2024 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) | 979-8-3503-6460-6/24/$31.00 ©2024 IEEE | DOI: 10.1109/IPDPSW63119.2024.00116

2024 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

FrameFeedback: A Closed-Loop Control System for
Dynamic Offloading Real-Time Edge Inference

Matthew Jackson
Department of Computer Science
Virginia Tech
Blacksburg, VA
mnj98 @vt.edu

Abstract—Despite the demand for real-time deep learning
applications such as video analytics at the edge, resource-
constrained edge devices can largely not process video streams at
their source frame rate. However, deep learning execution can be
accelerated by offloading tasks to a nearby edge server equipped
with a GPU. For a realistic edge system with variable network
conditions and server load, we consider optimally partitioning
the frames from a video stream between local processing and
offloading to maximize the throughput of an edge device under
a real-time deadline. To do this, we show that we can simplify
the influences on processing latency into a single relevant metric
and dynamically determine an appropriate offloading rate using
a latency-based feedback control mechanism. Our controller
settles on the optimal offloading rate without knowing network
conditions, resource availability, or application computation cost.
Our measurements show that our feedback controller balances
sensitivity and overcorrection given a variety of network and
load conditions set. We also show that our controller’s Quality
of Service outperforms state-of-the-art baselines and approaches.

Index Terms—edge computing, adaptive offloading, real-time
deep learning, feedback control

1. INTRODUCTION

The intriguing opportunities for real-time deep learning
(DL) applications at the edge clash with the harsh reality
that computation, communication, and accuracy are limited
with most edge devices. A wide variety of video analytics
workloads in surveillance, industry, UAVs, IoT, and AR could
effectively leverage advances in DL if not for the severe re-
source constraints faced with edge computation [1]-[5]. Real-
time workloads are especially sensitive to these constraints due
to tight end-to-end latencies often imposed on DL inference
results. Offloading these tasks can mitigate the challenges of
running these workloads on edge devices [6].

To maximize throughput, DL inference latency needs to be
minimized. However, edge devices, characterized by limited
resources [7], may not be able to process frames with a
reasonable latency or frame rate. With a typical frame rate of
30 frames per second, there are about 33 ms between frames.
However, depending on the DL model and the computing
resources of the edge device, inference for a single frame can
take hundreds of milliseconds to process [8].

A compelling solution to this problem is offloading [6], [9],
[10] where we can leverage the resources of a nearby edge

Bo Ji
Department of Computer Science
Virginia Tech
Blacksburg, VA
boji@vt.edu

Dimitrios S. Nikolopoulos
Department of Computer Science
Virginia Tech
Blacksburg, VA
dsn@vt.edu

node or server. An edge server, less restricted by resource
constraints, can accelerate DL inference throughput, especially
when equipped with a GPU [11]. However, a single device’s
video stream may under-utilize modern hardware and fragment
expensive hardware resources [12]. Leveraging multi-tenancy
by allowing many devices to offload can efficiently utilize the
server.

Real-time and multi-tenant constraints make offloading less
flexible. When there is continuous demand for inference
results, quality of service (QoS) becomes sensitive to end-
to-end latency [13]. Multi-tenant offloading helps improve
server resource utilization, but saturating server resources
compromises QoS due to higher service latency [14]. Vari-
able network conditions, device variability, and unpredictable
system load make end-to-end offload latency unstable [15]. A
reactive offloading policy for this domain must be developed
and tuned to maximize frame rate without violating latency
constraints [16].

Contributions

We propose a novel system that addresses the challenges of
multi-tenancy, constrained local resources, limited offloading
availability, and variable network conditions for real-time DL
workloads that operate on fast and concurrent video streams:

To address these constraints, we use the rate of end-to-end
latency violations as a critical metric in determining the suit-
ability of an individual edge device’s offloading policy. With
little to no timeouts, offloading can be scaled up (and sub-
sequently, as the offloading rate approaches the source frame
rate, the local inference rate can scale down). We propose a
novel real-time feedback control system, FrameFeedback, to
regulate the offload rate. FrameFeedback can provide stable
control under nominal conditions and reconfigure policies
when QoS violations occur [17].

Our work makes the following contributions.

1) We identify the factors impacting the QoS in real-time

DL applications at the edge and under multi-tenancy.
We demonstrate that these factors are not taken into
account in state-of-the-art approaches for total or partial
offloading.

2) We use end-to-end latency violation rate as a new metric

for evaluating offloading policies.

