
Received: 24 October 2023 | Revised: 31 January 2024 | Accepted: 7 February 2024

DOI: 10.1002/jez.2796

R E S E A R CH AR T I C L E

Using point‐of‐care devices to examine covariation among

blood nutritional‐physiological parameters and their

relationships with poxvirus infection, habitat urbanization,

and male plumage coloration in house finches

(Haemorhous mexicanus)

Kevin J. McGraw1 | Victor Aguiar de Souza Penha1,2

1School of Life Sciences, Arizona State

University, Tempe, Arizona, USA

2Organismal and Evolutionary Research

Programme, University of Helsinki, Helsinki,

Finland

Correspondence

Victor Aguiar de Souza Penha, Organismal and

Evolutionary Research Programme, University

of Helsinki, Helsinki, Finland.

Email: victoraspenha@gmail.com

Funding information

National Science Foundation DEB‐2224662

Abstract

The development of inexpensive and portable point‐of‐care devices for measuring

nutritional physiological parameters from blood (e.g., glucose, ketones) has

accelerated our understanding and assessment of real‐time variation in human

health, but these have infrequently been tested or implemented in wild animals,

especially in relation to other key biological or fitness‐related traits. Here we used

point‐of‐care devices to measure blood levels of glucose, ketones, uric acid, and

triglycerides in free‐ranging house finches (Haemorhous mexicanus)—a common

songbird in North America that has been well‐studied in the context of urbanization,

nutrition, health, and sexual selection—during winter and examined (1) repeatability

of these methods for evaluating blood levels in these wild passerines, (2)

intercorrelations among these measurements within individuals, (3) how blood

nutritional‐physiology metrics related to a bird's body condition, habitat of origin

(urban vs. suburban), poxvirus infection, and sex; and (4) if the expression of male

sexually selected plumage coloration was linked to any of the nutritional‐

physiological metrics. All blood‐nutritional parameters were repeatable. Also, there

was significant positive covariation between concentrations of circulating triglycer-

ides and glucose and triglycerides and uric acid. Urban finches had higher blood

glucose concentrations than suburban finches, and pox‐infected individuals had

lower blood triglyceride concentrations than uninfected ones. Last, redder males had

higher blood glucose, but lower uric acid levels. These results demonstrate that

point‐of‐care devices can be useful, inexpensive ways of measuring real‐time

variation in the nutritional physiology of wild birds.
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1 | INTRODUCTION

Real‐time monitoring of blood parameters has emerged as a valuable tool

for diagnosing or tracking many chronic illnesses, including diabetes and

cardiovascular diseases (Prakashan et al., 2023). Rapid serum surveillance

is now part of many global disease assessment programs (WHO Technical

Report Series, 2020), and having accessible point‐of‐care (POC) testing

devices is central to this mission. For example, during the SARS‐CoV‐2

pandemic, POC testing was used for disease self‐assessment, with an

accuracy of 80%, even though asymptomatic infections were misdiag-

nosed in some cases (Kalia et al., 2022). In addition, POC testing

considerably reduces costs for disease diagnosis, as well as the length of

patient hospitalization (Wang et al., 2017).

Veterinarians and wildlife health specialists may also use blood

samples to assess the health and condition of domesticated and wild

animals (Cooke et al., 2013). For example, subclinical mastitis and Johne's

disease in cattle can be rapidly and inexpensively screened on farms away

from veterinary hospitals using POC devices (Kimura et al., 2012;

Wadhwa et al., 2012). Many POC tests of nutritional physiology are now

affordable and widely available, including real‐time measurement of blood

glucose, ketones, triglycerides, cholesterol, uric acid, and other compo-

nents related to disease/health status (Beattie et al., 2023; DePinto &

McGraw, 2022; Kim & Yoon, 2021; McGraw et al., 2020; McQuinn

et al., 2020; Roy et al., 2022; Vitale et al., 2021) in humans and nonhuman

animals (Srinivasan et al., 2017).

