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ABSTRACT

Cooperative 3D Printing (C3DP), an additive manufactur-
ing platform consisting of a swarm of mobile printing robots, is
an emerging technology designed to address the size and print-
ing speed limitations of conventional, gantry-based 3D printers.
A typical C3DP process often involves several interconnected
stages, including project/job partitioning, job placement on the
floor, task scheduling, path planning, and motion planning. In our
previous work on project partitioning, we presented a Z-Chunker,
which vertically divides a tall print project into multiple jobs to
overcome the physical constraints of printers in the Z direction,
and an XY Chunker, to partition jobs into discrete chunks, which
are allocated to individual printing robots for parallel print-
ing. These geometry partitioning algorithms determine what is
to be printed, but other information, such as when, where, and
in what order chunks should be printed, is required to carry out
the print physically. This paper introduces the first Job Place-
ment Optimizer for C3DP based on Dynamic Dependency List
schedule assignment and Conflict-Based Search path planning.
Our algorithm determines the optimal locations for all jobs and
chunks (i.e., subtasks of a job) on the factory floor to minimize
the makespan for C3DP. To validate the proposed approach, we
conduct three case studies: a simple geometry with homoge-
neous jobs in the Z direction and two complex geometries (one
with moderate complexity and one relatively more complex) with
non-homogeneous jobs in the Z direction. We also performed
simulations to understand the impact of other factors, such as the
number of robots, the number of jobs, chunking orientation, and
the heterogeneity of prints (e.g., when chunks are different in size
and materials), on the effectiveness of this placement optimizer.
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Placement, Multi-Job Printing
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1. INTRODUCTION

The development of Additive Manufacturing (AM) technolo-
gies over the past few decades has led to many advances in various
applications [1]. However, conventional gantry-based extrusion-
based 3D printing systems are usually difficult to scale in printing
speed (e.g., usually one nozzle) and print size (e.g., limited by the
size of the printer). Cooperative 3D Printing (C3DP) is an emerg-
ing additive manufacturing technology that utilizes a swarm of
mobile robots that move around and work together to carry out
print jobs on an open factory floor.

FIGURE 1: THE COOPERATIVE 3D PRINTING PLATFORM [2].
(I) SCARA PRINTING ROBOT AND (ll) MOBILE TRANSPORTER
ROBOT.

The C3DP system in its current iteration consists of a factory
floor made of modular floor tiles upon which printing robots and
build plates can be placed at discrete locations in one-foot inter-
vals [3]. The printing robots are a unique Selective Compliance
Articulated Robot Arm (SCARA) design that mounts securely to
and draws power from the floor for any print action but can be
unmounted and moved from place to place by custom-built mo-
bile transporter robots. These robot types, as well as an example
floor setup, are shown in Figure 1. The open floor workspace and
the ability of robots to move around allow for a wide range of
placements, schedules, and paths to feasibly be used to complete
the project.



A) Input STL Model of a Tall Box

Chunk 1 Chunk 3 Chunk 5
e Chunk 2 Chunk 4

C) XY Chunking of One Job into Six Chunks
FIGURE 2: CHUNKING OF A TALL BOX PROJECT

B) Z-Chunking of Tall Box into Four
Jobs

(D) Chunk Dependency Tree

Multiple steps are required to transform an input STL file
into a completed print in the C3DP workflow. However, before
we can explain them, it is necessary to introduce some important
terminology.

e Project: This is the input of C3DP. It is the STL file that the
user wants printed. It can also be considered the output to
be achieved after printing.

* Job: This is an object on the factory floor that one or more
robots work on. A job can be generated as one of the Z-
Chunks from the Z-Chunking algorithm if the project is tall.
Alternatively, if the project is shorter in the Z direction than
the maximum print height of the robots, the job is the entirety
of the Project directly placed on the factory floor.

e Chunk: This is a singular partition of the job that can be
printed by one robot from one location on the factory floor.

C3DP processes involved to turn a project into a completed print:

* Chunking: Geometrically partition an STL file into chunks
printable by individual robots.

* Placing: Locate jobs on the factory floor for printing and
assembly.

e Scheduling: Determine in what order robots will complete
tasks and print specific chunks.

e Path Planning: Dictate how robots move between tasks.

e Slicing Determine how a robot will move its toolhead to
print a chunk.

Algorithms for Z-Chunking, X Y-Chunking, Scheduling, and
Path Planning have been introduced in our previous work [2, 4-7].
The next section explains these concepts in further detail.

