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Abstract— Collaborative manipulation task often requires
negotiation using explicit or implicit communication. An im-
portant example is determining where to move when the goal
destination is not uniquely specified, and who should lead the
motion. This work is motivated by the ability of humans to
communicate the desired destination of motion through back-
and-forth force exchanges. Inherent to these exchanges is also
the ability to dynamically assign a role to each participant,
either taking the initiative or deferring to the partner’s lead. In
this paper, we propose a hierarchical robot control framework
that emulates human behavior in communicating a motion
destination to a human collaborator and in responding to their
actions. At the top level, the controller consists of a set of finite-
state machines corresponding to different levels of commitment
of the robot to its desired goal configuration. The control
architecture is loosely based on the human strategy observed
in the human-human experiments, and the key component
is a real-time intent recognizer that helps the robot respond
to human actions. We describe the details of the control
framework, feature engineering and training process of the
intent recognition. The proposed controller was implemented
on a UR10e robot (Universal Robots) and evaluated through
human studies. The experiments show that the robot correctly
recognizes and responds to human input, communicates its
intent clearly, and resolves conflict. We report success rates
and draw comparisons with human-human experiments to
demonstrate the effectiveness of the approach.

I. INTRODUCTION

Robots that can physically interact with humans are be-
coming increasingly available. However, to be useful in
practice, such robots must be able to interact with humans
in a transparent and predictable way that is similar to how
humans interact with other humans. Physical interaction is
often related to multi-modality, an important field of study
in Human-Robot Interaction (HRI) [1], [2], [3], [4], [5]. A
challenging task within physical HRI (pHRI) is collaborative
manipulation, where a dyad remains in physical contact
throughout and communicates haptically [6], [7], [8], [5].

The specific aspect of the collaborative manipulation task
studied in this work is the process through which the
participants negotiate where to move, and how to move.
The real-world scenario where such a negotiation takes place
would be a sudden occurrence of an obstacle that requires
the dyad to change direction of motion, with several options
available; the dyad needs to agree on one. Another example
would be moving a heavy pot to the table, where it can be
placed at several possible locations; again, the dyad needs to
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choose one. Although such negotiations often involve several
modalities, and in particular verbal communication, none of
them except force interaction is essential. Therefore, in this
study, we specifically exclude other communication modal-
ities and investigate how participants use force exchanges
alone to reach a consensus.

Collaborative manipulation has been studied extensively.
A substantial body of work uses models of human reaching
movements [9], [10] to control the interaction, often using
rule-based intent recognition [11], [12]. In these studies,
the main objective is to assist the human by accelerating
or decelerating the manipulated object to minimize the
effort [13], [12]. A similar approach is to use machine
learning techniques to predict a priori defined conflicting
states from haptic signals and use them to switch between
different controllers [14].

Another popular approach is to use programming by
demonstration. Initially targeting point-to-point reaching
movements [15], the approach was later successfully adapted
to pHRI applications [16], [17], [18]. While exhibiting
good performance in learning low-level force and velocity
characteristics of the task, the interaction with the human is
not explicitly controlled and the robot has limited ability to
respond to a large variety of human behaviors.

An important aspect of implementing a controller for
collaborative manipulation is the low-level control of the
point of contact. The predominant approach in the literature
for contact-rich tasks is based on impedance/admittance
control [19]. Specifically for pHRI, [20], [21] designed the
impedance parameters to match the impedance of the human
arm. To adapt to different phases of interaction, impedance
gain scheduling is a common practice [13], [22], [23], [14].
For human-humanoid collaborative manipulation, there are
several efforts [24], [25] that focus on low-level humanoid
control and are inspired by human-human experiments for
balancing tasks, where equilibrium trajectory position is
modulated using admittance control.