However, concerns persist over measurement accuracy and

comparability (i.e., to traditional lab assays) when using POC devices,

especially in wild animals, where this has not been frequently

investigated. Some studies using POC glucometers found accurate

levels of blood glucose in foals (Wong et al., 2021), dogs (Lane

et al., 2015), and birds (McGraw et al., 2020; Morales et al., 2020), but

in house sparrows (Passer domesticus) researchers found only

moderate repeatability of glucose, ketone, and uric acid compared

with lab assays (Beattie et al., 2022). There is also the growing need

to understand the extent to which these hematological measure-

ments yield information about separate or linked physiological

processes (i.e., are concentrations of different blood nutrients

intercorrelated?) and about key fitness variables or proxies (e.g.,

sex, survival, disease). In the aforementioned study of house

sparrows, for example, authors found that, when exposed to stress,

house sparrows increased glucose and ketone levels (Beattie

et al., 2022), which was similar to a study in great tits (Parus major;

Kaliński et al., 2022). Glucose and triglyceride concentrations are

often associated with overall energy intake (Alonso‐Alvarez &

Ferrer, 2001; Jackson et al., 2023), but ketones are usually related

to lipid utilization and fasting (Castellini & Rea, 1992) and may be

considered as a proxy for total mass loss in birds (Alonso‐Alvarez &

Ferrer, 2001). Uric acid, in contrast, may reveal information about

oxidative stress (Klandorf et al., 1999). Ultimately, we need more

larger‐scale studies that compare several POC‐device‐generated blood

metrics concerning various life‐history traits in a free‐ranging animal.

Here, we investigated several POC‐collected blood nutritional‐

physiological parameters in house finches (Haemorhous mexicanus), a

free‐ranging species that occurs in natural and human‐modified

habitats in Mexico and the United States of America (Badyaev

et al., 2002). We used POC testing devices to screen for four

different hematological variables ‐ glucose, ketones, triglycerides, and

uric acid concentrations—and first examined whether these could be

measured repeatably (i.e., by taking two successive measurements).

In prior work on house finches, we found that glucose and ketones

were also highly repeatable (DePinto & McGraw, 2022), but the

repeatability of triglycerides and uric acid measured with POC

devices has not been examined. In addition, we analyze intercorrela-

tions among the nutritional parameters, and we believe that this is

the first study showing multiple correlations among POC‐testing

parameters examined in a single wild‐bird species. We also tested if

several organismal traits, including body condition, poxvirus infection,

sex, and urbanization (urban house finches may have higher levels of

glucose due to greater dietary intake; Gadau et al., 2019), predict

concentrations of each blood nutritional variable. Previous studies in

house finches found that birds circulating higher levels of glucose

were in a better body condition and were more likely to be infected

with poxvirus (McGraw et al., 2020), but triglycerides and ketones

were not related to body condition or infection (Madonia et al., 2017).

These results suggest that different blood nutritional‐physiological

parameters may relate to different traits in this species, but we still

lack a more comprehensive analysis to better understand how these

POC‐measured components relate to life‐history variation and health

status. Lastly, we analyzed if male plumage color expression—a

condition‐dependent, sexually selected trait in this species (Badyaev

et al., 2002)—was related to nutritional variables.

2 | METHODS

2.1 | Data collection

From 17 to 23 December 2021, we captured 35 wild house finches

of unknown age (due to time of year) from two sites—an urban site

(Arizona State University—Tempe campus; n = 16 females and 7

males), and a suburban site (Tempe residential neighborhood; n = 6

females and 6 males) separated by 8.2 km (McGraw et al., 2020)—in

live traps surrounding sunflower‐seed feeders. At capture, we

measured body mass to the nearest 0.1 g with a digital scale and

tarsus length to the nearest 0.01mm with digital calipers, so that we

could calculate body condition (using the residuals of a body mass‐

tarsus length regression; estimate 0.48; p‐value = 0.11, R2 = 0.04;

