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ABSTRACT
The foundation of earthquake monitoring is the ability to rapidly detect, locate, and esti-
mate the size of seismic sources. Earthquakemagnitudes are particularly difficult to rapidly
characterize because magnitude types are only applicable to specific magnitude ranges,
and location errors propagate to substantial magnitude errors. We developed a method
for rapid estimation of single-station earthquake magnitudes using raw three-component
P waveforms observed at local to teleseismic distances, independent of prior size or loca-
tion information. We used the MagNet regression model architecture (Mousavi and
Beroza, 2020b), which combines convolutional and recurrent neural networks. We trained
our model using ∼ 2.4 million P-phase arrivals labeled by the authoritative magnitude
assigned by the U.S. Geological Survey. We tested input data parameters (e.g., window
length) that could affect the performance of our model in near-real-time monitoring appli-
cations. At the longest waveformwindow length of 114 s, our model (Artificial Intelligence
Magnitude [AIMag]) is accurate (median estimated magnitude within ±0.5 magnitude
units from catalog magnitude) between M 2.3 and 7.6. However, magnitudes above M
∼ 7 are more underestimated as true magnitude increases. As the windows are shortened
down to 1 s, the point at which higher magnitudes begin to be underestimated moves
toward lower magnitudes, and the degree of underestimation increases. The over and
underestimation of magnitudes for the smallest and largest earthquakes, respectively,
are potentially related to the limited number of events in these ranges within the training
data, as well as magnitude saturation effects related to not capturing the full source time
function of large earthquakes. Importantly, AIMag can determine earthquake magnitudes
with individual stations’ waveforms without instrument response correction or knowl-
edge of an earthquake’s source-station distance. This work may enable monitoring agen-
cies to more rapidly recognize large, potentially tsunamigenic global earthquakes from
few stations, allowing for faster event processing and reporting. This is critical for timely
warnings for seismic-related hazards.

KEY POINTS
• Earthquake magnitudes are difficult to accurately deter-

mine rapidly for real-time earthquake monitoring.
• We developed a machine learning method for global sin-

gle-station magnitude estimation using raw P waveforms.
• This may allow monitoring agencies to more rapidly proc-

ess seismic data, enabling timelier hazard warnings.

Supplemental Material

INTRODUCTION
Monitoring agencies worldwide ensure that earthquake infor-
mation is shared in near-real time as quickly and as accurately
as possible. Earthquake information products are key for

organizing emergency response efforts after substantial shaking,
as well as anticipating and modeling earthquake-associated haz-
ards that can also have catastrophic effects on people and prop-
erty. For example, the U.S. Tsunami Warning Centers monitor
the globe for large earthquakes that could cause tsunamis, and
the U.S. Geological Survey (USGS) analyzes and publishes
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information about earthquake economic and loss of life effects,
as well as landslide and liquefaction risk. In addition, national
and international security groups (e.g., the Air Force Technical
Applications Center in the United States) conduct global mon-
itoring to detect explosive seismic sources that are not earth-
quakes, which may indicate violations of the Comprehensive
Test Ban Treaty, which bans nuclear explosions worldwide
(Ringler et al., 2022). Foundational to all of these missions is
the ability to rapidly detect, locate, and characterize seismic
sources.

In the United States, the USGS National Earthquake
Information Center (NEIC) is tasked with 24/7 rapid response
to earthquakes both nationally and across the globe. Automatic
processing software and human analysts at the NEIC work to
accurately assess the character of earthquakes within minutes
to aid in estimates of economic and life loss, and provide infor-
mation to emergency responders, the media, governments, and
the public (Benz, 2017). Key earthquake characteristics include
location, magnitude, and rupture extent and pattern, all of
which can inform of the potential for associated hazards such
as strong shaking and tsunamis. Of these, magnitude is a par-
ticularly important source parameter because it is the founda-
tion of subsequent hazard estimates (e.g., shaking intensities)
and is the fundamental parameter used by the public to inter-
pret the severity of an earthquake. However, magnitude esti-
mation can be a complicated process, and more simplistic
methods may fail to adequately characterize an event. This
results in variability of the magnitude based on how it is cal-
culated, and it is prone to errors propagated from location and
station metadata inaccuracies.

Magnitude estimation is particularly complex at the NEIC
because it monitors earthquakes both domestically and globally
in all tectonic environments. For small domestic earthquakes,
the NEIC relies on amplitude-based measurements, preferring
eitherML (local magnitude) ormb lg (short-period surface-wave
magnitude) depending on the tectonic environment, or mea-
surements derived from waveform modeling (Mwr—regional
magnitude) when sufficient data are available. For larger global
earthquakes, the NEIC relies on different amplitude-based mag-
nitudes (primarily mb—short-period body-wave magnitude) or
magnitudes calculated with waveform modeling (primarily
Mww—moment W-phase magnitude or Mwb—body-wave
magnitude).

Each of these magnitude types is only appropriate for specific
magnitude ranges, and the appropriateness of each can depend
on the properties of the waveforms. As an example, although the
NEIC uses Mww as its preferred magnitude, Mww can perform
poorly after larger earthquakes due to increased long-period
noise levels. Amplitude-based magnitudes are often the first
magnitude produced internally in the NEIC’s processing system,
but these are prone to substantial errors because of mislocation
due to their heavy reliance on attenuation relationships.
Therefore, magnitude processing that can span all settings and

is independent of location information has the potential to aid
internal processing systems, as well as rapidly alert analysts of
potential significant events.

MACHINE LEARNING FOR EARTHQUAKE SOURCE
PARAMETER ESTIMATION
In recent years, research into applications of machine learning in
seismology and geophysics has grown substantially, with several
studies demonstrating that deep learning models improve upon
traditional data processing methods. A review of the history of
machine learning use in the seismology field and its current
applications and future directions can be found in Mousavi and
Beroza (2023). Deep learning typically requires large amounts
of data to perform well, and the standard of maintaining
publicly accessible data within the geophysics community
(e.g., the NEIC’s earthquake catalog, the EarthScope waveform
data archives) lends itself well to this methodology. The utility
of deep learning techniques has been established for many
seismology applications, including detection and location of
earthquakes and expansion of earthquake catalogs through
accurate P- and S-phase picking for improved locations and
velocity models (e.g., Perol et al., 2018; Ross et al., 2018; Zhu
and Beroza, 2019; Mousavi and Beroza, 2020a; Mousavi et al.,
2020; Zhang et al., 2020).

