect our power to detect heteroge-

neity in susceptibility. This is because these factors ultimately affect the likelihoods used to test

for heterogeneity in terms of the difference between the probabilities of infection for naive and

focal individuals (pn and pf) and the variability in the likelihood ratio test statistic (S3 Text).

More precisely, these figures show that as the number of focal individuals F increases from 50

to 200, there is greater power to detect lower levels of heterogeneity (lower values of Cd, Cc).

This additionally allows for greater power across a wider range of Ed and Ec. This was to be

expected because higher sample sizes, particularly of the previously exposed, focal individuals,

decreases variability in our estimates of pn, pf, and �p. Notably, changing the total number of

hosts in each contact network N had very little effect on our results (S2 Text).

The level of heterogeneity in susceptibility present is described by the coefficient of varia-

tion of the risk distribution Cd or Cc. As Cd and Cc increase, there is more power to detect het-

erogeneity in susceptibility as there is more heterogeneity in the population. In the discrete

case, for a given Cd, there is also more power to detect heterogeneity as fA approaches 0.5. This

is because as fA approaches 0.5, the population is more evenly split between the two types of

individuals, allowing for a greater difference between pA and pB and, therefore, pn and pf.
Lastly, the impact of the expected fraction of naive individuals infected (Ed, Ec) on power

differs between the two underlying models. There is greater power to detect heterogeneity

when an intermediate fraction of individuals is infected in the discrete case and when a greater

fraction of individuals is infected in the continuous case. In the discrete case, Ed is determined

by pA, pB, and fA as per Eq 6. The only way to have a large fraction of individuals infected is if

both pA and pB are large. Hence, when Ed is high, pA and pB must both be close to 1. For similar

reasons, when Ed is low, pA and pB must both be close to 0. Even though the risks rA and rB
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Fig 3. Increased heterogeneity in susceptibility (larger Cd and fA ! 0.5), intermediate fractions of individuals infected (intermediate Ed), and

increased sample sizes (larger F) enhance our power to detect heterogeneity in susceptibility in the discrete case. The plots show the power to

detect heterogeneity in susceptibility in the discrete case, calculated as described in the text, across different numbers of focal individuals F and fraction

of the population that is type A and more susceptible fA. The areas above the gray dashed lines represent parameter space that gives computationally

indistinguishable probabilities of infection pA and pB, and therefore power, to the parameter combination with the same Ed and highest Cd below the

line. This occurs because risks of infection can be changed to increase Cd without bound, whereas probabilities are bounded. N = 5.

https://doi.org/10.1371/journal.pcbi.1012310.g003

Fig 4. Increased heterogeneity in susceptibility (larger Cc), greater fractions of individuals infected (larger Ec), and increased sample sizes (larger

F) enhance our power to detect heterogeneity in susceptibility in the continuous case. The plots show the power to detect heterogeneity in

susceptibility in the continuous case, calculated as described in the text, across different numbers of focal individuals F. N = 5.

https://doi.org/10.1371/journal.pcbi.1012310.g004
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associated with these values may have varying levels of heterogeneity, the individuals them-

selves will have very similar infection outcomes, making it difficult to detect heterogeneity in

susceptibility. Therefore, heterogeneity in susceptibility is better detected when an intermedi-

ate fraction of individuals is infected in the discrete case. In contrast, power increases in the

continuous case with greater fractions of individuals infected (larger values of Ec). This is

because there is more selection for who is infected as more individuals are infected, so the

average population susceptibility will decrease more drastically, making it easier to detect het-

erogeneity in susceptibility.

Quantification of heterogeneity in susceptibility. We then explored the method’s ability

to estimate model parameters as well as predict the associated SIR dynamics. We performed

this analysis for a particular parameter combination that led to Cd = Cc = 1.3 and Ed = Ec =

0.25. These values were chosen because they represent a biologically realistic scenario based on

previous literature [7, 9, 10, 14–19, 36–38, 43–48]. In the discrete case, we used Cd and Ed and

set fA = 0.2 to calculate the true values pA = 0.748 and pB = 0.125. In the continuous case, we

used Cc and Ec to calculate the true values k = 0.592 and θ = 0.626.