979-8-3503-6460-6/24/$31.00 ©2024 IEEE 584
DOI 10.1109/IPDPSW63119.2024.00116
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 10,2025 at 16:53:02 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Notation

Notation Description
Fs Source frame rate
P Total inference processing rate
P Local processing rate
P, Offloading rate
L Maximum tolerable offloading latency
T Rate of offloaded frames that time out
Tn Rate of offloading timeouts due to network
T Rate of offloading timeouts due to server load

TABLE II: P, of our different Raspberry-Pis

3B Rev. 1.2 | 4B Rev. 1.2 | 4B Rev. 1.4
CPUs 4 4 4
Speed 1200 MHz 1500 MHz 1800 MHz
Memory 909 Mi 3.7 Gi 7.6 Gi
MobileNetV3Small P; 5.5 13 13.4
EfficientNetBO P; 1.8 2.5 4.2

3) We present FrameFeedback, a novel closed-loop con-
trol system that uses system feedback to set an op-
timal offload policy under current system constraints.
FrameFeedback is available as open source software for
Raspberry Pi and NVIDIA GPUs'.

We evaluate FrameFeedback on a realistic edge sys-
tem against baseline approaches and demonstrate its
superiority under suboptimal server load and network
conditions, where FrameFeedback outperforms a state-
of-the-art system (DeepDecision) by more than a factor
of two.

4)

The rest of this paper is organized as follows. Section
V reviews related literature. We describe the details of the
FrameFeedback system and controller in Sections II and III
with evaluation following in Section IV. We discuss future
work in Section VI.

II. BACKGROUND

In this section, we provide background for FrameFeedback
and discuss the constraints that multi-tenant edge Al systems
operate under. We also discuss our system configuration. We
refer the reader to Figure 1 to visualize our system and
the specific interactions between devices and servers. Table I
provides the relevant notation.

A. System Model

We consider an environment that delivers Al services to
users through user mobile edge devices, edge servers, and
wireless networks. We seek resource allocation approaches
that address the following combination of challenges and
constraints:

1) Multi-Tenancy: We consider a system where users can-
not have dedicated resources to offload Al tasks [18]. The
combined load from all user devices also impacts the server’s
prediction time, so we cannot assume that our only source of

Uhttps://github.com/mnj98/edge-inference.

585

Feedback
Controller

Offloading

Model 1 (Large)
Model 2 (Large)

.//T\

Manager

DNN Model 1 (Small)

DNN Model 2 (Small)

Fig. 1: A diagram of the system which shows edge devices
(left & bottom right) and edge servers (top right). The feedback
controller inside the edge device directs the system on how to
react to varying conditions based on deadline violation rates.
On the top right, the GPU-equipped Edge server supports
offloading for multiple devices.

offloading latency comes from networking. We also consider
multiple classification workloads with different computational
costs, latency, and quality requirements.

2) Constrained Local Resources: Edge devices are resource
restricted, whether due to power limits, weak hardware, or lack
of accelerators [19]. For the specific application domain that
we study in this paper —object classification and identification
from real-time video streams at high frame rates, Table II pro-
vides examples from our Raspberry-Pis running classification
on frames of size 224x224. Referring to Table I, our system
assumes that, in all user devices that capture video, P, < Fj.
In other words, the local processing rate, P}, is slower than
the source frame rate Fj.

3) Limited Offloading Availability: Specific workloads may
saturate a server, thus causing QoS violations [20]. When the
workload fully saturates the system, the system should respond
by reducing offloading and distributing the available capacity
fairly among clients. Our notation represents the load-induced
time-out rate (and rejections) as 7.

4) Variable Network Conditions: Most edge devices con-
nect to the network wirelessly. Movement and sources of in-
terference can make connections unreliable. Bandwidth limits,
packet loss, or other network delays cause complex end-to-end
offload latency patterns that can be difficult to predict [21].
Our notation includes 7T}, for network-induced timeouts that
we consider in addition to 7;.

5) Quality of Service: QoS signifies how well the edge
device can complete time-sensitive tasks enabled by DL
inference results. Offloading is necessary to maximize task
processing time (P), but our system assumptions cannot
guarantee successful offloading. Therefore, when calculating
P, the system must account for 7' and be careful not to
offload excessively when 7' is high. Consider if P, = F
and 7" > F, — P, at some point. This means that the device
attempts to offload all its frames, but the effective value of
P is lower than F;. The system should never fail to react to
this scenario, and the controller should always strive to keep
P>P.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 10,2025 at 16:53:02 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Top-1 Model Accuracy [27], [28]

Model Top-1 Accuracy
EfficientNetBO 77.1%
EfficientNetB4 82.9%

MobileNetV3Small 67.4%
MobileNetV3Large 75.2%

We neither measure nor optimize power usage with our QoS
model, but note that, in general, effective offloading leads to
lower power usage on edge devices [6], [22]. Our experiments
show that Raspberry Pi CPU usage drops from 50.2% to
22.3% on average when transitioning from local execution to
offloading.