The first process is chunking, broken down into the Z and
XY directions, shown in Figure 2. Z-Chunking is the process of
turning a tall project into multiple jobs. This is necessary because,
unlike in the XY direction, robots have one discrete Z-location
they can be mounted to. By this we mean that robots cannot move
themselves to a higher level and instead have a maximum Z reach
of 265mm. Recent work has enabled autonomous Z-Chunking
with the generation of Assembly Geometry to facilitate project
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FIGURE 3: FLOW CHART OF THE C3DP PROCESS. ADAPTED
FROM POUDEL ET. AL. 2019 [5]

re-assembly after printing [2]. XY chunking is then the further
partitioning of these jobs into chunks, which are about the size
of a build plate (300mm x 300mm). Each of these chunks is
printable by one robot. As shown in Figure 4, neighboring chunks
are directly connected by utilizing a sloped-surface chunking
methodology [4]. While this type of interface does serve to
connect the chunks into a cohesive job, it does demand a specific
printing order. For example, in Figure 2 Chunk 1 cannot be
printed until Chunk O is finished. Otherwise, the printer would
not be able to reach under the overhang created by the slope. This
is known as a chunk dependency, which we build on later in this
work.

Chunking is a fundamental part of the C3DP and swarm man-
ufacturing process. It enables increased printing speed through
distribution of labor to multiple printers and allows for large parts
to be partitioned into printable subsections. One question regard-
ing chunking is if it could reduce part strength and lower print
quality. While more in depth study is needed, especially on the
emerging topic of Z-Chunking, preliminary structural testing as
carried out by Poudel et al. has shown that by carefully con-
trolling factors such as slope interface, number of shell layers,

Chunking Plane Chunk 2

Chunk 1

Chunk 1 Chunk 2

FIGURE 4: SLOPED CHUNKING AND SLICING [8]. CHUNK 2 CAN-
NOT BE PRINTED UNTIL CHUNK 1 HAS BEEN PRINTED.



and amount of overlap, the strength between chunked parts can
be equal to or in some cases higher than non-chunked parts in
certain loading conditions [8]. Additionally, recent work by Kr-
ishnamurthy et al. has successfully demonstrated a layer-wise
cooperation strategy [9] which could be used to ensure interfacial
strength at these chunk boundaries.

A further step, scheduling, has been explored to determine in
what order chunks should be printed by minimizing the makespan
while satisfying the chunk dependencies generated by the sloped-
surface chunking method [5, 6]. Additionally, an algorithm has
been developed to enable collision-free paths for robots moving
between printing locations [7] for both single-job and multi-job
prints. However, these studies have, until now, always assumed
an arbitrary job placement. For single-job prints, arbitrary place-
ment is appropriate as it only influences the time for the mobile
printer to move from its home position to the first chunk. How-
ever, when multiple jobs are present, for example, when applying
the Z-Chunker to generate multiple jobs from a singular project in
the Z direction, the placement of these jobs on the floor impacts
both printability and makespan. Therefore, there is a missing
link in the processing chain, as shown in Figure 3. In this work,
we present for the first time a job placement optimization algo-
rithm to connect geometric partitioning algorithms to scheduling
and path planning algorithms. First, we give an overview of the
relevant work before explaining the proposed job placement al-
gorithm. We then present three test cases and discuss the impacts
of the hyper-parameters in algorithm on the placement outcomes.

2. RELEVANT LITERATURE

Placement optimization has been a widely researched topic.
A popular topic in this field is the facility layout problem (FLP)
which aims to place manufacturing facilities on a shop floor with-
out overlapping and optimize material handling cost or adjacency
value, which is similar to the move time for a robot from one chunk
to another in C3DP. Potential solutions to this problem have been
suggested as early as the 1960s [10] and 1970s [11] and new
methods are still being investigated today [12]. However, these
methods are mainly used in a standardized manufacturing process
where machines are placed and then assumed to be utilized with
little idle time. For C3DP and other low-volume processes where
the project is different each time the system is run, we instead
gauge optimization as minimizing a single project makespan.

The problem of optimizing the manufacturing and assembly
of large, low-volume custom products was discussed by Kolisch
et al. 25 years ago [13]. Some solutions to this have come from
nature, such as Al-Salamah’s work on batch processing with an
artificial bee colony [14]. Other work has focused on scheduling
for parallel processing of non-identical machines [15].

