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The signature topological feature of Maxwell lattices is their polarization, which manifests as
an unbalance in stiffness between opposite edges of a finite domain. The manifestation of this
asymmetry is especially dramatic in the case of soft lattices undergoing large nonlinear deformation
under concentrated loads, where the excess of softness at the soft edge can result in the activa-
tion of sharp indentations. This study explores how this mechanical dichotomy between edges can
be tuned and possibly extremized by working with soft magneto-mechanical metamaterials. The
magneto-mechanical coupling is obtained by endowing the lattice sites with permanent magnets,
which activate a network of magnetic forces that can interact with – either augmenting or com-
peting with – the elasticity of the material. Specifically, under sufficiently large deformation that
macroscopically alters the equilibrium positions of the sites, the attractive forces between the mag-
nets can trigger bistable reconfiguration mechanisms. The strength of such mechanisms depends on
the landscapes of elastic reaction forces exhibited by the edges, which are different due to the polar-
ization, and is therefore inherently edge-selective. We show that, on the soft edge, the addition of
magnets simply enhances the softness of the edge. In contrast, on the stiff edge, the magnets activate
snapping mechanisms that locally reconfigure the cells and produce a lattice response reminiscent
of plasticity, characterized by residual deformation that persists upon unloading.

INTRODUCTION

Maxwell lattices are critically coordinated mechani-
cal lattices, i.e., lattices having an average coordina-
tion number (under periodic boundary conditions) equal
to 2d, where d is the dimensionality of the space in
which the lattices are embedded. Topologically polar-
ized Maxwell lattices, such as certain kagome configura-
tions, are known to display polarization, i.e., the ability
to focus floppy modes (also known as mechanisms, i.e.,
deformation modes that do not involve the generation of
stress in the bond) on a given edge (i.e., boundary of a
finite lattice domain), leaving the opposite edge rigid [1–
5]. In essence, polarization entails an excess of softness
on one edge accompanied by a surplus of rigidity on the
opposite edge. This property is protected by the k-space
topology of the lattice band structure. Depending solely
on the unit cell geometry and kinematics, it is an intrin-
sic property of the bulk which, however, manifests at the
edges of a finite domain, according to the bulk-edge cor-
respondence. The topological protection implies that the
polarization is preserved as long as the topology of the
bulk is intact, and hence robust against anomalies (e.g.,
defects and disorder) that may exist on the edges [6–9].
When we load the soft edge with a point force, we tap
into the local softness and induce deformation that lo-
calizes on the edge. In contrast, loading the rigid edge
activates a rigid body motion [10]. These conditions are
strictly predicted for ideal lattices, in which the bonds
are harmonic springs and the sites act as perfect hinges
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that allow free rotations. This said, the behavior is ob-
served, albeit diluted in strength, in topological kagome
metamaterials, i.e., elastic continua shaped according to
topological kagome configurations, in which the perfect
hinges are replaced by elastic connections [11–13].

While polarization is a property of the linear elastic
regime of deformation, its signature is observable deep
into the nonlinear regime in the form of an asymmetry
of the finite deformation patterns observed on opposite
edges [14, 15]. Under a compressive load, the localized
deformation of the floppy edge takes the form of a sharp
indentation, promoted by the activation of large rotations
of the cell triangles about their hinges, while the stiffness
of the rigid edge prevents the onset of such mechanisms.
Activating a geometric nonlinear response involving finite
rotations in a structural metamaterial requires operating
with a soft material (e.g., an elastomer) [11, 12, 16, 17].
Therefore, a preliminary step of our investigation is to
characterize experimentally the signature of polarization
in a soft polarized kagome specimen through a qualitative
and quantitative characterization of the differences in the
edge deformation pattern observed between the edges.
With the results of this assessment in hand, our key ob-
jective is to endow the lattice inter-cell interactions with
a new layer of functional complexity, and study how this
operation interplays with, and modifies, the asymmetry
due to polarization, either quantitatively, by accentuating
the stiffness gap between the edges, or qualitatively, by
endowing the lattice with a new type of response asym-
metry.

