Robustness of stress focusing in soft lattices under topology-switching deformation
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Recent developments in topological mechanics have demonstrated the ability of Maxwell lattices
to effectively focus stress along domain walls between differently polarized domains. The focusing
ability can be exploited to protect the lattice bulk from accidental stress concentration - and even-
tually onset and propagation of fracture - at structural hot spots such as defects and cracks. A
recent study has revisited the problem for structural lattices featuring non-ideal hinges, showing
that the focusing remains robust, albeit diluted in strength. Realizing that the problem of domain
wall localization has been traditionally framed in the context of linear elasticity, in this work we
extend the study to the realm of soft structures undergoing nonlinear finite deformation. Through
experiments performed on silicone hyperelastic prototypes, we assess and quantify the robustness of
the phenomenon against the macroscopic shape changes induced by large deformation, with special
attention to deformation levels that alter the topology of the bulk, lifting the topological protection.
Furthermore, we identify a simple geometric indicator for this transition.

Mechanical metamaterials are architected solids whose
microstructure is engineered to yield unconventional me-
chanical properties [1]. Recently, the intersection of topo-
logical mechanics and metamaterial design has led to
the discovery of new classes of mechanical metamaterials
whose response is attributable to the topology of their
bulk structure. The topological characterization can be
carried out in physical space, involving the shapes of the
geometrical layout, or in the so-called k-space, in terms
of descriptors buried in the system’s phonon band struc-
ture. An example of systems whose properties are dic-
tated by their k-space topology is topological Maxwell
lattices. In the ideal configuration, where the sites act as
perfect hinges, Maxwell lattices possess an equal num-
ber of constraints and degrees of freedom in the bulk [2].
Typical examples in two dimensions are the kagome and
the square lattices. Topological Maxwell lattices are a
subclass of Maxwell configurations featuring topological
polarization, which grants them the ability to localize de-
formation (floppy modes) on selected edges or interfaces
of finite domains. This results in an asymmetric mechan-
ical response [3-9], whereby the excess of “floppiness” on
one edge is matched by a surplus of rigidity on the oppo-
site edge [3, 6, 10, 11]. The polarization is captured by
a polarization vector, whose orientation marks the direc-
tion along which floppy modes exponentially localize [3].

Recent works have addressed the resilience of the topo-
logical properties in the crossover from ideal configu-
rations to structural lattices featuring finite-thickness
hinges. Though structural lattices do not strictly meet
Maxwell conditions due to the excess of constraints at
the hinges, the signature of polarization is overall pre-
served, although the floppy modes migrate to finite fre-
quencies and become soft phonons [12-15], causing the
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polarization to manifest as asymmetric wave transport.
In parallel, recent work by Kedia et al. [16] has proved
the existence of soft static modes protected by topology
and symmetry in hyperstatic lattices.

Polarized lattices also exhibit the ability to localize
states of self-stress (SSS) [3, 8, 17, 18]. Kane and Luben-
sky first discussed the localization of SSS at interfaces, or
domain walls, between differently polarized sub-domains.
Paulose et al. experimentally demonstrated the potential
of SSS domain walls as stress guides to control the on-
set of selective buckling [17]. Zhang and Mao expanded
the concept in the context of fracture protection, putting
forth an implication of major engineering significance.
When a conventional material with defects or cracks is
loaded, the stress inevitably focuses in their neighbor-
hoods, making them hot spots that can lead to failure.
In contrast, when a lattice with an SSS domain wall is
loaded, the stress focuses along the domain wall even in
the presence of defects in the bulk and deep into the
failure process, thus reducing the canonical stress con-
centration at the hot spots [19]. Chapuis et al. also
characterized topological Maxwell beam networks capa-
ble of localizing stress along non-linear domain wall in-
terfaces [18]. Finally, Widstrand et al. [20] showed that
stress focusing is preserved, albeit diluted in strength, in
structural lattices with non-ideal hinges.