Another application, the estimation of earthquake magni-
tudes, has been approached with a variety of deep learning
techniques. As reviewed by Mousavi and Beroza (2023), these
include seismic single-station classification and regression
approaches (Lomax et al., 2019; Mousavi and Beroza, 2020b;
Ristea and Radoi, 2021), as well as multistation methods, which
in addition to seismic data (van den Ende and Ampuero, 2020;
Münchmeyer et al., 2021) can include the use of Global
Navigation Satellite Systems (GNSS; Lin et al., 2021) and elas-
togravity data (Licciardi et al., 2022). Mousavi and Beroza
(2020b) demonstrated that a regression model built with the
machine learning framework TensorFlow (Abadi et al., 2015)
as a combination of a convolutional neural network and a recur-
rent neural network could accurately estimate local magnitudes
from single waveforms with no instrument response removal.
The Mousavi and Beroza (2020b) model, known as MagNet,
was trained and tested on data from global earthquakes (pri-
marily of M < 5) from the STanford EArthquake Dataset
(Mousavi et al., 2019) with epicentral distances of less than
one degree. The MagNet model shows great promise, but its
applicability as currently trained is limited to small scales and,
therefore, is not appropriate for global earthquake monitoring.

Cole et al. (2023) constructed the Machine Learning Asset
Aggregation of the Preliminary Determination of Epicenters
(MLAAPDE, pronounced “millipede”) to aid in the development
of machine learning tools at the NEIC. MLAAPDE is a data set
and query tool built from the Preliminary Determination of
Epicenters (PDE) bulletin published by the NEIC (Sipkin et al.,
2000). MLAAPDE is formatted such that users will readily be
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able to use the >5.1 million waveforms and associated labels in
model development, training, and testing. As such, it is this data
set that we utilize for this study. Detailed information about
MLAAPDE and how to access the code and default data set
is available in Cole et al. (2023). In this study, we leverage
the previous work on the MagNet model with the MLAAPDE
data set to test the applicability of the approach to global earth-
quake monitoring.

METHODS
MLAAPDE data access
The default MLAAPDE catalog contains 120-s-long wave-
forms, centered on an analyst-verified phase pick and in units
of raw counts with a 40 Hz sampling rate. Our goal was to
create a model that can be applied in rapid response settings,
so we chose to only sample from the available first arrival P-
phase picks in the catalog (either P, Pn, or Pg). We stream-nor-
malized input waveforms by dividing each observation by the
maximum value of all three channel traces for each station. We
did not apply instrument response correction or otherwise fil-
ter the waveform data. However, the waveforms were deci-
mated to a sampling rate of 20 Hz to reduce computation
time and memory required for the code to run.

A common practice in machine learning is to split data sets
into training, validation, and testing partitions with a conven-
ient ratio (e.g., 80% samples for training, 20% for testing). Our
training data set was composed of earthquakes with origin
times spanning five years and two months from 1 August
2013 to 30 September 2018, and earthquake magnitudes
between M 0.0 and 8.3, containing 2,431,341 waveforms from
2121 stations in the MLAAPDE data set. The validation data
set was composed of earthquakes with origin times spanning
one year and three months from 1 October 2018 to 31
December 2019, and earthquake magnitudes between M 0.7
and 8.0, containing 489,268 waveforms from 1615 stations
in the MLAAPDE data set. The testing data set was composed
primarily of 324,365 MLAAPDE waveforms from 1536 sta-
tions, with earthquake origin times spanning one year from
1 January 2020 to 31 December 2020, and earthquake magni-
tudes between M 0.7 and 7.8. The full data set contains a vari-
ety of different magnitude types, but the majority are eithermb,
ML, orMww (refer to Cole et al., 2023, their fig. 2, for the full list
and distribution of magnitude types in MLAAPDE). We
ensured that no earthquakes in the training data set were in
the validation or testing data sets to reduce leakage and the
likelihood that the model would learn the earthquake magni-
tudes from the waveform similarity of a single event. The sep-
aration between validation and testing data sets was made to
ensure that the final model would not be biased by the testing
process because the best model is chosen in training based on
the lowest validation loss achieved.

We also manually expanded the testing data set beyond
MLAAPDE to test the model on larger earthquakes, even

though it was not trained on these events. MLAAPDE currently
only draws from the most modern version of the PDE, which
has been used since mid-2013. As a result, the training data set
used in this study does not contain any earthquakes aboveM 8.3
because this was the largest event that occurred between 1
August 2013 and 30 September 2018. To supplement the testing
data set, we used ObsPy (Beyreuther et al., 2010) to download
13,151 waveforms from the EarthScope Data Management
Center from an additional 78 earthquakes M > 7.5 from 1
January 2000 to 31 July 2013. This data set includes several great
earthquakes, such as the 2004 M 9.1 Sumatra earthquake, 2010
M 8.8 Maule earthquake, and 2011 M 9.1 Tōhoku earthquake.
Waveforms for the earthquakes in this extended testing data set
came from 1736 stations.

In total, the full data set was split to be ∼75% training, 15%
validation, and 10% testing (Fig. S1, available in the supple-
mental material to this article). Maps of the earthquakes
and stations from which waveforms were drawn for this study
can be found in Figure 1.

Training data processing and augmentation
The speed at which an earthquake magnitude can be determined
in a real-time environment depends on the arrival time and
telemetry delay of waveform data, the latency to load the wave-
form into monitoring applications, the window of waveform
data required, and the speed of the magnitude calculation.
For this reason, it is important to find the minimum effective
window for magnitude estimation. We tested our model across
a range of 1–114 s of waveform data. MLAAPDE stores wave-
forms at a length of 120 s (Fig. 2a), which we shortened further
in our data augmentation process (Fig. 2b–f).

