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ABSTRACT

Expression of vibrant plumage color plays important communication roles in many avian clades, ranging from penguins to

passerines, but comparatively less is known about color signals in parrots (order Psittaciformes). We measured variation in

coloration from three plumage patches (red face, blue rump, red tail) in an introduced population of rosy‐faced lovebirds

(Agapornis roseicollis) in Phoenix, Arizona, USA and examined color differences between the sexes and ages as well as

relationships with several indices of quality, including disease presence/absence (infection with beak and feather disease,

Circovirus parrot, and a polyomavirus, Gammapolyomavirus avis), nutritional state (e.g., blood glucose and ketone levels), and

habitat type from which birds were captured. We found that different plumage colors were linked to different quality indices:

(a) adults had redder faces than juveniles, and birds with brighter faces had lower glucose levels and were less likely to have

polyomavirus; (b) males had bluer rumps than females; and (c) birds caught farther from the city had redder and darker tail

feathers than those caught closer to the urban center. Our findings reveal diverse information underlying variation in the

expression of these disparate, ornate feather traits in an introduced parrot species, and suggest that these condition‐dependent

and/or sexually dichromatic features may serve important intraspecific signaling roles (i.e., mediating rival competitions or

mate choices).

1 | Introduction

Many birds have brightly colored plumage, which serves key

visual‐signaling roles either within (e.g., social status, mate

attractiveness; Soma and Garamszegi 2018; Mason and

Bowie 2020) or among species (e.g., species recognition; anti‐

predator or ‐parasite; McNaught and Owens 2002; Caro and

Allen 2017). Intraspecific color signals in particular can be

sexually dichromatic, highly variable among individuals (in the

ornamented sex(es)), and carry differential production costs

that permit birds to honestly reveal their quality to rivals or

potential mates (Carballo et al. 2020; Delhey et al. 2023). To

date, the regulation and function of sexually dichromatic,

condition‐dependent plumage traits have been well‐studied in

several avian clades, ranging from penguins (Sphenisciformes;

Cairns 1986; Massaro, Davis, and Darby 2003; Viera et al. 2008)

to pigeons (Columbiformes; Mahler, Araujo, and Tubaro 2003;

Valdez and Benitez‐Vieyra 2016; Angelier 2020) to passerines

(Passeriformes; McQueen et al. 2019; Cooney et al. 2022;

Thibault et al. 2022).
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Despite being speciose (ca. 400 species worldwide) and one of

the most wildly colorful avian groups, we know comparatively

less about the controls and roles of conspicuous coloration in

parrots (Order Psittaciformes). Parrots produce the full rainbow

of colors in their plumage, even within a species (rainbow lor-

ikeet, Trichoglossus moluccanus), yet only in a handful of

comparative studies and even fewer intraspecific studies have

behavioral ecologists probed the mechanisms and meanings of

ornate parrot colors (Berg and Bennett 2010; Delhey and

Peters 2017). For example, color diversity among parrot species

can be explained by the ambient climate and body size, such

that smaller species are more sexually dichromatic but that

larger species living in warmer environments tend to be more

colorful overall (Carballo et al. 2020). Perhaps related to cli-

matic pressures, more colorful parrot feathers are able to better

resist bacterial degradation (Burtt et al. 2011). Within species,

scientists have sought to understand color variation and sig-

naling roles in model species like the budgerigar (Melopsittacus

undulatus, Pearn, Bennett, and Cuthill 2001) and crimson ro-

sella (Platycercus elegans, Berg et al. 2019), but several of these

investigations are on captive or pet birds (also see van der Zwan,

Visser, and van der Sluis 2019), with exceptions like the bur-

rowing parrot (Cyanoliseus patagonus, Masello et al. 2004;

Masello, Lubjuhn, and Quillfeldt 2008) and eclectus parrot

(Eclectus roratus; Heinsohn 2008) being subjects for studies of

natural plumage variation and function. Overall, we are in need

of more single‐species investigations into the variability and

predictors of color expression in free‐ranging parrots, to better

understand how these visual traits—among the most ex-

aggerated in the animal kingdom—evolve and function.