A crucial part of pHRI control is accurate intent recogni-
tion. Most of the work is focused on inferring the intended
goal based on the kinematic data for tasks that require
positional coordination such as grasping, reaching motions,
and ball catching [26], [27], [28], [29], [30]. Obtaining an
accurate human intent from force data remains challenging
since the force components are unpredictable due to task
specifics. For example, in [3], stiff contact with the envi-
ronment distorts the underlying intent; therefore, the authors
had to use additional sensors. In our case, the interaction
forces are influenced by the grasping forces and the walking
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Fig. 1: Robot Control Architecture.

patterns [31].
In most of the existing work on collaborative manipu-

lation, the robot follows the human lead. In contrast, our
work focuses on enabling the robot to negotiate where to
move and who will lead the motion. The main contributions
of the work are three-fold: (a) A high-level controller that
allows the robot to communicate its intent and respond to
human actions. The control architecture is motivated by our
studies of human-human collaborative manipulation [31].
(b) A real-time intent recognition module for robot control
that uses novel force/kinematics features as described in [31].
In contrast, in the related work [14], [6], the haptic channel
was used exclusively to infer the interaction state rather
than the real-time human intent. (c) A human study that
validates the framework. The study shows that the framework
achieves the stated goals where humans feel that the robot
communicates intent, and appropriately responds to their
action.

II. APPROACH

In collaborative manipulation, there are three important
variables to consider: goal location, commitment, and what
is known by each agent. The goal location is often dependent
on the manipulated object. Without loss of generality, we
consider generic goal locations gi ∈ SE(2), i = 1, . . . , n
for a planar task. The commitment variable describes how
strongly each agent wants to reach the goal. More committed
agents tend to escalate the interaction forces while less
committed agents may give up their goal and assume a
follower role [8].

In this work, we consider a scenario where each participant
is independently assigned a goal (in our case n = 3) and the
level of commitment (hard, soft, or none, meaning that the
participant has no goal and needs to follow). A hard goal
requires the participant to go to the assigned goal, convincing
the partner to comply if necessary. A soft goal should be
reached if possible, but if necessary it can be given up and
the partner followed instead. Given this task, the robot needs
to have three principal controllers: 1) Follower controller,
2) Soft Goal controller, and 3) Hard Goal controller. For
a detailed description of the task and the human-human
experiments, see [31].

III. CONTROL ARCHITECTURE

A. Architecture

The proposed robot control architecture for the interac-
tion task comprises three distinct layers, as illustrated in
Fig. 1. The lower layer employs a Cartesian twist (ve-
locity) controller operating at a frequency of 500Hz. The
middle layer implements an admittance controller which
provides compliance during the motion. This layer accepts
the reference signal from the High-Level Controller (HLC).
Finally, the HLC is a set of state machines responsible for
imitating human behavior according to the roles outlined
in Sect. II. Each state machine is triggered according to
a predefined robot goal gR and responds to human intent
feedback (Fig. 1).

B. Admittance Control

The middle-layer controller consists of an admittance
control law with inertia and damping terms [19], [32]. We
use a force-torque sensor mounted between the end-effector
and the object to measure force feedback FS

R . The control
equation in the discrete-time domain is:

Mẍ[k] +Bẋ[k] = Fact[k] + FS
R [k] (1)

where M and B represent inertia and damping terms, ẋ[k],
and ẍ[k] are the twist and acceleration (in se(3)) and k is the
time step. Assuming that ẋ[k] = ẋ[k − 1] + ∆T ẍ[k] where
∆T is the control rate, the admittance control law becomes:

ẍ[k] = (M +B∆T )
−1 (

Fact[k] + FS
R [k]−Bẋ[k − 1]

)
When implemented on the robot, a saturation block is added
to keep the robot’s speed within safe limits.

C. Robot Action Force

The robot action force block Fact in Fig. 1 accepts inputs
specifying the desired force magnitude Fref and the goal
direction gi. In turn, it will generate robot action force
Fact directed toward gi and interpolate it at 500 Hz. To
avoid sudden force changes that might cause aggressive
movements, the force is designed to reach the reference point
within a time period Ttransient. The value of Ttransient is
chosen to be 0.2 seconds considering the human reaction
time [33]. Moreover, Fact is set to zero when the object



reaches any of the goal sites. The robot action force is defined
as follows:

Fact[k] = Fact[k − 1] +
Fref − Fact[k − 1]

Ttransient
∆T (2)

Note that, Fref is confined to the safe limits [Fmin, Fmax]
(see the clip function in Figs. 3 and 4), hence the magnitude
of Fact has the same bounds. The dynamic response of Fact

to Fref can be seen in Fig. 2.
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Fig. 2: Robot Force Reference Tracking Example.