However, C3DP is unique in that 1) it is meant to be fully
autonomous with no required manual reconfiguration by humans
and 2) at this stage, it is a homogeneous process, as all of the
manufacturing robots are interchangeable and can perform the
same tasks. Existing work by Zhang et al. has combined these
two points and developed an improved evolutionary algorithm,
combining a genetic algorithm and heuristics, specifically tailored
for the constraints and considerations of 3D printing [16]. This
study has been very informative for this work; however, it is still
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FIGURE 5: FLOW CHART OF THE GENETIC ALGORITHM OPTI-
MIZATION

not directly applicable to the specific C3DP system. The primary
application of the new algorithm developed in this work is to
serve as a link between the partitioning and scheduling processes
and help to enable autonomous manufacturing for C3DP.

3. APPROACH TO OPTIMIZING JOB PLACEMENT IN C3DP

To find an optimal placement for all jobs and chunks on the
factory floor, we employ a genetic algorithm. The algorithm gen-
erates a random population and evaluates the makespan of each
individual using the scheduler, which employs the path planning
algorithm as necessary. Then, for each generation, it generates
a new population based on the fittest members of the previous
generation until it converges to an optimized placement. The
algorithm design is shown in Figure 5.

3.1 Inputs

The inputs into the placement algorithm are generated by
the Z and XY Chunking algorithms. Specifically, the algorithm
accepts the chunk dependencies, job to which the chunk belongs,
and print time of each chunk generated by the geometry partition-
ing algorithms. Geometric dependencies occur when one chunk
must wait for another to be completed due to the sloped surface
connection as in Figure 4. The algorithm also requires input of
the robots’ starting positions and the floor size.

3.2 Random Generation of Placement Locations

The first step is to generate a random placement on the factory
floor for all jobs. It should be noted that all information pertaining
to how chunks are placed in relation to each other can come from
the chunk dependencies and job to which the chunk belongs. This
is because we know that the chunks are created with the single-
sided XY chunking algorithm, as shown in Figure 6, which can
then be used to back out position data for each chunk.

By design, each job will have at least one fully independent
chunk. A job may have more than one independent chunk, but the
first chunk, shown in red in Figure 7, should always be designated
as the "Initial Chunk." Currently, only jobs with a strictly rect-
angular buildplate footprint can be placed. This means that that
when a job is placed and centered on a the floor, only buildplates
in a rectangular shape are fully or partially covered by the job.
For more complex jobs, additional information on the shape of
the job would be required, in addition to chunk dependencies and
which job the chunk belongs to, to place all the chunks in relation
to the initial chunk.



FIGURE 6: SINGLE SIDED CHUNKING METHODOLOGY [17]. (1)
THE TWO INDEPENDENT CHUNKS ARE PRINTED. (2) CHUNKS DE-
PENDENT ON THE NOW COMPLETED CHUNKS CAN BE PRINTED
TO COMPLETE THE FIRST ROW. (3) THE ROBOTS MOVE TO
THE SECOND ROW, THE DEPENDENCIES OF WHICH HAVE BEEN
SOLVED BY THE COMPLETION OF THE FIRST ROW. (4) THE
ROBOTS PRINT THE REMAINING CHUNKS IN THE SECOND ROW.
(5) THE COMPLETED JOB.

Random Coordinate, Y Coordinate, and Orientation
(X,Y,0) are then generated for each initial chunk. This orienta-
tion is the direction in which the remaining chunks are placed, as
shown in Figure 7.

3.3 Optimization Problem
The optimization problem formulation is as follows:

Given:
M, = Sum(Pr,j,i) + sum(T(Cr,j,i,k—l’ Cr,j,i,k)) (D
Minimize:
max(M,)forr = (0,1, ...,n) 2)
Subject To:
Crojiitk # Cr jink for alliy #iy and ji1 # j2,  (3)
0 <= Cr,j,i,k <=U, 4)
Cr,jl,i,k - (O’ Dnorm) * Cr,jz,i,k * Cr,jl,i,k + (Da Dnorm)v (5)
|Cr i1,k = Cr j=0,i k| > 1Cr 1,1,k = Cr j=0,i k|, (6)

Equation 1 is the calculation for makespan of each robot in
a specific configuration. M, is the makespan for robot r, n is
the number of robots, T is a function that calculates move times
through the CBS algorithm from the position of the chunk C; x_;
to the position of the chunk C, ;. C, x represents the position of
the kth chunk in the schedule of robot r. For example, moving

X Location
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Initial Chunk
(A) Placement of Initial Chunk