The study of topological mechanics by and large has
been framed within the bounds of linear elasticity, a few
exceptions including the characterization of elastomeric
polarized lattices in [11] and recent work on soft lattices
that use zero modes to achieve bulk shape reconfigura-
tion [21, 22]. Similarly, domain wall focusing has also
been predominantly studied in the context of stiff lattices
operating in the linear elastic regime. In this work, we re-
visit the problem in the realm of soft structures undergo-
ing nonlinear finite deformation. Specifically, we address
the following two practical and philosophical questions.
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FIG. 1. (a) Structural lattice unit cell with lattice vectors and finite thickness h indicated. (b) Finite element (FE) model with
von Mises stress field plotted for a 9% total elongation. (c) Detail of the lattice mid-line showing stress concentration at the
domain wall. (d) Normalized stress versus cell index, demonstrating stress decay into the bulk to almost 50% of the peak value.

1) Is stress focusing robust against the shape changes
that the cells undergo during large deformation? What
happens if we reach a deformation level that alters the
topology of the bulk, forcing the lattice out of its po-
larized state, thus lifting the topological protection? 2)
Can we describe the dilution of polarization in terms
of the evolution of some intuitive unit cell parameter?
This would provide a powerful guideline to design struc-
tural lattices with desired stress management attributes
forsaking the need for a precise characterization of the
structural details.

We conduct our investigation on a soft lattice proto-
type made of silicone rubber. This choice is dictated by
practical considerations. Firstly, silicone features enough
compliance to reach the deformation regimes required
by our study without the onset of plasticity. Moreover,
working with elastic moduli of the order of few MPa,
the required deformation can be achieved under moder-
ate tensile loads using dead weights, can be appreciated
by naked-eye inspection, and can be quantified through
nearly noise-free measurements via digital image corre-
lation (DIC). This allows achieving a precise mechanical
characterization working with a parsimonious table-top
experimental set up. Secondly, since silicone has been
widely used in mechanical metamaterials research, abun-
dant literature is available, offering best practices for fab-
rication and characterization.

Before discussing the tests conducted on the prototype,
we develop a finite element (FE) model in Abaqus. The
selected configuration involves the distorted kagome cell
shown in Fig. 1(a). For ideal hinges, this configuration

features a polarization vector pointing along primitive
vector ;1. The domain, shown in Fig. 1(b), consists of
two polarized lattices, with their respective polarization
vectors pointing outwards, stitched at their stiff edges to
form an SSS domain wall. Note that the hinges are finite-
thickness ligaments, making this a structural kagome lat-
tice. The FE model involves a mesh of eight-node brick
elements, with geometric nonlinearity activated. To cap-
ture material nonlinearity, the silicone is modeled as a
Yeoh hyperelastic material [23, 24]. The coefficients are
calibrated from stress-strain data obtained via uniaxial
tension tests of dog-bone coupons made of the same ma-
terial that we eventually use for our prototype (Zhermack
Elite Double 32 silicone rubber, details in SM). The lat-
tice is loaded uniaxially applying a tensile boundary con-
dition to the bottom edge that results in an elongation
of =~ 9%, as shown in Fig. 1(b).

From the von Mises stress field in Fig. 1(b) we see
that, while some stress concentration is observed in every
hinge throughout the domain, the stress unequivocally
localizes at the domain wall. In order to quantify the
stress decay into the bulk, we extract stress values at the
hinges (averaged over the hinge elements) at the domain
wall as well as in the three immediately adjacent unit
cells (Fig. 1(c)) and plot them (normalized by the domain
wall value) against the cell index in Fig. 1(d). Within
three cells, the stress decays to nearly half of its peak
value, indicating substantial focusing even at this level of
deformation. However, the strength of focusing is diluted
when compared to data for a steel lattice operating in the
linear regime under analogous tensile loading [20].
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FIG. 2. (a) Experimental set-up for uniaxial tensile testing of soft lattice specimens. Sandwiching plates grip and provide
rigidity at the edges. Dead load is applied at the bottom edge. (b) Evolution of the unit cell shapes under loading, involving
changes in cell height, D, hinge ligament length d and opening angle 0, and onset of undulation of the edges, traced in red.
(c) Detail of cells along the lattice mid-line, showing speckling pattern used for DIC and corresponding strain fields confirming
strain concentrations at the domain wall (unit cell 0). (d) Plot of normalized strain versus cell index for experiments and FE,

quantifying strain decay and focusing.

