SYMFIT: Making the Common (Concrete) Case Fast for
Binary-Code Concolic Execution

Zhenxiao Qi Jie Hu
UC Riverside UC Riverside
Abstract

Concolic execution is a powerful technique in software test-
ing, as it can systematically explore the code paths and is
capable of traversing complex branches. It combines concrete
execution for environment modeling and symbolic execution
for path exploration. While significant research efforts in con-
colic execution have been directed toward the improvement of
symbolic execution and constraint solving, our study pivots to-
ward the often overlooked yet most common aspect: concrete
execution. Our analysis shows that state-of-the-art binary con-
colic executors have largely overlooked the overhead in the
execution of concrete instructions. In light of this observation,
we propose optimizations to make the common (concrete)
case fast. To validate this idea, we develop the prototype,
SYMFIT, and evaluate it on standard benchmarks and real-
world applications. The results showed that the performance
of pure concrete execution is much faster than the baseline
SYMQEMU, and is comparable to the vanilla QEMU. More-
over, we showed that the fast symbolic tracing capability of
SYMFIT can significantly improve the efficiency of crash
deduplication.

1 Introduction

Symbolic execution [9, 13, 16,26,27] is a powerful technique
for automated software testing that has gained significant at-
tention in recent years. It has been widely used in finding
security vulnerabilities due to its capability of effective code
path exploration. Despite its effectiveness, symbolic execution
is also known to be expensive. Recently, the efficiency of con-
colic execution has been greatly improved. SymCC [24] and
SymSan [11] take a compile-time instrumentation approach
to collect and solve path constraints and are several orders
of magnitude faster than QSYM [31], which is based on dy-
namic binary instrumentation. SymSan [11] is even faster than
SymCC [24] by utilizing the highly optimized shadow mem-
ory from data-flow sanitizer [30]. While SymCC and SymSan
require the source code of the target program to perform con-
colic execution, QSYM [31] and SymQEMU [23] provide a

Zhaoqi Xiao
UC Rvierside

Heng Yin
UC Rvierside

binary-only solution by directly weaving the concolic execu-
tion logic into the dynamic binary translation process.

Essentially, concolic execution combines concrete and sym-
bolic execution. While significant research efforts in concolic
execution have been directed toward the improvement of sym-
bolic execution and constraint solving [11, 12,23, 31], our
study pivots toward the often overlooked yet most common
aspect, concrete execution. First, we review the design of exist-
ing binary concolic executors, focusing on how concrete and
symbolic execution are mixed, and evaluate the overhead of
handling concrete execution in the state-of-the-art binary con-
colic executor, SYMQEMU. We observed that even though
SYMQEMU has significantly improved the performance of
concolic execution on binary code over QSYM, it still exhibits
a large overhead in handling the execution of concrete instruc-
tions. Our evaluation shows that when no symbolic inputs
are introduced, the concrete execution in SYMQEMU is 35 x
slower than vanilla user-mode QEMU on SPEC CINT-2006
benchmarks.

“Optimize for the common case” is a principle in com-
puter science and engineering that suggests designing and
optimizing systems, algorithms, and software based on the
most frequent or expected use cases, rather than focusing pri-
marily on edge cases or rare scenarios. Inspired by this prin-
ciple, we design an efficient concolic execution framework
with optimization for the common case, concrete execution.
We note that in concrete execution, only load and store in-
structions need to be checked as they can potentially access
symbolic values in the shadow memory, the rest instructions
can run natively without instrumentation. To reduce the la-
tency of checking concrete shadow memory, we designed
a Concrete Memory Lookaside Buffer (CMLB) that caches
recent-accessed concrete memory pages. As a result, checking
whether the address is concrete can be performed by a few
instructions that look up CMLB. When loading a symbolic
value in concrete mode, the execution should transit to sym-
bolic mode, where instructions are monitored to collect their
symbolic effects. More importantly, the concolic execution
engine automatically switches between concrete mode and

symbolic mode to avoid unnecessary monitoring of concrete
instructions.

We build our prototype, SYMFIT, on top of user-mode
QEMU, with our optimizations for the common (concrete)
cases. For the frontend, we follow the instrumentation strategy
in SYMQEMU to propagate and collect symbolic constraints.
For the backend, we adopt the ideas in SymSan [11] for its
efficient symbolic state and shadow memory management.

We compared SYMFIT with its baseline SYMQEMU, and
found that the overhead in concrete execution is greatly re-
duced on standard benchmarks (SPEC CINT-2006 [5] and
Linux/Unix nbench [3]) and real-world applications (Google’s
Fuzzbench [2] and Unibench, the real-world benchmark pre-
sented in UniFuzz [20]). The evaluation results showed that
compared to SYMQEMU, SYMFIT achieved 13x and 20x
speedup on SPEC CINT and nbench for pure concrete exe-
cution. When the overhead of constraint solving is excluded,
SYMFIT is 12.03 x faster than SYMQEMU on Fuzzbench
programs. When solving is enabled, SYMFIT can still enjoy
a 6.67x speedup over SYMQEMU. In the end-to-end hybrid
fuzzing experiment, SYMFIT can achieve similar edge cov-
erage faster than SYMQEMU and sometimes achieve higher
edge coverage. Moreover, the fast symbolic tracing capability
of SYMFIT can significantly improve the efficiency of bug
detection and crash deduplication.

Contributions. In summary, we make the following contri-
butions:

* We review the system designs of existing binary concolic
executors, with respect to how they combine concrete
and symbolic executions. We make an observation that
these designs incur significant overhead for concrete
execution, which is the common case.

* We propose two key optimizations, lightweight concrete
mode and concrete memory lookaside buffer, which sig-
nificantly reduce the concrete execution overhead.

* We build a prototype, SYMFIT, and evaluate it on stan-
dard benchmarks (SPEC-CINT and nbench), real-world
applications (Fuzzbench and Unifuzz), and security ap-
plications (crash deduplication). Moreover, we make
SYMFIT publicly available to foster future research in
the area.

2 Background and Motivation

Symbolic execution is a technique that can explore all possible
execution paths in software using symbolic values instead of
concrete inputs. It tracks the values of symbolic inputs as they
are propagated by the program, and maintains a map from
program variables (including registers and memory) to their
symbolic expressions. When the engine encounters a branch
statement with symbolic operands, it constructs a boolean
formula based on collected symbolic expressions and checks

the feasibility using an SMT solver. To generate a concrete
input that follows the same execution path, the engine queries
the SMT solver for feasible assignments to symbolic values.

Concolic Execution. One challenge of classic symbolic exe-
cution is that it fails to explore the execution path when the
path constraints are too complex for the SMT solver to solve
within a limited time. To alleviate this issue, researchers have
proposed concolic execution, where the symbolic path explo-
ration is guided by the execution of the program with concrete
inputs. To explore executions that deviate from the current
concrete execution path, the concolic execution engine checks
the feasibility of the opposite branch by querying the SMT
solver and generates concrete inputs leading to that direction
if feasible.

2.1 Source-Code Concolic Execution

In order to trace the execution of the target program, sym-
bolic execution engines need to understand the underlying
instruction set. Classic symbolic execution engines [9, 13,28]
perform the analysis on the intermediate representation (IR)
lifted from the program. At the core of such engines, an
interpreter runs the IR symbolically and keeps a record of
how symbolic values are computed in the program. While IR
interpretation-based approaches are portable and architecture-
agnostic, they all face scalability issues. Recently, a line of
research works has shown that compiling or instrumenting the
symbolic execution logic into the program can benefit from
the native execution of the program, thus much faster than IR
interpretation-based approaches. For example, SymCC [24]
and SymSan [11] compile symbolic execution logic into the
target program at LLVM IR level. They hook into the com-
piler and inject library function calls that interact with the
symbolic execution backend. Such approaches also benefit
from compiler optimizations, and instrumentation only needs
to be done once for each program. However, compilation-
based approaches fundamentally require a compiler, thus not
applicable when the source code of the program or third-party
libraries are not accessible.

2.2 Binary-Code Concolic Execution

While source-code concolic execution (such as SymCC [24]
and SymSan [11]) is highly efficient, it has drawbacks too.
The source code of the target program as well as all the depen-
dent libraries must be available for compiler instrumentation.
This assumption does not hold for proprietary software and li-
brary components. Even if the source code of all the software
components is available, one may still encounter various com-
patibility issues when compiling these components with the
compilers that come with these concolic execution engines.
If for any reason a component cannot be properly compiled,
function summaries must be provided for the functions ex-
ported by this component. Otherwise, constraint collection

might be incomplete or incorrect. However, writing function
summaries can be a tedious and error-prone process by itself.
Therefore, concolic execution that can directly work on binary
code is desirable.

In essence, concolic execution combines symbolic execu-
tion and concrete execution to explore program execution
space. In this subsection, we review the system designs of
existing binary-code concolic executors, with respect to how
they combine concrete and symbolic executions, as illustrated
in Figure 1.

Angr. Angr [17,28] is a binary concolic executor that utilizes
the Unicorn engine [25] (i.e. user-mode QEMU) for concrete
execution and the Valgrind framework for symbolic interpre-
tation. To avoid heavyweight symbolic interpretation, Angr
provides APIs for users to select functions or code regions
for symbolic exploration (Figure 1). Initially, Angr executes
the target binary concretely via the Unicorn engine to aggre-
gate a concrete environment model, i.e., concrete values for
registers and memory. Upon reaching a user-defined Point
of Interest (Pol), a symbolic state is initialized, replicating
the concrete states and setting user-selected states (register
or memory) as symbolic. Then symbolic execution is per-
formed with initialized symbolic states. Once the symbolic
exploration converges on the Target Point (TP), symbolic ex-
ecution terminates and each symbolic variable is assigned a
concrete value that satisfies collected symbolic constraints
and synchronized with concrete states to drive the concrete
execution.