We determined our 95% CIs for parameter estimation of the underlying parameters with

F = 1000 and N = 5 to be those shown in Table 2. Note that the true values for pA, pB, and fA as

well as for k and θ are captured by these intervals. Admittedly, these parameter estimates are

somewhat broad. Upon further investigation, we found the broad intervals to be due to high

correlation in our parameter estimates, indicating low identifiability (Figs 5 and 6). However,

acceptable estimates do not span the entire ranges of the parameters and encapsulate the true

parameters, so there is some information about their values in the data. As we will discuss, this

partial identifiability does not hinder us from making precise predictions about the impact of

the heterogeneity in susceptibility on the disease dynamics.

Fig 5. Parameter estimates for pA, pB, and fA in the discrete case capture the true values and are highly correlated. The plots show the correlation in

the parameter estimates for a) pA vs. pB, b) pA vs. fA, and c) pB vs. fA with different numbers of focal individuals F. These are the parameters that

determine the distribution of individuals’ susceptibilities in the discrete case. The red dots represent the true parameters used to generate our simulated

data, and the gray dots depict 1, 000 parameter sets from our posterior distribution for F = 50 (light gray), 200 (medium gray), 1000 (dark gray), and

5000 (black). pA = 0.748, pB = 0.125, fA = 0.2, and N = 5.

https://doi.org/10.1371/journal.pcbi.1012310.g005
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Using Eqs 5, 6, 8 and 9, we calculated and plotted the posterior distributions for Cd and Ed
and Cc and Ec (Fig 7). With F = 1000 and N = 5, we determined the 95% CIs to be those shown

in Table 2, which capture the true values. In the discrete case, the range of potential estimates

for Cd is somewhat broad, but there is a strong ability to accurately and precisely estimate Ed.
However, in the continuous case, there is a strong ability to accurately and precisely estimate

both Cc and Ec. With increasing values of F from 50 to 5000, estimates for Cc and Ec become

more precise.

We then investigated the SIR dynamics for these parameter sets with different sample sizes

(F and N). We also investigated the dynamics with different error tolerances allowed for ABC

in the discrete case. For both underlying models, with N = 5 and F = 50, 200, 1000, or 5000, the

true dynamics are captured by the 95% CIs (Fig 8). Additionally, for F > 200 in the discrete

case and for all F in the continuous case, the estimated disease dynamics do not overlap those

where there is assumed to be no heterogeneity in susceptibility. Hence, despite low identifiabil-

ity in the parameter estimates, we are able to use this method to make accurate and precise pre-

dictions about the effect of heterogeneity in susceptibility on disease dynamics. This is because

there is interdependence among the parameters (Figs 5 and 6), and so, while individual param-

eters may be only partially identifiable, combinations of them can be precisely estimated,

Fig 6. Parameter estimates for k and θ in the continuous case capture the true values and are highly correlated. This plot shows the correlation in

the parameter estimates for k and θ that determine the gamma distribution of individuals’ susceptibilities in the continuous case with different numbers

of focal individuals F. The red dot represents the true parameters used to generate our simulated data, and the gray dots depict 1, 000 parameter sets

from our posterior distribution for F = 50 (light gray), 200 (medium gray), 1000 (dark gray), and 5000 (black). k = 0.592, θ = 0.626, and N = 5.

https://doi.org/10.1371/journal.pcbi.1012310.g006
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leading to relatively precise estimates of the level of heterogeneity in susceptibility C and the

fraction of naive individuals infected E.

We found the continuous case provided more accurate and precise predictions of disease

dynamics than the discrete case, but the 95% CIs narrowed with higher sample sizes in both

cases (Fig 8). In the discrete case, as F increased, there was a limit to how narrow the 95% CIs

became. F > 1000 did not substantially improve the predicted dynamics relative to those for

F = 1000. Likewise, the number of non-focal individuals had relatively little impact on our pre-

dicted dynamics, yielding nearly identical results for N = 5 and N = 100 (S2 Text). In the con-

tinuous case, as F increased, the 95% CIs narrowed and converged around the true dynamics.

With N = 5 versus N = 100, there was not a substantial difference in the 95% CIs (S2 Text).