Here, we undertook a field investigation into the variation in

and predictors of bold plumage color expression in rosy‐faced

lovebirds (Agapornis roseicollis). This species is native to the dry

regions of southwestern Africa (e.g., Angola, Namibia, South

Africa; Collar and Boesman 2020) and well‐known interna-

tionally in the pet trade (Chan et al. 2021), as well as for its pair‐

bonding behavior and range of plumage variations and mutants

(van der Zwan et al., 2018). Birds of both sexes display con-

spicuous rosy‐colored feathers on the face, a brilliant blue rump

patch, and spots of red pigmentation on otherwise dark tail

feathers (Figure 1). Early spectral‐reflectance studies were

performed to characterize the reflectance and structures of

green and blue plumage patches in this species (Dyck 1971; also

see Tinbergen, Wilts, and Stavenga 2013 in Amazon parrots),

but interindividual studies of natural color variation, including

for the unique psittacofulvin‐based red pigmentation (to par-

rots; McGraw and Nogare 2005) after which these birds are

named, are lacking. Specifically we studied an introduced

population of lovebirds in North America (Phoenix, Arizona,

USA), which is derived from a pet‐bird release nearly 40 years

ago and has radiated throughout the built metropolitan area,

likely due to human‐provided access to water in this desert city

(Radamaker and Corman 2011).

We quantified color variability for the three aforementioned

plumage patches in male and female lovebirds, including both

juveniles and adults, to determine if there is age‐ or sex‐specific

expression of color (e.g., as in yellow‐faced parrots, Alipiopsitta

xanthops; de Araújo and Marcondes‐Machado 2014). We also

captured birds at different sites across the urban–suburban

landscape of Phoenix, Arizona, USA, to evaluate the hypothesis

that cities and associated human activities can impact bird color

expression (Leveau 2021), but under the notion that few tests of

this (i.e., in house sparrows, Passer domesticus; rock pigeons,

Columba livia) have been done in introduced species. We also

measured a series of quality‐related indices in these birds, to

determine if plumage color variation may reveal an individual's

health or condition; specifically, we considered nutritional sta-

tus (e.g., body condition, blood glucose, and ketone levels;

DePinto and McGraw 2022), given prior work on blood indices

and color expression in burrowing parrots (Masello and

Quillfeldt 2004), and disease status (e.g., viral infection). Parrots

are host to several viral infections, including beak‐and‐feather‐

disease virus (BFDV—Circovirus parrot; Fogell, Martin, and

Groombridge 2016) and a polyomavirus (budgerigar fledgling

disease virus, BuFDV—Gammapolyomavirus avis; Padzil,

Mariatulqabtiah, and Abu 2017) in this species (Ko et al. 2024);

we molecularly characterized these infections in these birds to

determine if, as has been shown in other birds, more colorful

birds are less likely to be infected (Hill and Farmer 2005).

Because this was an exploratory study, we did not have specific

predictions about how coloration of the different plumage

regions may similarly or differently relate to our predictor

variables.

2 | Methods

2.1 | Field Capture and Sampling

From 2 to 13 June 2022, we live‐trapped a total of 69 lovebirds

(showing wild‐type plumage) using hanging basket traps at

baited feeding stations at four sites within the metropolitan area

of Phoenix, AZ, USA: (1) Cholla Park (Scottsdale, AZ;

33.589550, −111.838687), (2) the Desert Arboretum Park at

Arizona State University (Tempe, AZ; 33.426126, −111.930185);

(3) Encanto Park (Phoenix, AZ; 33.475516, −112.090166), and

(4) Arizona Fruit Trees Nursery (Mesa, AZ; 33.413422,

−111.651620)—which varied in natural v. artificial habitat

characteristics and distance to city center (Supporting Informa-

tion S1: Figure 1). At capture, we determined age (juvenile vs.

adult) of each bird based on bill pigmentation (black in juveniles;

Ndithia, Perrin, and Waltert 2007) and measured body mass

(to the nearest 0.1 g with a digital scale) and tarsus length (to the

nearest 0.1 mm with digital calipers) to calculate body condition

(i.e., residual mass, from a linear tarsus‐mass regression). We

drew blood from the alar vein to molecularly determine sex

(using primers 2550/2718; sensu Fridolfsson and Ellegren 1999)

Research Highlights

• Lovebird adults had redder faces than juveniles, and
birds with brighter faces had lower glucose levels and
were less likely to have polyomavirus.

• Male lovebirds had bluer rumps than females.