McGraw et al., 2020). We also scored the presence/absence of

poxvirus infection based on the occurrence of lesions on the legs,

feet, bill, or eyes (Giraudeau, et al. 2014) and drew fresh blood from

the brachial vein to measure four nutritional‐physiological parame-

ters using POC hand‐held devices and test strips—(a) glucose

(AccuChek® Guide blood glucosemeter; Roche Diabetes Care Inc.,

Indianapolis, IN), (b) ketones (β‐hydroxybutyrate; Precision Xtra®

blood glucose and ketone monitoring system; Abbott Laboratories),

(c) uric acid (Fora® 6 Connect meter; ForaCare Inc.), and (d)
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triglycerides (CURO L5 at‐home blood testing meter; CUROfit). The

time that elapsed between trapping and blood collection was

relatively similar among individuals. Units for all measurements are

in mg/dL, except for ketones where it is mmol/L. Across the devices,

we took duplicate blood measurements for a subset of birds and

evaluated repeatability (Lessells & Boag, 1987), using the blandr.-

statistics function from the blandr package (Datta, 2017). In short, the

package estimates the bias, which uses the mean difference and the

standard deviation among all measurements (Martin Bland &

Altman, 1986). We considered two measurements as repeatable if

the upper and lower 95% confidence intervals did not include zero

(Gerke, 2020). We also estimated the coefficient repeatability of the

physiological‐nutritional parameters. For that we used the following

equation:
∑ −

, where RC is the repeatability

coefficient, m2, and m1 are the second and first measurements,

and n is the sample size (Martin Bland & Altman, 1986). We released

all females at their site of capture after blood sampling but brought

males into a dark room to take digital photos of the carotenoid‐

pigmented crown, breast, and rump plumage (Giraudeau et al., 2013).

We placed the birds against a Kodak gray card, next to a color

reference (Kodak color strip, Kodak, Kodak Color Control Patches

2007), and took two photos per patch (followingMcGraw et al., 2001).

We analyzed photos using Adobe Photoshop CS6 (Adobe System),

selecting the color patch with the lasso marquee and using the red‐

green‐blue (RGB) values obtained from the Histogram window

(Giraudeau et al., 2013) to determine hue values (McGraw &

Hill, 2004) using the Color Picker function. We found a positive,

significant correlation of hue scores between the two photos per

patch (R2 = 0.97, estimate = 0.97, SE = 0.04, p‐value < 0.001); mean

values were used in statistical analyses. After taking photos, we

released males at their capture site.

2.2 | Statistical analysis

All analyses were performed in R software (R Core Team, 2019). We

visually inspected the numeric values (blood concentrations of glucose,

ketones, uric acid, and triglycerides, as well as body condition and

plumage hue) for normality assumptions and, when necessary,

corrected their distribution using square‐root or logarithmic transfor-

mations, which was the case for uric acid, which became normally

distributed after logarithmic correction. We also scaled all variables

using scale function from base R packages to make variables

comparable to one another. We then ran three separate sets of

analyses: (a) We examined intercorrelations among glucose, ketones,

uric acid, and triglyceride levels within individuals, using cor.test

function from the stats package in R (R Core Team, 2019). We then

used single values, or averaged ones for duplicate measurements, in

the following statistical analyses. (b) We ran separate linear models

using each blood‐nutritional measurement as a response variable

(glucose, ketones, uric acid, and triglycerides), and with poxvirus, body

condition, sex, and sampling site (urban vs. suburban location) as

predictors, using the lm function from lme4 package (Bates et al. 2015).

We tested for multicollinearity among predictors using the pairs.pannel

function from the regclass package (Petrie, 2020) and found that body

condition was negatively correlated with the presence of poxvirus

infection (R2 = 0.39; p = 0.01), so we included only poxvirus infection in

our models. We also tested for the effects of the sex × sampling site

interaction on hematological metrics and present these results only if

statistically significant. We performed a theoretic‐information

approach (Burnham et al., 2011), and using the dredge function from

the MuMIn package (Barton, 2019), we generated all possible models

and averaged them using the model.avg function from the MuMIn

package as well. We considered a variable as statistically significant in

the averaged model if the 95% confidence interval did not include zero

(Burnham & Anderson, 2002). (c) Because we only had plumage‐color

data for males (and thus could not incorporate it into the aforemen-

tioned linear models), we ran separate linear models with each blood‐

nutritional variable (glucose, ketones, uric acid, and triglycerides) as the

response variable and with plumage hue as the predictor. We

compared the full models against a null model (without hue) to test

for model significance and considered the model as statistically

significant if the p value was lower than 0.05 and the 95% confidence

interval did not include zero. Significant variable plots were performed

using the ggplot2 package (Wickham, 2016).