D. High-Level Reasoning

The high-level control module consists of three state
machines corresponding to different types of robot goals as
outlined in Sect. II. Each state machine runs at 50Hz.

1) Known Common Goal (KCG): Known Common Goal
(KCG) is a basic behavior that is a sub-block of the Follower,
Soft, and Hard Goal controllers. KCG is invoked when the
two agents agree on a goal. The controller simply generates
a static Fref towards gi and stops when the target is reached
(Fig. 3(a)). In addition, it stops at any other goal location
in case a user decides to overpower the robot. Thus, it may
terminate in two possible states: Nominal Termination and
Forced Termination. It should be noted that several more
elaborate versions of this behavior can be found in the
literature [13], [11] so it is outside the scope of our work.

2) Follower: This module builds on the KCG with an
added human intent perception block, as shown in Fig. 3(b).
The human intent perception block accumulates the output
of the intent recognizer, and when the timer threshold is
reached, it switches to KCG by selecting the most likely
goal. The timer threshold is designed to emulate the open-
loop behavior of a human and provide enough time for
them to perceive the partner’s intent [10]. Note that the
Follower controller does not require gR as an input. If the
human intent is misinterpreted or if it changes after the first
round of interaction, the KCG module still has the flexibility
to finish with Forced Termination state. We note that [14]
implemented a similar version of this controller but inferred
the intended continuous goal location from the measured
force using a rule-based method.

3) Hard Goal: An important contribution of this paper
is the ability of the robot to take initiative and lead the
interaction. In the Hard Goal mode, the robot prioritizes
its own goal, even though this creates a conflict. Inspired
by observations from human-human experiments [31], the
following logic is implemented as described in Fig. 4(a).
First, the robot initializes the action force in the direction
of the robot’s goal. If a conflict is perceived via intent
recognition during the current control step (gR ̸= gH ), then
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Fig. 3: State machines for KCG and Follower controllers.

the magnitude of Fref increases, otherwise (gR = gH )
decreases. The rate of change depends on the current speed
towards the robot goal gR.

The stretch force Fstr = FH − FR is monitored for
safety. If a human applies an excessive amount of force and
overpowers the robot, the state machine transitions to the
abort state, where the robot will gradually slow down and
stop. We note that such situations occurred in human-human
experiments. To resolve the conflict in this situation, humans
either initiate a dialogue or use other nonverbal cues such as
gestures, and restart the interaction.

4) Soft Goal: Another contribution of this work is a Soft
Goal controller. In this mode, the robot can take the initiative
or defer to the human. As can be seen in Fig. 4(b), the
Soft Goal has an additional subtask Attempt Human Goal
(AHG) compared to the Hard Goal. AHG is triggered if
the stretch force Fstr becomes large (but not large enough
for abort). This threshold parameter is denoted as FC .
When triggering the AHG, the robot sets its goal to the
perceived human intent and invokes the familiar agreement-
disagreement cycle. However, if the robot misinterprets the
human goal and spends too much time in the disagreement
state, the robot switches to the Follower mode, trying to
re-interpret human intent. If the robot interprets the human
intent correctly, then the subtask terminates by transitioning
to the KCG mode.

E. Robot Force Sampling

Since Fref is the key control variable, it is important
to carefully initialize the magnitude of the robot’s force.
Based on the predefined admittance gain, one can fine-tune
the range of the robot force magnitude Fmag = ∥Fref∥
that will act in the spectrum from light to heavy. In this
work, we chose to sample Fmag from three different regions:
weak, medium, and strong. Each level is described by a
normal distribution with means (µ) uniformly spread within
[Fmin, Fmax] and a fixed standard deviation of σS = 0.6N.
At the HLC level, Fref is sampled based on the predefined
levels above. In addition to that, each controller randomly
samples the strength level before initializing Fref . For ex-
ample, the Hard Goal controller is more likely to sample
(µH ) at a strong level than the Soft Goal controller (µS).
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Fig. 4: State machines for Hard and Soft Goal controllers.