To assess the accuracy of our ABC method for parameter estimation in the discrete case, we

examined the SIR dynamics with different error tolerances of 10%, 1%, or 0%. We did so with

N = 5 and F = 200 and 1000. Changing the error tolerance did not substantially impact the pre-

cision of the 95% CIs in any of the cases explored (S4 Text).

We also attempted to predict disease dynamics with the wrong underlying model of indi-

viduals’ risks as it may be unknown which model is correct in a real system. To do so, we gen-

erated data under the discrete case then predicted SIR dynamics assuming the continuous case

and vice versa. Notably, the 95% CIs from the incorrectly assumed underlying models did not

Fig 7. Parameter estimates for the coefficient of variation of risk (Cd, Cc) and expected fraction of naive individuals infected (Ed, Ec) capture the

true values and become more precise with increasing numbers of focal individuals F. The plots show the parameter estimates for C and E with

different numbers of focal individuals F in a) the discrete case and b) the continuous case. The red dots represent the true parameters used to generate

our simulated data, and the gray dots depict 1, 000 parameter sets from our posterior distribution for F = 50 (light gray), 200 (medium gray), 1000 (dark

gray), and 5000 (black). Cd = Cc = 1.3, Ed = Ec = 0.25, fA = 0.2, and N = 5.

https://doi.org/10.1371/journal.pcbi.1012310.g007
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capture the true dynamics, meaning that caution should be taken in ensuring that an accurate

model of heterogeneity is assumed before trusting the precise disease dynamics that would be

expected to arise from a given set of parameter estimates (S5 Text). Nevertheless, we stress that

the ability to detect the presence of heterogeneity is independent of the underlying model and

will not be affected by an incorrect model.

Discussion

As we saw play out during the COVID-19 pandemic, early epidemiological model predictions

of disease dynamics can be crucial in informing public health policy. There are numerous

imperfect assumptions made by standard SIR models, and a great deal of work has been aimed

at trying to improve such models. Heterogeneity in susceptibility, differences between hosts in

their likelihood of becoming infected given contact, can be critically important to disease

dynamics [7–10]. However, current methods to estimate this heterogeneity rely on data that

are collected late in an epidemic or that are unable to be collected due to ethical or logistical

constraints. Here we have developed a method to detect and estimate heterogeneity using con-

tact tracing data which, in theory, could allow epidemiologists to incorporate the effects of het-

erogeneity in susceptibility into their models even before the effects of such heterogeneity are

observable at the population scale. Using a simulation-based approach, we found that contact

Fig 8. Predicted SIR dynamics capture the true dynamics and the 95% CIs narrow as the number of focal individuals F increases. The plots show

the predicted SIR dynamics in a) the discrete case and b) the continuous case with different numbers of focal individuals F. Specifically, the fraction of

susceptible individuals S
S0

is shown over the course of an epidemic. Shaded regions represent 95% CIs determined from 1, 000 posterior samples for

F = 50 (light gray), 200 (medium gray), 1000 (dark gray), and 5000 (black). The blue lines show the true dynamics for the parameters used to generate

the contact tracing data, and the red lines show the corresponding dynamics if there is homogeneity in susceptibility. Cd = Cc = 1.3, Ed = Ec = 0.25, fA =

0.2, and N = 5.

https://doi.org/10.1371/journal.pcbi.1012310.g008
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tracing data alone have enough information to be used to detect and quantify heterogeneity in

susceptibility. For our method, power to detect heterogeneity increases with larger sample

sizes and greater heterogeneity present as well as intermediate fractions infected in the discrete

case (Ed) and high fractions infected in the continuous case (Ec).
Few studies have estimated heterogeneity in susceptibility in any infectious disease systems.