Specifically, we consider a soft (silicone rubber) kagome
lattice whose cells are endowed with bistable mecha-
nisms. The bistability is promoted by the magneto-
mechanical coupling between the elasticity of the silicone
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and a superimposed network of discrete magnetic forces,
obtained by placing permanent magnets at the centers
of mass of the cell triangles, according to an appropri-
ate sequence of attractive and repulsive pairs. Accord-
ingly, a kagome cell has two equilibrium configurations,
corresponding to two local minima of its strain energy
landscape: the second stable configuration is achieved
when, as a result of the relative rotation of the trian-
gles, two adjacent magnets become sufficiently close that
their attractive forces overcome the elastic reaction forces
resulting from the bending of the ligaments. Under suffi-
ciently large loads, selected cells can snap into the stable
configuration, locally lifting the lattice periodicity. The
utilization of magnets to harness previously unattainable
dynamical ranges, transitions and general properties has
been firmly established [18–20], but here a new class
of topological structures is analyzed. The practical way
in which the bistability-promoting magnets are incorpo-
rated in the lattice is inspired by a prototype first put
forth by Marshall and Ruzzene in [21]. In that work,
whose main focus was a numerical assessment of the ef-
fects of cell reconfiguration on the phonon bands, this
strategy was briefly demonstrated on a regular kagome
prototype to illustrate how bistable mechanisms could
potentially serve as configuration-switching tuning tools.
Here, we embrace a similar technological solution and
adapt it for polarized lattices, where the bistable mech-
anisms interplay non-trivially with the asymmetry pro-
vided by the polarization, with our focus directed explic-
itly towards the nonlinear deformation regime involved
in the actual reconfiguration process.

In classical problems involving bistable lattices, the
bistable mechanisms are distributed uniformly across the
domain [22, 23] As a result, any induced reconfigurations
typically affects the entire lattice, albeit often occurring
in cascading sequences in the form of reconfigurational
waves [24, 25] (with the exception of lattices in which
a spatial modulation of the reconfiguration is introduced
by design through defects [26–28]). In some cases bistable
effects have been engineered to tap into new configura-
tions, achieving reprogrammable metamaterials [17, 29–
31]. Here we hypothesize that the polarization intro-
duces an asymmetry in the very way in which the bistable
mechanisms are engaged at the edges, both in terms of
size and shape of the regions where these mechanisms are
established and in terms of the level of force under which
they are triggered. Specifically, at the soft edge, where
the deformation is large and localized in the neighbor-
hood of the loading point, any local switching of the cells
to their stable configuration will also remain largely con-
fined to the loaded region. Moreover, since large levels of
strain energy are stored in the hinges undergoing bend-
ing, the switching is heavily impeded, as the magnets
struggle to overcome the restoring elastic forces resulting
from the hinges, and is therefore set to revert upon un-
loading. In contrast, at the stiff edge, while it takes larger

loads to trigger macroscopic deformation, when nonlin-
ear deformation eventually occurs and bistable mecha-
nisms are triggered, the switching effects are expected to
leak deeper into the bulk, following the long-wavelength
range of the very deformation patterns that trigger them.
More importantly, the reconfiguration will be more stable
upon unloading, since the magnetic forces can more eas-
ily overcome the restoring elastic forces from the hinges,
leading to the onset of residual deformation. The remain-
der of this paper presents a series of experiments aimed
at verifying these hypotheses and documenting the pro-
liferating landscape of edge-selective scenarios that are
enabled by the cooperative interplay between polariza-
tion and magnetic-enabled instabilities.

A SIMPLIFIED MECHANISTIC PERSPECTIVE
ON POLARIZATION

The main objective of this study is to document exper-
imentally the onset of dichotomous behavior of a struc-
tural topological kagome lattice under sharp edge loads,
with and without embedded magnets. Specifically, we
intend to understand whether the embedding of magnets
can selectively trigger bistable configurations at the edges
and determine which edge (soft or stiff) is more amenable
to this transition. One of the challenges arising in de-
signing a framework to capture this behavior experimen-
tally is determining how to load the edges in a way that
truly elicits the topological character of the bulk, instead
of merely activating any trivial compliance. This issue,
while fairly inconsequential for the small loads involved
in linear elastic problems, becomes critical when deal-
ing with large deformation of soft specimens [11, 14, 15].
These considerations compel us to seek a deeper mecha-
nistic understanding of how the neighborhood of an edge
cell subjected to loading deforms, and how this defor-
mation penetrates in the bulk. Through this exercise, we
seek to build an intuitive framework to predict the polar-
ization (or lack thereof) of a given kagome configuration
only relying on geometric and kinematic considerations.
While the proposed approach is deliberately pragmatic
and does not claim to capture the topological attributes
of a lattice, it does provide a simplified, yet reliable way
to predict the availability of polarization. Therefore, it
can provide a powerful complement to the formal theory
of topological polarization, serving a practical purpose
reminiscent of the model-free method to predict polar-
ization recently put forward by Guzman et al. [33].