B. Offloading Latency

We consider two categories of delay: multi-tenant con-
tention and networking delay. The number of connected clients
and their respective offloading request rates dominate the sys-
tem load at the edge server. As the load increases, the time to
execute each batch of DL inference increases, and interprocess
communication increases. ATOMS [23] considers many of
these factors but at the cost of an exhaustively complex system
model that requires many different subsystems, including a
device-server clock synchronization and a resource reservation
system, to operate.

One benefit of FrameFeedback is that it does not need
to directly measure or understand the sources of the delay,
since it properly reacts when the delay arises. We make two
observations: First, an offloaded inference task is successful if
its result returns before its deadline. On a per-frame basis,
the only relevant measure of QoS is binary. Second, the
controller’s reaction to 7" depends entirely on 7’s value, and
any changes made to P, should be dependent on 7.

In this work, we consider 250ms as a justifiable deadline
for a real-world, real-time video processing system. This
assumption aligns with recent work on video analytics [24],
[25]. Furthermore, we consider pipelined offloading to overlap
frame processing for higher throughput.

C. Classification Applications

We use Image Classification models from the Keras [26]
framework to model our system. We chose MobileNetV3 [27]
and EfficientNets [28] because they are fast, well documented
and applicable to many domains.

D. Model Accuracy

Table IIT presents details on the accuracy of our selected
models. These accuracies may be lower than those of non-
constrained models, but are consistent with models previously
used in edge computing [29].

One way to increase the accuracy of the model is to improve
the information in the classified image. The default resolution
with which all of these models have been pre-trained with
is 224 %224 except for EfficientNetB4, which accepts images
with a resolution of 380x 380, and allows for a variable

586

input size. Most modern cameras generate images with larger
resolutions and resize them to fit as input to classification
models, so using a larger resolution closer to the source could
improve accuracy. When offloading images for classification,
it is common to compress them [30], [31]. Using lighter
compression can improve accuracy. Both techniques have a
significant downside when offloading, because both increase
the number of bytes per frame that need to be transferred.

III. FEEDBACK CONTROLLER

In this section, we describe the FrameFeedback controller
covering the foundations of the controller, showing our neces-
sary modifications, and justifying the controller’s settings. We
adapt the basic theory of a closed-loop PID controller to show
that a modified and tuned controller is a good choice for our
problem domain.

A. A Feedback Controller for Real-Time Offloading

A closed-loop or feedback controller applies continuous
control to a system by measuring a process variable (PV)
and applying a correction such that PV converges to a set
point (SP). A Proportional-Integral-Derivative (PID) con-
troller computes an error e(t) where:

e(t) = SP(t) — PV (t) (1)
And a control function:
t
u(t) = Kpe(t) + K / e(r)dr + Kp dz(f) @
Jo

where Kp,K;, Kp are the proportional, integral, and
derivative coefficients, respectively [32].

FrameFeedback uses a discrete feedback controller to de-
termine a suitable offloading rate for each edge device using
measured information such as P, and 7. When T is zero (no
offloading latency violations or dropped requests), offloading
will likely continue or increase.

1) PD Controller: For our controller, we observe that the
integral term of conventional PID controllers is unnecessary.
The characteristics of this term, the consideration of the past,
and the variable external forces on PV, are not factors in our
system. Since our controller’s input is the average of 1" from
the last few seconds, we already consider past data and show
that PV does not experience variable forces.

Therefore, K; = 0, and we modify Equation 2 to:
de(t)

it 3)

Our goal of maximizing the processing rate by maximizing
available offloading means that our error function e(t) needs
to consider two cases:

1) If T is low (< 10% of Fy), e(t) needs to be positive

2) If T is high, e(t) needs to be negative
These two cases are challenging to capture with a simple PV
function. A balanced approach requires considering each case
separately with a piecewise PV:

u(t) = Kpe(t) + Kp

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 10,2025 at 16:53:02 UTC from IEEE Xplore. Restrictions apply.

Controllers With Different Tunings

T T T T I I I I
o(Kp,Kp) = (0.001,0.001)
30 - o208 2 goesabeied o (Kp,Kp)=1(0.2,026) | |
°
®® ..o‘ ° ® (Kp,Kp)=(1,1)
° ° ®
®e° 2®®
20 + &® ° a
° ® ®
Ay © ® ® 0aa®®
7} ° %.0. (L 1Y
® (] %........g LTS
%0,0°2
10 e e ®® ®®7
®
.' . . 025
0«oooo@oooogoooogoooogoooo?o oogoooo§oooo?oooo?oooo?oooo?oooo
0 5 10 15 20 25 30 35 40 45 50 55 60
Time (s)

Fig. 2: Offloading rate P, for controllers with different Kp and Kp coefficients. We introduce packet loss of 7% after 27

seconds.