Performing a standard literature search, we were able to find 45 estimates of heterogeneity in

susceptibility explicitly provided from only 8 unique systems [7, 9, 10, 14–19, 36–38] with only

5 of those estimates pertaining to 3 human disease systems. There are additionally some stud-

ies that find heterogeneity in susceptibility but do not provide an estimate [19, 49–51] though

one could be calculated if all pertinent information were available, increasing the number of

systems for which heterogeneity in susceptibility is known to at least 10. While our list of esti-

mates may not be entirely exhaustive, our method may be useful for expanding the set of sys-

tems for which heterogeneity in susceptibility can be detected and estimated. To determine

whether our method is sufficiently powered, we need to know whether the values of the

expected fraction infected E and the coefficient of variation of risk C are in a parameter space

where our method would likely be suitable. Of the estimates for C that we found in the litera-

ture, 41 (91%) of them were greater than 0.5 and 20 (44%) were greater than or equal to 1.5.

With 200 focal individuals (F = 200), fA = 0.5, and C = 1.5, we have at least 80% power to detect

heterogeneity in susceptibility when Ed is between 0.28 and 0.92 or when Ec is between 0.26

and 0.98. With F = 1000 and C = 1.5, we have at least 80% power when Ed is between 0.18 and

0.98 or when Ec is between 0.14 and 0.98 (Figs 3 and 4). In studies examining contact tracing

data, we found secondary attack rates, which provide conservative estimates of E, to often be

around 0.2 and sometimes as high as 0.733 [43–48]. Our method should therefore be suffi-

ciently powered for many systems.

The precision in our prediction of SIR dynamics is also affected by the nature of the hetero-

geneity in susceptibility. Our estimates of how heterogeneity affects disease dynamics are less

precise when there are discrete differences in risk between hosts, as opposed to continuous

variation in risk (Fig 8). This is because, in addition to Cd and Ed, the fraction of the initial pop-

ulation that is the more susceptible type of individual, fA, is critical for determining the trajec-

tory of the epidemic. With the same Cd and Ed, the final epidemic size can differ depending on

fA (S6 Text). Hence, the need to estimate the additional parameter fA in the discrete case with

the same data results in wider 95% CIs. However, we can generate narrow 95% CIs and more

precise parameter estimates in the discrete case if there is prior knowledge of at least one of the

parameters pA, pB, or fA (S7 Text).

We found that using the correct underlying model is important for accurately predicting

disease dynamics, but not for the detection of heterogeneity in the first place. The underlying

model used for parameter estimation should therefore be carefully chosen to reflect prior

understanding of the potential drivers of heterogeneity in susceptibility in the system. The pro-

cess for initial detection of heterogeneity in susceptibility is the same regardless of the underly-

ing model (Eqs 1 and 2). Therefore, we can reliably detect heterogeneity in susceptibility

without knowledge of the distribution of individuals’ risks.

One strength of our method is that it allows for estimation of heterogeneity in susceptibility

in real time, early in an epidemic with no data other than contact tracing data. Admittedly, the

use of these data in real time will depend on the speed with which the necessary data can be

collected and communicated, but existing methods to quantify heterogeneity are not adequate

for real time usage even with immediate access to the data. Ben-Ami et al. [17] and Langwig

et al. [9] used experimental dose-response curves to estimate heterogeneity in susceptibility,

and Dwyer et al. [7] used a combination of laboratory dose-response experiments, field trans-

mission experiments, and models fit to mortality data to investigate heterogeneity. Although
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these experimental methods can provide good estimates of heterogeneity in susceptibility, they

are not feasible for application in real time or for human epidemics in general due to time con-

straints and ethical concerns. Gomes et al. [15] compared disease incidence across municipali-

ties in several countries to quantify heterogeneity for tuberculosis. This was done by ordering

the municipalities by incidence rate and plotting the percentage of cumulative tuberculosis

cases versus cumulative population sizes to construct Lorenz curves and thereby fit susceptibil-

ity risk distributions. This method, however, requires a considerable amount of data with ten

or more years of data used in this study. Smith et al. [18] and Corder et al. [19] used malaria

morbidity data to fit models of malaria and estimate heterogeneity. This method cannot be

used until later in an epidemic when sufficient data are collected to fit curves. Gomes et al. [10]

also used curve fitting with mortality data to estimate heterogeneity in susceptibility for

COVID-19. They were able to estimate heterogeneity in real time once at least four months of

data were available. While our method is in principle able to estimate heterogeneity in a similar

time frame provided robust contact tracing, we also note that their method is heavily depen-

dent on the underlying model and assumptions, and the authors advise not to trust the preci-

sion of their estimates. In addition, Gomes et al. [10] were unable to disentangle heterogeneity

in contact rate from heterogeneity in underlying susceptibility. Our method estimates hetero-

geneity in underlying susceptibility, and the remaining heterogeneity in contact rate can be

determined from the contact network data. Anderson et al. [20] used household study data to

estimate heterogeneity in susceptibility. While this method is suitable for use in real time, and

can be applied to human infectious diseases, the method notably is designed to estimate het-

erogeneity within households, which is not the same as the population-level heterogeneity that

drives population-level disease dynamics.