Because MLAAPDE is a well-curated catalog of human-
reviewed picks, we manually augmented the data to simulate
the challenges of real-time processing because we wanted our
model to be resilient to issues that can manifest in seismic
monitoring. Data augmentation involves synthetically expand-
ing the number of samples in a data set, as well as their variety,
to prevent overfitting in machine learning models and improve
generalization (Zhu et al., 2020).

We built our data augmentation using a TensorFlow Keras
Sequence data generator (Abadi et al., 2015) that prepared the
arrays to be fed into the model for training. By implementing
the augmentation “on the fly,” the data were shuffled and
augmented differently with every training epoch, therefore
increasing variability.

We augmented the data from MLAAPDE in four different
ways following methods tested in Zhu et al. (2020). We first
implemented a random shift in the location of the phase pick
so that it was no longer in the exact center of each waveform.
The phase picks in MLAAPDE are all human-reviewed, and in
many cases, repicked for accuracy. In real-time monitoring set-
tings, phase picks are performed automatically, often using
short-term average/long-term average methods (Lee and
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Stewart, 1981). Automatic picks are often not as accurate as
manual picks from analysts. Therefore, to allow our model
to learn to estimate earthquake magnitudes on real-time data
that may not have perfectly accurate phase arrival times, we
implemented a random shift of up to 3 s (forward or backward)
into each waveform from MLAAPDE (Fig. 2c), which further
shortened the window length by 6 s. This random shift was
applied to all waveforms in the training, validation, and testing
data sets.

Next, noise was added to some of the waveforms only in the
training data set. Because the data generator looped through
the waveforms, ∼50% of the time, additional noise was intro-
duced. For each point in the waveform, a value drawn from a
normal distribution was added, with the standard deviation of
each of those normal distributions being drawn from a uni-
form distribution between 0.01 and 0.15 (Fig. 2d). Many of
the waveforms in the MLAAPDE data set already have low sig-
nal-to-noise ratios (SNRs), so this augmentation simply
increased the number of “different” waveforms that the model
could learn about in training.

The third augmentation involved swapping the two hori-
zontal components ∼50% of the time in the training data
(Fig. 2e). This simulated potential station orientation issues
and changed the source-station path, again introducing more
data variety.

The fourth and final augmentation dropped each channel
∼5% of the time, with a limitation to prevent all three from

being dropped simultaneously (in this case, the third or vertical
channel was kept). An example of this is shown in Figure 2f. In
a real-time setting, it is very possible that some instruments or
channels may not be recording or transmitting data due to
malfunctions or telemetry problems. Introducing dropped
channels into the training data allowed for the machine learn-
ing model to be resilient to these issues when making magni-
tude estimations.

In the training process, we used the same Adam optimizer
(Kingma and Ba, 2015) as Mousavi and Beroza (2020b) as well
as a mean squared error loss function, and we utilized the same
early stopping and learning rate reduction to prevent overfit-
ting and stop the training when the loss rate plateaued.
Training was repeated for each different window length of
data, resulting in a total of 26 trained models.

Figure 1. Maps of the earthquakes and seismometers that recorded them
used in this study. (a) The 189,475 earthquakes in the combined train-
ing, validation, and testing data sets from the Machine Learning Asset
Aggregation of the Preliminary Determination of Epicenters (MLAAPDE)
catalog with origin times from 1 August 2013 to 31 December 2020. (b) The
78 earthquakes M > 7.5 in the expanded historical testing data set with
origin times from 1 January 2000 to 31 July 2013. (c) The 2422 stations
from which waveforms were drawn for the MLAAPDE earthquake catalog
shown in panel (a). (d) The 1736 stations from which waveforms were
drawn for the historical earthquake catalog shown in panel (b). These maps
were constructed using PyGMT (Uieda et al., 2023).
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Figure 2. Time-series plots demonstrating the different types of augmenta-
tion implemented in our data generator. (a) The original three-component
120-s waveforms loaded from the MLAAPDE data set, stream-normalized
with no instrument response removed. The black trace indicates the east–
west component, the blue trace the north–south component, and the red
trace the vertical component. The phase pick is in the center of the figure at
60 s. The center of the figure is indicated by the black dashed line. (b) The
same waveforms as in panel (a), cut down to a smaller window length (14 s
in this example). (c) The same waveforms as in panel (b), but the window
length has been cut down an additional 6 s to accommodate an applied
random shift of the location of the phase pick by up to 3 s forward or

backward. The center of the figure (which is no longer aligned with the
phase pick) is still indicated by the black dashed line. (d) The same
waveforms as in panel (c) with additional noise applied. For each point in
the waveform, a value drawn from a normal distribution was added, with
the standard deviation of each of those normal distributions being drawn
from a uniform distribution between 0.01 and 0.15. The amount of added
noise is not consistent between components. (e) The same waveforms as in
panel (c), but the east–west and north–south components (black and blue)
have been switched with each other. (f) The same waveforms as in panel (c),
but in this instance the north–south (blue) component has been “dropped”
by zeroing-out the trace.
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RESULTS AND
DISCUSSION
Model performance by
magnitude
After training, our machine
learning model (which
will be referred to as
Artificial Intelligence
Magnitude [AIMag]) was used
to make estimations on the
previously unseen testing data
set. The testing process was,
like the training, repeated with
each of the data sets of differ-
ent window length for a total
of 26 iterations.

Because most of the earth-
quakes in the data set have
observations from multiple
stations, and AIMag makes
magnitude estimations for indi-
vidual stations, there are multi-
ple estimated magnitudes for
each earthquake in the catalog,
and the statistics for these esti-
mations can be more easily
visualized using a boxplot plot-
ting method. Results shown as
boxplots are included for two
selected iterations in Figure 3,
for which Figure 3a shows the
results for the data with a
shorter window length of 7 s,
and Figure 3b shows the results
for the longest window length of
114 s. The full set of figures for
all window lengths can
be found in Video S1. As with
the default waveforms, the
phase arrivals are approximately
in the center of these waveforms
with the random shift, so
approximately half of the win-
dow length of these waveforms
are noise and half are signal.