P, T=0

)
T+09F, T>0

|

In this approach, we set SP = F, so e(t) is linear in both

cases.
e(t) = {

Our PD controller will drive the offloading rate to F§, and
in the presence of timeouts exceeding 10% of Iy, it will scale
back the offloading. Note that e(t) = 0 when 7" = 0.1F%, so
P, will stabilize to 0.1F when offloading always fails. This
does not negatively impact QoS when compared to not trying
to offload at all, but it does provide a constant measurement
of offloading availability. Therefore, when good conditions
return, offloading will immediately begin to increase.

Fy—P, T=0

o)
0.1Fs—T T>0

B. Tuning

A traditional tuning approach, such as the Ziegler—Nichols
method [33] offers good intuition for tuning our controller.
Still, their exact method cannot be applied because it is
designed for a full PID controller. Furthermore, due to the
changing network and system load conditions, our PV func-
tion demonstrates more variance than those they considered.

The procedure to adjust our PD controller was to gradually
increase K p until the controller sensitivity was high and the
PV oscillated under constant conditions. Next, we increased
Kp to reduce the oscillations and stabilize the system. This
follows from the wisdom that increasing K p increases sensi-
tivity while degrading stability, and increasing K p decreases
overshoot and improves stability [32].

To introduce an additional tuning layer into the controller,
we limited u(¢) to a specific range of updates. To make the

TABLE IV: PID Settings

Variable Value
Kp 0.2
Kr 0
Kp 0.26
Update minimum —0.5* Fy
Update maximum 0.1 % F§
Measure Frequency 1

587

controller sensitive to when 7' is high, the minimum update
to P, is _5 s, However, we did not want the controller to
react too quickly to increase P, (the offloading rate), so we
imposed a maximum update of If—g when increasing P,. These
limits result in the controller improving QoS by reacting more
forcefully to timeouts.

Table IV displays the settings of our controller. Figure 2
shows the effect of different settings on the responsiveness and
stability of our controller. At first, we see the controllers’ be-
havior under ideal network conditions, and once we introduce
packet loss, we can observe how the settings affect stability.

IV. EXPERIMENTS
A. Testing Configuration

We used the Raspberry-Pis detailed in Table II as our edge
devices. For the collection of the data shown in Figures 2, 3
and 4, we use the three Raspberry-Pi’s concurrently sending
streaming requests to our edge server and evaluated their total
inference throughput. We use MobileNetV3 for these tests
because it produces the smoothest results. To help reproduce
results, we only used the same device and model for data
collection. TThe Raspberry Pi runs Debian Linux 11 (bullseye)
on kernel 5.15.84-v8+. It has four Cortex-A72 arm64 CPUs,
a heat sink, and a fan. We wrote the entire Pi code in
Python and used Python 3.9.13. Our Keras models run through

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 10,2025 at 16:53:02 UTC from IEEE Xplore. Restrictions apply.

TensorFlow [34] 2.8.0, which we built specifically for the Pi’s
CPU architecture.

Our edge server runs on an Ubuntu 20.04.5 virtual machine
inside of KVM. It has 16 EPYC 7251 CPUs. It has a Tesla
V100 GPU running CUDA version 11.8 passed through from
the host machine. We use Python 3.8.13 and Tensorflow
version 2.9.1.

This configuration is realistic, as hardware and software are
widely used in real-world deployments and have been used
for evaluation in related work [23].

We did not observe significant differences in throughput
or CPU usage when testing with an actual webcam versus
sourcing frames from the ImageNet dataset. For convenience
and reproducibility, we use ImageNet frames for evaluation.

Adaptive Batching Strategy

Batching can help maximize throughput and hardware uti-
lization, especially when using GPUs with Image Classifi-
cation models, which are notorious for their low hardware
usage [35]. We adaptively vary our batch size based on the
request volume to take advantage of batching. ATOMS [23]
follows the same approach. Since we have a constant stream
of incoming frames, our batching scheme can be simple:
construct a batch using all frames (to a limit) that arrived
while executing the previous batch. We maintain a request
queue that is filled during the execution of a batch, and we fill
the next batch with the contents of this queue. As noted, we
cannot allow the batch size to grow too large, so we impose
a limit of 15 frames for each batch, while rejecting the rest in
the queue.

B. Controllers

In addition to FrameFeedback, we evaluate the following
controllers:

1) Local Inference: The first of the baselines we compare
our FrameFeedback controller with is the local execution only.
This is an undesirable solution due to the low throughput
and high power usage of computing Image Classification on
Raspberry Pis.

2) Always Offload: This baseline is self-explanatory. At all
times, we offload all frames to the edge server. Since we
disregard any feedback, it is unlikely that this solution will
be optimal unless the system conditions are perfect.

3) All-or-Nothing Intervals: Mimicking DeepDecision’s
[30] approach, we decide at each measurement step (1 second)
whether to offload all frames in that interval or to classify
frames locally. To make this decision, we follow DeepDe-
cision’s intuition and try to keep track of the system state
by sending a heartbeat request to profile the latency. If the
request is successful (returns before the deadline), we deem
the conditions sufficient for offloading.