Our method is unable to precisely estimate the individual parameters that define the risk

distributions (i.e., pA, pB, fA in the discrete case and k, θ in the continuous case), but our

method is able to reliably predict disease dynamics. This seeming paradox arises because the

disease dynamics depend on combinations of parameters rather than individual parameters.

Notably, our method is substantially better at estimating the composite parameters describing

the coefficient of variation of risk C and the expected fraction of naive individuals infected E.

Nevertheless, our method does require a substantial amount of data (200 individuals showing

up in contact networks for a second time). This requirement could be mitigated by pooling

contact network data from multiple locations in order to more quickly collect sufficient data.

It may also be possible to combine our method with another, like that of [10], to reduce the

data required by either method. By combining our method with another, it may also be possi-

ble to more precisely estimate the individual parameters (i.e., pA, pB, fA in the discrete case and

k, θ in the continuous case) that our method has limited ability to precisely estimate.

There are additionally several considerations to address with regard to working with con-

tact tracing data. Perhaps most prominently, contact tracing data tend to be messy and imper-

fect. Our method as described above assumes perfect data. However, our method can be

readily modified to account for imperfect data. We can imagine multiple ways in which con-

tact tracing data may be imperfect. Some important considerations are that: a) individuals may

be mislabeled as uninfected when they are infected (false negatives), b) individuals may be mis-

labeled as infected when they are uninfected (false positives), and c) individuals may be miss-

ing from the contact networks despite being contacts (missing contacts). If there are false

negatives, our method may overestimate the level of heterogeneity because our estimate of pf
may be biased lower. This is because, assuming infection confers at least partial immunity,

focal individuals that were actually infected previously (i.e. false negatives) will be less likely to

be infected than focal individuals that were true negatives. To counteract this issue, we devel-

oped a version of the method that corrects for false negatives by adjusting the likelihood
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calculations for both detecting and estimating heterogeneity. For estimating parameters and

predicting disease dynamics, adjusting the method to correct for false negatives fixes the issue

(S8 Text). For detecting heterogeneity in susceptibility, adjusting the likelihood calculation

corrects for the impact of false negatives except when the expected fraction infected Ed is very

close to 1. We do not think this will be a major issue as Ed is typically less than 0.5 [43–48]. If

there are false positives, our method may underestimate the level of heterogeneity because our

estimate of pf may be biased higher. This is because a high false positive rate will have a larger

impact on individuals with a low susceptibility than those with a high susceptibility. Hence,

focal individuals, which are on average less susceptible, and naive individuals will appear to

have more similar infection probabilities. However, false positive rates are often small, close to

1–2% [52, 53], so this issue is not a huge concern for our method unless false positive rates are

known to be unusually large. If there are many missing contacts, our method may have

reduced power to detect heterogeneity because our estimates of pn and pf may both be biased

lower, resulting in a smaller difference between them. This is because individuals that we

observe as being exposed one (naive) or two (focal) times total but that were actually previ-

ously exposed more times may be less likely to be infected than true naive and focal individu-

als. These missed individuals may have gained immunity through infection or may be on

average less susceptible through the infection selection process. Nevertheless, with only about

50% of exposures captured, our method is able to accurately estimate the level of heterogeneity

and predict disease dynamics. Additionally, the reduction in detection power caused by miss-

ing contacts is lessened with increasing sample size (S12 Text). Early in an epidemic there is

also a low chance of substantial missed individuals showing up in the second contact networks

that our method evaluates. So, missing individuals should have only a negligible effect on the

method’s power in these early stages. While we have considered these three ways in which con-

tact tracing data may be imperfect, it is highly likely that each set of contact tracing data will

have its own set of peculiarities. Note that these peculiarities, if known, can readily be

accounted for using our ABC method since any process may be used for simulation. Known

imperfections in the data should therefore not bias estimates although they may still reduce

power or increase required sample sizes.