Y Location

(B) Placement of Remaining
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FIGURE 7: PLACEMENT PARAMETERS. (A) THE INITIAL CHUNK
PLACED BASED ON X AND Y LOCATION. (B) PLACEMENT OF THE
REMAINING CHUNKS BELONGING TO THE SAME JOB BASED ON
ORIENTATION AND THE CHUNK DEPENDENCIES.

from k — 1 to k is moving from the previous chunk to the chunk
currently assigned for printing. Similarly, P, ; ;, is the print time
by robot r for chunk i of job j. It should be noted that a wait
action, where a robot is inactive for a period of time, is indicated
by a move from the kth chunk to the krh chunk. In this way
we can also account for and track time that a robot is idle. This
equation indicates that to find the total makespan, we add up all
of the print and move times for each robot individually. Then,
because all of the robots start at the same time, the time until
the last robot finishes, or the maximum of the individual robot
makespans, is the makespan of the configuration as stated in
equation 2. We would then like to minimize the total makespan
as shown in equation 1.

Equations 3 through 6 are the constraints for this optimiza-
tion. Equation 3 indicates that no two distinct chunks may occupy
the same position. Equation 4 says that no chunk may by placed
outside the bounds of the factory floor defined from O to U, with
U being the size of the floor. Equation 5 pertains to the place-
ment of jobs in relation to each other. It says that any chunk
in any job 2 may not be within (0,—D,prm) to (D,+D},0pm) for
any chunk in any job 1. Where D is a certain number of spaces
in the orientation direction (as shown in Figure 7) and D ;5 18
that same distance but in the direction normal to the assembly
direction. Physically what this means is that there should be at
least D spaces around each job where no other chunks can be
placed except for in the direction opposite the orientation. This
space is to ensure that robots have enough space to print and move
around each job and is not necessary in the direction opposite the
orientation because of the XY chunking strategy utilized.

Finally, in the scope of this paper, we will consider all jobs
to belong to the same project and to be generated from the Z-
Chunking algorithm. As one of the overarching goals of C3DP
is to enable fully autonomous reassembly of the project, we must
consider this when generating placement locations. The specifics
behind a reassembly process have not yet been fully developed
(hardware, processes, etc), so we impose a simple constraint,
shown in equation 6, to aid with assembly: the job positions in
relation to each other must match their order in the assembly. For
example, the job that is lowest in the final assembly should be
furthest from the job that is highest in the assembly and all other
jobs should be in between those in order. This constraint is en-
forced by relating the distances between initial chunks. However,
it should be noted that independent jobs can also be printed using
the proposed strategies and could be simpler to execute without
consideration of this "ordering" constraint.

3.4 Scheduler

The scheduling algorithm dynamically assigns chunks to
robots based on their relative position and the dependency tree.
For all available robots, the set of nearest printable chunks is
assigned. A printable chunk is a chunk that does not have out-
standing dependencies and is accessible to any robot. When any
robot(s) finishes printing a chunk, dependencies based on the
finished chunk are removed, and the finished robot(s) select a
new chunk. The cycle repeats until all chunks are printed. This
process is shown in Figure 8.

In this manner, the chunks are dynamically assigned based
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FIGURE 8: FLOW CHART OF THE SCHEDULING ALGORITHM

on the order in which the previous chunks finish printing. This
means that the print schedule is not necessarily a global optimal.
However, this dynamic scheduling is much less computation-
ally expensive, especially when considering a large number of
placements in our search space. Additionally, previous work has
shown that this type of dynamic allocation can result in equiva-
lent performance compared to a schedule optimization algorithm,
particularly when the number of chunks is relatively small (i.e.
< 500) as is the case in this study [6].

The total makespan (the sum of print and move time) and
the print schedule are recorded and returned to the placement
algorithm. Any time a robot needs to move across the factory
floor, the path-planning algorithm is called.

3.5 Path Planner

For the purposes of this work, we do not consider the need for
the mobile transporter robots and assume that the printing robots
can move from location to location assuming a collision free path
is available. Path planning is carried out using a conflict-based
search algorithm developed by GavinPHR [18], and can be de-
scribed as follows: First, a path is generated for each robot using a
lower level algorithm; in this case, we adopt an A* algorithm [19].
The path generated for each robot includes the positions that the
robot will occupy and the time in which the robot will be in that
position. If two robots occupy the same position at the same time,
this constitutes a conflict. Conflicts are resolved by creating two
branches of constraints: one where the first robot is not allowed
to occupy the conflict position at the conflict time and similar for
the second. The path is then re-generated for each branch and re-
maining conflicts are handled similarly, creating more and more
branches. This process is shown in Figure 9. When the lowest
level of all branches is conflict free, the branch with the lowest
move time is chosen, ensuring optimal collision-free paths [20].
Finally, the move time for each robot is returned.