C. System Variables

We can alter two main system variables to induce timeouts
and measure throughput. Changes in the network and server
load can induce timeouts in different patterns, and we can
change both in different ways.

588

1) Network: Our primary method for degrading the network
connection between Pi and the server is by limiting the band-
width and introducing packet loss, which has a realistic impact
on real edge networks [21]. To artificially inject rate limits and
loss, we used NetEm [36], a Linux network emulation tool that
allows us to fine-grained control over the emulated network.
We could have also used NetEm to add a latency delay to
packets, but we believe that rate and loss are better tools to
induce timeouts as they are more indirect. Additionally, NetEm
delay calculations may not be accurate [36].

To ensure that the rate of deadline violations is not affected
by excessively high or low rate and loss values, we decided to
limit the bandwidth between 1-10 kbps and set the loss rate to
7% for this experiment. It should be noted that this loss rate
may be low for some wireless networks, which can experience
packet loss rates in the tens of percentage points [37].

2) Server Load: The second method of injecting latency
is by using a high load on the server. While measuring on
one device, we can use other devices to put a higher demand
on the server. This allows us to measure the system behavior
under high multi-tenancy.

Queuing delays, interprocess communication, and increased
batch sizes increase the latency of each request. At some level
of request volume, batch sizes will saturate the system, leading
to rejections. However, batch size limits are set per model, so
we hit both model types when measuring controller response
under server load.

Combined Network and Server Measurements: Combining
both sources of end-to-end latency largely works additively
to create more unsuccessful offload requests. Combining the
two sources of additional latency can generate various time-
out patterns of interest. Due to space considerations, we do
not discuss these patterns further here.

TABLE V: Network Variables

Time(s) Bandwidth (kbps) | Loss (%)
0-30 10 0
30-45 4 0
45-60 1 0
60-90 10 0

90-105 10 7
105+ 4 7

D. Network

To compare FrameFeedback to the baselines under ideal and
degrading network conditions, we subjected each controller to
the same tests. Generating a stream of 4,000 frames at 30
frames per second, we configure NetEm to alter the network
conditions at predetermined intervals. Refer to Table V for
specific values and to Figure 3 for data.

The first thing to address is that P, the successful inference
rate, is noisy for all controllers. This is due to the discrete
nature of the frames, which are generated at fixed intervals.
Unpredictable and random timeout rates subtract from P,
making it noisy even though an average trend is visible.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 10,2025 at 16:53:02 UTC from IEEE Xplore. Restrictions apply.

Controller Comparisons with Degrading Network Conditions

T T T T T T T T T
® ®
® O »
&@%M 1
. ©® oo*&cp © o
X ~ © 0 L
co® ®e
* ° e ® oo
* e
. ©* e ° @
° ®--@ o0 o () .
A ®» * o o o0 ° °
*
* . * W@* []?% *.
* ‘ * ¢ ‘
.OM@) Booo®ee ®*®a§*®
. *% g ® ,%g*** ° ” .
N @ © ®®*®% ©Bes 80
Fok* ® (
® ® ®
®
! !
70 80 90
Time (s)

Fig. 3: Total inference throughput P for each of type of controller under the network conditions shown in Table V

TABLE VI: Server Load Configuration

e FrameFeedback, P,, @ Intervals, o Only Offload

and for FrameFeedback, we show P and P,. Beginning with
zero, we increase and then decrease the external offloading

Time(s Request Rate

10_1((;) qus at identical intervals for each controller. Up until about 150
10-20 90 additional requests, our Pi can fit in some offloading when
20-35 120 controlled by FrameFeedback. The other controllers have
2828 igg lower throughput due to their inability to adapt in a fine-
60-75 130 grained way.

75-90 120

90-100 90 V. RELATED WORKS

100+ 0

We include P, for FrameFeedback to demonstrate its behav-
ior. The dark blue dots represent P, + P, — 1" and represent
the throughput.

Under very high or low network quality periods, Frame-
Feedback and all-or-nothing intervals have equivalent through-
put. However, we can see that under intermediate network
conditions, FrameFeedback has a higher throughput because
it can find an offload rate that the current conditions can
support. Especially around 40 seconds and beyond 90 seconds,
FrameFeedback has a better average P (between 50% and up
to 3x) compared to the all-or-nothing approach. Clearly, the
only-offloading strategy is suboptimal.

E. Server Load

Our testing structure for measuring the effects of multi-
tenancy and server load follows our network testing protocol.
We generate a stream, at 30 frames per second, of 4,000
frames, but instead of using NetEm to degrade the network, we
use other devices to inject request volume. Refer to Table VI
for details.