We have presented our method using contact tracing data that were simulated as static con-

tact networks, all of the same size N. In reality, contact networks would come from a dynamic

epidemic and have varying N. To verify our method’s performance on this more realistic data,

we generated contact tracing data from a stochastic, individual-based SIR model. We recov-

ered the same results for both detection and estimation with the dynamically generated contact

networks in the discrete and continuous cases with the exception that the method may need to

be modified late in an epidemic after individuals have been exposed many times (S11 Text).

Therefore, the method can be reliably applied to contact tracing data from a dynamic epidemic

and is not impacted by variable contact network sizes.

Another important point is that our method, as presented, assumes no forms of heterogene-

ity other than heterogeneity in susceptibility. One other source of heterogeneity is heterogene-

ity in transmission [54]. Heterogeneity in transmission is differences between hosts in their

likelihood of transmitting a pathogen once infected. If this heterogeneity arises due to varia-

tion in the number of contacts that individuals have, then heterogeneity in transmission poses

no problems for our method. It would simply mean that each contact network would have a

unique value for N (S11 Text). We note that this variation in contact rate is the typical mecha-

nism through which heterogeneity in transmission is assumed to act [54]. However, if hetero-

geneity in transmission arises due to differences between hosts in their likelihood of

transmission given contact, our method may have less power to detect heterogeneity in suscep-

tibility and may yield less precise or faulty conclusions about the disease dynamics (S9 Text).
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Our method, in its base form, is thus not suitable in these cases. A first step to identify whether

this is a concern is to perform a goodness of fit test before implementing the method to deter-

mine whether there is evidence of heterogeneity in transmission given contact (S9 Text). If this

source of heterogeneity is detected, then our base method should not be used, and the general-

ized version of our method that simultaneously accounts for both sources of heterogeneity

should instead be employed (S10 Text).

There may additionally be heterogeneity in exposure strength among contacts within a net-

work such that individuals experience different forces of infection. This could be due to factors

like differences in exposure time or type of contact (e.g., contacts that shared a taxi, were at the

same party, etc.). This added heterogeneity may reduce the power of our method to detect het-

erogeneity in susceptibility as different contact types may have different transmission probabil-

ities, providing varying levels of information that our current method disregards. To alleviate

the potential impact of this heterogeneity, it may be necessary to break apart contact networks

into specific exposure events or by some relevant factor, such as the duration of contact, and

either weigh the type of contact differently or only use equivalent contact types.

Finally, we note that exposure could change individuals’ susceptibilities. Individuals

exposed in a first contact network could receive a small dose of the pathogen such that their

immune system is stimulated without them becoming infected. This could decrease their sus-

ceptibility, meaning that some focal individuals have lower susceptibilities because they devel-

oped immunity, not because they were innately less susceptible [55]. However, this will have

the same effect as heterogeneity in susceptibility of slowing down the epidemic and could even

be considered a form of heterogeneity in susceptibility. In the same way, vaccination could

affect susceptibility and be a cause of heterogeneity in susceptibility [9].

The earliest practice of tracing diseases dates back to the 1500s when doctors would track

the spread of syphilis [56], and the earliest known example of contact tracing dates to 1576

during a bubonic plague pandemic [57]. Since then, the practice of contact tracing has spread,

and it is now used widely, ranging from diseases such as influenza to HIV [43–48]. Recently,

contact tracing data has transitioned from paper copies to electronic databases. Regardless, all

of these sources of data could be used with our method provided they include focal individuals

that are identifiable between contact networks, specify which individuals are infected, and

have a sufficient sample size. Using our method, it should therefore, without collecting any

new data, be possible to estimate heterogeneity in susceptibility in various locations and time

periods for dozens of disease systems in which it has never been estimated previously.
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49. Flasche S, Hens N, Boëlle PY, Mossong J, van Ballegooijen WM, Nunes B, et al. Different transmission

patterns in the early stages of the influenza A (H1N1) v pandemic: A comparative analysis of 12 Euro-

pean countries. Epidemics. 2011; 3(2):125–33. https://doi.org/10.1016/j.epidem.2011.03.005 PMID:

21624784

50. Franco N, Coletti P, Willem L, Angeli L, Lajot A, Abrams S, et al. Inferring age-specific differences in

susceptibility to and infectiousness upon SARS-CoV-2 infection based on Belgian social contact data.