3 | RESULTS

3.1 | Repeatability of blood‐parameter

measurements

First and second measurements of each blood‐nutritional param-

eter (ketone, uric acid, triglycerides, and glucose levels in house

finches) were repeatable (Table 1); we previously showed

significant repeatability of glucose and ketone measures in

finches as well (DePinto & McGraw, 2022; McGraw et al., 2020).

Precision was higher for uric acid and ketones, and lower for

triglycerides and glucose (Table 1).

TABLE 1 Repeatability of blood levels of several nutritional‐

physiological parameters in wild house finches.

Parameter # Bias SE U.C.I. L.C.I. CR

Glucose 16 −0.31 4.59 9.48 −10.11 34.90

Ketones 16 −0.13 0.08 0.04 −0.32 0.71

Uric acid 20 −0.06 0.03 0.00 −0.13 2.96

Triglycerides 19 0.68 18.13 38.79 −37.42 150.84

Note: We took duplicate measurements (i.e., from successive drops of

blood within seconds) from a haphazard subset of animals for this analysis.

Entries with an asterisk below indicate statistically significant and positive

repeatability measurements. Here we show the number of replicates (#),

the bias, the standard error of the bias (SE), the upper 95% confidence

interval (CI) of the bias (U.C.I.), the lower 95% confidence interval of the

bias (L.C.I.), and the coefficient of repeatability (CR).
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3.2 | Covariation among blood nutritional‐

physiological parameters

We compared mean (or single, if no duplicate was run for a bird)

values of ketone, glucose, uric acid, and triglyceride levels for all birds

sampled and found significant intercorrelations between blood

glucose and triglyceride levels and between triglyceride and uric acid

concentrations (Table 2; Figure 1a,b); birds with higher blood

triglyceride concentrations circulated more glucose and more uric

acid. No other blood parameters showed significant covariation

(Table 2).

3.3 | Links between blood parameters and habitat

of origin, sex, body condition, and poxvirus infection

We examined the effects of capture‐site, sex, poxvirus infection, and

the capture‐site × sex interaction on levels of all four blood

measurements (models with weight lower than two can be found in

Supporting Information S1: Table 1) and found a significant effect of

capture site on blood glucose (Table 3); circulating glucose

concentration was higher in urban birds compared with suburban

birds (Figure 2a). Poxvirus infection significantly explained variation

in triglyceride concentration (Table 3); uninfected birds had higher

levels of circulating triglycerides compared with infected birds

(Figure 2b). No predictors were significant in models involving

ketones and uric acid (Table 3).

3.4 | Links between blood parameters and male

plumage hue

Models comparing male plumage hue with mean glucose (residual

sum of squares = 22,170; p value < 0.01) and with uric acid (residual

sum of squares = 290.76; p value = 0.02) were significantly different

from the null model (Table 4). Redder male house finches had

TABLE 2 Intercorrelations among blood parameters (glucose, ketones, uric acid, and triglycerides) in wild house finches (n = 35 for all

comparisons).

Parameters Glucose level (mg/dL) Ketone level (mmol/L) Uric‐acid level (mg/dL) Triglyceride level (mg/dL)

Glucose level (mg/dL) ‐ ‐ ‐ ‐

Ketone levels (mmol/L) 0.05; 0.76 ‐ ‐ ‐

Uric‐acid level (mg/dL) −0.06; 0.69 0.09; 0.58 ‐ ‐

Triglyceride level (mg/dL) 0.47; <0.01* 0.00; 1.00 0.48; <0.01* ‐

Note: Here and elsewhere, asterisk entries denote statistically significant relationships. We show R2 and p values (separated by a semicolon) for each

correlation.

F IGURE 1 Relationship between mean glucose and triglyceride concentration (a) and mean uric acid and triglyceride concentration (b). Gray

area within the regression line indicates the confidence intervals.
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significantly higher blood glucose (Figure 3a), but lower mean uric

acid, concentrations than did less‐red males (Figure 3b).