Figure 4 contains the same structure as Figure 3 in that
we show the total throughput P for each baseline controller,

589

In this Section, we review different approaches to real-time
DL offloading at the edge.

A. Local Only Deep Learning

Initial works on running DL-based video analytics work-
loads solely on edge devices show poor performance. Most
combinations of devices and models result in inference laten-
cies of up to 2000 milliseconds [38] for data sets like those
explored in this paper. This prevents meaningful service when
processing real-time video streams.

B. Total Offloading

Some works rely completely on an external edge server to
compute real-time DL results. In a single-tenant system, the
work in [39] adapts the level of offload based on network
conditions. Another single-tenant system presented in [8] de-
scribes an object tracking application where the detection stage
uses off-loaded DL while computing frame-by-frame tracking
locally. Multi-tenant offloading of multiple devices’ video
streams is explored in [40], but this work lacks exploration
of QoS degradation due to networking or total system load.

Considering the constraints of a multi-tenant real-time of-
floading system, [23] describes a reservation, planning, and
scheduling system called ATOMS. Since it requires computing
time estimation and clock synchronization, the system is

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 10,2025 at 16:53:02 UTC from IEEE Xplore. Restrictions apply.

Controller Comparisons with Varying Server Load

70

Time (s)
e FrameFeedback, P,, ® Intervals, o Only Offload

| | | |
80 90 100 110 120 130 140

Fig. 4: Total inference throughput P for each of type of controller under the server load shown in Table VI.

complex but robust. ATOMS considers resource contention
for CPU workloads and GPU-supported DL workloads, but
it lacks rigorous evaluation under variable network conditions
and is not an applicable solution for our system.

C. Partial Offloading

Adaptive partial offloading is a promising way to balance
system constraints such as network bottlenecks and server load
with local device processing. OsmoticGate [31] coordinates
edge devices with edge nodes and can adaptively offload DL
workloads to the cloud. Although local processing on edge
devices is not actually performed, the constraints considered
for edge node processing versus cloud offloading are similar
to local versus edge node processing. OsmoticGate considers
frame chunk size and rate for varying system conditions.

DeepDecision [30] uses all-or-nothing adaptive offloading,
where it can offload all frames from a video stream to an
edge server if it detects suitable conditions. If latency or
power thresholds are exceeded, DeepDecision can adjust the
offloading policy or compute the results on the device. Neither
OsmoticGate nor DeepDecision adequately describes a way to
generate an offloading policy given the constraints of our real-
time and multi-tenant edge video analytics.

VI. CONCLUSION

We presented a system to improve the service of real-time
video DL applications in a constrained and variable edge
environment by adaptively adjusting offloading. FrameFeed-
back is an end-to-end latency-sensitive closed-loop feedback
controller. When an edge server supports offloading for many
resource-constrained devices, FrameFeedback’s custom con-
trol function guides it toward maximum throughput. Frame-
Feedback reacts to degradation in system-wide offloading
capacity better when compared to baseline approaches.

590

ACKNOWLEDGEMENTS:

This material is based upon work supported by the National
Science Foundation under Grants No. 2315851 and 2106634,
a Sony Faculty Innovation Award (Contract AG3ZURVF), and
a Cisco Research Award (Contract 878201).

REFERENCES

[1] S. P. Rachuri, F. Bronzino, and S. Jain, “Decentralized modular
architecture for live video analytics at the edge,” in Proceedings
of the 3rd ACM Workshop on Hot Topics in Video Analytics and
Intelligent Edges, ser. HotEdgeVideo °21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 13-18. [Online].
Auvailable: https://doi.org/10.1145/3477083.3480153

A. Ghosh, S. Iyengar, S. Lee, A. Rathore, and V. N. Padmanabhan,
“React: Streaming video analytics on the edge with asynchronous cloud
support,” in Proceedings of the 8th ACM/IEEE Conference on Internet
of Things Design and Implementation, ser. 1oTDI ’23. New York,
NY, USA: Association for Computing Machinery, 2023, p. 222-235.
[Online]. Available: https://doi.org/10.1145/3576842.3582385

S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “Lavea: Latency-
aware video analytics on edge computing platform,” in Proceedings of
the Second ACM/IEEE Symposium on Edge Computing, ser. SEC *17.
New York, NY, USA: Association for Computing Machinery, 2017.
[Online]. Available: https://doi.org/10.1145/3132211.3134459

G. Ananthanarayanan, P. Bahl, P. Bodik, K. Chintalapudi, M. Philipose,
L. Ravindranath, and S. Sinha, “Real-time video analytics: The killer
app for edge computing,” Computer, vol. 50, no. 10, p. 58-67, jan
2017. [Online]. Available: https://doi.org/10.1109/MC.2017.3641638
H. Hua, Y. Li, T. Wang, N. Dong, W. Li, and J. Cao, “Edge
computing with artificial intelligence: A machine learning perspective,”
ACM Comput. Surv., vol. 55, no. 9, jan 2023. [Online]. Available:
https://doi.org/10.1145/3555802

G. Klas, “Edge computing and the role of cellular networks,” Computer,
vol. 50, no. 10, pp. 4049, 2017.

W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang, “A
survey on the edge computing for the internet of things,” IEEE Access,
vol. 6, pp. 6900-6919, 2018.