We then proceed to seek experimental validation of
these results. Following an established fabrication pro-
tocol, we fabricate our specimen by casting silicone in a
3D-printed mold, using the same silicone batch employed
for the dog-bone coupons used for material characteri-
zation. We set the specimen in the dead-weight set-up
shown in Fig. 2(a). We sandwich the top and bottom
edges between steel plates, which can be considered rigid,
to ensure that the concentrated load is distributed uni-
formly along the loading edge, and we add weights until
we reach = 9% of total elongation. At each loading stage,
we take a snapshot of the speckle pattern in the region of
interest, highlighted in Fig. 2(c), and we feed the frames
to a DIC software to infer displacements and axial strains
(details in SM). The resulting strain map in Fig. 2(c) re-
veals strong localization at the domain wall. To quantify
the decay rate into the bulk, we plot the strains in the
hinges, normalized by the peak value, against the cell in-
dex, superimposing the resulting curve to the one from
the FE model in Fig. 2(d). The results, displaying satis-
factory agreement between experiments and simulations,
confirm the rapid decay of the strain, which drops by
over 50% within three cells. From a visual inspection
of the elongated specimen we infer a few morphological
feature that will be valuable in later steps of our analy-

sis. Specifically, it is clear from Fig. 2(b) that the cells
undergo a dramatic shape reconfiguration, where we can
identify at least four mechanisms of deformation at work:
1) an elongation of the entire cell along the direction of
loading, from D to D’; 2) an axial stretching of the hinge
from d to d’; 3) a relative rotation of the triangles from
6 to #’; and a loss of straightness of the edges.

To test whether the effect remains appreciable under
more extreme deformation, we double the elongation to
18%, producing the deformation shown in Fig. 3(a) ac-
companied by a more pronounced degree of shape recon-
figuration of the cells. The plot of axial strain vs. unit
cell in Fig. 3(d) shows that a considerable amount of fo-
cusing is maintained even under this level of elongation,
with strain dropping by 40% within three cells. In order
to force a loss of polarization, we further increase the load
to reach a total elongation of 50%. Since our lab setup
can only handle elongations up to 30%, for this case we
resort to FE calculations, whose reliability was verified in
previous loading cases. From the strain field in Fig. 3(b-
c¢) and the orange curve in Fig. 3(d), we can see that
the focusing is now completely lost, with the normalized
value approaching 1 far from the domain wall.

Our next step is to find a connection between the loss
of polarization observed in soft structural lattices and the
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FIG. 3. (a) Soft lattice specimen loaded to approximately 18% total elongation. (b) FE analysis of soft lattice loaded to 50%
total elongation, with (c) detail of stress field showing loss of focusing. (d) Normalized axial strain vs. cell index for all cases.

evolution of one or more key parameters of the unit cell
that are swept during loading. We recall that the cell
deformation involves at least four major kinematic con-
tributions: total cell elongation, stretching of the hinges,
rotations of the triangles and loss of straightness of the
edges. While it is difficult to precisely rank these effects
in terms of their contribution to the dilution of polar-
ization, we choose to focus our attention on the rotation
6 which, among these factors, is the only one that also
plays a role in the kinematics of ideal lattices. In fact,
6 fully captures the Guest-Hutchinson mode [25], which
reconfigures ideal Maxwell lattices without costing elas-
tic energy [26]. Therefore, a parameterization in terms
of 0 allows a precious description of the evolution of po-
larization in terms of an interpretable parameter.

Here we build upon the work by Rocklin et al. [4], in
which it was shown that, for a given ideal kagome ge-
ometry, it is possible to turn on and off the polarization
through a uniform twist described by an angle 6. Note
that, from a design perspective, varying 6 can be inter-
preted as a sweep of the single-variable design space of
the given kagome family. However, it can also be inter-
preted as a step-by-step illustration of the active reconfig-
uration sweep that the lattice naturally undergoes while
experiencing a global soft mode. Such reconfiguration
brings about two topological phase transitions between
unpolarized to polarized states, which are marked by spe-
cial configurations, in which the bonds are aligned, giv-
ing rise to continuous “fibers” that support states of self
stress (SSS). Recently, similar notions have been applied

to multi-stable lattices, where external loading causes a
change in the morphology of the bulk that results in a
topological phase transition [27].