4 | DISCUSSION

POC blood nutritional‐physiological parameters measured in a free‐

ranging desert songbird species were highly repeatable and these

parameters did not all vary independently, such that birds who

circulated higher triglyceride concentration also had higher levels of

glucose and uric acid. We also found several important environmental

or fitness‐related predictors of these hematological measurements,

such that (a) urban finches circulated higher glucose levels than

suburban birds, (b) pox‐infected birds had lower triglyceride levels

than uninfected individuals, and (c) males with redder plumage had

higher glucose and lower uric acid concentrations.

First, there was high repeatability of multiple measurements of

glucose, ketones, triglycerides, and uric acid in house finches.

Previous studies found that POC‐measured blood parameters in

one or several bird species were also comparable to traditional

laboratory assays, even though POC testing devices had slightly

higher values compared with the laboratory tests (Beattie et al., 2022;

Morales et al., 2020). Our results had similar value ranges (Supporting

Information S1: Table 2) compared with many other studies of

different passerine species (Beattie et al., 2022; Dulisz et al., 2021;

Gadau et al., 2019; Glądalski et al., 2018; Kaliński et al., 2014, 2022;

Lieske et al., 2002; McGraw et al., 2020; Morales et al., 2020), which

makes POC devices affordable and accessible tools that could be

used to study life‐history and blood nutritional physiological

parameters in other wild animals. We note that POC devices can

measure other hematological variables, such as cholesterol, electro-

lytes, and hemoglobin concentrations (Livingston et al., 2022;

Morales et al., 2020; Sahoo et al., 2022), and we encourage other

studies to investigate these additional blood parameters to under-

stand the full efficacy and utility of POC devices with wildlife species.

Second, there was a positive association between circulating

glucose and triglyceride concentrations in house finches. To our

knowledge, our study is the first to directly compare blood

triglycerides levels with glucose and uric acid concentrations in birds,

with only indirect links made in previous studies (e.g., Remage‐Healey

& Romero, 2001). In diabetic mellitus and arterial diseases in humans,

the positive relationship between blood glucose and triglyceride

concentrations is well‐known (Jin et al., 2018; West et al., 1983), and

in non‐fasting rats, hyperglycemia stimulates triglyceride synthesis

(Hirano et al., 1990). We propose two hypotheses to explain the

relationship between blood glucose and triglycerides in house

finches: (a) birds circulating more glucose and triglycerides had a

higher energy intake (Alonso‐Alvarez & Ferrer, 2001); or (b) glucose

and triglycerides may co‐increase during stress, mainly as a

consequence of the increased production and release of corticoster-

one through adrenocorticotropic hormone mediation (Olanrewaju

et al., 2006). Therefore, triglycerides may be used for ATP synthesis

(Starzec & Berger, 1986), and glucose to stimulate gluconeogenesis

(Strack et al., 1995). For example, after being handled and restrained,

captive European starlings (Sturnus vulgaris) had higher blood

triglyceride and glucose concentrations, suggestive that multiple

types of energy are being mobilized to cope with stress

(Remage‐Healey & Romero, 2001). There was also a positive

association between uric acid and triglyceride concentrations in wild

birds. Uric acid is a by‐product of amino acid metabolism, such as

purines, an important structure for DNA (Yu et al., 1998), which may

be used to ameliorate oxidative stress (Klandorf et al., 1999). In

children, high levels of serum uric acid were associated wither higher

triglyceride levels, and the authors discussed that uric acid promotes

lipid peroxidation, and may increase blood‐vessel wall inflammation

(Baldwin et al., 2011; Chu et al., 2021). Therefore, we suggest that

the underlying mechanism for covariation between uric acid and

triglyceride concentrations in house finches might also be stress

related. For instance, chickens (Gallus domesticus) infected with

nephropathogenic infectious bronchitis virus had higher levels of uric

acid compared with uninfected ones, suggesting that uric acid

increases NLRP3‐inflammasome, which enhances inflammatory

response against the virus (Xu et al., 2019). Similar results were

TABLE 3 Variables, estimate, standard error (SE), p value, and

95% confidence intervals of the results from the model averaging per

response variable, namely: mean, glucose, ketone, uric acid, and

triglyceride concentration.