• Lovebirds caught farther from the city had redder and
darker feathers than those caught closer to the urban
center.
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FIGURE 1 | (a) Image of a rosy‐faced lovebird (Agapornis roseicollis), exhibiting its peach face and blue rump coloration (https://

upload.wikimedia.org/wikipedia/commons/b/bf/Rosy-faced_lovebird_%28Agapornis_roseicollis_roseicollis%29_2.jpg). (b) Screenshot from color

calculations made with Adobe Photoshop, including image of red tail spot. The lasso marquee was used to select the red area, and then the Histogram

function provided red/green/blue (RGB) values (for calculating hue/saturation/brightness [HSB] using the Color Picker function) as well as pixel

count, which was used to calculate tail spot area in mm2 using a size standard (ruler) included in each photo.
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of each bird and for analyses of nutritional condition and viral

disease status (see more below). As indices of nutritional

condition, we measured glucose and ketone levels from a drop of

fresh blood using hand‐hand point‐of‐care devices (DePinto and

McGraw 2022).

2.2 | Virus Analyses

At capture, we also used sterile swabs to gently swab the cloaca of

each bird, which was preserved in UTM Universal Transport Media

(Copan, USA). Viral DNA was extracted from the UTM media by

using 200 µL of the buffer and the High Pure Viral Nucleic Acid Kit

(Roche Diagnostics, USA). To enrich for circular DNA, 1 μL of

extracted viral DNA from each sample was used for rolling‐circle

amplification (RCA) using a TempliPhi Kit (GE Healthcare, USA).

One microliter of the RCA was used as a template with Kapa HiFi

polymerase (Roche, USA) in a polymerase chain reaction with

primers BFDV_F CGCGCGAGAGTTCCCASA and BFDV_R

ACTTCCTTCATTTTRCRTCCGG to screen for BFDV (Circovirus

parrot) and BuFDV F TGTCGTCGTTGATCGTGGGGAGC and

BuFDV R TTACGTGCCCGACCCTGCTTATGTG to screen for

BuFDV (Gammapolyomavirus avis). Cycling conditions were

applied in accordance with the manufacturer recommended pro-

tocol. Forty six of the 69 lovebirds (67%) tested positive for BFDV,

whereas six birds (9%) tested positive for BuFDV.

2.3 | Color Measurement

We used digital photography (Stevens et al. 2007;

Troscianko and Stevens 2015)—with standard illumination

conditions (camera flash), distance from camera to object

(25 cm), background surface (Kodak R‐27 gray card), and

color standard with ruler (Kodak Color Control Patches;

also see additional details in Giraudeau et al. 2013; Hutton,

McKenna, and McGraw 2021)—to quantify color and patch‐

size variation (for tail spots) in the lovebirds. We plucked

8–10 feathers from a central location of the rosy face and

blue rump patches, as well as the outermost right tail

feather (containing a red spot), and mounted these on

cardstock for imaging. We did not measure green feathers

because this is the base body color of these, and many other

species, of parrots. RAW photos of these feather cards

were analyzed in Adobe Photoshop (McGraw, Lee, and

Lewin 2011) to determine hue, saturation, and brightness of

the face, rump, and tail feathers, as well as the size of the

red tail spot. We acknowledge that this photographic anal-

ysis omits ultraviolet (UV) reflectance (Dyck 1971; Zhang

et al. 2014; though it is noteworthy that UV reflectance is

very low in red‐colored parrot feathers; Burkhardt 1989,

McGraw and Nogare 2005), but in this first study of its kind

in this species, we characterize the visible‐light spectral

properties (as in Masello et al. 2004 in burrowing parrots)

and capitalize on the opportunity, unlike with spectrometry,

to quantify tail spot size. Two independent observers scored

each photo and we found significant, positive repeatability

of all 10 scores (face hue = 0.95, face saturation = 0.79, face

brightness = 0.96, rump hue = 0.92, rump saturation = 0.70,

rump brightness = 0.59, tail‐spot hue = 0.94, tail‐spot satu-

ration = 0.85, tail‐spot brightness = 0.96, tail‐spot size =

0.93; all p < 0.001; Lessells and Boag 1987); mean

values were used for each color metric below in statistical

analyses.

TABLE 1 | Results of models predicting variation in facial plumage hue and brightness in rosy‐faced lovebirds.