T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan,
“Glimpse: Continuous, real-time object recognition on mobile devices,”
in Proceedings of the 13th ACM Conference on Embedded Networked
Sensor Systems, ser. SenSys "15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 155-168. [Online]. Available:
https://doi.org/10.1145/2809695.2809711

[2

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 10,2025 at 16:53:02 UTC from IEEE Xplore. Restrictions apply.

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 10,2025 at 16:53:02 UTC from IEEE Xplore. Restrictions apply.

J. Wang, J. Pan, F. Esposito, P. Calyam, Z. Yang, and P. Mohapatra,
“Edge cloud offloading algorithms: Issues, methods, and perspectives,”
ACM Comput. Surv., vol. 52, no. 1, feb 2019. [Online]. Available:
https://doi.org/10.1145/3284387

X. Wang, J. Ye, and J. C. Lui, “Decentralized task offloading in
edge computing: A multi-user multi-armed bandit approach,” in /IEEE
INFOCOM 2022 - IEEE Conference on Computer Communications.
IEEE Press, 2022, p. 1199-1208. [Online]. Available: https://doi.org/
10.1109/INFOCOM48880.2022.9796961

D. Steinkraus, I. Buck, and P. Simard, “Using gpus for machine learning
algorithms,” in Eighth International Conference on Document Analysis
and Recognition (ICDAR’05), 2005, pp. 1115-1120 Vol. 2.

D. Cao, J. Yoo, Z. Xu, E. Saurez, H. Gupta, T. Krishna, and
U. Ramachandran, “Microedge: A multi-tenant edge cluster system
architecture for scalable camera processing,” in Proceedings of the 23rd
ACM/IFIP International Middleware Conference, ser. Middleware ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
322-334. [Online]. Available: https://doi.org/10.1145/3528535.3565254
J. Chen and X. Ran, “Deep learning with edge computing: A review,”
Proceedings of the IEEE, vol. 107, no. 8, pp. 1655-1674, 2019.

S. Gazzaz and F. Nawab, “Collaborative edge-cloud and edge-edge
video analytics,” in Proceedings of the ACM Symposium on Cloud
Computing, ser. SoCC ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 484. [Online]. Available:
https://doi.org/10.1145/3357223.3366024

A. J. Ben Ali, S. Semenova, and K. Dantu, “Platform variability in
edge-cloud vision systems,” in Proceedings of the 20th International
Workshop on Mobile Computing Systems and Applications, ser.
HotMobile ’19. New York, NY, USA: Association for Computing
Machinery, 2019, p. 163. [Online]. Available: https://doi.org/10.1145/
3301293.3309555

X. Zhang and S. Debroy, “Resource management in mobile edge
computing: A comprehensive survey,” ACM Comput. Surv., vol. 55, no.
13s, jul 2023. [Online]. Available: https://doi.org/10.1145/3589639

D. Simon, A. Seuret, and O. Sename, “On real-time feedback control
systems: Requirements, achievements and perspectives,” in 2012 Ist
International Conference on Systems and Computer Science (ICSCS),
2012, pp. 1-6.

N. Wang, M. Matthaiou, D. S. Nikolopoulos, and B. Varghese,
“Dyverse: Dynamic vertical scaling in multi-tenant edge environments,”
Future Generation Computer Systems, vol. 108, pp. 598-612, 2020.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167739X19312403

J. Hao, P. Subedi, I. K. Kim, and L. Ramaswamy, “Characterizing
resource heterogeneity in edge devices for deep learning inferences,”
in Proceedings of the 2021 on Systems and Network Telemetry
and Analytics, ser. SNTA *21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 21-24. [Online]. Available:
https://doi.org/10.1145/3452411.3464446

S. Bagchi, M.-B. Siddiqui, P. Wood, and H. Zhang, “Dependability in
edge computing,” Commun. ACM, vol. 63, no. 1, p. 58-66, dec 2019.
[Online]. Available: https://doi.org/10.1145/3362068

Y. Zaki, T. Potsch, J. Chen, L. Subramanian, and C. Gorg,
“Adaptive congestion control for unpredictable cellular networks,” in
Proceedings of the 2015 ACM Conference on Special Interest Group
on Data Communication, ser. SIGCOMM °15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 509-522. [Online].
Available: https://doi.org/10.1145/2785956.2787498

X. Zhang and S. Debroy, “Energy efficient task offloading for compute-
intensive mobile edge applications,” in /CC 2020 - 2020 IEEE Interna-
tional Conference on Communications (ICC), 2020, pp. 1-6.