Variables Estimate SE

95% confidence

intervals

Mean glucose concentration

Intercept 304.74 9.34 285.80, 323.68*

Site (suburban) −48.83 14.65 −78.65, −19.02*

Sex (male) 16.45 14.86 −13.87, 46.77

Poxvirus infection (absence) −13.77 19.78 −54.07, 26.53

Mean ketone concentration

Intercept 3.22 0.25 2.71, 3.74*

Site (suburban) −0.14 0.32 −1.33, 0.48

Sex (male) −0.01 0.21 −0.92, 0.81

Poxvirus infection (absence) −0.35 0.15 −1.95, 0.36

Mean uric acid concentration

Intercept 7.37 0.83 5.67, 9.07*

Site (suburban) 1.27 1.49 −1.76, 4.30

Sex (male) 1.41 1.42 −1.46, 4.30

Poxvirus infection (absence) 0.46 1.88 −3.37, 4.30

Mean triglyceride concentration

Intercept 320.52 25.41 269.22, 371.81*

Site (suburban) −47.10 41.54 −131.83, 37.01

Sex (male) 10.37 39.43 −69.91, 90.66

Poxvirus infection (infected) −120.10 52.57 −227.00, −13.19*

Note: Statistically significant results are marked with an asterisk.
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found in white‐crowned sparrows (Zonotrichia leucophrys) (Tsahar

et al., 2006) and in house sparrows (P. domesticus) (Beattie

et al., 2023), with individuals under higher stress having higher

circulating levels of uric acid and triglycerides, suggesting a similar

pattern in different songbirds. Hence, it is most likely that the

sampled house finches with higher circulating uric acid and

triglyceride concentrations were under stress, compared with the

individuals with lower levels of both. We suggest that future studies

should employ different stress manipulations to better understand

the mechanisms underlying covariation between uric acid and

triglycerides.

In our analysis examining various biological predictors of levels of

each nutritional‐physiological metric, we found that urban house

finches in this winter (pre‐breeding) study had higher glucose

concentrations than did suburban birds. Previous studies in great

tits (P. major; Glądalski et al., 2018), blue tits (Cyanistes caeruleus;

Kaliński et al., 2014), and house sparrows (P. domesticus; Dulisz

et al., 2021; Gadau et al., 2019) also found a higher concentration of

blood glucose in urban birds. These results suggest that food sources

in urban locations (e.g., bird feeders) might be more readily available

compared with suburban locations, as well as a lower usage of

carbohydrates for shorter‐distance flights to forage for energy‐rich

resources (Rothe et al., 1987). Poxvirus‐infected house finches had

lower levels of triglycerides. To our knowledge, this is the first avian

study to find a negative association between poxvirus infection and

triglyceride concentration. Previous studies on Plasmodium‐infected

tropical birds (Messina et al., 2022), wood warblers infected with

haematozoan protists (DeGroote & Rodewald, 2010), and

adenovirus‐infected chickens (Dhurandhar et al., 1992) found that

infected individuals had lower levels of triglycerides. These results

suggest two non‐mutually exclusive hypotheses: (a) to meet the

immunological costs to fight‐off pathogens or parasites, birds may

increase lipid catabolism or feed intake to increase resources to cope

with infection; or (b) individuals circulating lower levels of

F IGURE 2 Relationship between mean glucose concentration and sampling location (a); and between mean triglyceride concentration and

poxvirus infection occurrence (b).

TABLE 4 Variable, estimate, standard error (SE), p value, and

95% confidence interval for the mean glucose and uric acid

concentration, the response variables, and male plumage hue as the

predictor.

Variable Estimate SE

95% confidence

interval

Mean glucose concentration

Intercept 355.30 23.47 303.63, 406.98*

Hue −4.53 1.55 −7.88, −1.04*

Mean uric acid concentration

Intercept 2.82 2.96 −3.69, 9.34

Hue 0.43 0.19 0.00, 0.86*

Note: Statistically significant variables are marked with an asterisk.
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triglycerides may be more vulnerable to infection. Future experi-

mental manipulations of pathogen/parasite infection and/or tri-

glyceride status will help to identify the causal direction of this

relationship.