S2E. S2E [13] runs the entire operating system in the whole-
system emulator QEMU and connects to KLEE [9] to sym-
bolically execute selected code regions (Figure 1). Similar to
Angr’s strategy, it minimizes symbolic emulation overhead
by letting users pinpoint functions or code regions to explore
symbolically. Specifically, it provides two plugins, Annota-
tion, and CodeSelector, allowing users to annotate variables
as symbolic and specify code ranges to perform symbolic
execution.

Mayhem. Instead of manually selecting boundaries between
symbolic and concrete executions, Mayhem [10] provides a
different strategy to reduce unnecessary emulation for con-
crete instructions with taint tracking. Specifically, the concrete
execution engine instruments the target binary and performs
dynamic taint analysis to track attacker-controlled input from
environment variables, files, and networks. During the con-
crete execution, tainted instruction traces are streamed to the
symbolic executor (KLEE) for symbolic exploration and ex-
ploit generation.

Problem 1: Concolic executors like Angr and S2E deter-
mine boundaries between concrete execution and symbolic ex-
ecution upon user selection. This strategy effectively reduces
the total overhead of symbolic emulation, as only selected
code regions are executed symbolically. However, this strat-
egy is coarse-grained. First, it requires preliminary reverse

engineering efforts to first identify target functions or relevant
code ranges, and designate which values should be treated
as symbolic. Second, even within code segments selected for
symbolic execution, many instructions that do not operate
on symbolic values should be executed concretely. Third, se-
lected code regions might overlook instructions outside of
the selected range that require symbolic emulation. Mayhem
performs dynamic taint analysis to ensure tainted instructions
are subject to symbolic emulation, while untainted ones are
spared. However, dynamic taint analysis introduces additional
overhead at runtime, which becomes particularly problematic
for whole-system emulation.

Problem 2: Notably, the above approaches all perform
symbolic and concrete executions in two processes. As a
result, Angr and S2E inevitably need to perform context
switches between two engines and non-trivial synchroniza-
tion between the symbolic and concrete environment, while
Mayhem has to lift the target binary twice, one in Pin to per-
form dynamic taint tracking, another one in BAP for symbolic
emulation.

QSYM and SymQEMU. Instrumentation-based approaches,
such as QSYM and SymQEMU, were proposed to obviate
the need for context switches and synchronization between
the symbolic and concrete environment. This is achieved by
injecting symbolic emulation logic directly into the target
program, which enables running concrete code and symbolic
emulation within one process, rendering mode switches ex-
tremely lightweight - essentially, a mere function call. More-
over, symbolic emulation logic is instrumented and executed
together with the target binary on CPU, yielding a much
higher performance compared to interpretation-based sym-
bolic emulation like Angr, S2E, and Mayhem.

To avoid symbolic emulation overhead for concrete in-
structions, QSYM employs dynamic taint tracking to identify
instructions that need symbolic emulation (Figure 1). Specifi-
cally, QSYM has to disassemble each instruction at run time
and check each operand to determine if this instruction needs
to be executed concretely or symbolically. The disassembling
and taint checking inevitably introduce additional overhead.
Notably, symbolic emulation intrinsically propagates sym-
bolic data. Therefore, SYMQEMU (Figure 1), rather than re-
lying on additional taint tracking, evaluates the need for sym-
bolic emulation for an instruction by checking if its operand(s)
(variables or memory addresses) are symbolic. This method
enables it to bypass symbolic emulation for concrete instruc-
tions while eliminating the need for dynamic taint tracking
and shows better efficiency than QSYM.

2.3 The Common Case Overhead

Our study pivots towards the often overlooked yet most com-
mon aspect: concrete execution, rather than symbolic execu-
tion and constraint solving methodologies, where significant
research efforts have been directed towards [11, 12,23, 31].

(b): Overview of MAYHEM

User-defined i
{———>1| Angr/KLEE
Switch
Symbolic
State Sync Interpretation

Symbolic Execution

(c): Overview of QSYM

If tainted

:> Symbolic
Emulation
(Concrete)

State Concrete Env. Modeling

Taint Tracker

Taint-trace

Forwarding

Symbolic
Evaluator

Symbolic
Checking

Concrete
State

If symbolic -
:> QSYM Symbolic
Backend

Concrete Env. Modeling

Figure 1: How concrete execution and symbolic execution are combined in binary-code concolic execution

Table 1: SYMQEMU on CINT-2006 w/ concrete inputs

CINT-2006 QEMU (s) SYMQEMU (s) Overhead (x)

hmmer 8.00 293.39 36.63
libquantum 541.78 17035.43 31.44
bzip2 179.81 4625.94 25.73
mcf 244.83 3072.34 12.55
sjeng 978.06 29495.09 30.16
gcc 71.82 1749.03 24.35
xalancbmk 308.25 68874.56 223.44
Geo. Mean 34.74

Notably, within the mix of concolic execution, concrete execu-
tion often emerges as the "common case". In this section, we
want to gain insights into how good SYMQEMU, the state-of-
the-art binary concolic, handles the common case, concrete
execution. We conducted a preliminary evaluation using the
SPEC CINT-2006 benchmark programs. Since QEMU fails
to run new versions of SPEC CINT benchmarks due to un-
supported instructions, only a few benchmarks were selected
from SPEC CINT-2006 as motivating examples. By compar-
ing the execution time of pure concrete inputs, we were able
to identify the overhead introduced by SYMQEMU in han-
dling concrete execution, in which it only needs to perform
concreteness checks on shadow variables and memory. The
results (Table 1) indicate an overhead of up to 223 x and an
average of 35x. According to the evaluation in Mayhem [10]
and our observation, the majority of instructions (90%) are
executed concretely. Therefore, the room for further perfor-
mance improvement is still large.

We further analyzed SYMQEMU to understand the over-

1 static inline void tcg_gen_add_i64 (TCGv_i64 ret,

2 TCGv_1i64 argl, TCGv_1i64 arg2)

3|

4 // Add a helper function call to IR.

5 tcg_gen_helper_sym_add(ret_expr, argl_expr, arg2_expr);
6 tcg_gen_op3_164 (INDEX_op_add_1i64, ret, argl, arg2);
7}

8 void *helper_sym_add(ret_expr, argl_expr, arg2_expr)

9o

10 // Concreteness checking.

11 if (argl_expr == NULL && arg2_expr == NULL) {

12 // Return if both expressions are concrete.
13 return NULL;

14 }

15 e

16 // Build symbolic expression for add.

17 return _sym_build_add_i64 (argl_expr, arg2_expr);

Listing 1: An example of SYMQEMU's instrumentation us-
ing helper functions.

head of handling the common case, concrete execution. First,
to determine whether an instruction should be executed con-
cretely or symbolically, SYMQEMU inserts a helper function
call before each instruction (except for mov-like instructions)
to check whether operands are concrete. If so, the symbolic
emulation of this instruction can be skipped. As an example
shown in Listing 1, a helper function is added (at line 5) when
generating the IR for the add instruction. This helper func-
tion (at line 8) checks the concreteness (line 11) of operands
and builds symbolic expression (line 17) if needed. While
checking the concreteness of operands is necessary, doing so
by checking every instruction incurs a non-negligible over-

head. Secondly, shadow memory checking in SYMQEMU
is expensive. To check the concreteness of an address, the
virtual address is first translated to its corresponding shadow
address using a two-level mapping. Then, the shadow address
is accessed to determine if it is concrete. As memory accesses
are frequent, such overhead can be significant when analyzing
real-world applications.

Scope. In this work, we follow the system design principle of
“optimize for the common case” to design a concolic executor
with optimized concrete execution. While this principle is
generic to be applied to different solutions of concolic ex-
ecutors, such as QSYM, our concolic executor follows the
design of SYMQEMU, as the underlying framework, QEMU,
is open-sourced, allowing us to implement our optimization
strategies at the system level. We have made key observations
of SYMQEMU that guide our approach:

» The concrete execution exhibits non-negligible overhead
due to concreteness checking at the instruction level. We
argue that, in concrete execution, only load and store
need to be monitored as they may potentially access
shadow memory from memory. No concreteness check-
ing is necessary for the rest instructions to keep concrete
execution fast. The transition to symbolic execution hap-
pens as soon as a symbolic value is loaded from shadow
memory to ensure the correctness of symbolic emulation.
In symbolic execution, the engine should switch back to
concrete execution as soon as no symbolic emulation is
needed.

(Concrete) shadow memory access can be frequent
and imposes significant overhead. Checking for shadow
memory can be optimized by caching recent-accessed
concrete memory pages. By doing so, the overhead of
shadow address translation and shadow memory access
can be avoided if the cache hits.

3 System Overview

Essentially, the design of concolic executors consists of the
front end for symbolic state collection and the back end for
symbolic state management. SYMFIT follows the front-end
design of SYMQEMU, which adopts user-mode QEMU for
its reasonable performance and multi-architecture support.
Instead of reusing the symbolic backend from QYSM as
SYMQEMU does, we adopt the symbolic state management
from SymSan [11], a recent work that shows efficient sym-
bolic expression and shadow memory management. While
SymSan requires the source code of target programs, we in-
troduce more details about how we apply SymSan’s ideas for
binary concolic execution in §3.2.

More importantly, SYMFIT is designed to optimize for the
common (concrete) case. It features a lightweight concrete
execution and the ability to efficiently discern the boundary

between symbolic and concrete execution. To optimize for
the common (concrete) case, it only monitors load and store
instructions in concrete execution. When a symbolic load is
detected, SYMFIT switches to the symbolic mode with full
instrumentation. When symbolic emulation is no longer nec-
essary, it transitions back to the concrete mode. To determine
when to switch, SYMFIT evaluates the concreteness of CPU
registers at the end of each basic block, instead of checking
every instruction which has a non-negligible overhead.