Let us consider a macrocell of kagome cells nearing
an edge, consisting of one hexagonal void encapsulated
by six triangles, as shown in Fig. 1(a,c). We will show
that the lattice structural properties are effectively deter-
mined by the geometric features of the void. We make
the assumption that the lattice can be described as a
truss, i.e., a collection of rods linked by ideal hinges. A
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FIG. 1. (a) Macrocell of polarized kagome lattice encompassing six triangles and encapsulated hexagonal void, emphasizing
the kinematic assumption on force direction required to filter out trivial responses. The angles α and β control the kinematics
of the void. (b) Taxonomy of kinematic scenarios obtained for α > 0, α = 0, α < 0, and the simplified kinematic models for
the corresponding hinge, labeled as surface-compliant (SC), transition point (TP) and bulk-displacing (BD), respectively. (c-e)
Analysis of polarization for benchmark kagome configuration. (c) Partition of the void perimeter into six sides, identifying six
trusses representative of six possible edges. (d) Workflow for characterization of the the trusses/edges: 1) the hinges of each
truss are labeled as SC or BD; 2) an edge is deemed surface-localizing (SL) if both hinges are SC, and bulk-leaking (BL) if
at least one hinge is BD. The central inset shows the final labeling of all the trusses/edges, this case featuring two adjacent
SL edges. (e) The polarization vector points along a direction intermediate between the SL edges. (f) The method is tested
against the family of kagome lattices studied in [32], and repeated for different twist angles θ (reported in (a)) spanning the
polarized and non-polarized regimes. Though the lens of the proposed method polarized configurations display one or two
adjacent SL edges; non-polarized configurations display two SL edges located on opposite sides of the void; in phase transition
configurations all six edges are deemed BL. The method correctly predicts the boundaries between polarized and non-polarized
regions and, in the polarized range, the qualitative inclination (left- or right-leaning) of the polarization vector.

second important phenomenological assumption is that
the load is applied as a force vector passing through the
mid point of the interior side of the loaded triangle (along
the perimeter of the void) and directed towards the cen-
troid of the macrocell, a choice of orientation that guar-
antees balance of angular momentum, avoiding rotations
of the cell. This assumption is dictated by an explicit
attempt to minimize possible activation of trivial edge
effects, which typically involve isolated rotations of the
edge triangles. We then proceed to select a loading tri-
angle (labeled i in Fig. 1(a)), which automatically selects
the specific edge (among the many that can be realized
by severing a finite domain from an infinite lattice) along

which we intend the load to be applied.

The two vertices bounding i are modeled as internal
hinges, while the next pair down is taken to behave dif-
ferently depending on the value of the angle α (on the
left), or β (on the right), between the loading rod in
the upper triangle marked in red and the loaded rod in
the lower triangle marked in blue. From this point for-
ward, we will specialize the formulation to α, but a sim-
ilar rationale applies to β. As discussed in [5], the sign
of α dictates the capacity of a lattice cell to transmit the
load outward or downward, resulting in different effective
kinematics for the truss. Fig. 1(b) shows the different α
regimes. For α > 0, the force applied to the hinge acti-
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vates mostly a lateral displacement, which we model as
a horizontal roller constrained by a later spring. These
simplified kinematics capture a deformation that remains
mainly localized at the edge, affecting the lateral cells
along the edge with negligible penetration into the bulk.
We refer to this hinge condition as a surface-compliant
(SC) hinge. Conversely, for α < 0, the load is transmitted
mainly downward. The resulting kinematic behavior can
be approximated by a constrained vertical roller. Since
the deformation penetrates into the bulk, this hinge con-
dition is defined as a bulk-displacing (BD) hinge. The
case of α = 0 marks an abrupt discontinuity between the
two regimes. As α → 0±, the sudden alignment of bonds
generates a condition where forces and deformation can
be fully transmitted axially along the inclined rod. This
condition can be modeled as an inclined roller, allow-
ing displacement only along the axial direction, under
the constraint of a spring kψ that captures the (possibly
large) reaction force of a rod loaded axially. We refer
to the hinge condition in this transition scenario, which
signals a change in polarization and already displays the
bulk-leaking attributes germane to α < 0, as a transi-
tion point (TP) hinge. According to this taxonomy, it is
clear that only the SC hinge condition allows deforma-
tion modes that localize on the surface, i.e., floppy edge
mode. While the strength of localization depends on the
specific value of α, the regime of polarization is solely
controlled by its sign.