Trait Model Parameter Estimate F p

(a) Face hue Global Sex −0.53 1.61 0.21

r2= 0.29 Age −2.24 18.70 < 0.0001

Site — 1.07 0.37

Blood glucose levels 0.01 0.25 0.62

Blood ketone levels −0.15 0.25 0.62

BFDV presence 0.33 0.46 0.50

BuFDV presence 0.62 0.63 0.43

Best‐fit Age −2.02 17.78 < 0.0001

(b) Face brightness Global Sex −0.07 0.03 0.87

r2= 0.47 Age 2.49 23.38 < 0.0001

Site — 0.00 1.00

Blood glucose levels −0.04 5.32 0.02

Blood ketone levels 0.04 0.02 0.88

BFDV presence −0.08 0.03 0.87

BuFDV presence 2.80 13.11 0.001

Best‐fit Age 2.48 26.97 < 0.0001

Blood glucose levels −0.04 7.27 0.009

BuFDV presence 2.82 17.52 < 0.0001

Note: Parameters in bold were statistically significant.
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2.4 | Statistical Analyses

First, to examine potential multicollinearity among response

variables, we examined intercorrelations among our 10 colori-

metrics and found significant correlations between hue and satu-

ration for all three color patches, and between several other tail

variables (saturation and brightness, saturation and spot size, and

brightness and spot size; Supporting Information S2: Table 1).

Thus, we retained only hue and brightness scores for the three

patches in our plumage‐color analyses (i.e., six response variables

total). Lower hue scores for the red face and tail correspond to

redder (less orange) colors, whereas lower hues for rump feathers

signify a more green (less blue) appearance; in all cases for satu-

ration and brightness, respectively, higher saturation values cor-

respond to purer (more rich) color and higher brightness values

indicate lighter (less dark) color. We also examined relationships

among independent variables (age, sex, capture site, body condi-

tion, ketones, glucose, BFDV presence, and BuDFV presence) and

found only that body condition was significantly negatively related

to blood ketone levels (Supporting Information S2: Table 2); given

our aim to use more refined metrics of nutritional‐physiological

condition in this study, we retained only blood ketone levels and

omitted body condition from further analyses.

We used JMP Pro 16 (SAS Institute Inc., Cary, NC) to construct

standard least‐square regression models predicting plumage

color variation. We entered all predictors and report global

models, but also used Akaike's Information‐Theoretic Criterion

(AICc) on all possible models (predictor subsets/combinations)

to select the best‐fit model, based on the lowest AICc score.

3 | Results

3.1 | Face Patch

The global model predicting hue of face feathers yielded only

one significant predictor, age (Table 1), such that older birds

had redder face feathers (Figure 2). Age was the lone, retained

variable (still statistically significant) predictor in the best‐fit

model (Table 1). In contrast, for brightness of face feathers, we

found in the global model that blood glucose levels, presence of

BuFDV, and age were significant predictors (Table 1), and the

best‐fit model predicting face brightness contained only these

three parameters (Table 1), such that birds with brighter face

FIGURE 2 | Effect of age (adult vs. juvenile) on the hue of face

plumage in rosy‐faced lovebirds. Mean ± SE is shown in blue, plus

individual (red) points horizontally offset so as not to overlap. Lower

hue scores denote birds with redder (less orange) faces.

FIGURE 3 | Links between brightness of facial plumage and (a)

age, (b) circulating glucose levels, and (c) presence of budgerigar

fledgling disease virus (BuFDV). Adults were brighter than juveniles,

and birds with less bright (darker) plumage circulated more glucose and

were more likely to be infected with polyomavirus.
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feathers were older, had lower glucose levels, and were less

likely to have BuFDV (Figure 3).

3.2 | Rump Patch

The global model predicting rump hue yielded two significant

predictors—sex and presence/absence of BFDV (Table 2). These

two variables were retained in the best‐fit model as well, though

only sex was statistically significant (Table 2), such that rump

feathers from males were bluer (less green) than those of

females (Figure 4a). In contrast, BuFDV infection presence

predicted rump brightness, both as the lone significant factor in

the global model and the lone factor (though not statistically

significant) in the best‐fit model (Table 2); birds with brighter

rumps were less likely to be infected (Figure 4b).

3.3 | Tail Spot

Capture site predicted both tail spot hue and brightness, such

that lovebirds from the most urban site (i.e., closest to city

center = Encanto Park, Phoenix) had the least red tail spots and

that birds from the most rural park (i.e., further from city

center = Scottsdale) had the darkest tail spots (Table 3,

Figure 5).

4 | Discussion

We examined several life‐history, environmental, and physio-

logical predictors of plumage color variation in an introduced

population of rosy‐faced lovebirds and found that coloration

from different plumage regions (face, rump, tail) covaried with

different variables. Expression of facial plumage was age‐

dependent and also linked to a nutritional measure (glucose)

and to disease status (BuFDV infection). In contrast, rump

plumage color was sex‐specific but also varied as a function of

infection with both viruses (BFDV and BuFDV). Last, colora-

tion of the tail spot was predicted only by capture site (i.e.,

distance to city center). To our knowledge, this study is one of

few that has extensively examined complex (i.e., multiple patch)

plumage color variation in a wild parrot (Berg and

Bennett 2010; also see Masello, Lubjuhn, and Quillfeldt 2008 in

burrowing parrots).