Figure 2 illustrates the architecture of SYMFIT. It is built
atop a dynamic binary translator, QEMU, and takes a binary
as input. The concolic execution logic is instrumented into the
binary dynamically, allowing it to switch between lightweight
concrete mode and symbolic execution mode at runtime. The
latency of shadow memory access is improved by the Con-
crete Memory Lookaside Buffer (CMLB) lookup, which is
done by a few instructions inlined into native code during
translation. SYMFIT utilizes a symbolic backend to construct
symbolic path constraints, query the SMT solver, and generate
new test inputs for path exploration.

Lightweight Concrete Execution. As shown in Table 1,
even with no symbolic inputs, SYMQEMU still incurs a 35
times slowdown compared to the vanilla QEMU. This over-
head comes solely from instrumented helper function calls
(as shown in Listing 1) that check whether shadow variables
or memory are concrete. In fact, when no symbolic value is
involved, there is no need for such instrumentation and the
program can be analyzed in concrete mode. In concrete mode,
no symbolic emulation will be added to the original code,
except for the load and store instructions that may potentially
access symbolic values from the shadow memory. Therefore,
only the memory access instructions are instrumented to mon-
itor whether the source is symbolic, if so, the execution should
switch to the symbolic mode. Section §3.1 introduces how
SYMPFIT efficiently performs this check for load and store
instructions. For memory stores, the shadow memory of the
destination operand will be cleaned since the source operand
is always concrete.

Mode Switch. While concrete mode is efficient, instructions
that need symbolic emulation should be instrumented to en-
sure correct symbolic state propagation and constraint collec-
tion. Also, SYMFIT should transition back to concrete mode
as soon as symbolic emulation is not necessary. The key chal-
lenge is to decide when and how the transition between the
two modes should occur. To ensure the proper propagation
of symbolic states, the execution should switch to the sym-
bolic mode immediately upon loading symbolic data from the
shadow memory. To minimize the instrumentation overhead,
the execution should switch to the concrete mode whenever
no symbolic values are involved. Moreover, the transition be-
tween the two modes should be seamless without disrupting
the program’s execution. SYMQEMU [23] is built on top
of the dynamic binary translator QEMU (user mode) [7]. It

QEMU Lightweight
Concolic Execution

Concrete Symbolic
Mode Mode

|
1
|
1
CMLB :>: Shadow
Loopup \ Memory
4

Dynamic Binary Translation

Instrumented
[TCG OPs H TCG OPs J

TCG TCG
Lifter Compiler

[BIN | Host
10110 Binary
01001

Symbolic Backend
, pmmEEEEEEEEEE S o
1 Symbolic \
I | Expressions
|
! SMT Solver

Symbolic State
Management

Z3

———— -

A

Figure 2: Overview of SYMFIT

translates and executes the target binary at the basic block
level. Before executing a basic block, it first checks whether
this block has been translated before, if so, it directly fetches
the generated machine code from the code cache and if not,
it translates this block of code and stores the generated code
into the code cache. To avoid the repeated translation over-
head, we designed two code caches for two execution modes
correspondingly such that each mode only fetches from or
stores to its own code cache.

Transition from Concrete Mode. In the concrete mode, all
vCPU registers are concrete, and only the shadow memory
may contain symbolic values. Therefore, SYMFIT only in-
struments memory loads and stores to detect if a symbolic
value is loaded from memory or overwritten by a concrete
value. If so, SYMFIT will automatically switch to the sym-
bolic mode. This switch is triggered by a custom exception:
EXCP_SYM_SWITCH defined in QEMU’s vCPU data structure.
When a load from symbolic shadow memory occurs, the ex-
ception is raised, forcing the execution to jump back to the
main execution loop of QEMU. In the execution loop, this
exception is captured and handled by changing the mode flag
that instructs how QEMU should instrument the target binary
and select the code cache.

Transition from Symbolic Mode. In the symbolic mode,
SYMFIT inserts the full symbolic execution logic into the
program. We use the vCPU register states as an indicator to
switch from the symbolic mode to the concrete mode. Right
before QEMU executes the target basic block in symbolic
mode, SYMFIT checks if all vCPU registers are concrete. If
so, no symbolic value is involved in this basic block, and
SYMFIT can safely switch back to the concrete mode for
better efficiency.

3.1 Efficient Shadow Memory Checking

SYMFIT adopts a lightweight concrete execution by only
monitoring memory accesses (i.e., load and store). As pre-
sented in Table 2, the concrete execution mode results in an
average of 3x speedup over SYMQEMU on SPEC-CINT

benchmarks. However, shadow memory checking still has
about an 11X slowdown compared to the vanilla QEMU.

Table 2: Speedup of lightweight concrete mode over
SYMQEMU on SPEC CINT-2006 with all concrete inputs
and overhead of mode switch compared to vanilla QEMU.
SYMFIT-M represents SYMFIT with only the optimization
of mode switching between lightweight concrete mode and
symbolic mode.

CINT-2006 SYMQEMU SYMFIT-M Speedup Overhead

hmmer 293.39s 107.85s 2.72x 13.46x
libquantum 17035.43s 4155.04s 4.01x 7.66%
bzip2 4625.94s 1109.15s 4.17x 6.16%
mcf 3072.34s 883.54s 3.48x 3.61x
sjeng 29495.09s 6634.13s 4.45x 6.78 x
gcc 1749.03s 518.36s 3.38x 7.21x
xalancbmk 68874.56s 63293.54s 1.09x 205.34x
Geo. Mean 3.08x 11.27x

In SYMQEMU, load and store instructions are instru-
mented with helper function calls to first check whether the
destination address is concrete. To optimize for the common
case of concrete shadow memory access, SYMFIT maintains
a buffer that stores recently accessed concrete pages. It is
inspired by how the system-mode QEMU accelerates the ad-
dress translation. In the system-mode QEMU, each memory
access must go through an address translation from its guest
virtual address to its host virtual address. A naive implementa-
tion would also involve a helper function call and the complex
address translation logic inside the helper call. To speed up
this address translation, the system-mode QEMU adopts soft-
ware TLB (Translation Lookaside Buffer). It checks this TLB
for a quick translation and only goes through the page table
traversal when there is a TLB miss. Furthermore, it inlines this
TLB lookup logic into the generated code block (the code that
is finally executed natively on the host machine), to eliminate
the overhead of a helper call. Similarly, we maintain a looka-
side buffer for recently accessed concrete memory blocks (in

1
2 # | TLB [T BITS 10

3 typedef struct CPUTLBDescFast {

4 /% (n_entries 1) << CPU_TLB_ENTRY BITS x/
5 uintptr_t mask;

6 /+ The array of TLB entries itself. #*/

7 CPUTLBEntry *table;

8 } CPUTLBDescFast QEMU_ALIGNED (2 * sizeof(void *));
9

10 typedef struct CPUTLBEntry ({
11 target_ulong page_addr;

12 } CPUTLBEntry;

13 static void user_tlb_dyn_init (CPUArchState *env) {

14 for (int i = 0; i1 < NB_MMU_MODES; i++) {

15 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
16 env_tlb(env)->f[i] .mask =

17 (n_entries - 1) << CPU_TLB_ENTRY_BITS;

18 env_tlb(env)->f[i].table =

19 g_new (CPUTLBEntry, n_entries);

Listing 2: The design and configuration of the Concrete Mem-
ory Lookaside Buffer.

which all memory bytes are concrete). We refer to this buffer
as Concrete Memory Lookaside Buffer (CMLB). The CMLB
lookup logic is inlined in the native code to avoid the helper
call overhead. In this way, since most memory blocks are con-
crete, we expect the majority of memory accesses will result
in CMLB hits and no further actions are needed. Occasionally,
if a memory access results in a CMLB miss, meaning at least
one byte in that block is symbolic, SYMFIT goes through the
slow path by making a helper call as in SYMQEMU.

We follow the design of QEMU’s software TLB and reuse
some of the TLB data structures for the Concrete Memory
Lookaside Buffer. As shown in Listing 2, the buffer is initial-
ized with 1024 (1 << CPU_TLB_DYN_DEFAULT_BTIS) entries
and is associated with the CPUArchState data structure per
vCPU. Each entry contains an 8-byte address of a concrete
memory block. For load and store instructions in concrete
mode, SYMFIT first looks up the CMLB to check if the tar-
get address is concrete. If so, it can safely continue in the
concrete mode. If not, a helper function is called to read the
shadow memory. Note that a store in the concrete mode will
write the destination shadow memory as concrete. For load
instructions in symbolic mode, if CMLB hits, the shadow vari-
able of the destination operand will be marked as concrete,
and the function call to read shadow memory is skipped. For
store instructions in the symbolic mode, SYMFIT only goes
to the fast path when CMLB hits and the source variable is
also concrete. The entries in CMLB will be filled with a new
block if it is concrete, or evicted if the cached concrete blocks
become symbolic.

The granularity of the cached memory blocks in CMLB
impacts both the hit rate and overall performance. The orig-
inal TLB design in QEMU holds the starting address of a
4096-byte page in each entry. However, this level of granular-

ity is inefficient for buffering concrete memory blocks as a
small amount of symbolic data would mark the whole page
as symbolic. To address this, we evaluated various granularity
levels ranging from 32-byte to 2048-byte and selected 512-
byte which demonstrated the best hit rate in our evaluation.
More details can be found in §5.5.

As presented in Table 3, lightweight concrete mode and
shadow memory access (dubbed SYMFIT-MC) together can
achieve an average speedup of over 13 times compared to
SYMQEMU. The overhead compared to the vanilla QEMU
is only 2.65 times.