Having defined two possible conditions for the hinges
(SC for α > 0 and DB α ≤ 0), the behavior of a given
truss (i.e., of a given edge) depends on the cooperative
behavior of the hinges that bound it. For each truss
centered around triangle i, the deformation is surface-
localized (SL) or bulk-leaking (BL) depending on the fol-
lowing condition:

i is SL ⇐⇒ (αi = SC) ∧ (βi = SC) (1)

i is BL ⇐⇒ (αi = BD) ∨ (βi = BD) (2)

In words, the deformation is surface-localized (SL) if both
bounding hinges are surface-compliant (SC). Conversely,
the deformation is bulk-leaking (BL) if at least one of
the two hinges is of the bulk-displacing (BD) type. In
Fig. 1(c-e), we apply this classification method to a test
configuration, using the benchmark kagome lattice dis-
cussed in [32], for which the polarization vector direction
is known. Moving along the macrocell void, we recog-
nize the truss connections corresponding to the six pos-
sible edges (Fig. 1(d)). For each, we qualify the bound-
ing hinges as either SC or BD, resulting in the scenarios
shown in the six quadrants of Fig. 1(d). Finally, using
the criteria in eq.s 1 and 2, we label the six edges (the
six sides of the macrocell void) as SL or BL, as shown in
the central inset of Fig. 1(d).

With the ability to assign a binary label that describes
the potential for surface localization to each of the pos-

sible six edges, the next challenge is to generate a sin-
gle descriptor of polarization with a significance akin to
that of the polarization vector in topological theory. In-
tuition suggests that the direction of such polarization
vector should point towards the edge that displays SL
properties. However, there can exist situations, as the
one shown in Fig. 1(e), where more than one edge are
deemed SL; note that, when this occurs, the two SL edges
are adjacent. Comparing this landscape of edge proper-
ties against the outcome of formal topological analysis,
which, for the configuration in Fig. 1(e), predicts a po-
larization vector pointing up and leaning to the right,
yields the complete assignment rule: when two SL edges
are adjacent, the polarization vector is directed along an
intermediate direction, with the exact angle left indeter-
minate, but surely dependent on the unknown ratio that
relates the strength of localization of each edge.
The robustness of the method is showcased in Fig. 1(f),
in which we sweep the configuration space of our selected
kagome family by varying the twist angle, mimicking the
sweep performed in [32] to construct the polarization
phase diagram. We can see, that, for a wide range of
twist angles in the central portion of the sweep axis, the
computed landscapes and the SL criterion predict cor-
rectly the direction and the inclination of the polarization
vector, including the transition from left-leaning (blue-
shaded region) to right-leaning (green-shaded region) oc-
curring at the configuration featuring perfectly horizontal
bonds. Interestingly, the TP conditions obtained when
bonds align to form straight fibers in the lattice are ac-
curate predictors of phase transitions from polarized to
non-polarized. In our framework, their transition char-
acter is marked by the fact that all the edges are deemed
BL, and none exhibits SL character. This implies that,
at this point in the sweep, all the edges stop enjoying the
excess of floppiness associated with the floppy edges of
polarized configurations. Finally, we can consider con-
figurations located at the two extremes of the twist an-
gle sweep. Here, the macrocells feature again two SL
edges, but these are now located on opposite sides of the
void, offering conflicting characterization of the floppi-
ness landscape. This contradiction results in an indeter-
minacy to deem a side floppier than the other. These are
in fact configurations that are identified as non-polarized
(i.e. with a null polarization vector) by formal topologi-
cal analysis. This symmetric situation can be interpreted
as resulting from the migration of a floppy mode from the
floppy edge to the rigid one, which reestablishes the edge
balance of conventional, non-polarized media. We can
finally test the method against a special class of twisted
kagome lattices, which feature two identical equilateral
triangles rotated by a twist angle angle θ and are non-
polarized for any θ. It is easy to verify that the method
properly captures the lack of polarization, which man-
ifests in this case as a landscape of triangles featuring
only BL edges.
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FIG. 2. (a,b,c) Experimental setup for force-control experiments. (a) Schematic of setup, showing specimen laid flat in a
plexiglass case and pulley system to apply compressive load via dead weight, using a loading tip with V-shaped notch to
prevent trivial local rotations of the loaded edge triangle. (b) Dead weight apparatus designed for incremental weight addition.
(c) Detail of a cell of the silicone rubber prototype, highlighting finite thickness ligaments at the hinges and through holes (to
be filled with plastic or magnetic fillers). (d) Experimental force-displacement curves for the lattice without magnets (purely
mechanical response) under concentrated load, highlighting dichotomy between the soft and stiff edge. The markers correspond
to snapshots in the (e-h) insets. (e,f) Snapshots of deformed states for load applied at the soft edge, in the linear and non-linear
elastic regimes, respectively, revealing large localized deformation in the neighborhood of the tip that progressively increases
with the load. (g,h) Snapshots for load applied at the stiff edge, showing stiffer response in the linear regime and sharp
transition to localized deformation when local buckling mechanisms are triggered.