By examining the changes
between Figure 3a,b, it is possible
to observe that as the window
length increases, themedian esti-
matedmagnitudes and their cor-
responding blue boxes converge
toward a one-to-one relationship
with the catalog magnitudes, as

Figure 3. Boxplots plotted using Matplotlib (Hunter, 2007) showing the model’s estimated earthquake magnitudes
for the testing data set (both MLAAPDE and historical data) for two example time windows, with the catalog
magnitude for the earthquakes on the x axis, and the model’s estimated magnitudes for those same earthquakes on
the left y axis. An animation showing the boxplots for all time windows can be found in Video S1. (a) Model
magnitude estimations for data with a waveform window length of 7 s. (b) Model magnitude estimations for data
with the longest tested waveform window length of 114 s. In each of these panels, the median magnitude
estimation for each catalog magnitude bin on the x axis is shown by the horizontal black line in the center of each
light blue box. The lower and upper bounds of the light blue boxes indicate the first and third quartiles of the
estimations in each bin, respectively, and the whiskers extend to 1.5 times the interquartile range. The individual
points beyond the whiskers indicate outliers. The diagonal bold gray dashed line represents a one-to-one
magnitude estimation line, with the lighter gray dashed lines above and below it ± half a magnitude unit. The
vertical blue dashed line indicates the magnitude of a theoretical earthquake whose source time function (STF)
would entirely fit within half of the window length for that particular plot, as the P wave should arrive at
approximately halfway through the window. Finally, the red histogram at the bottom of each panel shows the
magnitude distribution for the testing data set, with the testing data from the MLAAPDE data set in the year 2020
in dark red, and the historical testing data set in light red. A scale for the counts for each of the histogram bins is
shown on the right y axis.
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indicated by the diagonal bold gray dashed line. The lighter gray
dashed lines above and below the bold gray line show half a mag-
nitude above and below the one-to-one relationship.

At the longest window length of 114 s as shown in Figure 3b,
the smallest earthquake magnitudes are overestimated by
AIMag, and the largest earthquake magnitudes are underesti-
mated. Some of this effect is likely attributable to limited data
availability at the lowest and highest magnitudes, as shown in
the histograms in each panel of Figure 3. The most populated
magnitude bins in the catalog are aroundM 2.5 and 4.5. This is
because the NEIC’s PDE catalog publication criteria include
earthquakesM 2.5 and larger or felt in the United States (exclud-
ing California, which is published for M 3.0 and larger), and
M 4.0 and larger or felt in the rest of the world, resulting in
a catalog that is complete to about M 4.5 globally. Therefore,
fewer earthquakesM < 2.5 are in the catalog, and naturally fewer
high-magnitude earthquakes are included because of the
Gutenberg–Richter law (Gutenberg and Richter, 1949). This
data paucity in training likely affects the model’s ability to accu-
rately assess the magnitudes of the smallest and largest earth-
quakes. Where data are sparse, the model tends to hedge the
magnitude estimates to be more toward the mean of the mag-
nitudes in the data set (4.4 for the training data set, 4.2 for the
validation data set, and 4.3 for the testing data set). For example,
at the 1 s time window (Video S1) the median estimated mag-
nitudes are all close to 4.3. As the time window grows, the esti-
mates shift to fall more along the one-to-one line, but they never
move low enough for the magnitudes in the lowest ranges—
likely due to the undersampling.

Another feature of these plots is the vertical darker blue
dashed line, which moves to the right as the window length
increases from Figure 3a to Figure 3b. This line indicates
the magnitude of a theoretical earthquake for which the source
time function would entirely fit within half of the window
length for that particular plot (i.e., the length of earthquake
signal in the window). This theoretical magnitude was calcu-
lated by dividing the window length by two and using that as
the total rupture duration (τt) in the following equation:

M0 � τ3t × 0:625 × 1023, �1�
in which M0 gives the seismic moment in dyn·cm and τt is the
total rupture duration. Singh et al. (2000) gave a range of 0:25 ×
1023 to 1:0 × 1023 dyn · cm=s3 for the value of M0=τ3t for shal-
low earthquakes, so the midpoint of this range was used for the
approximation of earthquake moment in this study. Using that
calculatedM0, we then converted this to the moment magnitude
Mw following Kanamori (1977) using the following equation:

Mw � 2
3
log10�M0� − 10:73, �2�

in which M0 again gives the seismic moment in dyn · cm. This
Mw is what was plotted as the vertical dark blue dashed line in

Figure 3. We expected that AIMag would be more accurately
able to estimate the magnitude of an earthquake that can be
entirely seen within the window of data provided (i.e., for which
the magnitude bin is to the left of the blue dashed line), and that
it would struggle with earthquakes larger than this (where the
magnitude bin is to the right of the line). This effect can be seen
most clearly in Video S1, in which all tested time windows
are shown.

At the longest time window of 114 s (Fig. 3b), the theoretical
earthquake magnitude is ∼8, and it is true that the earthquakes
above this magnitude are underestimated by AIMag. However,
some of the larger earthquakes still to the left of the line are also
underestimated. In this higher magnitude range, the model is
likely limited by the small number of waveforms from large
magnitude earthquakes in the training data set. The largest
earthquake in the training data set isM 8.3, and the entire train-
ing data set only contains 31 earthquakesM 7.5 and greater for a
total of 4486 waveforms. Compared to the 170,553 training
waveforms available for just M 4.5 alone, for example, this is
a very limited sample from which AIMag can learn. Future work
could explore the possibility of including synthetic large magni-
tude earthquakes in the training data set to improve the model’s
exposure to these larger events during training. This could be
achieved using codes such as FakeQuakes (Melgar et al.,
2016), which is capable of generating synthetic teleseismic data.
Another potential avenue for increasing the proportion of large
earthquakes in the data set would be to upsample the existing
ones, as was done in Münchmeyer et al. (2021). We also
explored the possibility of improving the performance of the
models at the extreme ends of the magnitude scale by imple-
menting weighting into the training based on the relative abun-
dance of samples in the data set by magnitude. We split the data
set into bins by 0.5 magnitude intervals and defined the weight
for each bin as 1—(samples in bin divided by the total number of
samples in the training data set). This way, a magnitude bin with
many samples would have a small weight in the training process,
and a bin with few samples would have a large weight. These
weights were then applied to the waveform samples as they were
processed through the data generator in the training process. We
found slight improvements for some time windows with this
method (Video S2; Fig. S2), which indicates that for future work
exploring a more sophisticated weighting scheme may lead to
improved results.