The KCG mode mostly samples from the weak level. This
variability makes the robot’s behavior more human-like.

F. Intent Recognition

In this work, intent recognition serves both to detect
conflict and to determine the direction of the human intended
goal, which is the key variable that governs state transitions
in HLC. The intent recognition for the human-robot setting
was informed by our previous work [31] that studied the
human-human interaction. In this work, instead of window
intervals, instantaneous values of power signals are used.
To train the model, several human-robot interaction trials
were conducted in which the participant moved the object
in different goal directions while the robot was in a passive
admittance control mode. Details of the training procedure
are described in Sect. IV-B.

IV. IMPLEMENTATION

A. Hardware Setup

We use a UR10e robot (Universal Robots), and a wooden
tray with dimensions 61cm×31cm×10cm and weight m =
2.1kg. Three goal locations (n = 3) were chosen to resemble
human-human experiments in [31], with a 40◦ separation
angle and 0.5m away from the starting point to accommodate
the reachable workspace of the manipulator. The tray is
equipped with two RFT60 force-torque sensors (Robotous)
connected to an onboard Raspberry Pi. Power is provided by
a battery on the back of the tray. The Raspberry Pi transmits
the force-torque data wirelessly to the main computer at
200Hz. The force sensor mounted between the robot end-
effector and the tray was used as feedback for admittance
control. To simplify the implementation, a user-side force
sensor was used for intent recognition although the user
force could be reliably estimated using the robot-side force
sensor. To mitigate the noise in the feedback loop that causes
a vibration in admittance control, the real-time Butterworth
low-pass filter was implemented with a cutoff frequency of
5Hz. In order to reach the control rate of the robot, force-
torque data was up-sampled to 600Hz for smooth admittance
control. The Cartesian configuration of the manipulator and

its velocity were also transmitted at 500Hz. The proposed
system was implemented using the Robot Operating System
(ROS).

To synchronize the motion between the robot and the
human, three beeps are used. The first beep signals the
human to grasp the object. The second beep is automatically
triggered when the sensors detect that the human has grasped
the tray handle. The third beep is played when the object
reaches one of the goal locations.

B. Intent Recognition Training

Training data for the intent recognition consisted of 18
trials (12 for training, 6 for testing) from two participants.
In each trial, the participant attempted to move the tray in a
single goal direction and the robot passively followed. The
distribution of goals was uniform. The intent recognition
module uses only velocity, position, and force (human side)
data. In addition, the projected force, power, velocity, and
raw stretch force (Fstr in the object frame) are used as
features. This is a subset of Feature Set 2 in [31]. The input
to the classifier was a 13-dimensional feature vector sampled
at 250Hz. In turn, the classifier output was one of the 3 goal
locations (g1, g2, g3). The idle state (no human action) was
determined by a simple threshold on the magnitude of FH .
Before training, each trial was annotated for an action phase
in which a participant actively applied a force to move the
object to a desired location.

We chose the Linear Discriminant Analysis (LDA) clas-
sification algorithm as our predictor [34]. The classification
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accuracy was 93. 47% for the test set. The separation of
classes is shown in Fig. 5 for two principal components.
Although the intent recognizer was trained for the pas-
sive mode controller, it demonstrated good generalization
performance when the robot was actively applying force.
Therefore, from a practical point of view, there was no
need to generate new data with different robot behaviors.
Studying how generalizable the trained model is across
different humans is the subject of future work.

V. HUMAN-ROBOT STUDY AND RESULTS

To validate the proposed controller, a human-robot exper-
iment was designed, and approved by the IRB. The task
is to collaboratively carry the tray to one of the 3 goal
locations. Communication is restricted only to the haptic
modality. Before each trial, the human participant was given
a goal configuration (location and commitment) as defined in
Sect. II; similarly, a goal configuration was selected for the
robot. Neither the human nor the robot knew each other’s
goals. The experimental procedure replicates the human-
human study in [31].