Table 3: Speedup of the optimizations for concrete instruc-
tions and shadow memory access over SYMQEMU on SPEC
CINT-2006 with all concrete inputs and overhead of mode
switch compared to vanilla QEMU. SYMFIT-MC represents
the combination of mode switch and shadow memory access.

CINT-2006 SYMQEMU SYMFIT-MC Speedup Overhead

hmmer 293.39s 19.09s 15.37x 2.38x
libquantum 17,035.43s 907.43s 18.77x 1.67 %
bzip2 4,625.94s 354.58s 13.05x% 1.97x
mcf 3,072.34s 648.82s 4.74x 2.65x%
sjeng 29,495.09s 3,299.05s 8.94x 3.37x
gcc 1,749.03s 269.31s 6.49x 3.75x%
xalancbmk 68,874.56s 1,074.76s 64.08 x 3.49x
Geo. Mean 13.10x 2.65x

3.2 Symbolic State Management

SYMQEMU utilizes the same backend with QSYM [31] to
manage symbolic expressions and shadow memory. Recently,
SymSan [11] proposed a novel approach that extends the dy-
namic data-flow analysis framework, DFSan [30], to optimize
the management of symbolic expressions and shadow mem-
ory. Unfortunately, SymSan requires source code, so it cannot
be used directly with binary concolic executors. In this sub-
section, we explain how we apply the ideas of SymSan to
enhance existing binary concolic executors.

Symbolic Expression Management. State-of-the-art con-
colic executors, such as SymCC [24], SYMQEMU [23] and
QSYM [31], utilize Abstract Syntax Trees (ASTs) to repre-
sent symbolic expressions and their dependencies. When a
new symbolic expression is created, an AST node is allocated
on the heap to store the new symbolic expression populated
based on the source operand(s) and instruction. At a symbolic
branch, QSYM looks up the AST tree and unfolds the depen-
dencies to build a Z3 expression for path negation. According
to the performance profiling in SymSan, QSYM spends 3%
of execution time on AST node allocation and 28% on AST
node tracking. To reduce the overhead of allocating and track-
ing symbolic expressions, SymSan modifies the taint labels in
DFSan [30] to represent symbolic expressions and preserves a

large, consecutive address space for forward allocation of new
labels. As a result, tracking symbolic expressions is a simple
look-up of the label array (constant time), and allocating new
labels is done by performing an atomic_fetch_add to up-
date the last allocated index. Interested readers can refer to
SymSan [11] for more technical details. To adopt the design of
SymSan, we add helper functions at TCG IR level that interact
with SymSan’s backend for symbolic state management.

Shadow Memory Management. For variables stored in
memory, SYMQEMU uses QSYM to model the shadow mem-
ory to store their expressions. In QSYM, the shadow memory
mapping is maintained in a red-black tree (std: :map). To
calculate the shadow address for a given application address,
the page-level application address is first used as an index to
retrieve the target shadow page, then the page offset is added
to it to get the shadow address. As a result, the mapping
complexity is O(log(n)).

1 // Calculate shadow address in QSYM.

2 std::map<uintptr_t, SymExpr *> g_shadow_pages;

3 static SymExpr *getShadow(uintptr_t address) {

4 shadowPagelt =

5 g_shadow_pages.find(pageStart (address));
6 if (shadowPageIt != g_shadow_pages.end())

7 return shadowPageIt->second + pageOffset (address);
8
9

return nullptr;
10 }
1 // SymSan direct shadow memory mapping.
12 void *shadow_for (uptr addr) {
13 return (addr & ShadowMask()) << 2;
14 }

Listing 3: The shadow memory design in QSYM and SymSan

As designed in SymSan [11] and other dynamic taint analy-
sis (DTA) tools [30], direct mapping is the most time-efficient
way to maintain shadow memory, which offers constant time
(O(1)) lookup. SYMFIT employs the direct mapping from
SymSan’s symbolic backend. Listing 3 shows the shadow
memory address translation in SymSan. Despite the fast
shadow memory mapping, the shadow memory access still
suffers from poor memory access locality. As presented in
Table 4, the application memory and shadow memory exhibit
a significant distance between them. Therefore, CMLB is still
useful in terms of reducing shadow memory access latency.

In conclusion, we improve the performance in symbolic
mode by adopting the faster symbolic backend from the
source code-based concolic executor SymSan to SYMFIT.

4 Implementation

SYMPFIT utilizes the user-mode emulator QEMU [7] to build
the front-end and follows the design of SymSan to build the
symbolic backend. In this section, we reveal some implemen-
tation details of SYMFIT.

TCG Instrumentation. Fundamentally, SYMFIT utilizes the
Tiny Code Generator (TCG) of QEMU to perform the instru-
mentation. TCG first lifts basic blocks of the target binary to
an intermediate representation called TCG ops, then compiles
TCG ops to machine code that runs on the target architec-
ture. During the dynamic binary translation, additional TCG
ops are emitted to invoke library functions from the sym-
bolic execution backend. For each TCG op, the symbolic
handler function is added to build corresponding symbolic
expressions. Unlike source code-based instrumentation that
benefits from compiler optimizations, TCG instrumentation
has a limited view of instructions and renders advanced static
analysis infeasible. As a result, it is difficult for SYMQEMU
to statically determine if a variable is concrete, and remove
the inserted symbolic execution logic. SYMQEMU settled
for a solution that performs concreteness checks at the cost of
library function calls. In SYMFIT, we use vCPU registers to
indicate whether TCG variables are concrete in the target ba-
sic block. Specifically, in symbolic mode, we add one helper
function per basic block to check the states of all registers. If
they turn out to be concrete, we can safely avoid the cost of
concreteness checks for every instruction in this block.

Symbolic State Management. SYMFIT uses runtime library
functions from SymSan’s symbolic backend to construct sym-
bolic expressions and send solving queries to the SMT solver.
At the core of SymSan, a special form of dynamic data-flow
analysis is performed to collect taint labels of program vari-
ables and their dependencies. When encountering a symbolic
(i.e., tainted) branch, a symbolic expression is reconstructed
based on collected taint labels. While SymSan works on
LLVM IRs, we instrument TCG IRs to achieve the equiv-
alent functionalities.

SYMPFIT supports symbolic data from input files and stdin.
To achieve this, we hook the syscall wrappers in QEMU (e.g.,
open, openat, read, and Iseek) and assign corresponding la-
bels to the buffer that receives the read bytes. Symbolic data
from network interfaces is not supported yet but can be easily
extended.

Symbolic Address. SYMFIT uses the same strategy to handle
symbolic address as SYMQEMU. Specifically, for a symbolic
address, new test inputs are generated to reach other possible
addresses. A symbolic address is also associated with the
concrete value of the address to ensure correctness.

Memory Layout. SymSan uses direct shadow memory map-
ping and forward allocation of symbolic expressions. As a
result, heap memory regions are preserved in advance to pro-
gram execution, and a specific memory layout is enforced. To
benefit from this design, SYMFIT follows the same memory
layout and reserves designated memory regions when QEMU
starts. To make sure QEMU-related data structures (i.e., vVCPU
states) are mapped into the shadow memory, we also modify
QEMU’s customized memory allocator to allocate these data

structures at preserved regions. Listing 3 depicts the memory
layout.

Table 4: Memory layout designed for SymSan’s backend

Start End Desription
0x700000050000 0x800000000000 application memory
0x700000040000 0x700000050000 QEMU’s object
0x400010000000 0x700000020000 AST array
0x400000000000 0x400010000000 hash table
0x000000020000 0x400000000000 shadow memory
0x000000000000 0x000000010000 reserved by kernel

Hybrid Fuzzer. In the end-to-end hybrid fuzzing experi-
ment, we reuse the same hybrid fuzzer from SYMQEMU
and SymCC [24]. Specifically, the concolic executor takes
seeds from fuzzer’s seed queue as input and generates new
seeds for fuzzer to synchronize periodically. It also main-
tains a global coverage bitmap for branch filtering. For a fair
comparison, we implemented the same branch filters as in
SYMQEMU.

5 Evaluation

In this section, we evaluate the performance of SYMFIT, a pro-
totype implementing our proposed optimization schemes atop
SYMQEMU. We demonstrate the effectiveness of SYMFIT
by answering the following research questions:

* RQ1: Efficiency. We investigate the extent to which
SYMFIT improves efficiency compared to SYMQEMU
under different settings. Additionally, we analyze the indi-
vidual contributions of each design choice to the overall
efficiency improvement.

¢ RQ2: Effectiveness. We evaluate whether SYMFIT can
achieve the same level of effectiveness as SYMQEMU in
terms of generating new test cases and achieving increased
code coverage. In other words, we want to ensure that
the efficiency improvement does not come at the cost of
compromising the quality of generated test cases and the
growth of code coverage.

* RQ3: End-to-end Hybrid Fuzzing. We evaluate the con-
tribution of SYMFIT to the end-to-end hybrid fuzzing with
respect to code coverage growth and bug-finding perfor-
mance.

* RQ4: Security Applications. We assess the contribution
of SYMFIT’s efficient symbolic tracing capability on one
security application, crash seed deduplication.

5.1 Evaluation Plan

To answer the aforementioned research questions, we evaluate
the following configurations:

* SYMQEMU. The original SYMQEMU with QSYM back-
end obtained from the public repository [6].

* SYMFIT-M. SYMFIT (QSYM backend) with only mode
switch enabled.

e SYMFIT-MC. SYMFIT (QSYM backend) with both mode
switch and CMLB enabled.

e SYMFIT-MS. SYMFIT with only mode switch enabled
and SymSan backend.

e SYMFI1T. Full-fledged SYMFIT with the mode switch,
CMLB and new symbolic backend from SymSan.