Age‐dependence of red facial plumage in A. roseicollis was an

expected finding; from observations of captive/pet birds, juve-

nile rosy‐faced lovebirds, as in many other parrots, are known

to show muted (i.e., less red) facial coloration compared to

adults (Forshaw 2010). This is largely thought to link to sexual

maturity and adult expression of secondary sexual characters,

although there may be added camouflage advantages for naïve

juveniles to be duller (Mitchell 2019). We also found that

lovebirds with brighter facial feathers circulated a lower con-

centration of glucose through blood and were less likely to have

BuFDV. Glucose can be a reliable, positive biomarker of

(carbohydrate) energy status and, though we lack comparable

data for parrot plumage, other avian work has revealed the

absence of a relationship between glucose and plumage color-

ation (e.g., carotenoid pigmentation in finches, McGraw

et al. 2020; melanin coloration in gulls, Minias et al. 2019).

Glucose can also be linked to disease status in humans (e.g.,

diabetes, obesity; Chen et al. 2019) and birds (e.g., higher levels

in poxvirus‐infected finches, McGraw et al. 2020), and

TABLE 2 | Results of models predicting variation in rump plumage hue and brightness in rosy‐faced lovebirds.

Trait Model Parameter Estimate F p

(a) Rump hue Global Sex −2.10 6.66 0.01

r2= 0.23 Age 0.48 0.22 0.64

Site —

Blood glucose levels 0.01 0.07 0.80

Blood ketone levels −0.25 0.20 0.66

BFDV presence −2.08 4.79 0.03

BuFDV presence 0.88 0.34 0.56

Best‐fit Sex −2.15 7.58 0.008

BFDV presence −1.38 2.68 0.11

(b) Rump brightness Global Sex 0.24 0.37 0.54

r2= 0.15 Age 0.39 0.65 0.42

Site — 1.68 0.18

Blood glucose levels −0.01 0.54 0.47

Blood ketone levels −0.10 0.14 0.71

BFDV presence 0.49 1.17 0.28

BuFDV presence 1.53 4.56 0.04

Best‐fit BuFDV presence 1.07 2.70 0.11

Note: Parameters in bold were statistically significant.
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interestingly we also found that lovebirds with brighter face

feathers were also less likely to be infected by a contagious virus

(polyomavirus) that is common to psittacines and can impact

feather condition and even become fatal in some cases (Katoh

et al. 2010; Dolz et al. 2013). On one hand, the most parsimo-

nious explanation for our detected association between face

brightness and BuFDV infection may be the direct impact of the

virus on the structure (e.g., degradation; Johne and

Müller 2007) of small/fine facial feathers, but in future work, it

will be interesting to examine integrated physiological (perhaps

glucose‐mediated) underpinnings of both this viral infection

and facial plumage development/maintenance.

In addition to red pigmentary coloration, we explored several

possible correlates of structurally based blue rump color ex-

pression in these birds. We detected significant sexual dichro-

matism in rump hue, with males having bluer (less green)

rumps than females. Sex differences in structural blue plumages

has been shown previously in other parrot species (e.g., blue‐

fronted Amazon parrot (Amazona aestiva), Santos, Elward, and

Lumeij 2006; remiges in burrowing parrots, Masello, Lubjuhn,

and Quillfeldt 2009), and intriguingly, in a comparative study of

27 Australasian parrot species, sexual plumage dichromatism

was strongest and most consistent for blue colors (Taysom,

Stuart‐Fox, and Cardoso 2011; but see Delhey and Peters 2017

for an analysis that shows comparable dichromatism between

parrot structural and psittacofulvin plumage coloration).

Potentially this conspicuous blue plumage (Figure 1a) in rosy‐

faced lovebirds may serve as a strong target for selection as a

visual signal (e.g., intrasexual competition or intersexual mate

choice), especially in males (where it's bluer) and additionally

given the fact that we found, like for facial plumage, a link

between BuFDV prevalence and blue plumage brightness

(although this was not significant in the best‐fit model). The

presence of brighter feathers by BuFDV‐free birds in two

FIGURE 4 | Variation in rump plumage coloration as a function of sex

and presence of a polyomavirus (BuFDV, Gammapolyomavirus avis) in rosy‐

faced lovebirds. Higher hue scores denote birds with bluer (less green)

rumps. Males had bluer rump plumage compared to females, and birds with

darker rumps were more likely to have the BuFD polyomavirus.