EXPERIMENTS ON SOFT LATTICES WITH
MAGNETS-ENABLED BISTABILITY

With a rationale in hand for the selection of the most
appropriate loading protocol, we are ready to test the
nonlinear regime of deformation of soft polarized kagome
lattices. We first characterize the behavior of a purely
mechanical specimen, to assess the degree of response
asymmetry observable between soft and stiff edges un-
der finite deformation. We then shift our focus on the
response of a magneto-mechanical lattice enabled by the
introduction of magnets.

Our specimen is a structural kagome lattice with unit
cell shown in Fig. 2(c) featuring a pair or large and small
isosceles triangles. This configuration has been shown to
feature a marked stiffness dichotomy between opposite
edges [12] that is robust even in realistic structural lat-
tice conditions. The lattice is cast from silicone rubber
(Zhermack Elite Double 32) following a popular fabrica-

tion protocol for soft metamaterials prototyping, summa-
rized in the Materials and Methods section. The triangles
feature through holes at their centroids. The holes, de-
signed to eventually host magnets (as discussed later in
the manuscript) are temporarily filled with plastic (PLA)
cylinders with the same radii of the magnets to provide
bulk stiffness to the triangles. We custom design a dead-
weight loading device, schematically depicted in Fig. 2
(a), which allows applying precise static loads through
a simple table-top apparatus. The deliberately low-tech
features of the apparatus make it highly portable, inex-
pensive to assemble and easy to operate, and ultimately
ideal for broad use across tasks and lab environments,
without the need for prohibitive sophisticated equipment.
The lattice is inserted in the sleeve of a Plexiglas case,
which is laid flat on a table. To minimize friction between
the case and the lattice, which would interfere with the
lattice deformation, the cylinders are allowed to protrude
slightly out-of-plane so that they slide against the plex-
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FIG. 3. (a-b) Renders of the magnets insertion. (b) Magnets
positioning in the lattice according to a North-South pole al-
ternation between neighboring sites. (c) Schematic showing
competing effects towards moments balance of magnetic at-
tractive forces and elastic reactions forces. (d) Example of
bistable configuration triggered by magnets in a small physi-
cal prototype with the same geometric, material and magnetic
characteristics of the tested lattices.

iglass, preventing direct interaction between the silicone
and the case. The load is applied through a 3D-printed
loading rod, with tip designed with a V-notch to engage
an edge triangle in a way that prevents the triangle from
rotating as the load is applied in order to minimize triv-
ial edge deformation associated with local rotations. The
rod is constrained to slide along a guiding sleeve to main-
tain the direction of loading at all stages, according to
the kinematic assumptions of Fig. 1, and the deflection
of the edge can be agilely tracked through markings on
the loading rod.