These configurations allow us to discern the enhancements
brought about by each design choice, both individually and
collectively. For instance:

* The comparison between SYMFIT-M and SYMQEMU il-
lustrates the gains from the lightweight concrete mode.

* Comparing SYMFIT-MC with SYMFIT-M reveals the ad-
vancements due to efficient shadow memory access via
CMLB.

* By comparing SYMFIT-MS and SYMFIT-MC, we discern
the improvements from the fast symbolic backend.

 Ultimately, comparing SYMFIT and SYMQEMU provides
insight into the overall benefits of our concolic executor.

Dataset. We evaluate SYMFIT on several benchmarks, in-
cluding standard benchmarks (SPEC CINT-2006 [5] and
Linux/Unix nbench [3]), and real-world programs (Google’s
Fuzzbench [2] and unibench, the real-world benchmark pre-
sented in UniFuzz [20]). Since QEMU cannot run new ver-
sions of SPEC CINT benchmarks due to unsupported in-
structions, we only selected a few benchmarks from SPEC
CINT-2006 as motivating results presented in §2.3. In the eval-
uation, we use nbench to show the concrete mode overhead
of SYMFIT and the baseline concolic executor SYMQEMU.

To answer RQ1, we conduct experiments on the standard
benchmark nbench to evaluate the speedup of SYMFIT over
SYMQEMU in two settings: 1) pure concrete execution and
2) concolic execution without solving. Additionally, we eval-
uate SYMFIT’s performance on real-world programs from
Fuzzbench to demonstrate the improvements on practical ap-
plications. For RQ2, we compare the total execution time and
basic block coverage achieved by SYMQEMU and SYMFIT
on Fuzzbench programs, using the same input seeds. To an-
swer RQ3, we pair SYMQEMU and SYMFIT each with two
AFL-2.56 instances, one main instance (in -M mode) and
one secondary instance (in -S mode) and evaluate the 24h
coverage gain and bug detection capability on unibench pro-
grams. For RQ4, we use symbolic constraints to cluster PoCs
that share the same constraints and evaluate the efficiency in
symbolic constraint collection of SYMFIT and SYMQEMU.

Experiment Setup. All evaluations were conducted on a work-
station with 96-core Intel Xeon Platinum 8260 processors.

Concrete inputs

Symbolic inputs w/o solving

Symbolic inputs w/ solving

10° 10° 10°
© ° o
1044 o 10* 4 o 104 4
o o 2
10° 5 o ° 10° 4§ 107 §
o
102 102 4 102 4
10? 10* 4 10? 4
10° T 10° 10°

ymQEMU SymFlt M Symm -MC Syml-‘it -MS svmm

QEMU Symm -M SymFlt MC Symm MS SymFlt

SyanﬂVlU Symm M Symm -MC SyrnFlt MS Sym[-‘lt

Figure 3: Performance comparison (drawn in logarlthmlc scale) on Fuzzbench programs. The first figure depicts the runtime of
executions with concrete inputs, the middle shows the runtime of executions with symbolic inputs but no constraint solving.
The last figure shows the runtime with symbolic input and constraint solving enabled. More statistic details can be found in

Appendix Table 8 and Table 9.

The workstation has 1.45T memory with Ubuntu 18.04 oper-
ating system and kernel 5.4.0. To ensure a fair comparison, we
run each trial in a docker container with one dedicated core
assigned. All the evaluation results are averaged across ten ex-
perimental trials to reduce the impact caused by randomness
from hardware and constraint solver.

Input Selection. To generate test cases for Fuzzbench pro-
grams, we used AFL++ to fuzz the target programs for 24
hours and obtained the generated seeds. To avoid bias toward
repetitively executed code paths, we used the utility CMIN
from AFL++ to prune the seed corpus. For unibench pro-
grams, we used the publicly available seed corpus from [20]
for better reproducibility.

5.2 RQ1: Efficiency

To evaluate the performance gain in the concrete mode, we run
nbench without any symbolic inputs. Consequently, the sym-
bolic backend is not invoked and the only runtime overhead of
SYMQEMU comes from instrumentation for concrete code
blocks, such as helper function calls that check the concrete-
ness of shadow variables and shadow memory. As shown in
Table 5, this overhead results in a significant 22 x slowdown
on SYMQEMU compared to the vanilla QEMU. Such over-
head in SYMFIT can be optimized by the lightweight concrete
mode and shadow memory access. We evaluate these two
strategies individually and show performance improvement
from each optimization.

Speedup of Lightweight Concrete Execution. In the first
experiment, we evaluated SYMFIT to understand the perfor-
mance improvement achieved through the lightweight con-
crete mode. As all inputs were concrete, all basic blocks
were executed in concrete mode. Table 5 presents the results.
Compared to vanilla QEMU, SYMQEMU exhibited a 21.6x
slowdown on the memory index, a 16x slowdown on the
integer index, and a 6 x slowdown on the floating-point index.

Table 5: Performance of concrete execution on NBENCH

Iterations/sec. Native ~QEMU SYMQEMU SYMFIT-M SYMFIT-MC SYMFIT
NUMERIC SORT 23358 11643 109.03 325.71 43141 94525
STRING SORT 2593.1 301.14 10.421 30.264 12455 108.67
BITFIELD 1.18E+09 4.86E+08 2.47E+07 9.96E+07 2.21E+08 3.57E+08
FP EMULATION 12449 445.14 19.715 95.25 25445 327.62
FOURIER 2.44E+05 9026 1844.9 5572.2 58954 4701.3
ASSIGNMENT 83.345 33.779 1.9065 9.7031 7.2105 23.704
IDEA 19530 5895.5 326.28 2736 2868.7 5308.6
HUFFMAN 12014 25854 171.55 867.87 1214.8 2146.7
NEURAL NET 27327 9.7072 1.151 3.6732 6.7238 6.4019
LU DECOMP 5651.6 322.57 60.067 144.05 258.77 291.33
Score Index

MEMORY INDEX 85437 22.962 1.063 4.152 7.861 13.103
INTEGER INDEX 71.122 23.33 1.457 7.25 10.944 19.073
FP INDEX 182.557 7.699 1.272 3.624 5.492 5212

This slowdown was primarily attributed to the instrumenta-
tion required for symbolic emulation in SYMQEMU, even
when handling concrete inputs. In contrast, SYMFIT was able
to avoid much of the overhead caused by symbolic emula-
tion since all inputs were concrete. The primary overhead
in SYMFIT arose from memory load/store monitoring and
shadow register checking at the basic block level. As pre-
sented in Table 5, SYMFIT-M is 3.9 faster on the memory
index, 4.97 x faster on the integer index, and 2.84 x faster on
the floating-point index.

Speedup of Efficient Shadow Memory Access. In this ex-
periment, we evaluated SYMFIT to understand the perfor-
mance improvement achieved through efficient shadow mem-
ory access. In this configuration, recently accessed concrete
pages are stored in the Concrete Memory Lookaside Buffer
(CMLB), and the cache lookup logic is inlined into the gen-
erated code, allowing it to run directly on the host machine.
As presented in Table 5, SYMFIT-MC shows faster execution
time than SYMFIT-M. Compared to SYMQEMU, SYMFIT-
MC is 7.4 x faster on the memory index, 7.5 faster on the
integer index, and 4.7x faster on the floating-point index.
We also observed that SYMFIT shows better performance
(1.5x%) than SYMFIT-MC alone. This is attributed to the di-

rect shadow memory mapping mechanism that accelerates
the shadow memory lookup when the CMLB misses.

Real-world Applications. We then extended the pure con-
crete execution evaluation to real-world applications. In this
evaluation, we ran Fuzzbench programs with the same seed
corpus obtained from 24h fuzzing. Results are presented in
Figure 3. Compared to SYMQEMU, SYMFIT-M is 3.65x
faster, SYMFIT-MC is 4.68 x faster and SYMFIT is 8.86x
faster.

Concolic Execution without Solving. In this experiment, we
evaluated the performance of concolic executors without solv-
ing. Compared to pure concrete execution, the overhead in
this setting comes from concreteness checking of shadow vari-
ables and memory and symbolic state management. Accord-
ing to the result presented in Figure 3, SYMFIT-M, SYMFIT-
MC, SYMFIT-MS and SYMFIT are 3.26x, 3.86x, 9.73 x and
12.03 x faster than SYMQEMU respectively.

Overall, these results demonstrate that SYMFIT, incorpo-
rating both lightweight concrete mode and efficient shadow
memory access, outperforms SYMQEMU on standard bench-
marks and real-world scenarios.

5.3 RQ2: Effectiveness

In this experiment, we enabled constraint solving for each con-
colic executor. For each target program, we used the coverage
bitmap collected from afl for branch filtering to avoid flipping
every encountered symbolic branch and placed a 100-second
timeout for each execution. Otherwise, the experiment cannot
be completed within a reasonable time. The execution times
for inputs that did not reach the timeout are shown in Figure 3.
Additionally, the basic block coverage was measured using
SanitizerCoverage [4] to verify the correctness of constraint
solving.

Table 9 shows the coverage achieved by SYMQEMU and
SYMFIT. We noticed that SYMQEMU reached the timeout
on more inputs than SYMFIT. This observation suggests that
SYMFIT can explore more basic blocks, resulting in higher
coverage on certain programs (e.g., freetype + 17.09%, woff2
+17.31%) when provided with the same seed corpus. Overall,
the results indicate that SYMFIT improves the efficiency of
concolic execution without compromising correctness.

Based on the results depicted in Figure 3, when solv-
ing is enabled, SYMFIT can still achieve a 6.67x perfor-
mance speedup over the baseline SYMQEMU. Furthermore,
even without SymSan’s symbolic backend, SYMFIT-M and
SYMFIT-MC independently achieve an approximate 2x per-
formance speedup, showcasing the contribution of lightweight
mode switch and shadow memory access. With the integration
of the new backend from SymSan, the performance signif-
icantly boosts up to 6.67x, as symbolic state management
proves to be heavyweight in SYMQEMU'’s symbolic back-
end.