The experiment involved 10 healthy participants who were
recruited from the University of Illinois Chicago campus.
Each participant completed 24 trials, totaling 240 trials.
The goal assignment for the human-robot dyad was drawn
randomly but skewed, so more soft vs. soft conflicting inter-
actions occurred. Before engaging in the task, the participants
were given time to practice, adapt to the robot, and learn
the goal types. This alleviates the learning effect. Following
the experiment, the participants were asked to complete a
qualitative feedback survey.

A. Controler Performance

1) Follower Controller: The number of instances where
the robot assumed a follower role in the experiment was 20.
In 16 instances, the controller terminated at Normal Termi-
nation (Fig. 3). This indicates that the intent recognition was
correctly determining human input and transitioned to the
KCG mode with a correctly recognized common goal. Out
of 4 failed cases, 3 were due to humans mistakenly swapping
the goal location. In one failed instance, the force applied by
the human was small; the intent recognizer tends to fail when
a human is not decisive. During all of the Follower controller
instances, the human participant was assigned to different
levels of commitment (9 Hard, 11 Soft) and actively applied
force on the object. This demonstrates the generalizability
and feasibility of the proposed intent-based feedback control
scheme.

2) Hard Goal Controller: In 90 trials, the robot was
assigned a hard goal. In 78 instances (87%), the controller
behaved as expected, and the tray was delivered to the robot’s
intended goal. In 8 instances (9%), the controller terminated
due to the safety abort. Only in 4 instances (4.5%) did the
robot fail to move the object to the intended goal. There can
be two reasons for such an outcome. An obvious possibility
is that the participant failed to perceive the conflict. In fact,
in the human-human experiment [31], the human participants

Fig. 6: An example of hard-soft case where gR = g1 and
gH = g2. The blue vertical curve shows the instant of the
first beep signal.

failed to perceive the hard goal intent of the partner in
several instances. Another reason for a failure can be a small
magnitude of Fref . In this case, human participants may
perceive the robot as having a soft goal, hence the participant
decides to apply more effort to bring it to their assigned goal.
As stated in Sect. III-E, Fref can vary from trial to trial.

An example run of a hard goal controller is given in Fig. 6.
The robot was assigned to go to g1 and the human to g2.
From the projected power of the human, one can see that the
human attempts to go to g2. The intent recognition correctly
detects the conflict and the controller increases Fact. At
around 2 seconds, the human partner decides to give up and
follow the robot lead; the controller appropriately transitions
to the agreement phase. Shortly after, the negotiated goal
settles at g1, the controller transitions to the KCG mode,
and the interaction terminates at g1. Though not used by the
controller, one can observe how the robot’s intent is reflected
in the robot’s projected power.

3) Soft Goal Controller: Out of 240 trials, the robot had
a soft goal in 130 trials and 117 of those were successful
(90%), meaning that: 1) the tray ended up at either the robot’s
or human’s goal if the human had a soft goal too; 2) the tray
ended up at the robot’s goal if the human had a follower
role; 3) the tray ended up at the human’s goal if the human
had a hard goal. In the remaining 5 instances, the controller
stopped due to a safety abort (≈ 4%). In 2 instances (≈
2%), participants failed to reach the hard goal because they
mistakenly swapped the goal location. In the remaining 6
instances (≈ 5%), the dyads misunderstood the intent of the
partner in soft-soft trials. Again, such misunderstandings also
occur in human-human interactions.

We also report who prevailed in soft-soft trials (60 trials).



In 34 trials (57%) the tray ended up at the robot’s goal and
in 26 trials it ended up at the human’s goal. This indicates
that the robot controller was able to take the initiative and
defer to the human partner.