Fig. 2(d) reports the force-displacement curves mea-
sured during the loading process for loads applied to the
soft (black curve) and stiff (red curve) edges, with snap-
shots of the deformed specimens in the Fig. 2(e-h) insets
for key stages of the process denoted by the markers. The
most notable thing is the dichotomy in stiffness between
the edges, inferred from the slope of the curves, with
the edge predicted to be floppy displaying indeed sig-
nificantly higher compliance. The dichotomy is evident
comparing the insets (e) and (g), marked by triangular
markers, showing the stiff and soft edge response under
the same force (≈ 1N). This result is in agreement with
polarization theory, of which it represents an important
extension into the finite deformation regime, and consis-
tent with the observations in [11]. The second – and less
obvious – observation regards the large gap between the
ranges of displacements over which the response can be
considered linear elastic, ranging from ≈ 5mm for the

stiff edge to ≈ 45mm for the soft one, corresponding to
edge deflections of ≈ 2.75% and ≈ 24.73% of the speci-
men height, respectively. Beyond a certain value of force
(2N and ≈ 2.5N for the stiff and soft edge, respectively)
and beyond a certain value of displacement (≈ 35mm
and ≈ 50mm), the curves steepen significantly. This
stiffening occurs when the deformation is so pronounced
that the triangles come into contact, approaching the be-
havior of a continuously solid silicone slab.

We now proceed to characterize the magneto-
mechanical response of a lattice endowed with mag-
nets. The magnets are inserted in the holes as shown in
Fig. 3(a), and arranged in the lattice such that two mag-
nets in adjacent triangles feature opposite North-South
poling, as shown in Fig. 3(b). The triangles along the free
left/right edges are left without magnets; this is because,
at the edges, where the lattice coordination is lower, the
restoring elastic forces are low and any magnetic forces
would result in local (trivial) instabilities even under
small loads. For an undeformed cell, the direction of the
attractive force between two neighboring magnets passes
through the hinge connecting the triangles, thus exerting
a negligible moment about the hinge. In contrast, when
the cell is deformed, the magnetic force exerts a couple
that tends to drive the magnets closer to each other (see
Fig. 3(c)), counteracted by the restoring moment due to
the elastic strains stored in the bent hinge. The inter-
play between these opposing moments dictates the stable
equilibrium configurations onto which the lattice settles.
Specifically, the lattice displays bistable behavior: under
small loads, the lattice is in a configuration where the
magnets are maximally distant and the cell voids retain
their hexagonal shapes; when the load exceeds a critical
value — and certain triangles rotate beyond a critical
twist — the moments due to the magnets overcome the
restoring ones due to elasticity and the lattice snaps to
a stable configuration in which the edges of the triangles
touch and the magnets reach their minimum allowable
distance. This bistable behavior is illustrated on a sam-
ple of cells with magnets in Fig. 3(d).

We repeat the tests performed on the purely mechan-
ical lattice (i.e. concentrated and distributed loading
of soft and stiff edges) on the magneto-mechanical lat-
tice. Importantly, here we explicitly track the history of
the unloading path with the objective of detecting any
residual deformation developed during the activation of
a bistable configuration. Note that we also recorded the
unloading path for the mechanical lattice, but did not
detect any appreciable differences with respect to the
loading path, indicating that, in that case, the behav-
ior was perfectly elastic. The results for loads applied at
the soft and stiff edge are reported in Fig. 4(a,b,c) and
(d,e,f), respectively. For each case, we report the force-
displacement curves (Fig. 4(a) and (d)) depicted next
to the reference curves without magnets using specular
plots to appreciate symmetries, or lack thereof, between
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FIG. 4. Loading and unloading tests of polarized soft lattices with magnets, endowed with bistable mechanisms. (a-c) Results
for loading at the soft edge. (a) Loading and unloading force-displacement curves (shaded blue background), compared against
the reference case without magnets (shaded green background) and showing additional softening introduced by the magnets
showcased in the form of ∆f : force delta needed to achieve similar displacement of ≈ 40mm. The superimposed curves for
loading and unloading are almost identical, suggesting elastic behavior throughout the process. (b) Snapshot of deformed
lattice, with cell pattern resembling the case without magnets. (c) snapshot of lattice upon unloading, showing the undeformed
configuration fully recovered and confirming elastic behavior for loading at the soft edge. (d-f) Results for loading at the stiff
edge. (d) Loading and unloading force-displacement curves with and without magnets; the loading curves are qualitatively
matching, notwithstanding a quantitative shift due to softening; the unloading curve for the case with magnets reveals activation
of irreversible deformation marked with residual edge deflection dr upon unloading. (e) Snapshot of deformed state. (f) Snapshot
of lattice at the end of the unloading stage, showing residual deformation and edge deflection.

the scenarios.