5.4 RQ3: End-to-end Hybrid Fuzzing

In this experiment, we pair SYMQEMU and SYMFIT each
with two AFL-2.56 instances and evaluate coverage growth
and bug detection efficiency of the hybrid fuzzers on unibench,
a real-world program benchmark. To ensure a fair comparison,
we run each fuzzer/concolic executor in a docker container
with one physical CPU-core assigned. The results are ob-
tained by averaging 10 repetitions of 24h fuzzing campaigns
to reduce the randomness.

5.4.1 Coverage Efficiency

The coverage growth over time is shown in Figure 4.
SYMFIT achieved faster coverage growth on seven applica-
tions (wav2swf, pdftotext, infotocap, mp42aac, objdump, tcp-
dump, and nm-new) and showed similar performance with
SYMQEMU on the rest programs. This result indicates that
a faster concolic executor can indeed expedite the exploration
process during hybrid fuzzing. By achieving faster coverage
growth, SYMFIT is able to explore more paths and execute a
broader range of code segments within the same amount of
time, potentially leading to the discovery of new vulnerabili-
ties or bugs earlier. However, it is essential to note that in a
hybrid fuzzing setting, the fuzzer operates with much higher
throughput and actively drives the path exploration process.
As a result, the speedup achieved by SYMFIT is less obvious
than the improvement observed in the pure concolic execution
evaluations.

5.4.2 Bug Detection Efficiency

To further understand the benefit of having a faster concolic ex-
ecutor, we evaluated the bug detection efficiency of SYMFIT-
HF and SYMQEMU-HEF. At the end of each hybrid fuzzing
run, the crashes are triaged into unique bugs using the same
method implemented in unibench: we use ASan [1] to pro-
duce the stack trace for each crash and then use three stack
frames to de-duplicate the bugs. In this experiment, we com-
pare the time it took to trigger mutual bugs found by both
SYMFIT and SYMQEMU. We only counted the first time a
bug was triggered. Among evaluated unifuzz benchmarks,
seven programs produced crashes but no bug ID was assigned
by unibench. There were four programs where both SYMFIT
and SYMQEMU did not generate any crash. The results for
the rest six programs where mutual bugs were found are
presented in Figure 5. As shown, for the same group of
mutual bugs found by SYMFIT and SYMQEMU, SYMFIT
spent less time to trigger these bugs. This outcome indicates
that SYMFIT demonstrates improved efficiency in detecting
bugs during hybrid fuzzing. By being faster in its execution,
SYMFIT can discover bugs with reduced time-to-trigger, mak-
ing it an effective tool for detecting vulnerabilities or crashes
in real-world applications.

225 4

10000 4 2800 1

8000 2400 2007
6000 2000 1 1731

1600 - 1501

\
block coverage

block coverage
block coverage

4000

1200 1254

2000 4

12 16 20 24 0 4 8 12 16 20 24 0

time (h) time (h)
exiv2 tiffsplit

4

8 12 16 20 24

block coverage

10000

©0
<3
<3
1=}

8000 -

7000 -

6000

0 4

8 12 16 20 24

block coverage

2400 4
2100 4
1800
1500 -

1200 -

|

0

4 8 12 16 20 24

time (h) time (h) _time (h)
wav2swf pdftotext infotocap

4800
9000 1
4200

36001 7500 1

3000 4

6000

block coverage
block coverage
&
o
o
block coverage

2400 4

1800 4 4500 1

0O 4 8 12 16 20 24 0 4 8 12 16 20 24 0

4

8 12 16 20 24

block coverage

20000 1

16000
12000

80001 |

4000 A

0 4

8 12 16 20 24

block coverage

2300 A

2200 1

2100 4

2000 4

1900 -

0

4 8 12 16 20 24

time (h) time (h) time (h) time (h) time (h)
mp42aac flymeta objdump tcpdump cflow
7500
. — 4000
o o 5700 o o 3250
& 6000 o 2 3600 g
® € 5550 g s
] b b T 3000 —— SymQEMU-HF
3 4500 3 5400 3 3200 3
] 8] |] ~—— SymFit-HF
~ ~ % 28004 | < 2750
% 30001 g 5250 K 3 }
o o a 1 2 2500
5100 2400 |
1500 1
0 4 8 12 16 20 24 0 4 8 12 16 20 24 0 4 8 12 16 20 24 0 4 8 12 16 20 24
time (h) time (h) time (h) time (h)
nm-new lame imginfo ia

Figure 4: Hybrid Fuzzing Coverage Growth in 24h

flvmeta lame
5 o 5

LI

cflow

=N
o o
w o

time (h)
=
)
time (h)
~N

7.5

time (h)

5.0

5 i 1
0 0

SymQEMU SymFit SymQEMU SymFit SymQEMU SymFit
mp42aac tiffsplit wav2swf
o 20 o
0.04
2 15
< < <003
o o 10 P
£ £ o | Eom
= £ o S 0.
' ﬁ i ’
of B & | oo
SymQEMU SymFit SymQEMU SymFit SymQEMU SymFit

Figure 5: Mutual Bug Time-to-Trigger(h) Result
5.5 Ablation Study

In §5.2, we have assessed the improvement brought by the
primary components in SYMFIT, namely the mode switch,
Concrete Memory Lookaside Buffer (CMLB), and the inte-
gration of the SymSan backend. Here we conducted ablation
study to quantify the contribution of each component.

SymSan Backend. Compared to the QSYM backend used in
SYMQEMU, SymSan is more efficient in symbolic state man-
agement. Specifically, SymSan allocates labels for symbolic
variables and preserves a large, consecutive address space
for forward allocation of new labels. As a result, allocating
new labels is done by performing an atomic_fetch_add to
update the last allocated index, and label look-up when con-
structing symbolic expressions occurs in constant time. For
variables stored in memory, SymSan utilizes a direct map-

ping of application memory to maintain the shadow memory,
enabling constant time (O(7)) shadow memory lookup. In
contrast, SYMQEMU employs a red-black tree (std: :map)
for shadow memory mapping, which incurs a logarithmic
complexity O(log(n)). The performance gains from integrat-
ing SymSan’s backend are evident by comparing SYMFIT-M
(mode switch only) and SYMFIT-MS (mode switch plus Sym-
San backend), with a 3x speedup, as shown in Table 8.

Mode Switch. SYMFIT features a lightweight execution
mode for concrete code blocks and switches between
lightweight concrete mode and symbolic mode to minimize
unnecessary overhead. As evidenced in Table 6, symbolic
blocks constitute only a small percentage of the total execu-
tion blocks (9.49% on average) for Fuzzbench benchmarks,
demonstrating the significance of maintaining minimal over-
head in concrete execution. In the evaluation, we have shown
that this optimization alone can bring a 3.26x speedup, as in-
dicated in Table 8 under the SYMFIT-M (mode switch only)
configuration.

CMLB. The Concrete Memory Lookaside Buffer (CMLB) is
designed to optimize the latency of shadow memory access by
buffering recently accessed concrete pages. In this section, we
conducted an ablation analysis to measure the CMLB hit rate
and explore different levels of granularity. The granularity
refers to the size of concrete memory stored in a CMLB
entry. The original TLB design in QEMU holds the starting
address of a 4096-byte page in each entry. However, this level
of granularity is inefficient for buffering concrete shadow
memory blocks, as even a small amount of symbolic data

within a page would mark the entire page as symbolic. To
address this, we experimented with finer granularity levels
and compared the hit rates across different granularity, the
results of which are presented in Table 6.

Overall, CMLB can achieve a high hit rate, indicating that
the cache is frequently accessed instead of the shadow mem-
ory. It is important to note that, due to the presence of sym-
bolic memory, the hit rate is lower than the typical TLB hit
rate (around 99%), as accessing symbolic shadow memory
consistently results in a CMLB miss. As presented in Table 6,
the hit rate varied across different levels of granularity and
there is no one-size-fit-all configuration. Therefore, we se-
lected a granularity of 512 for our evaluation, as it yielded
the highest average hit rate. As presented in Table 8 under the
SYMFIT-MC configuration, the CMLB brings an additional
20% improvement on top of the mode switch.

Table 6: Ablation study for mode switch and CMLB. % of
sym blocks represents the percentage of symbolic basic blocks
during execution. CMLB hit rate is measured with different
granularity, ranging from 32 to 2048. The configuration with
the best hit rate is marked as bold.

Fuzzbench % of sym CMLB Hit Rate

blocks 32 64 128 256 512 1024 2048
harfbuzz 8.2 91.2 94.3 96.2 95.4 96.6 96.3 96.7
lems 7.8 92.6 93.6 92.2 91.4 91.8 65.3 64.9
libpng 5.3 92.7 94.0 95.0 94.0 95.0 94.2 943
nm 16.5 87.8 92.0 93.2 93.7 92.3 91.4 90.9
openssl 13.7 93.5 94.3 93.3 92.2 91.4 90.7 80.4
proj 5.593.6 95.7 96.7 96.5 97.6 97.2 97.1
woff2 0.5 93.7 95.3 96.4 96.6 98.3 98.6 99.0
freetype 6.7 92.9 94.4 95.0 94.7 96.2 95.8 95.3
json 6.8 93.3 95.1 96.3 96.4 97.9 98.1 98.2
libjpeg 10.0 93.6 95.2 96.2 96.3 98.2 98.5 98.9
objdump 4.5 86.1 90.4 91.8 92.3 92.9 92.0 91.4
openthread 2.0 949 96.3 97.1 97.1 97.3 92.9 93.7
re2 8.3 93.4 95.0 95.0 93.4 92.9 88.6 85.8
size 33.3 86.1 90.7 92.1 92.8 92.6 89.1 88.6
vorbis 13.0 93.4 95.0 95.9 96.3 98.0 98.5 98.9
xml 9.7 92.0 93.4 93.4 91.6 91.1 89.2 86.9
Average 9.4 91.9 94.0 94.7 94.4 95.1 92.2 91.3

6 Case Study: Crash Deduplication

At its core, SYMFIT stands as an efficient symbolic constraint
tracer for binary code. In this section, we demonstrate the
benefit of SYMFIT’s efficiency in one security application,
crash deduplication.