An example run of the Soft Goal controller is given
in Fig. 7. In this particular case, the intended goal of
the human was g3. In the human projected power curves,
one can see a clear intent towards g3, which is correctly
captured by the intent recognizer. Also, note the magnitude
of Fstr that shows the level of the interaction conflict. In the
conflicting phase, the controller correctly increases Fact in a
disagreement mode and switches to the agreement phase as
soon as the human partner decides to give up, indicated by
the power curve dropping sharply in magnitude (blue curve,
2nd row, left). Since Fstr did not cross the FC threshold,
the robot did not give up on its intent. Finally, after a
short agreement phase, the dyad follows the KCG mode and
completes the interaction. A video of the robot performance
for all controllers is included in the supplemental material.

4) Switching Frequency: A valid concern in machine
learning-based feedback controllers is fast switching due
to misclassification. Therefore, we report the frequency
of switches in the agreement-disagreement cycle and their
average duration. In the hard goal cases (90 trials), the
average durations of the agreement and disagreement states
were 1.37s and 1.44s, respectively. The average number of
switches was 0.8. In other words, the Hard Goal controller
made one transition in 8 out of 10 cases and no transitions
in the remaining 2 cases. Similarly, in the soft goal cases
(130 trials), the average durations of the agreement and
disagreement states were 1.6s and 0.9s, respectively. The
average switching rate was 0.7, which is even less frequent
than the Hard Goal controller. These results demonstrate the
robustness of the proposed controller scheme against false
transitions detected by the intent recognizer. Contributing
factors to this are accurate tuning of timer thresholds (see
Sec. III-D) and the accuracy of the intent recognizer.

B. Survey Results

In the follow-up survey, each participant was asked the
following 5 questions: 1) How comfortable was the interac-
tion? 2) How responsive was the robot? 3) Was the robot’s
behavior predictable? 4) If you had to perform this task of
moving an object with a partner over a longer period of
time, would it be acceptable to have this robot as the partner?
5) How similar was the robot’s behavior to human behavior?
For the responses, we used a 7-point Likert scale, with 7
being the most positive response [35]. The average values
of the responses for the 10 participants are summarized in
Tab. I. The results show that the participants very highly
rated the interaction.

Question # Q1 Q2 Q3 Q4 Q5
Average 5.8 6.2 5.4 5.3 5.2

TABLE I: Average responses of 10 participants on the Likert
scale of 7.

Fig. 7: An example of soft-soft case where gR = g1 and
gH = g3. The blue vertical curve shows the instant of the
first beep signal.

VI. CONCLUSION

The paper describes a hierarchical robot control framework
that emulates human behavior in collaborative manipulation
tasks. The framework is inspired by our study of human-
human collaboration, which showed how humans use force
exchanges to reach a consensus on where to move and
who will lead. At the top level, the proposed controller,
inspired by these human strategies, consists of finite-state
machines that represent different levels of commitment to a
desired goal configuration. Key to our architecture is a real-
time intent recognizer that enables the robot to respond to
human actions effectively. We provide insights into controller
design, discuss the feature engineering process for the intent
recognizer, and describe the recognizer training.

The framework was implemented on a UR10e robot and
evaluated through a human study. The experimental results
demonstrate the robot’s ability to correctly recognize and re-
spond to human input, effectively communicate its intent, and
resolve conflicts. Success rates are reported, and comparisons
with human-human experiments are made to illustrate the
approach’s effectiveness in emulating human collaborative
behavior in robot-human interactions. A qualitative evalua-
tion of the controller by human subjects shows that it was
favorably perceived.

A natural extension of this work is to adapt the controller
to a realistic setting where a human and a robot can co-
manipulate various objects with different destination distri-
butions. This will require an environment-invariant version
of the presented intent recognizer. Another interesting path
to explore is to expand the interaction modalities in the high-
level controller with language and gestures.
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“Role Switching in Task-Oriented Multimodal Human-Robot Collab-
oration,” in 2020 29th IEEE International Conference on Robot and
Human Interactive Communication (RO-MAN), Aug. 2020, pp. 1150–
1156.

[3] L. Peternel, N. Tsagarakis, and A. Ajoudani, “Towards multi-
modal intention interfaces for human-robot co-manipulation,” in 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2016, pp. 2663–2669.

[4] A. M. Shervedani, S. Li, N. Monaikul, B. Abbasi, B. Di Eugenio,
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