We included the historical catalog of larger earthquakes in
the testing data set to determine whether AIMag was capable of
accurately estimating their magnitudes, despite not being
trained on eventsM > 8.3. Although the magnitudes are under-
estimated, the model can at least determine that they are
greater than M 7 in many cases at the longest window length
of data, shown by the positions of the medians for those mag-
nitude bins in Figure 3b. This result makes AIMag useful for
flagging large magnitude earthquake detections in monitoring
operations.
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Another potential reason that the highest magnitude earth-
quakes are underestimated by AIMag is because of the com-
plications of magnitude saturation in seismic data. Magnitudes
calculated using the P waves in seismic waveforms tend to sat-
urate at the high end of the scale (i.e., large earthquakes become
indistinguishable from even larger ones). The relationship
between log peak ground displacement and magnitude is linear
for moderate magnitude earthquakes, but transitions to a scal-
ing that is independent of magnitude at larger magnitudes
(with this transition point moving to higher magnitudes as
the data window length increases; refer to Trugman et al.,
2019 their fig. 4). In addition, traditional seismic data process-
ing requires high-pass filtering to remove baseline drift effects
that appear when data are double integrated to displacement,
and this filtering removes low-frequency content that may
change the relationship between measured displacement and
earthquake magnitude (Colombelli et al., 2012). In this study,
although we do not remove the instrument response, inte-
grate, or filter any data before training AIMag on it, by virtue
of the diversity of the NEIC’s contributor networks we are
using a variety of different types of instruments, some of
which likely have a smaller range of periods at which they
have a flat response. This means that some longer period
information may be suppressed, which could contribute to

the model’s underestimations
at high magnitudes. In future
studies, performance could
potentially be improved for
large earthquakes by the use
or inclusion of displacement
data as an input in the training
process. Machine learning
methods have previously been
shown to be effective for real-
time earthquake magnitude
estimation using GNSS dis-
placement data (e.g., Lin
et al., 2021).

Although this article focuses
on AIMag’s single-station mag-
nitude estimation results, in
operational practice, magni-
tudes are typically determined
and reported by averaging the
magnitudes calculated from
many different stations. We cal-
culated event-averaged magni-
tudes from the single-station
results described previously
(Video S3) and observed that
this approach had the expected
effect of suppressing many of
the outlier single-stationmagni-

tudes. This effect could also be seen when the standard devia-
tions of the magnitude estimation errors for the event-averaged
magnitude method were compared to the standard deviations
of the errors for the single-station method (Fig. S3), as the
standard deviations for the event-averaged magnitude method
were lower.

Model performance by waveform and earthquake
characteristics
We were interested in determining whether AIMag had any
biases toward particular characteristics of earthquakes or wave-
forms.We analyzed the performance of the model by earthquake
source depth, hypocentral distance (the distance between the
hypocenter and the receiver station), and the SNR of the wave-
forms. For Figures 4–6 as discussed in the following section, we
calculated the magnitude estimation error by subtracting the
model’s estimated magnitude from the true catalog magnitude.

In Figure 4, we plotted the magnitude estimation errors by
the source depth of the earthquakes in the testing data set. Only
the plot for the 114-s window is shown, as the results do not
change substantially across time windows for this parameter.
The remaining plots can be seen in an animation in Video S4.
For this figure, we have also plotted a histogram showing the
distribution of earthquake source depths corresponding to the

Figure 4. A boxplot showing the error in the magnitude estimation (estimated magnitude–catalog magnitude) made
by the model on the left y axis plotted against the source depth of the earthquake in kilometers on the x axis,
corresponding to each estimation for the 114 s time window. An animation showing the boxplots for all time
windows can be found in Video S4. The characteristics of the boxplot in this figure are the same as those for
Figure 3, with the median magnitude estimation error for each earthquake source depth bin shown by the
horizontal black line in the center of each light blue box. On the right y axis, we have plotted a histogram showing
the distribution of earthquake source depths corresponding to the waveforms in the testing data set. The dis-
tribution of source depths in the MLAAPDE data set is shown in dark red, with the distribution of source depths in
the historical data set stacked on top of those in light red. The transparency of the second (10 km) source depth
histogram bin was reduced to ease visualization of the overlaid boxplot data.
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waveforms in the testing data set. The very populous second
bin is as such because it encompasses the 10-km-depth range,
and 10 km is the default depth assigned by the NEIC when
a shallow earthquake’s depth cannot be precisely constrained.
In general, Figure 4 shows that AIMag is not biased in its

estimations by the depth of
the source earthquake, with
the median error for most cata-
log magnitude bins being near
zero. It only shows more vari-
ability in error at the far end of
the depth range, as very few
650 km and greater deep earth-
quakes are available either for
training or testing.

We next looked at the mag-
nitude estimation error by the
hypocentral distance for each
waveform. These results can
be found in Figure 5, in which
boxplots for the 7 s window
(Fig. 5a) and 114 s window
(Fig. 5b) are shown. The
remaining plots for all other
time windows can be seen in
the animation in Video S5.
We have also plotted in these
panels a logarithmic histogram
showing the distribution of
hypocentral distances corre-
sponding to the waveforms in
the testing data set. The
MLAAPDE data set only con-
tains waveforms with maxi-
mum hypocentral distances of
∼100° (or ∼11,110 km), so
the only waveforms with fur-
ther hypocentral distances
come from the historical data
set. This is why we elected to
use a logarithmic histogram
for this plot—the relatively
smaller size of the historical
data set made the histogram
bars nearly disappear with a
nonlogarithmic plot.