Z. Fang, J.-H. Lin, M. B. Srivastava, and R. K. Gupta, “Multi-tenant
mobile offloading systems for real-time computer vision applications,”
in Proceedings of the 20th International Conference on Distributed
Computing and Networking, ser. ICDCN °19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 21-30. [Online].
Available: https://doi.org/10.1145/3288599.3288634

M. Liu, X. Ding, and W. Du, “Continuous, real-time object detection
on mobile devices without offloading,” in 2020 IEEE 40th International
Conference on Distributed Computing Systems (ICDCS), 2020, pp. 976—
986.

Z. Chen, W. Hu, J. Wang, S. Zhao, B. Amos, G. Wu, K. Ha,
K. Elgazzar, P. Pillai, R. Klatzky, D. Siewiorek, and M. Satyanarayanan,
“An empirical study of latency in an emerging class of edge computing

591

[29]

[30]

[40]

applications for wearable cognitive assistance,” in Proceedings of the
Second ACM/IEEE Symposium on Edge Computing, ser. SEC *17.
New York, NY, USA: Association for Computing Machinery, 2017.
[Online]. Available: https://doi.org/10.1145/3132211.3134458

F. Chollet et al., “Keras,” https://keras.io, 2015.

A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan,
W. Wang, Y. Zhu, R. Pang, V. Vasudevan, Q. V. Le, and
H. Adam, “Searching for mobilenetv3,” 2019. [Online]. Available:
https://arxiv.org/abs/1905.02244

M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling
for convolutional neural networks,” 2019. [Online]. Available: https:
//arxiv.org/abs/1905.11946

E. Kristiani, C.-T. Yang, and C.-Y. Huang, “isec: An optimized deep
learning model for image classification on edge computing,” [EEE
Access, vol. 8, pp. 27267-27276, 2020.

X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “Deepdecision: A mobile
deep learning framework for edge video analytics,” in JEEE INFOCOM
2018 - IEEE Conference on Computer Communications, 2018, pp. 1421—
1429.

B. Qian, Z. Wen, J. Tang, Y. Yuan, A. Y. Zomaya, and R. Ranjan,
“Osmoticgate: Adaptive edge-based real-time video analytics for the
internet of things,” IEEE Transactions on Computers, pp. 1-14, 2022.
K. H. Ang, G. Chong, and Y. Li, “Pid control system analysis, design,
and technology,” IEEE Transactions on Control Systems Technology,
vol. 13, no. 4, pp. 559-576, 2005.

J. G. Ziegler and N. B. Nichols, “Optimum Settings for Automatic
Controllers,” Transactions of the American Society of Mechanical
Engineers, vol. 64, no. 8, pp. 759-765, 12 2022. [Online]. Available:
https://doi.org/10.1115/1.4019264

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, 1. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

J. Kosaian and A. Phanishayee, “A study on the intersection
of gpu utilization and cnn inference,” 2022. [Online]. Available:
https://arxiv.org/abs/2212.07936

A. Jurgelionis, J.-P. Laulajainen, M. Hirvonen, and A. I. Wang, “An
empirical study of netem network emulation functionalities,” in 2011
Proceedings of 20th International Conference on Computer Communi-
cations and Networks (ICCCN), 2011, pp. 1-6.

V. Sharma, K. Kar, K. K. Ramakrishnan, and S. Kalyanaraman, “A
transport protocol to exploit multipath diversity in wireless networks,”
IEEE/ACM Transactions on Networking, vol. 20, no. 4, pp. 1024-1039,
2012.

B. Taylor, V. S. Marco, W. Wolff, Y. Elkhatib, and Z. Wang,
“Adaptive deep learning model selection on embedded systems,”
in Proceedings of the 19th ACM SIGPLAN/SIGBED International
Conference on Languages, Compilers, and Tools for Embedded
Systems, ser. LCTES 2018. New York, NY, USA: Association
for Computing Machinery, 2018, p. 31-43. [Online]. Available:
https://doi.org/10.1145/3211332.3211336

L. Liu, H. Li, and M. Gruteser, “Edge assisted real-time object detection
for mobile augmented reality,” in The 25th Annual International
Conference on Mobile Computing and Networking, ser. MobiCom ’19.
New York, NY, USA: Association for Computing Machinery, 2019.
[Online]. Available: https://doi.org/10.1145/3300061.3300116

P. Liu, B. Qi, and S. Banerjee, “Edgeeye: An edge service
framework for real-time intelligent video analytics,” in Proceedings
of the Ist International Workshop on Edge Systems, Analytics and
Networking, ser. EdgeSys’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 1-6. [Online]. Available:
https://doi.org/10.1145/3213344.3213345