3.6 Genetic Algorithm

The genetic algorithm (GA) is developed to find the optimal
job placement, working with the scheduler and the path planner.
A genetic algorithm is a good choice for this optimization because
it allows us to search a large solution space without computing all
results in a very time-intensive manner [21]. First, it generates
a population of random placements. For each, it analyzes the
total makespan by sending the chunk locations to the scheduler.
The makespans and associated configuration (initial chunk X
and Y position and orientation for each job) are sorted and a
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FIGURE 9: CONFLICT BASED SEARCH. (A) AN INITIAL PATH FOR
TWO ROBOTS WITH A CONFLICT. (B) TWO PATH OPTIONS THAT
ELIMINATE THE CONFLICT. IN OPTION 1, ROBOT 2 HAS THE CON-
STRAINT TO AVOID THE CONFLICT POSITION AT THE CONFLICT
TIME. IN OPTION 2, ROBOT 1 HAS THE CONSTRAINT TO AVOID
THE CONFLICT POSITION AT THE CONFLICT TIME.

(B) Two Options for Conflict Free Paths

number of elite solutions are carried over to the next generation.
The remainder of the new generation consists of configurations
generated by crossover, mutation, and random generation.

Crossover is a single point crossover operation, meaning that
a random location along the length of the gene is chosen and the
gene before this point from parent 1 is combined with the gene
after this point from parent 2. Genes consist of the X coordinate,
Y coordinate, and the job orientation for each job in that order, as
shown in Figure 10. The X and Y coordinates can be from zero
to the limit of the floor size, while the orientation has values from
zero to four, corresponding to -Y, +X, +Y, and -X, respectively,
with reference to X and Y locations as shown in Figure 7.

X Y N X Y it X Y
Position | Position Rlcich Position | Position Rhecton Position | Position Riecol
\ | | |
Job 1 Job 2 Job N
T
Full Gene

FIGURE 10: GENE CONFIGURATION OF A PROJECT WITH N JOBS.
FOR EACH JOB, DATA FOR X POSITION, Y POSITION, AND PRINT
ORIENTATION IS RECORDED IN THE GENE.

The parents for crossover are chosen using a roulette wheel
strategy where the probability of choosing one of the configura-
tions as a parent is represented by the following:

P; = e Px(alA), )

where P; is the probability of choosing parent i, c; is the fitness of
parent i, A is the average fitness of the population, and 8 = —10.
This equation more heavily favors better placements compared to
the population average makespan.

Initially, we implemented a single-point mutation, where a
single point in the gene is chosen and 1 is either added to or
subtracted from that point, with looping for disallowed values
(e.g. less than O or beyond the floor bounds). However, in testing
we noticed that this led to early convergence at a local optima.
For example, in some cases, moving just one job would not be
possible due to overlap, but moving all jobs simultaneously would
lead to an improved solution. Therefore, we include a second type
of mutation where all genes in one type can be changed (e.g. all
x values shifted +1).
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FIGURE 12: PYRAMID CASE STUDY. (A) PYRAMID SPLIT INTO
JOBS. (B-E) CHUNK CONFIGURATIONS FOR JOB 0-3 RESPEC-
TIVELY WITH PRINT TIMES AND DEPENDENCIES, NOTATED WITH
RED ARROWS.

4. CASE STUDIES

To validate the effectiveness of the algorithm, we conducted
three case studies, that we introduced below. For the sake of time
in actual printing, the height limit will be restricted to 100mm to
dramatically reduce the total makespan if physical validation of
the test cases is carried out at a later date.

The chunk configuration (dependencies, shape, etc) is gener-
ated by the XY chunking algorithm using the single side chunk-
ing methodology described in Figure 6 while print times for each
chunk are generated through Ultimaker Cura 4.13.1 for a .4mm
nozzle printer with “Extra Coarse" (.6mm) layer height.