Fuzzers typically output a large set of proof-of-concept
(PoC) test cases. These raw findings and crash dumps are
often directly submitted to maintainers. Large fuzzing farms,
such as ClusterFuzz and OSS-Fuzz, produce a large amount
of crash seeds, which exacerbate this problem. An efficient

and automated approach is needed to filter out redundant and
duplicated crash test cases and cluster them by the root cause.
Given a large number of crash seeds produced by fuzzers,
a symbolic tracer can examine these crash seeds, and col-
lect symbolic constraints at the last branch before the crash
site that is controlled by certain input bytes. This symbolic
constraint signature can be used to cluster crash seeds and
filter out duplicates and redundancies. The intuition is that the
PoCs that trigger identical bugs are likely to follow identical
execute paths, therefore sharing the same path constraints.

The above security application highlights the need for ef-
ficiency. In this case, the timeout strategy of SymQEMU is
no longer valid: without the timeout, SymQEMU could take
hours or days to process crash seeds from large fuzzing farms
or respond to new exploits, highlighting the need for a more
efficient tool.

To trace symbolic constraints for crash deduplication, it is
imperative to disable certain features within SYMQEMU.
namely the timeout strategy and the global branch filter.
SYMQEMU sets a 90-second timeout on each execution dur-
ing hybrid fuzzing and adopts a global branch filter to avoid
collecting and solving constraints for "uninteresting" branches
across executions [23, 24]. While these measures enhance
the efficiency in hybrid fuzzing by trading off completeness,
crash deduplication demands a more thorough and efficient
approach. It requires the tracking of a Proof of Concept (PoC)
execution up to the crash site, along with the tracing of all
necessary constraints associated with each unique PoC.

To demonstrate the efficacy and efficiency of SYMFIT in
crash deduplication, we evaluated SYMQEMU and SYMFIT
on the Magma dataset [18], which contains PoCs and ground
truth for grouping PoCs. Specifically, we run each PoC and
collect symbolic constraints at the last symbolic branch be-
fore the crashing site and back-tracing nested constraints that
share the same input dependency, i.e., all precedent branches
whose input bytes overlap with the last branch. Then we nor-
malize the variable names in constraints since Z3 might use
different names to represent sub-constraints across executions.
After this, we compare and group together PoCs that have the
same normalized symbolic constraints. Then we measured
the efficiency by comparing the total runtime and efficacy by
comparing the F1 score [29] of deduplication results, follow-
ing the calculation in Igor [19]. For the ground truth of PoC
grouping, we utilize the ground truth data from the magma
dataset to identify and categorize PoCs that reach or trigger
identical bugs as belonging to the same group. We excluded
benchmarks with no crash seeds provided. As presented in
Table 7, the number of PoCs is greatly reduced after dedupli-
cation, with an average of 80% F1 score. Note that we used
a relatively simply method by grouping identical symbolic
constraints. While there are rooms for improving the accuracy
of crash analysis, SYMFIT shows significant better runtime
performance as an efficient symbolic tracer; the constraint
collection time is greatly reduced from 19 hours to 2.5 hours

on average, compared to SYMQEMU.

Table 7: Results of crash seed analysis on Magma bench-
marks. The column labeled “after dedup.” shows the number
of PoC clusters grouped using symbolic constraints produced
by SymMFIT

Execution Time (h)

Magma # of PoC After dedup. F1 (%) SYMQEMU SYMFIT

libpng 634 14 98 3388 248
libtiff 311 15 73 1377 1.16
libxml2 792 51 80 308 0.73
sqlite3 1730 90 69 2663 5.80
Average 866 42 80 1934 254

7 Discussion

Comparison of Symbolic Backends. In SYMFIT, we ported
the symbolic backend from SymSan and compared it with
SymQEMU with QSYM backend. While these two backends
are similar in path constraint collection and solving, as they
can achieve similar coverage when given the same seed cor-
pus, we observed some differences in branch and basic block
filtering. As presented in QSYM [31], basic block pruning is
employed to reduce constraints that are repeatedly generated
from the same code paths, while SymSan is not shipped with
such strategies. Therefore, in the hybrid fuzzing experiments,
we observed less coverage growth for some programs.

Overhead of Concolic Executors. In general, the overhead
of concolic executors comes from instrumentation, symbolic
state management, and constraint solving. In this work, we
have brought down the overhead of instrumentation and sym-
bolic state management to near-optimal. Nevertheless, we
still observed a significant overhead of constraint solving
and dynamic binary translation itself, which overshadow our
improvement to some extent. The dynamic binary transla-
tor, QEMU, translates the target binary at runtime, and the
translated code blocks are cached for a single execution. We
believe that in a hybrid fuzzing setting, the performance of
dynamic binary translation can be improved by sharing the
translation cache among every execution. Moreover, with the
recent progress in improving the performance of constraint
solving [8, 12,21, 22], more efficient and scalable concolic
execution engines can be achieved.

8 Related Work

Compilation-based Concolic Execution. Recent advances
in compilation-based concolic execution (e.g., SymCC [24],
SymSan [11]) have been shown to improve the performance
of concolic execution significantly. When source code is
available, compilation-based instrumentation can benefit from
compiler optimizations and high-level semantic information

(e.g., type) from the source code. While such approaches
are sufficient for testing software with source code available,
many real-world scenarios require binary-only testing meth-
ods, such as firmware, COTS software, shared libraries, etc.
SYMFIT focuses on advancing the state-of-the-art binary con-
colic executor.

Hybrid Instrumentation for Concolic Execution. SymFu-
sion [14] proposed a hybrid instrumentation strategy to mini-
mize the analysis overhead. In particular, this hybrid instru-
mentation allows users to perform compilation-based instru-
mentation on selected components of the application and
performs dynamic binary instrumentation for the rest of the
application at execution time. As such, it can benefit from the
high efficiency of compiler-generated code. However, unlike
SYMFIT which automatically determines the instrumentation
strategies, SymFusion users have to manually decide which
components need what instrumentation strategies.

Alternating Execution Modes. To mitigate performance
overhead, some previous works proposed to alternate the ex-
ecution between heavy-weight and light-weight modes. For
example, Firm-AFL [32] boots up the IoT firmware in whole-
system emulation and ensure the program to be fuzzed runs
properly, then it switches to user-level emulation to gain fast
execution speed. Only on rare occasions, the execution is
migrated back to the system-mode emulation to ensure the
correctness of execution. DECAF++ [15] adopts a similar
strategy to speed up whole-system taint tracking. It alternates
between a lightweight check mode with minimal instrumen-
tation overhead and a track mode with full taint propagation
capability. To avoid memory exhaustion, Mayhem [10] intro-
duces hybrid symbolic execution to actively manage memory
usage without constantly re-executing the same instructions.
When the system reaches a memory cap, it switches to offline
execution mode and produces checkpoints to start new online
execution tasks later on.

9 Conclusion

In this work, we propose an efficient concolic execution frame-
work with optimizations for the common case, concrete ex-
ecution. The evaluation showed that SYMFIT can achieve
much better performance compared to state-of-the-art binary
concolic executor, SYMQEMU. The fast execution speed
translates to faster coverage growth and improved efficiency
in security applications such as bug detection and crash dedu-
plication.

Availability

The source code of SYMFIT can be found at https://
github.com/bitsecurerlab/symfit.git.

Acknowledgement

We would like to thank the anonymous reviewers for their
suggestions and comments and Chengyu Song for technical
support and discussion on SymSan integration. This work was
supported by NSF under award No. 2133487. Any opinions,
findings, and conclusions or recommendations expressed in
this paper are those of the authors and do not necessarily
reflect the views of the funding agencies.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

AddressSanitizer. https://github.com/google/
sanitizers/wiki/AddressSanitizer.

Fuzzbench: Fuzzer benchmarking as a service. https:
//google.github.io/fuzzbench/.

Linux/Unix nbench. https://www.math.utah.edu/
~mayer/linux/bmark.html.

Sanitizer coverage. tttps://clang.llvm.org/docs/
SanitizerCoverage.html, 2017.

SPEC CPU 2006.
cpu2006/.

SymQEMU Github repo.

eurecom-s3/symgemu.

https://www.spec.org/

https://github.com/

Fabrice Bellard. Qemu, a fast and portable dynamic
translator. In Proceedings of the Annual Conference
on USENIX Annual Technical Conference, ATEC ’05,
page 41, USA, 2005. USENIX Association.

Luca Borzacchiello, Emilio Coppa, and Camil Deme-
trescu. Fuzzing symbolic expressions. In 2021
IEEE/ACM 43rd International Conference on Software
Engineering (ICSE), pages 711-722, 2021.

Cristian Cadar, Daniel Dunbar, and Dawson R Engler.
Klee: Unassisted and automatic generation of high-
coverage tests for complex systems programs. 2008.

Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert,
and David Brumley. Unleashing mayhem on binary
code. USA, 2012. IEEE Computer Society.

Ju Chen, WookHyun Han, Mingjun Yin, Haochen Zeng,
Chengyu Song, Byoungyoung Lee, Heng Yin, and Insik
Shin. SymSan: Time and space efficient concolic exe-
cution via dynamic data-flow analysis. In 31st USENIX
Security Symposium (USENIX Security 22), pages 2531—
2548, August 2022.