The curves for the soft edge (Fig. 4(a,b,c) leads to
two observations. First, while the loading trend is al-
most identical with and without magnets, the presence
of the magnets does manifest as an overall softening of
the lattice, denoted by a shallower curve, which can be
explained by noting that the pairs of attractive magnets,
when brought closer via deformation, add a discrete force
network that promotes deformation. This is marked by a
reduction ∆f ≈ 50% of the force required to establish a
deflection of ≈ 40mm. The inset of Fig. 4(b) for the stage
denoted by the triangular marker reveals a deformed con-
figuration that is, for all intents and purposes, analogous
to that without magnets in Fig. 2(f). The second obser-
vation is that, by enlarge, the unloading curves overlap
with the loading ones, indicating that the behavior re-
mains perfectly elastic and the original configuration is
fully recovered upon loading, as captured in the inset
of Fig. 4(c) for the stage marked by the square marker.
The response for the stiff edge (Fig. 4(d,e,f)) is markedly
different. Again, the loading phase is qualitatively sim-

ilar to the case without magnets, but features a much
softer response (for reasons analogous to those invoked
for the soft edge). The unloading path, instead, deviates
significantly, quantitatively and qualitatively, from the
magnet-free case. Upon full unloading, the undeformed
configuration is never recovered, as shown in Fig. 4(d,e,f)
and displays a residual deformation quantified by the
residual displacement dr of the edge loading point, shown
Fig. 4(d), of ≈ 30mm, corresponding to ≈ 50% of the to-
tal indentation depth.

In summary, the experiments reveal that the bistable
attributes of the lattice are tapped into only when loading
the stiff edge (Fig. 4(d,e,f). This seems surprising, given
that the deformation recorded at the soft edge is more
pronounced. However, visual inspection of the cells pat-
terns under loading indicate that, at the stiff edge, large
loads induce local buckling episodes that cause large ro-
tations and eventually engage more magnet pairs, bring-
ing them into closer proximity. On the other hand, on
the soft edge, a vertically applied load does not establish
the rotations needed to tap into the bistable configura-
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FIG. 5. (a) Force-displacement curves of purely mechani-
cal lattice under distributed loading, showing no appreciable
differences between soft and stiff edge, in contrast with the
concentrated load case of Fig. 2. (b) Loading and unload-
ing force-displacement curves for lattice with magnets under
distributed loading condition, comparing stiff edge loading
(shaded red background) vs. soft edge loading (shaded yellow
background). (c,d) Snapshots of the lattice under large de-
formation applied at the stiff and soft edge, respectively, with
both cases showing extensive zones experiencing bistability,
albeit with different random patterns of buckled cells.

tion. In essence, the asymmetry of stiffness between the
edges results in a different promotion of the conditions
for the activation of bistability, which in turns further
accentuates the asymmetry of the mechanical response,
thus extremizing the dichotomy between the edges. The
dichotomy is quantitative, as it involves an exacerbation