4.1 Tall Box

The first test case explored is a tall box, the simplest project
from which multiple jobs could be created by the Z-Chunker
because all of the jobs are identical. The box measures S00mm x
800mm x 400mm tall, chunked into four jobs, each 100mm tall
with six chunks. The tall box is shown in Figure 11.
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FIGURE 13: RESIZED 3DBENCHY CASE STUDY. (A) RESIZED
3DBENCHY SPLIT INTO JOBS. (B-E) CHUNK CONFIGURATIONS
FOR JOB 0-3 RESPECTIVELY WITH PRINT TIMES AND DEPENDEN-
CIES, NOTATED WITH RED ARROWS.

4.2 Pyramid

The second test case is a pyramid. The purpose of this test
case is to test the impact of non-identical chunks. For jobs further
up the pyramid, the number of chunks is less and the layout of
chunks on each job is unique. The dimensions of the pyramid
are 850mm X 1400mm x 400mm tall. This gives the pyramid a
similar volume and footprint shape while having a much different
chunk layout. The resulting jobs are 100mm tall with 15, 12, 6,
and 2 chunks, respectively. The pyramid is shown in Figure 12.

4.3 3DBenchy

[H] The final test case is a resized version of the ever-popular
3DBenchy model [22]. The purpose of this test case is to show
that the algorithm is valid for any project with a rectangular
footprint, not just for cases where the project itself is strictly
rectangular at each job. The dimensions of the resized 3DBenchy
model are 500mm x 800mm x 400mm tall resulting in four unique
jobs, each 100mm tall. The jobs have 6, 6, 4, and 2 number of
chunks, respectively. The model is shown in Figure 13.

5. RESULTS AND DISCUSSION

The following section covers the tuning of the GA parameters
and its results for all test cases. Unless otherwise specified,
additional inputs are four robots starting at (0,0) and placing
additional robots in the +X direction (ex. second robot at (0, 1))
and a floor size of 8 X 6 floor tiles, which as previously mentioned
are square with space for four build plates. We also present
modified test cases which explore the impact of parameters such
as number of robots, number of jobs created from a project,
scalability, and chunking orientation on placement and makespan.

5.1 Tuning of GA parameters
The performance of an GA (i.e., how quickly it converges to
a solution and the quality of the solution) is directly dependent on
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parameters, such as mutation chance, crossover chance, the per-
centage of elite solutions, and the percentage of new individuals
introduced to a population. Therefore, we conducted rudimen-
tary bi-level hyperparameter tuning. Because the algorithm for
our model, with scheduling and path planning, can take up to
tens of minutes per generation, we employed a meta-model dur-
ing the tuning process. Our meta-model, shared the floor space
and genes, but used just the scheduling algorithm without the
collision-free path planning algorithm as a fitness function. This
reduces the run-time by about a factor of 10, depending on the
computer used. It should be noted that the meta-model was only
used to tune the parameters of the GA and does not influence the
optimality of the placements generated.

We utilize a bi-level optimization tuning strategy to test all
combinations of percent elite and percent new, in increments of
10% while holding mutation and crossover chance at 5% and 40%,
respectively. We used these values based on the tuning parameters
from our previous study on scheduling [6]. Based on this, we
found that values of 30% and 30% for percent elite and percent
new, respectively, resulted in the least number of generations
to converge to the correct solution. We then used these values
and looped through all combinations for mutation and crossover
chance, again in 10% increments. We test our meta-model on
the Tall Box case and use a population size of 40 because this
produces a good balance between runtime and quantity of genetic
material. The results of this analysis can be seen in Figure 14.
The final tuning values are 40% for mutation chance, 10% for
crossover chance, 30% for amount of the population classified as
elite, and 30% of the population that are new, random generations.

5.2 Optimal placement for test cases

Using the tuned parameters and test cases described above,
the optimal job placements can be found and shown in Figure 15
and the corresponding makespans summarized in Table 1.

TABLE 1: MAKESPAN RESULTS FOR CASE STUDIES

Case Makespan (minutes)
Tall Box 12,252
Pyramid 13,760

Resized 3DBenchy 3,271
To validate these results, we manually adjust these place-
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(C) Optimal Placement for Resized 3DBenchy Test Case

FIGURE 15: OPTIMAL PLACEMENTS FOR TEST CASES. COLORS
REPRESENT THE JOBS OF A SPECIFIC PART FROM BOTTOM TO
TOP, IN THE ORDER: BLACK, RED, GREEN, BLUE. THE INITIAL
CHUNK OF EACH JOB IS SHOWN IN TEAL.

ments to check for a better result, for example, by moving or
changing the print orientation for one or more jobs. However, in
most cases, the result is equal to or worse in terms of makespan,
or violates the assembly order or some other constraint. In the
other cases, a placement is generated in which the path planning
algorithm is unable to generate a path for one or more of the robot
moves. A further comparison to a heuristic placement strategy is
discussed in the conclusion.