TABLE 3 | Results of models predicting variation in tail spot hue and brightness in rosy‐faced lovebirds. Parameters in bold were statistically

significant.

Trait Model Parameter Estimate F p

(a) Tail hue Global Sex 0.08 0.12 0.73

r2= 0.28 Age 0.37 1.60 0.21

Site — 3.83 0.01

Blood glucose levels 0.00 0.00 0.99

Blood ketone levels 0.07 0.17 0.68

BFDV presence 0.29 1.08 0.30

BuFDV presence −0.21 0.24 0.63

Best‐fit Site — 6.05 0.001

(b) Tail brightness Global Sex 1.09 2.18 0.15

r2= 0.23 Age −0.18 0.04 0.84

Site — 3.03 0.04

Blood glucose levels 0.01 0.03 0.85

Blood ketone levels −0.37 0.52 0.47

BFDV presence 0.84 0.93 0.34

BuFDV presence −1.81 1.81 0.18

Best‐fit Site — 3.45 0.02
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different plumage regions suggests a robust effect of this virus

on the ornate feathers in this species (i.e., impaired structural

integrity in two regions, which are based on different under-

lying color mechanisms) and notably is the lone predictor for

which we found consistent effects across plumage regions. In

future experimental work, it will be interesting to see if love-

birds gain useful information about disease status by assessing a

competitor's or potential mate's blue plumage color variability.

Last we examined indicators of condition dependence in a

<hidden plumage trait= in these birds—the red spot on tail

feathers that is not visible in perched lovebirds, and only when

they perform courtship displays and present a fanned‐out tail to

prospective mates (Spoon 2006). At first glance, given the

shared red color and psittacofulvin‐based pigmentary mecha-

nism underlying the facial and tail‐spot plumages, we may have

expected to see coloration of these two patches to relate simi-

larly to sex, age, habitat, and/or condition. However, we did not

find any significant correlations between facial and tail

plumage‐color metrics (Supporting Information S2: Table 1),

and we also found different predictors of red tail color from

those of facial pigmentation. Interestingly, birds with more

heavily pigmented tail spots (i.e., darker, redder) were found at

more rural areas. Prior work has shown effects of urbanization

on several different types of avian plumage colors (carotenoid:

Jones, Rodewald, and Shustack 2010; Baldassarre et al. 2023;

melanin: Csanády and Duranková 2021; structural: Yeh 2004),

but we believe our findings are the first to uncover such a

relationship for psittacofulvin‐based plumage coloration. In

such studies, it has been proposed that city‐related shifts in diet

or stress (e.g., oxidative, immune) in the birds could mecha-

nistically shape <urban dullness= (Leveau 2021); it is also pos-

sible that functional variation—that is, in the value or use of the

signal in the city—could contribute to the observed pattern,

such that urban‐associated lighting conditions or the socio-

ecological pressures for competition or mating could lead to a

reduced investment by the birds in (or value of) the hidden red

plumage trait (Hutton and McGraw 2016). However, we note

that we did not carefully quantify degree of urbanization in this

study, so this result must be interpreted with caution. We also

suggest future work to probe how and why <urban dullness=

may persist for this unique plumage trait, and not other feather

regions in this species, including one that shares a similar

pigmentary basis.

In summary, by uncovering unique life‐history/environmental/

physiological predictors of color expression across three ornate

plumage regions in an introduced, city‐dwelling population of

rosy‐faced lovebirds in the United States, we found support for

our hypotheses that variation in feather coloration can link to

important individual (e.g., sex, age) and environmental (e.g.,

urbanization) traits in this species. It will be interesting now to

expand this work to include more birds (i.e., beyond our limited

sample of six adults) at different times of year and in different

parts of their introduced range (i.e., Hawaii), as well as to con-

sider whether these results apply to native populations of A. ro-

seicollis in southwestern Africa as well as other Agapornis and

parrot species with these blue and red colors. Nevertheless, our

results here suggest that these birds have the opportunity to

signal different aspects of their health/condition/status with their

facial, rump, and tail ornaments, and that these same traits may

be very useful to biologists interested in tracking the real‐time

impacts of rapidly changing environmental conditions—such as

urbanization and disease spread—on wildlife (Hill 1995).
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