In comparing Figure 5a to
Figure 5b across the time win-
dow range, we observe that the
main difference in perfor-
mance is with the far hypocen-
tral distances greater than
10,000 km where only the his-

torical data exist. In Figure 5a with a 7 s window, AIMag
greatly underestimates the magnitudes of the earthquakes in
the waveforms with large hypocentral distances, and in
Figure 5b at the 114 s window length, the performance is
improved (although still underestimated). We would expect

Figure 5. Boxplots for (a) the 7 s window and (b) the 114 s window showing the error in the magnitude estimation
(estimated magnitude–catalog magnitude) made by the model on the left y axis plotted against the hypocentral
distance in kilometers on the x axis corresponding to each estimation. An animation showing the boxplots for all
time windows can be found in Video S5. The characteristics of the boxplot in this figure are the same as those for
Figures 3 and 4, with the median magnitude estimation error for each hypocentral distance bin shown by the
horizontal black line in the center of each light blue box. On the right y axis, we have plotted a logarithmic
histogram showing the distribution of hypocentral distances corresponding to the waveforms in the testing data set.
The distribution of hypocentral distances in the MLAAPDE dataset is shown in dark red, with the distribution of
hypocentral distances in the historical data set stacked on top of those in light red. The MLAAPDE data set in the
format used in this study only contains waveforms with hypocentral distances of ∼100° or less, so the only
waveforms with further hypocentral distances come from the historical data set.
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AIMag to perform poorly at these far distances because the
training data set includes no waveforms with hypocentral dis-
tances over ∼11,110 km, and because only a small portion of
the P wave will exist in waveforms with such large hypocentral
distances. Of note, however, the model with a longer window
length of data was able to estimate the magnitudes more
closely, and it performs better at the very longest distance range
of 16,000 km and greater compared to a more intermediate
range of 11,000–16,000 km. From Figure 5, we can generally
conclude that AIMag, when tested with data with a similar
hypocentral distance range to that on which it was trained,
is not substantially biased by hypocentral distance. We there-
fore recommend using this model as currently trained only for
hypocentral distances of ∼100° or less.

Finally, we examined the performance of AIMag by the SNR
in decibels (dB) of the waveform. We calculated waveform
SNRs for the MLAAPDE and historical data sets according
to the following equation:

SNRdB � 20 × log10

�
Srms

Nrms

�
, �3�

in which Srms is the root mean square of the earthquake signal
time series from the P-wave arrival to 30 s after, and Nrms is the
root mean square of the background noise from 60 s before the
P-wave arrival up until 1 s before its arrival (for a total of 59 s
of noise).

Figure 6 shows boxplots for the magnitude estimation error
plotted against the waveform SNR corresponding to each esti-
mation for the 7 s window (Fig. 6a) and the 114 s window
(Fig. 6b). The remaining plots for all other time windows
can be seen in the animation in Video S6. We have again also
included a logarithmic histogram showing the distribution of
SNRs corresponding to the waveforms in the testing data set.
We observe that at the full waveform window length of 114 s in
Figure 6b, the median errors have converged around zero, indi-
cating that there is not a bias in AIMag’s performance by SNR.
However, with the 7 s window in Figure 6a, the model has
more spread in the estimations and appears to underestimate
the magnitudes of waveforms with an SNR above ∼10 dB, but
it performs better below this range.

This range of underestimations aligns with where the his-
torical data are present in greatest number, as seen in the histo-
gram in Figure 6a. To verify that the data type was causing this
bias above ∼10 dB, we plotted the magnitude error versus SNR
for the MLAAPDE and historical testing waveform data sets
separately (Fig. S4). This showed that the underestimations
seen in Figure 6 came primarily from the historical waveforms
because the MLAAPDE waveforms have median estimation
errors of around zero even at 1 s window lengths. It is, there-
fore, likely that some properties of the historical waveforms
that were not present in the MLAAPDE waveforms led to
the magnitude underestimations by AIMag at short time

windows, as the model was not trained on these types of wave-
forms. In Figure 6a, at the short 7 s time window, the model
appears to perform better below the ∼10 dB range because
there are many more MLAAPDE data samples in those bins,
and the MLAAPDE data magnitudes do not tend to be under-
estimated by AIMag (Fig. S4b). In the higher SNR bins where
underestimation occurs, a larger proportion of the samples
come from the historical data that were not included in the
training data set. At longer time windows (Fig. 6b), this gap
closes, as the magnitude errors are lower for the historical data
than at shorter time windows (Fig. S4c). However, AIMag still
underestimates the magnitudes of earthquakes from the his-
torical testing data set from waveforms with lower SNRs, even
at the longest 114 s time window.

Model performance by window length
To assess the performance of AIMag by window length, for
each time window we calculated the error (estimated magni-
tude–catalog magnitude) for each model estimation, followed
by the median and standard deviation of those errors. We then
plotted the median and standard deviation of the errors for
each time window (Fig. 7). Generally, the median error is close
to zero across the entire range of tested time windows, but the
standard deviation of the errors tends to decrease from a maxi-
mum of 1.18 at the 1 s time window to a minimum of 0.55 at
the 114 s time window. The standard deviation decreases most
quickly at the smaller time windows through 14 s, and
decreases more slowly after that.

Because the potential utility of this study is for real-time
earthquake analysis, we were interested in investigating the
trade-off between estimation accuracy and speed. The estima-
tion speed will be limited by how long of a waveform AIMag
needs to make the estimation, which is why we iterated our
training and testing over a range of time windows. To assess
this trade-off, we took a closer look at the estimation errors
within each time window using the median (50th percentile)
estimated magnitude from the boxplots for each time window
as shown in Figure 3 and Video S1. Because AIMag’s perfor-
mance varies greatly based on earthquake magnitude and our
interest is primarily on larger events, we assessed the quality of
our models by disaggregating their performance by event mag-
nitude. We set our estimation error tolerance to 0.5 (i.e., if
AIMag’s median estimation for a particular catalog magnitude
bin is within 0.5 of the correct catalog magnitude, we call this
an acceptable estimation). We could then plot the median
errors across every time window to determine what the accept-
able estimation range was for each time window. Figure 8
shows that by the time the window length reaches 29 s, the
high-magnitude range by which we can achieve an acceptable
estimation error performance is already essentially maximized,
with limited improvements above this window. For the 29 s
window, magnitude estimate median errors are acceptable
between M 2.7 and 7.6, excluding M 7.5 for which the errors
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are slightly too high. For the longest 114 s window, magnitude
estimate median errors are acceptable between M 2.3 and 7.6,
also excluding M 7.5 for the same reason.