An important conclusion from these makespan results is that,
as expected, an equal work distribution between robots leads to a
higher efficiency. This can be seen when comparing the makespan
of the Tall Box and Pyramid test cases. The volumes of both are
about equal by design; however, the Pyramid takes about 12%
longer, likely because for the last few chunks of the Pyramid, one
or more robots are idle.

5.3 The Impact of Number of Robots on Makespan and

Placement

To investigate the impact of the number of robots on the
optimality of the job placement, we re-run the Pyramid Test with
a varying number of robots from 2, the minimum required for
cooperative printing, to 10, the most robots that could possibly
be simultaneously printing on this job. The resulting makespans
for these configurations are shown in Figure 16.

This showed that the makespan can be significantly decreased
by including more robots; however, there are diminishing returns
as the number of robots increases. This is likely due to the fact
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FIGURE 16: NUMBER OF ROBOTS VS MAKESPAN WHILE PRINT-
ING THE PYRAMID TEST CASE



TABLE 2: CHUNK PRINT TIMES AS THE NUMBER OF JOBS IN-
CREASES IN THE CASE STUDY OF TALL BOX

Chunk  1.25x Case (Mins) 1.5x Case (Mins)
0 1,954 1,740

1 1,579 1,360

2 2,417 2,081

3 1,967 1,638

4 1,259 1,132

5 1,035 894

that smaller jobs finish much quicker than larger jobs, and by
the end of the project only one to three robots can be working
simultaneously anyway, depending on which is the last job to
finish. For example, even though up to nine robots could work
simultaneously on the Pyramid test case at one specific time, there
are not always nine printable chunks available.

5.4 Impact of Number of Jobs

For our analysis of the number of jobs, we recreate the tall
box case, but with either 1.25 times or 1.5 times as many jobs
(the corresponding height of each job was lowered proportionally
to keep the volume equal across test cases). The print time of
each chunk in these new configurations are shown in Table 2.
The impact of these cases on the total makespan is summarized
in Table 3.

These results show the importance of an equal distribution
of work between robots. One could expect that an equal vol-
ume and, therefore, comparable chunk print time between these
configurations would lead to an approximately equal makespan.
However, not all robots can work on the additional one or two
jobs at the same time. For example, for the five job case, each
robot will print one job, and the remaining job will be printed
by one to two robots while the other two are idle, leading to a
longer makespan. The 6 job case suffers from a similar issue, but
has two remaining jobs to be split between four robots, which is
slightly more equal. However, within each job, the differences in
chunk volume still lead to idle robots.

5.5 Scalability of the Algorithm

We are also interested in knowing if this algorithm is scalable
to larger projects or floor sizes (i.e., does the makespan stay
constant when the number of jobs, number of robots, and size of
floor are all proportionally increased). To test this, we modified
these three parameters by factors of .5, 1.5, and 2 respectively. We
also wanted to analyze its impact on the runtime of the algorithm.
All tests are performed on a Windows 10 computer with an Intel
19 11900K CPU with 32GB of RAM, as shown in Figure 17.

TABLE 3: MAKESPAN RESULTS FOR VARYING NUMBER OF JOBS
FOR THE TALL BOX CASE

Number of Jobs Makespan (minutes)
4 (Baseline) 12,252
5 17,604
6 15,224
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FIGURE 17: SCALABILITY TRENDS OF THE PLACEMENT ALGO-
RITHM USING THE TALL BOX TEST CASE

This shows that the makespan increases slowly as the scale
of the project and workspace is increased. The time increase is
likely due to the increased travel time of the robots because spots
closer to the robot’s starting positions are already filled as more
and more chunks are added.

One important factor to note is the exponential increase in
runtime as the scale increases. This is primarily due to the
path planning algorithm, both from the CBS at the high level
and the A* algorithm at the low level. The search space for
these algorithms increases exponentially both with the area of the
factory floor and with the number of robots moving on it.

5.6 Effects of Chunking Orientation

We know that chunking is a process that can be impacted
directionally; therefore, we want to investigate what would happen
to the optimal placement and makespan of the tall box when the
jobs rotate 90 degrees, as shown in Figure 18. This results in a
totally different chunk configuration (dependencies, print times,
etc.), but we want to understand if the results would be similar
because there are still four 100mm tall jobs of six chunks each.