Ju Chen, Jinghan Wang, Chengyu Song, and Heng Yin.
Jigsaw: Efficient and scalable path constraints fuzzing.
In 2022 IEEE Symposium on Security and Privacy (SP),
pages 18-35, 2022.

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

Vitaly Chipounov, Volodymyr Kuznetsov, and George
Candea. S2E: a platform for in-vivo multi-path analysis
of software systems. ACM, 2011.

Emilio Coppa, Heng Yin, and Camil Demetrescu. Sym-
Fusion: Hybrid Instrumentation for Concolic Execution.
In Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering, ASE
’22,2022.

Ali Davanian, Zhenxiao Qi, Yu Qu, and Heng Yin. DE-
CAF++: Elastic whole-system dynamic taint analysis. In
22nd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2019), pages 31-45,
Chaoyang District, Beijing, September 2019. USENIX
Association.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart:
directed automated random testing. 2005.

Fabio Gritti, Lorenzo Fontana, Eric Gustafson, Fabio
Pagani, Andrea Continella, Christopher Kruegel, and
Giovanni Vigna. Symbion: Interleaving symbolic with
concrete execution. In 2020 IEEE Conference on Com-
munications and Network Security (CNS), pages 1-10,
2020.

Ahmad Hazimeh, Adrian Herrera, and Mathias Payer.
Magma: A ground-truth fuzzing benchmark. Proc. ACM
Meas. Anal. Comput. Syst., 4(3), December 2020.

Zhiyuan Jiang, Xiyue Jiang, Ahmad Hazimeh, Chaojing
Tang, Chao Zhang, and Mathias Payer. Igor: Crash dedu-
plication through root-cause clustering. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, CCS 21, page 3318-3336,
New York, NY, USA, 2021. Association for Computing
Machinery.

Yuwei Li, Shouling Ji, Yuan Chen, Sizhuang Liang, Wei-
Han Lee, Yueyao Chen, Chenyang Lyu, Chunming Wu,
Raheem Beyah, Peng Cheng, et al. Unifuzz: A holistic
and pragmatic metrics-driven platform for evaluating
fuzzers. In USENIX Security Symposium, pages 2777—
2794, 2021.

Daniel Liew, Cristian Cadar, Alastair F. Donaldson, and
J. Ryan Stinnett. Just fuzz it: Solving floating-point
constraints using coverage-guided fuzzing. In Proceed-
ings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE
2019, page 521-532, 2019.

Awanish Pandey, Phani Raj Goutham Kotcharlakota,
and Subhajit Roy. Deferred concretization in symbolic
execution via fuzzing. In Proceedings of the 28th ACM

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2019, page 228-238, 2019.

Sebastian Poeplau and Aurélien Francillon. Symgemu:
Compilation-based symbolic execution for binaries. In
ISOC Network and Distributed System Security Sympo-
sium (NDSS), April 2021.

Sebastian Poeplau and Aurélien Francillon. Symbolic
execution with SymCC: Don’t interpret, compile! In
29th USENIX Security Symposium (USENIX Security
20), pages 181-198, August 2020.

N. A. Quynh and D. H. Vu. Unicorn — the ultimate cpu
emulator. https://www.unicorn-engine.org/.

Koushik Sen, Darko Marinov, and Gul Agha. Cute: a
concolic unit testing engine for c. 2005.

Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser,
Christopher Kruegel, and Giovanni Vigna. Firmalice -
automatic detection of authentication bypass vulnerabil-
ities in binary firmware. In 22nd Annual Network and
Distributed System Security Symposium, NDSS, 2015.

Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls,
Nick Stephens, Mario Polino, Audrey Dutcher, John
Grosen, Siji Feng, Christophe Hauser, Christopher
Kruegel, and Giovanni Vigna. SoK: (State of) The Art
of War: Offensive Techniques in Binary Analysis. In
IEEE Symposium on Security and Privacy, 2016.

Michael S. Steinbach, George Karypis, and Vipin Kumar.
A comparison of document clustering techniques. 2000.

the Clang team. Dataflowsanitizer design
document. https://clang.1llvm.org/docs/
DataFlowSanitizerDesign.html, 2018.

Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and
Taesoo Kim. QSYM: A Practical Concolic Execution
Engine Tailored for Hybrid Fuzzing. In Proceedings of
the 27th USENIX Security Symposium (Security), Au-
gust 2018.

Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu
Song, Hongsong Zhu, and Limin Sun. Firm-afl: High-
throughput greybox fuzzing of iot firmware via aug-
mented process emulation. In 28th USENIX Security
Symposium (USENIX Security 19), pages 1099-1114,
August 2019.

A Performance of different configurations
compared to SYMQEMU

Table 8: Performance of concolic execution with no solving on Fuzzbench programs

Program SYMQEMU SYMFIT-M SYMFIT-MC SYMFIT-MS SYMFIT
Runtime(s) Runtime(s) Speedup Runtime(s) Speedup Runtime(s) Speedup Runtime(s) Speedup
harfbuzz 6,372.86 3,253.49 1.96x 2,62990 242x 1,435.19 4.44x 1,387.93 4.59x
lems 1,022.25 520.93 1.96x 50145 2.03x 190.09 5.38x 19237 5.31x
libpng 602.48 200.59 3.00x 17520 3.43x 65.25 9.23x 47.80 12.60x
nm 1,028.32 392,12 2.62x 410.44 2.50x 71.83 14.32x 74.07 13.88x
openssl 37,566.63 9,901.44 3.79x 8,46530 443x 3,092.26 12.15x 3,098.97 12.12x
proj4 542.10 367.15 1.48x 34399 1.57x 132.62 4.09x 144.13 3.76x
readelf 1,431.20 772.63 1.85x 693.18 2.06x 271.56 5.27x 5490 26.07x
woftf2 5,617.75 3,041.58 1.85x 2,123.02 2.65x 2,468.08 2.28x 1,534.60 3.66x
freetype 39,538.13 6,13990 6.44x 5,682.19 6.96x 2,739.58 14.43x 2,764.08 14.30x
jsoncpp 668.10 428.83 1.56x 372.02 1.79x 117.30 5.70x 115.71 5.77x
libjpeg 9,800.92 3,354.55 292x 2,511.20 390x 3,779.22 2.59x 2,768.12 3.54x
objdump 9,724.00 2,789.92 3.49x 2,69947 3.60x 141624 6.87x 1470.67 6.61x
openthread 254.40 13598 1.87x 139.71 1.82x 80.81 3.15x 82.47 3.08x
re2 8,257.88 6,992.17 1.18x 3,556.12 2.32x 4,200.55 197x 421799 1.96x%
size 669.30 195.13 3.43x 186.39 3.59x 48.50 13.80x 48.65 13.76x
vorbis 21,629.50 2,229.50 9.70x 1,678.43 12.88x 485.50 44.55x 370.52 58.38x
libxml2 13,982.00 2,202.55 6.35x 1,827.39 7.65%x 919.51 15.21x 930.47 15.03x
Geo. Mean 3.26 % 3.86 % 9.73x 12.03x

Table 9: Execution time of concolic execution with solving (in seconds)

Total Execution Time (s)

Basic Block Coverage

Program # seeds o S EMU SYMEIT-M SYMFIT-MC SyMFIT-MS SymFrr PP SyUQEMU SymFIT
harfbuzz 2,955 83,127.10 42,380.61 3708357 23,950.27 2335093 3.56 9098 9272
lems 157 422863 1961.08 1,64523 2,658.01 1,580.09 2.67 2064 1958
libpng 218 9,677.67 437286 4,18494 173440 122525 7.90 1250 1256
am 249 10,09271 9,558.61 8,800.40 9,77.07 90541 11.14 2443 2850
openssl 1,577 72,710.73 59,47024 57,346.02 11,876.38 11,097.04 6.55 12880 14213
projd 770 489643 426811 398475 1407.56 1,169.63 4.18 3822 4025
readelf 604 3232124 18,896.14 18,02336 5.626.86 3,087.03 10.47 5525 6187
woff2 548 10,559.96 671848 6,022.52 4460.72 4,01644 2.63 3061 3591
freetype 4,789 77,083.744 5129497 40423.84 18,964.84 814133 947 13368 15653
jsoncpp 450 196741 1509.39 136395 1,027.35 52899 3.72 1331 1361
libjpeg 846 33397.67 27,725.95 2247936 17,370.90 16,920.44 1.97 2674 2713
objdump 560 3147256 12,140.80 10,81920 6,118.25 581272 541 4000 4488
openthread 268 296624 243140 2,195.46 43686 57325 5.7 5413 5509
re2 1,073 21,701.13 21,350.01 20,075.95 13,653.63 12,882.43 1.68 5060 5084
size 207 706635 567614 5287.81 122668 88550 7.98 2215 2145
vorbis 526 4826628 3175567 26,790.59 2.835.14 2,027.14 2381 1302 1323
libxml2 1,952 21,395.87 157768.22 1541494 3,62096 293385 7.29 7976 7950

Geo. Mean

6.80%

	Introduction
	Background and Motivation
	Source-Code Concolic Execution
	Binary-Code Concolic Execution
	The Common Case Overhead

	System Overview
	Efficient Shadow Memory Checking
	Symbolic State Management

	Implementation
	Evaluation
	Evaluation Plan
	RQ1: Efficiency
	RQ2: Effectiveness
	RQ3: End-to-end Hybrid Fuzzing
	Coverage Efficiency
	Bug Detection Efficiency

	Ablation Study

	Case Study: Crash Deduplication
	Discussion
	Related Work
	Conclusion
	Performance of different configurations compared to SymQEMU