We also calculated and plotted the absolute magnitude esti-
mation errors for the 95th percentile of the data (Fig. S5) and
found that the range over which the absolute error was less
than or equal to 0.5 magnitude units extends from M 4.4 to

8.6 for the 114 s window. For
the 29 s window discussed in
the previous paragraph, the
95th percentile absolute error
is less than or equal to 0.5
for the magnitude range
M 4.4–8.3, excluding M 8.2
for which the errors are slightly
too high. Using the 95th per-
centile to choose our accept-
able performance range
instead of the median (50th
percentile) would exclude the
data below M 4.4, as they tend
to be overestimated more
often. However, it would also
result in including the
∼M 7.5 to 8.6 data that we
know tend to be underesti-
mated. Which metric to use
for determining an acceptable
operating magnitude range
over which to implement this
model is likely best left as a
user choice based on the mon-
itoring goal.

As discussed in the Model
performance by magnitude
section, AIMag tends to under-
estimate the magnitudes of
large earthquakes, likely pri-
marily due to the short time
windows we use. In tradition,
the magnitudes of large
earthquakes are characterized
with long-period observations.
The W-phase is particularly
important—it is a long-period
(∼100–1000 s) phase that
arrives in displacement seis-
mograms between the P and
S waves and represents a
superposition of other body-
wave phases (Kanamori, 1993;
Kanamori and Rivera, 2008).
W-phase moment magnitudes

(Mww) provide accurate measures of earthquake size that work
for moderate (Hayes et al., 2009) as well as great earthquakes
(e.g., the 2011 Tōhoku earthquake as demonstrated in Duputel
et al., 2011).Mww can be calculated relatively rapidly and is the
preferred magnitude used by the NEIC.

In this study, we used raw waveforms (stream-normalized
in units of counts) rather than displacement waveforms and

Figure 6. Boxplots for (a) the 7 s window and (b) the 114 s window showing the error in the magnitude estimation
(estimated magnitude–catalog magnitude) made by the model on the left y axis plotted against the waveform
signal-to-noise ratio (SNR) in decibels (dB) on the x axis corresponding to each estimation. An animation showing
the boxplots for all time windows can be found in Video S6. The characteristics of the boxplot in this figure are the
same as those for Figures 3–5, with the median magnitude estimation error for each SNR bin shown by the
horizontal black line in the center of each light blue box. On the right y axis, we have plotted a logarithmic
histogram showing the distribution of SNRs corresponding to the waveforms in the testing data set. The distribution
of SNRs in the MLAAPDE data set is shown in dark red, with the distribution of SNRs in the historical data set
stacked on top of those in light red.
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window lengths only up to 114 s (only half of which contains
earthquake signal). The W-phase is, therefore, not fully cap-
tured in the observations because it will not have arrived in
its entirety yet. It is possible that training and testing with
longer waveforms that include the S wave (and therefore
the entire W-phase) or data scaling that enhances long period
data would improve AIMag’s performance on large earth-
quakes. The drawback of that approach would be an increase
in the complexity of data preprocessing and potentially the
amount of time required to obtain a good magnitude estimate.
For comparison, how fast Mww can be calculated depends on
earthquake location and station density, and in a best-case sce-
nario the NEIC can calculate Mww in as few as ∼7 min and
typically within about 20 min (Hayes et al., 2009). This is much
longer than the 29 s time window beyond which we saw limited
returns in this study (Fig. 8). Although that 29 s does not
account for the time it takes for the signal to be picked up
by the seismometer, as ours is a single-station method, the
additional delay time only depends on the travel time to the
single closest station to the hypocenter.

A closer analog to our magnitude estimation method is
likely that of the broadband P-wave moment magnitude
(Mwp). Similar to our model, Mwp only relies on the P waves
from earthquakes, but similar to Mww it is also an inversion
method that takes integrated displacement waveforms. It per-
forms well on as little as 120 s of waveform data, but it is of
limited use for earthquakes smaller than M ∼ 5.5 when long
period signals are weaker and SNR is low because it may over-
estimate the magnitude (Tsuboi et al., 1999). In addition, when
data are used from seismometers that are less sensitive to

longer periods, the Mwp

method underestimates the
magnitudes of large earth-
quakes (M ∼ 8 and greater).
It is also less reliable for data
from stations in the near field
because the method was based
on far field P-waveform dis-
placement, and this leads to
underestimations of the earth-
quake magnitude (Hirshorn
et al., 2013).

We have shown that
although the magnitudes of
larger earthquakes may be
underestimated by AIMag,
similar to the Mwp method,
our model can still tell that
they are large (Fig. 3). In addi-
tion, it also works for much
smaller magnitude earthquakes
than Mwp (Fig. 3), performs
well in the near field (Fig. 5b),

and can provide estimates more quickly thanMww. AIMag can
feasibly be useful for flagging earthquakes that a monitoring
agency would be concerned are large and potentially tsunami-
genic within a much shorter time window than is currently
possible with the Mww inversion method and without some
of the drawbacks of the Mwp method.

Model performance on edge cases
With a model designed to generalize across the globe, we
wanted to check AIMag’s performance for specific earthquakes
with several unusual characteristics. We browsed the testing
data catalog for more atypical earthquakes, both from the
historical data recorded between 2000 and 2013 and the
MLAAPDE data recorded in the year 2020, and hand-picked
seven events to examine more closely.

This group of seven included two tsunami earthquakes,
which are earthquakes that produce tsunamis that are much
larger than expected based on their magnitude (Kanamori,
1972). They are typically depleted in high-frequency seismic
radiation, and likely rupture all the way to the trench at slow
rupture velocities (Lay et al., 2012). The two earthquakes we
tested were the 2006 M 7.7 Pangandaran earthquake off the
coast of Java, Indonesia (Ammon et al., 2006) and the 2010
M 7.8 Mentawai earthquake off the coast of Sumatra,
Indonesia (Yue et al., 2014). We also looked at three unusually
deep earthquakes because most of the waveforms come from
shallow events as seen in the histogram in Figure 4. These were
a 598-km-deepM 8.3, a 624-km-deepM 6.9, and a 641-km-deep
M 7.5 earthquake. The final two earthquakes in the group of
seven were unusually “complex” events to determine how the

Figure 7. The median and standard deviation of the model’s estimation error on the testing data set (estimated mag-
nitude–catalog magnitude) plotted for each of the tested time windows. The black dots show the median error for each
time window, and the red bars extend to one standard deviation above the median and one standard deviation below.
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model could handle this. We chose the 2012 M 8.6 Wharton
basin earthquake off the coast of Sumatra, which is the largest
strike-slip earthquake ever recorded and ruptured multiple
faults (Meng et al., 2012; Yue et al., 2012), and the 2020
M 7.6 Sand Point earthquake on the Aleutian subduction zone,
which generated an unusually large tsunami for the reported
strike-slip mechanism of the event (Herman and Furlong,
2021; Santellanes et al., 2022).