The results, shown in Figure 19, show that the placement
is dependent on chunking orientation. The shortest makespan
to print the Rotated Tall Box is 13,651 minutes, compared to
12,252 minutes for the normal Tall Box. This is likely because
the robots are not evenly distributed between jobs resulting in
idle times for certain robots. For example, the first two robots
could print the two independent chunks on the first job. The robot
printing chunk 2 will move on to chunk 5 and then move to a new

(A) Tall Box Rotated Jobs

(B) Chunk Configuration
Jobs 0-3

FIGURE 18: TALL BOX CASE STUDY ROTATED 90 DEGREES. (A)
TALL BOX ROTATED SPLIT INTO JOBS. (B) CHUNK CONFIGURA-
TION FOR ALL OF THE JOBS, WHICH ARE IDENTICAL, WITH PRINT
TIMES AND DEPENDENCIES, NOTATED WITH RED ARROWS.
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(C) Optimal Placement of Tall Box Rotated Case
FIGURE 19: PLACEMENT RESULTS FOR TALL BOX TEST CASE
ROTATED 90 DEGREES FOR CHUNKING. INITIAL CHUNK OF EACH
JOB NOTATED IN TEAL. (A) THE CONVERGENCE OF THE GA OVER
GENERATIONS. (B) A SAMPLE NON-OPTIMAL PLACEMENT OF
JOBS. (C) THE OPTIMAL PLACEMENT OF JOBS.

job because those chunks can be printed much quicker than the
chunks the other robot is working on. The cumulative results of
small differences mean that typically two of the robots are idle at
the end of the print, reducing overall efficiency.

Figure 19 (A) also serves to validate the performance of the
placement optimization versus a random placement. In the first
generation, all configurations are randomly generated and the
average makespan is just less than 15,000 minutes. However, the
genetic algorithm is able to reduce this by almost 1,500 minutes
to 13,651 at convergence.

6. CONCLUSION AND FUTURE WORK

In this paper, we have described the first job placement opti-
mization algorithm for C3DP, validated this algorithm with three
test cases, and explored the impact of different parameters on
ideal placement and makespan. One potential limitation of the
work presented is that a global optimum is neither guaranteed by
the placement optimizer nor the scheduler. Given this and the
long algorithm runtime, a natural question arises: what is the
real-world impact of this algorithm? We contend that in many
cases, especially for larger projects, the time spent optimizing the
placement using this algorithm is much less than the makespan
of the project. For example, in several of the test cases, certain
chunks can take more than three days to print. Additionally,
we have shown that optimization can reduce the makespan of a
project significantly compared to a random placement of jobs.
The algorithm also performs better than a heuristic placement
strategy of finding the next open placement spot in a line, as
shown in Figure 20, resulting in a total makespan of 12,254 min-
utes. Therefore, we claim that, although the algorithm can have
a long runtime and does not necessarily ensure global optimum,
it serves to connect and enhance the C3DP system as a whole.

In the future, this algorithm could be expanded to allow for

FIGURE 20: STRAIGHT LINE HEURISTIC PLACEMENT FOR TALL
BOX TEST CASE. INITIAL CHUNK FOR EACH JOB SHOWN IN TEAL.

the printing of non-rectangular footprint parts and other chunking
strategies already developed in our previous work. The algorithm
could also be reworked to include a scheduling optimization, as
a second-level optimization after the solution space is narrowed
down, at great computational expense. In addition, an algorithm
could be added that optimizes the number of robots needed to
print a project, the impact of which we discussed in sections 5.3,
5.4,and 5.5. A code rework or implementation of a different path
planning strategy could greatly improve the runtime performance
of the algorithm, and allow these additional levels of optimization
to be reasonably implemented in a large-scale system. Addition-
ally, a consideration for the mobile transporter robot could be
added, where both the availability of the mobile transporter (i.e.,
not all printers can move at once because there are not enough
mobile transporters) and charge status are taken into account.

A necessary follow-up to this work is on the subject of au-
tonomous assembly of printed jobs. The assembly process would
likely have a significant impact on project makespan and could
introduce additional constraints to the placement, scheduling, and
path planning process, for example, with the addition of a differ-
ent type of manufacturing robot. However, the work presented in
this paper, along with our previous work, is another step in the
direction of fully autonomous swarm manufacturing systems.
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