We leverage this framework to propose a connection
between the dilution of stress focusing in the structural
lattice and the topological phase transition in its ideal
counterpart. For an ideal lattice, we can determine the
polarization by computing two topologically invariant
winding numbers n; and ny, which capture the decay,
or lack thereof, of wave modes along the directions of
€, and €., respectively. A linear combination of &; and
€,, with ny and ns serving as coeflicients, yields the the
polarization vector Ry, which captures the polarization
encoded in the bulk topology [3, 18]. For the geometry
in Fig. 4(a), parameterized in terms of 6, ng = 0 iden-
tically, while n; undergoes an abrupt jump from 1 to 0
for 6 ~ 124°, which marks a topological phase transition
from polarized (Ry # 0) to unpolarized (Ry = 0), de-
noted by the cyan- and gray-shaded areas. Interestingly,
this switch corresponds to an alignment of the edges of
the triangles along é,, as predicted in [4].

Before we can perform a meaningful comparison be-
tween the value of # at which topological phase transi-
tion occurs in the ideal lattice and the effective rotation
conditions for which the dilution of polarization man-
ifests in the structural lattice, we must address some
kinematic ambiguities embedded in the large deforma-
tion field. First, since the edges of highly deformed tri-
angles are undulated, it is challenging to precisely define
an opening angle #, and we must instead resort to an ef-
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FIG. 4. (a) Winding number diagram for the idealized unit cell. (b) Structural unit cell with traced edges and effective angle
0 computed from the vectorized traced edges, averaging over 25 cells to filter out spatial variability. (c) FE-enabled sweep of
load and strain levels in hinges at, close and further away from the domain wall, for the structural lattice. The evolution is
superimposed on the winding number diagram for the ideal case, letting the average effective opening angle @4,, run along the
same axis of the ideal angle §. The curves show a progressive decay of focusing with increasing load levels and 4.4, with total

loss for elongations above 50%.

The focusing drops rapidly over a relatively narrow window of stages centered around 28%

elongation, which correlates with the critical value of § marking the topological phase transition for the ideal lattice.

fective opening angle 6. To this end, we trace the bound-
aries of the deformed cell using an image processing soft-
ware (details in SM), we approximate the traced edges
locally (Close to the hinges) with segments described by
vectors t and b and we compute 6 from their dot prod-
uct, as shown in Fig. 4(b). Furthermore, we note that
the effective opening angle is highly variable across the
domain, due to the severe non-uniformity of the deforma-
tion field. To account for this variability, we average the
values of 6 inferred from a sample window of cells (red
box in Fig. 4(b)) to extract an average effective opening
angle gavg.

In our FE model, we simulate increasing levels of elon-
gation (from 5% to 67%) which result in increasing val-
ues of gm,g. For each level, we compute the hinge axial
strain in three cells located one, two and three cell posi-
tions from the domain wall, respectively, and we normal-
ize the values by that at the domain wall. In Fig. 4(b)
we plot the normalized strains vs. 6,4, superimposing
the curves to the winding number diagram for the ideal
case, deliberately sweeping gavg and # on the same axis
in order to put the two quantities in direct comparison.
We observe a rise of the normalized strain away from the
domain wall, tending to 1 for extreme loads, confirming
a progressive dilution of the polarization as the load in-
creases. Interestingly, inspecting the curves against the
backdrop of the winding number, most of the increase
occurs in a relatively narrow range of éavg values clus-

tered around an inflection point that matches the critical
value of 6 that marks the phase transition for the ideal
lattice. This suggests that a simple kinematic descrip-
tor of the ideal lattice can serve as a viable predictor of
stress focusing even away from ideal lattice conditions.
This observation has two profound implications. On one
hand, it unequivocally links the change in focusing of the
structural lattice to the topological character of its ideal
counterpart. On the other hand, it provides a powerful
design guideline, in that we can predict some key features
of a structural configuration regardless of the availabil-
ity of structural details about the hinges, only relying on
information about geometry and connectivity.