We again produced a boxplot of AIMag’s estimated earth-
quake magnitudes versus the catalog magnitudes for the testing
data set for the 114 s window (Fig. 9), but in this figure we
plotted the seven selected edge case earthquakes in light red
and all other earthquakes in light blue. All of the estimations
for these edge case events, with the exception of the 641-km-
deep event (marked B in Fig. 9), fall within the typical range of
estimations for the other earthquakes in the data set for their
respective magnitude bins, indicating that in many cases the
model performs well even with unusual earthquakes.

The underestimated 641-km-deep M 7.5 (B) is one of a
series of three deep earthquakes that occurred west of the
Philippines on 23 July 2010 (Hayes et al., 2017). With magni-
tudes of M 7.3, 7.5, and 7.6, the first of this series was not
included in the expanded historical testing data set because
we only downloaded data for earthquakes M 7.5 and greater.
To explore why AIMag may have underestimated the

magnitude of the 641-km-deep event, we also pulled out
and plotted the estimations made for theM 7.6 earthquake that
occurred at a depth of 578 km in this same area. These two
earthquakes can be seen in Figure S6. Although the M 7.6
is not underestimated as much as the M 7.5, it is still under-
estimated compared to the other edge cases visualized in
Figure 9. This suggests that the underestimation for these spe-
cific events could be related to the tectonic setting in this area,
or potentially other spatial effects such as the geometry of the
seismic stations that recorded the waveforms from these
events.

CONCLUSIONS
In this study, we trained a machine learning model for global
single-station earthquake magnitude estimation based solely on
the recorded waveform and requiring no additional information

Figure 8. Plot showing the absolute error of the median of the estimations made
by the model for each catalog magnitude bin �abs�median Mestimated–Mcatalog��
across the range of window lengths tested (1–114 s) for the testing data set.
The catalog magnitude is on the x axis and the waveform window lengths are
on the y axis. The color spectrum shows the absolute error, with lighter colors
indicating a smaller error and darker colors indicating a larger error. White gaps
indicate magnitudes for which there were no earthquakes in the testing data
set. The black line is the contour of an absolute error of 0.5 magnitude units.
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about the event or station involved. We demonstrate here the
effectiveness and utility of the MLAAPDE data set described
in Cole et al. (2023), which was designed to make the USGS
NEIC’s PDE catalog more easily accessible for machine learning
research. Our training process implements data augmentation to
improve and generalize model performance.

At its best, our model, AIMag, can successfully determine
earthquakemagnitudes with an absolute error margin inmedian
estimatedmagnitude of 0.5 magnitude units or less for a range of
earthquake magnitudes fromM 2.3 to 7.6. It can achieve success
across this magnitude range with a minimum window length of
29 s of data (with the phase arrival at halfway through this win-
dow). AIMag is not biased in its magnitude estimations by either
earthquake source depth, hypocentral distance, or waveform
SNR, and it also performs well on most tested “edge case” earth-
quakes that are unique in one aspect or another (e.g., tsunami
earthquakes, deep earthquakes, and complex ruptures).

AIMag can aid near-real-time global earthquake monitoring
operations by quickly and accurately assessing the magnitudes
of earthquake recordings by avoiding reliance on earthquake
location. Future work may include testing the performance of
this model within the NEIC’s real-time monitoring system
and expanding its capability to handle variable-length input data
in real time, as well as combining it with other work on a

machine-learning-based pick
association method in develop-
ment at the NEIC.

DATA AND RESOURCES
The codes used to train and test
the models and construct the fig-
ures described in this article are
available at https://github.com/
UO-Geophysics/AIMag. As of
the time of publication, this
repository was last updated in
December 2023. The Machine
Learning Asset Aggregation of
the Preliminary Determination of
Epicenters (MLAAPDE) module
used in this work is available in
Cole and Yeck (2022). The facili-
ties of EarthScope Consortium
were used for access to waveforms,
related metadata, and/or derived
products used in this study.
These services are funded through
the Seismological Facility for the
Advancement of Geoscience
(SAGE) Award of the National
Science Foundation (NSF) under
Cooperative Support Agreement
EAR-1851048. We make use of
data from the following networks:

AC, AE, AF, AG, AI, AK, AT, AU, AV, AY, AZ, BC, BE, BK, BL, BX,
C, C0, C1, CA, CC, CH, CI, CM, CN, CO, CW, CY, CZ, DK, DR, EC,
EO, EP, ET, G, GB, GE, GM, GO, GR, GS, GT, HK, HL, HT, HV, IE,
II, IM, IN, IO, IU, JP, KC, KG, KN, KO, KR, KS, KY, KZ, LB, LD, LO,
LX, MB, MG, MI, MM, MN, MP, MU, MX, MY, N4, NA, NC, NI,
NM, NN, NP, NQ, NU, NV, NY, NZ, O2, OE, OH, OK, OO, OV,
OX, PA, PE, PL, PM, PO, PR, PS, PT, RM, RO, RV, SB, SC, SE,
SN, SS, SV, TA, TC, TJ, TM, TW, TX, UO, US, UU, UW, VU,
WC, WI, WM, WU, WY, YX, ZC, ZD, and ZW. We appreciate
the hard work of the engineers and network operators who
make this data available in near real-time. We have included the
International Federation of Digital Seismograph Network (FDSN)
references in the supplemental material. The supplemental material
for this article contains six figures as well as six multiframe figure ani-
mations to provide extra information about the data sets used in train-
ing and testing, as well as additional testing results for all time
windows as described in this article.
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