Lastly, redder males had lower circulating concentrations of uric

acid. Previous studies found that antioxidant capacity is highly

correlated with plasma uric acid (Hõrak et al., 2010; Perez‐Rodriguez

et al., 2008), and that the circulating levels of uric acid is sensitive to

stressors (Cohen et al., 2007), such that plasma corticosterone

increased with a higher mean uric acid concentration in migratory

birds (Jenni et al., 2000). Therefore, our results suggests that yellower

birds were under greater stress (especially disease stress; Balenger

et al., 2015; Hill & Farmer, 2005; Hill et al., 2019), compared with

redder birds, with a higher necessity to cope with the stressor by

increasing circulating uric‐acid concentrations. It is worth noting that

all birds had already completed molt at least two and half months

previously; thus, it is unlikely that the development of their colorful

feathers played a strong, direct role in the relationship between

carotenoid plumage pigmentation and uric acid concentration in our

sampled birds. Redder birds also had higher circulating levels of

glucose. Glucose is used mainly for immediate energy utilization and

suggests a higher food intake by redder males (Alonso‐Alvarez &

Ferrer, 2001). Higher levels of glucose were previously shown to be

associated with higher body condition and infection with poxvirus in

house finches during winter (McGraw et al., 2020), but there also was

a lack of association between plumage hue and glucose in a study

performed later in the winter time in the same population of house

finches (DePinto & McGraw, 2022). Our results suggest two non‐

mutually exclusive hypotheses: (a) that redder males may be better‐

equipped to find energy‐rich resources and increase food intake

during early winter. In addition, a month later, when birds start to

form breeding pairs, the physiological trade‐offs related to pair

formation may deplete resources faster for all male finches

(regardless of plumage color), which may explain why, in a study in

late January, plumage hue was not related to circulating glucose

concentrations in the same population (DePinto & McGraw, 2022).

(b) individuals that were already in better condition could invest in

plumage coloration without compromising their overall health/

nutritional status. Nevertheless, our results support that redder

males might be under lower stress and might ingest more energy‐rich

resources compared with yellower birds, which may have important

consequences for female mate choice, since females tend to select

redder males over yellower ones (Toomey & McGraw, 2012).

It is important to acknowledge a potential limitation in our

findings. Despite the fact that we kept a generally consistent

timeframe between trapping and blood data collection, there is a

possibility that the handling process may have influenced some of the

physiological‐nutritional blood parameters (Müller et al., 2006; Parks

et al., 2023; Vleck et al., 2000). To address this concern, we

recommend that future studies utilizing POC devices specifically take

into account the trapping and processing time as a factor to assess

any potential impact on blood metrics. Nevertheless, our study's

outcomes carry significant implications for animal physiology, health,

and conservation. Wider use of POC devices has the potential to

enhance the monitoring of wildlife health, facilitating early disease

detection and offering insights into how environmental stress

impacts wild animals. Particularly in human‐impacted areas, real‐

time data on animal nutritional physiology could guide conservation

efforts toward particularly sensitive species or habitats.

In summary, affordable and accessible POC devices can generate

highly repeatable, real‐time nutritional‐physiology data in wild birds,

which may be a valuable tool for tracking real‐time health and

F IGURE 3 Relationship between male plumage hue (in degrees) and mean glucose concentration (a) and mean uric acid concentration (b).
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nutritional state in many avian species. We also found important

correlations between a few, but not all, blood nutritional parameters

in house finches, suggesting that birds circulating more glucose and

triglycerides ingested more energy‐rich resources or are under a

greater stress burden, which is also consistent with the positive

correlation we observed between blood triglycerides and uric acid

levels. Also, other nutritional parameters varied independently and

may reveal different underlying physiological processes. We also

found important links between some blood nutrients and both

urbanization and infection state, suggesting that, because urban birds

had higher glucose concentration, they may have higher resource

availability compared with suburban birds. In addition, birds with

lower triglyceride levels might be more exposed to poxvirus infection

or may use a greater fat reserve to fight‐off disease. Lastly, males

with redder, sexually attractive plumage had higher glucose levels but

lower uric acid levels, suggesting that redder birds feed on more

energy‐rich resources and may be under a lower oxidative stress

burden, as suggested by the low levels of uric acid. We hope that our

broad set of analyses using affordable POC nutritional devices

inspires many to include these in their research and expand our

understanding of real‐time variation in nutritional physiology and

health of wild birds, especially in areas experiencing significant and

rapid anthropogenic impacts.
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