Our last goal is to verify the robustness of focusing
against the onset of damage. In previous work, we had al-
ready demonstrated significant robustness in going from
ideal to structural lattices, albeit limited to operating in
the linear elastic regime [20]. We now assess whether
such protection persists under large deformation. Again,
we conduct the assessment experimentally, see Fig. 5(a),
and via simulations, see Fig. 5(b). We introduce dam-
age by severing two hinge ligaments along the domain
wall (insets in Fig. 5(c)) and we determine the resulting
strain field to assess the existence of decay patterns. We
observe that the strains in hinges labeled 0-3, moving
away from the domain wall, retain a substantial decay.
From Fig. 5(b), we can appreciate how the largest strains
remain confined along a wavy path that bounds the de-
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FIG. 5. (a) Experimental response of the soft lattice specimen with two cuts along the domain wall. (b) Finite element model
of the damaged lattice showing overall preservation of the focusing effect in the axial strain field. (c) Details of the experimental
and simulated deformation fields showing the rearrangement of deformation in the neighborhood of the defected hinges that
stop carrying loads. (d) Normalized axial strain vs. cell index for experiments and FE. The curve shows some local pick-up in

strain in unit cell 2, but overall focusing at the domain wall is maintained.

fected domain wall, always peaking at the first avail-
able undamaged hinge. The normalized strain plotted
in Fig. 5(d) quantifies the persistence of the localization,
whereby, while the defect appears to cause a pickup in
strain in the second cell, the local increase is not enough
to overcome the overall focusing ability afforded by the
domain wall.

In conclusion, we demonstrated experimentally the
availability of stress-focusing in soft structural kagome
lattices experiencing finite deformation. The focusing re-
mains substantial even under elongation levels that pro-
duce significant morphological changes in the cells. Fur-
thermore we determined that the twist angle for ideal
lattices remains a good predictor of focusing for struc-
tural lattices with more complex hinge mechanics.
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SUPPLEMENTAL MATERIAL
Uniaxial testing and coefficients of hyperelastic material model

The hyperelastic material model used in the finite element simulations is determined from uniaxial test data con-
ducted on a silicone rubber coupon cast from the same batch of material used to cast the lattice specimen. The silicone
rubber coupon is pictured in Fig. 1(a). The specimen is loaded with increasingly larger dead loads, similar to the
testing procedure used on the full lattice specimen. These loads are recorded as nominal stress in the table pictured
in Fig. 1(c). Nominal strain is computed using digital image correlation (DIC) on the speckle pattern adorning the
surface of the coupon in Fig. 1(a). Nominal strain is tabulated alongside nominal stress and this stress-strain curve is
also plotted in Fig. 1(b). Using the nominal stress-strain curve as input, and assuming we have a nearly incompressible
material (v = 0.495), we use the finite element software Abaqus to fit the test data to a Yeoh hyperelastic material
model. The hyperelastic stress-strain relationship is plotted over the range of test data in Fig. 1(b) and we can see
that the Yeoh model closely fits the test data for this level of strain. The coefficients of the Yeoh material model are
given in Fig. 1(b). To run the finite element analysis discussed in the main text, these coefficients are used.

(b) ‘ x105 Nominal Stress [Pal] | Nominal Strain
58,956.90 0.048
% 5l 80,129.05 0.072
l<b) 113,750.74 0.112
2 a4} 158,632.52 0.174
P! 203,395.36 0.245
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FIG. 1. (a) Silicone rubber unixial testing coupon. A speckle pattern is drawn on the surface of the lattice to compute strain via
DIC. (b) Nominal strain vs nominal stress plot. Test data is averaged across several tests of the coupon. The Yeoh stress-stran
curve is obtained by fitting the data to the Yeoh mdoel in Abaqus. (c) Tabulated stress-strain data and corresponding Yeoh
model coefficients.

Image-Processing Procedure for Unit Cell Boundaries

In order to trace the boundaries of the lattice’s unit cells, we have written and implemented an image-processing
code. We define a subset of unit cells in the bulk of the lattice over which we iterate the code. For each iteration,
we plot an individual deformed unit cell and binarize the image so that it can be stored as a binary matrix where



the zeroes correspond to pixels outside of the boundaries of the unit cell and the ones correspond pixels within the
boundaries of the unit cell. Since we must locate the upper and lower triangles of the unit cell, we search through
two rows of the matrix from right-to-left for the first value of one in the row. The pixel corresponding to that one
becomes the seeding point for the MATLAB function bwtraceboundary. This function enables us to trace the outline
of a binarized image, and it also provides us with the coordinates of the points along the traced path. We do this
in two locations in order to trace a short path along both the upper and lower triangles of the unit cell. Using the
coordinates of these paths, we fit vectors to the paths and compute the angle between these vectors using their dot
product.