of the difference in linear stiffness between the edges ob-
served for the purely mechanical lattice. It is also quali-
tative, because the activation of irreversible mechanisms
is available selectively on the stiff edge only. Moreover,
the dichotomy is counter-intuitively opposite to that ob-
served for the purely mechanical lattice, in the sense that,
here, it is the stiff edge that, by experiencing irreversible
reconfiguration, carries the most drastic signature of de-
formation. Finally, an important difference emerges be-
tween the regular kagome studied in [21] and the config-
uration considered in this work. In the regular kagome
case, the activation of bistability induces a cascade of
rotations that propagates as a wave and rapidly affects
the whole domain, reconfiguring the entire lattice into
its most compact state, with no intercell voids between
the triangles. Here, in contrast, the geometric incompat-
ibility between neighboring triangles, due to the length
mismatch of their sides, makes the reconfiguration self-
limiting. As a triangle engages its neighbor in a way that
does not completely fill the intercell void, it is locked in
position, generating a local defect in the periodic pattern
that precludes further changes in configuration.
Through a simple change in the setup, where we replace
the loading tip with a solid slab fitting the uneven pro-
file of the entire edge, we can replicate the tests under a
distributed load for the case of purely mechanical lattice
(Fig. 5(a)). Clearly, the two curves for the stiff and soft
edges do not show any appreciable difference, confirm-
ing that the edge dichotomy emerges under concentrated
loads and is bypassed by distributed ones. We then com-
plete our experimental set by repeating the tests with
magnets under distributed loading. For the loading path,
we again do not observe appreciable differences between
the soft and stiff edges. In both cases, the magnets in-
troduce a general softening of the lattice, inferable by
comparing the results of Fig. 5(a) and Fig. 5(b): with
magnets, a load of 6N brings about a displacement of
≈ 30mm, compared to ≈ 10mm for the purely mechan-
ical case. For the unloading path, we do observe some
residual displacement upon unloading from either side,
provided that the loading phase has reached a sufficiently
advanced level of deformation, with the effect being more
pronounced for the stiff edge. In this case, both edges
lead to formation of clusters of buckled cells. The num-
ber and location of these clusters appears to be obey
random processes, likely driven by imperfections in the
lattice and slight asymmetries in the load. This results in
the establishment of arbitrary spatial patterns of bistable
cell patches which, at the moment, elude a precise ratio-
nale that would satisfactorily explain the difference be-
tween stiff and soft edge. It is worth reporting that, in all
experiments for which residual deformation is achieved,
the original underformed configuration can be recovered
by inducing a sudden motion of the entire structure, e.g.
via a relatively low-amplitude impulsive load (impact).
This relaxation is due to the relative low energy barrier
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of the bistable well granted by the magnetic interactions.
These energy barriers can be easily overcome by the ki-
netic energy imparted to the system.

CONCLUSIONS

We have illustrated the emerging mechanical response
of soft magneto-mechanical Maxwell metamaterials from
the cooperative interplay between mechanical edge asym-
metry (rooted in topological polarization), finite defor-
mation (due to softness of rubber as a fabrication ma-
terial), and bistability (enabled by the magnets). We
have shown that the polarization drives the establishment
of bistable mechanisms (triggered under large deforma-
tion) in different ways on the soft and stiff edge, which in
turn produces different cell reconfiguration patterns. We
have documented a complex augmentation of the inher-
ent asymmetry of purely mechanical lattice, whereby the
presence of the magnets can either extremize or counter-
act the asymmetry due to polarization, according to the
regime of deformation.

The ability to store energy asymmetrically and the
availability of a mechanism for its quick release endow
magneto-mechanical polarized lattices with interesting
impact protection and energy harvesting capabilities.
Three ingredients contribute collaboratively to the estab-
lishment of these effects. Specifically, the ability to re-
tain polarized behavior in the large deformation regime
translates into an ability to accommodate extreme lo-
cal deformation (e.g. under indenting loads) and effec-
tively store potential energy, without requiring excessive
bulk softness of the entire lattice, thus working with a
structural metamaterial that features satisfactory load-
bearing capabilities. The second ingredient is the bista-
bility granted by the magnetic force network, which en-
ables the ability to retain deformation and energy even
upon unloading, playing the role of a mechanical storage
system for the harvesting system. Finally, the availabil-
ity of a method for on-demand quick release of stored en-
ergy through an excitation that is modaly distinct from
the load path through which energy is stored adds a layer
of flexibility to the energy harvesting strategy.

MATERIALS AND METHODS

The specimen is created using the following method.
Initially, a negative mold is fabricated using 3D print-
ing with PLA, featuring pre-designed pillars to accom-
modate the magnets’ holes. Subsequently, the silicone
rubber Zhermack Elite Double 32 mixture is poured into
the mold, after undergoing a degassing process. When
the material sets, the lattice structure is carefully ex-
tracted, and the magnets are precisely inserted. This pro-
duction procedure mirrors the approach detailed in [14],

enabling inference of material behavior and parameters
from that study. Hinge thickness was empirically vali-
dated to meet the requisite compliant characteristics for
establishing the bistable potential well. A bespoke pulley
testing setup, featuring a maximum load cell capacity of
8 N, was employed to assess the load-displacement char-
acteristics of the structural lattices. The lattices were
constrained during loading procedures utilizing both 3D
printed holders and magnets positioned on the last row,
achieving a pinned boundary condition on the bottom of
the lattice. The magnets integrated into the lattice are
NdFeB grade N52, measuring 9.5 mm in height and 6.3
mm in diameter.
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