PLoS Comput Biol. 2022; 18(3):e1009965. https://doi.org/10.1371/journal.pcbi.1009965 PMID:

35353810

51. Zhu W, Wen Z, Chen Y, Gong X, Zheng B, Liang X, et al. Age-specific transmission dynamics under

suppression control measures during SARS-CoV-2 Omicron BA. 2 epidemic. BMC Public Health. 2023;

23(1):743. https://doi.org/10.1186/s12889-023-15596-w PMID: 37087436

52. Yang S, Rothman RE. PCR-based diagnostics for infectious diseases: uses, limitations, and future

applications in acute-care settings. Lancet Infect Dis. 2004; 4(6):337–48. https://doi.org/10.1016/

S1473-3099(04)01044-8 PMID: 15172342

53. Cohen AN, Kessel B, Milgroom MG. Diagnosing SARS-CoV-2 infection: the danger of over-reliance on

positive test results. medRxiv [Preprint]. 2020. Available from: https://www.medrxiv.org/content/10.

1101/2020.04.26.20080911v4

54. Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM. Superspreading and the effect of individual variation

on disease emergence. Nature. 2005; 438:355–9. https://doi.org/10.1038/nature04153 PMID:

16292310

55. Leon AE, Hawley DM. Host responses to pathogen priming in a natural songbird host. EcoHealth. 2017;

14:793–804. https://doi.org/10.1007/s10393-017-1261-x PMID: 28766063

56. Cohn SK Jr. Syphilis: Naming and Blaming? In: Epidemics: Hate and Compassion from the Plague of

Athens to AIDS. Oxford University Press; 2018.

57. Cohn SK Jr. Plague Disputes, Challenges of the ‘Universals’. In: Cultures of Plague: Medical thinking at

the end of the Renaissance. Oxford University Press; 2009.

PLOS COMPUTATIONAL BIOLOGY Detecting and quantifying heterogeneity in susceptibility using contact tracing data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012310 July 29, 2024 24 / 24

https://doi.org/10.1086/510487
http://www.ncbi.nlm.nih.gov/pubmed/17173235
https://doi.org/10.1056/NEJMoa0906089
https://doi.org/10.1056/NEJMoa0906089
http://www.ncbi.nlm.nih.gov/pubmed/20042754
https://doi.org/10.1186/s12916-015-0524-z
http://www.ncbi.nlm.nih.gov/pubmed/26607790
https://doi.org/10.1371/journal.pone.0240205
https://doi.org/10.1371/journal.pone.0240205
http://www.ncbi.nlm.nih.gov/pubmed/33031427
https://doi.org/10.1016/j.epidem.2011.03.005
http://www.ncbi.nlm.nih.gov/pubmed/21624784
https://doi.org/10.1371/journal.pcbi.1009965
http://www.ncbi.nlm.nih.gov/pubmed/35353810
https://doi.org/10.1186/s12889-023-15596-w
http://www.ncbi.nlm.nih.gov/pubmed/37087436
https://doi.org/10.1016/S1473-3099(04)01044-8
https://doi.org/10.1016/S1473-3099(04)01044-8
http://www.ncbi.nlm.nih.gov/pubmed/15172342
https://www.medrxiv.org/content/10.1101/2020.04.26.20080911v4
https://www.medrxiv.org/content/10.1101/2020.04.26.20080911v4
https://doi.org/10.1038/nature04153
http://www.ncbi.nlm.nih.gov/pubmed/16292310
https://doi.org/10.1007/s10393-017-1261-x
http://www.ncbi.nlm.nih.gov/pubmed/28766063
https://doi.org/10.1371/journal.pcbi.1012310

