
Toward Automated Precision Tuning of Weather
and Climate Models: A Case Study

Jackson Vanover
University of California, Davis

Davis, USA
jdvanover@ucdavis.edu

Alper Altuntas
National Center for Atmospheric Research

Boulder, USA
altuntas@ucar.edu

Cindy Rubio-González
University of California, Davis

Davis, USA
crubio@ucdavis.edu

Abstract—Floating-point precision tuning (FPPT) searches tar-
get programs for computations amenable to reduced-precision,
thereby trading accuracy for performance. FPPT does so by
searching the mixed-precision design space for program variants
maximizing performance constrained by some correctness crite-
ria. Given their computational intensity and complexity, weather
and climate models present prime FPPT targets. However, past
attempts at FPPT in this domain are limited by manual efforts of
domain experts (tedious) and low-precision emulation (obscures
speedup). Automated and performance-guided techniques are
naturally of interest but have not been explored at this scale.
Facilitated by a bespoke Fortran transformation tool, this paper
presents a first-of-its-kind case study: based on the varied results
of applying FPPT to computational hotspots in three real-world
weather and climate models (MPAS-A, ADCIRC, and MOM6),
we identify and discuss important lessons learned and offer
insights into best practices for feasible FPPT that targets large
programs in complex domains such as this.

I. INTRODUCTION

As fabrication techniques approach the limits of transistor
miniaturization and increased processor frequency, new means
of performance gain are sought. Post-Moore/Dennard com-
puting emphasizes parallelism; this is evident in the ubiquity
of hardware accelerators (e.g., GPUs) and CPU instruction
set architectures supporting operations on ever-wider registers
(e.g., the Helium and AVX-512 vector extensions for ARM
and x86 respectively). This presents an opportunity for syn-
ergy with reduced-precision computation [1], a performance
optimization technique in which values are represented using
fewer bits. Plainly put, more work can be performed with
smaller data. For example, replacing 64-bit values with 32-
bit values means that a single vector instruction can perform
2× the amount of computation in the same amount of time.

To optimize a program via reduced-precision is to trade ex-
cess accuracy for performance. Navigating this trade-off is the
goal of floating-point precision tuning (FPPT). Automated
dynamic-analysis-based FPPT tools implementing the cycle
depicted in Figure 1 are well-represented in the literature [2],
[3], [4], [5], [6], [7], [8], [9]. Provided with a target program,
search space, representative input, correctness criteria, and
performance metric, the tool searches the design space by gen-
erating and dynamically evaluating mixed-precision variants in
order to yield one or more “optimal” variants which maximize
performance subject to the correctness criteria. Crucially,
however, preexisting works typically target programs that are

Search Algorithm

Program Transformation

Dynamic Evaluation

FP Precision Tuning Tool

Precision Assignment

Mixed-Precision Variant

P
er
fo
rm

an
ce

an
d

C
o
rr
ec
tn
es
s
F
ee
d
b
ac
k Optimal

Mixed-

Precision

Variant(s)Representative Input

Correctness Criteria

Performance Metric

Search Space

Search Atoms

Precision Levels

Target Program

Fig. 1: An archetypal workflow for automated dynamic-
analysis-based tools for floating-point precision tuning (FPPT).

restricted in size/complexity such as proxy applications with
just a few computational hotspots that consume the majority
of the runtime, e.g., LULESH [10]. This limitation hinders
FPPT as a serious means of increasing performance.

By contrast, weather and climate models are orders of
magnitude larger and more complex. Meteorological predic-
tion is incredibly resource-intensive: realistic examples can
consume tens of thousands of core-hours [11]. This expense
is compounded since models are often run many times [12],
[13]. The National Center for Atmospheric Research – host
to the Derecho supercomputer – reports that 65.2% of their
allocations go toward weather and climate prediction [14].
The cost of optimization is therefore amortized. Furthermore,
optimization not only speeds up these models but also allows
the reallocation of resources toward increased resolution and
accuracy. Faster models with more predictive power improve
our abilities to manage extreme weather emergencies and to
draft effective environmental policy. Consequently, models are
continuously under development so that they might yield more
accurate results at higher resolutions at minimal cost.

FPPT studies in this domain [15], [16], [17], [18], [19], [20],
[21], [22] exhibit three shortcomings. First, they require man-
ual code transformation/refactoring efforts distributed across
many small hotspots [23]. Second, they require a small group
of domain experts at the intersection of Earth modeling
systems, software engineering, numerical analysis, and Fortran
(which is ubiquitous in such models). Third, many of them
use low-precision emulation to transform Fortran, negating any
potential performance gains [20], [21], [17], [18], [22].

There is much to gain from automated and performance-
guided FPPT in this important domain. To gain initial insight

148979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00026

into the challenges, we apply the cycle depicted in Figure 1
to the MPAS-A atmosphere model [24] and the ADCIRC [25]
and MOM6 [26] ocean models. Applying this cycle to any
program requires making a number of choices. Below, we
summarize the choices, the unique challenges presented by
this domain, and our chosen approach for each. Together, these
constitute the methodology for this case study:

1 Determining the search space. n search atoms and
p precision levels yield pn possible variants. To reduce the
exponential search space while maintaining tuning efficacy,
we tune FP variable declarations in computationally-intensive
hotspots using 32-bit and 64-bit precision (Section III-A).

2 Exploring the search space. Brute-force searches are
infeasible; to gain initial insight into challenges presented
by this domain, we implement a delta-debugging-inspired
algorithm for FPPT introduced in [2] and widely used in many
FPPT works [7], [6], [27], [4], [28], [20] which has been
shown to outperform other search algorithms with respect to
the quality of the resulting variants [28] (Section III-B).

3 Automating transformation for Fortran. Existing
tools either do not target Fortran or require an intermediate
representation for which there is no robust Fortran front end.
We develop a bespoke tool which uses wrappers to address
Fortran’s lack of implicit type conversions and which identi-
fies, extracts, and transforms a minimal subset of the program
to overcome the lack of full language support in existing
compiler infrastructures targeting Fortran (Section III-C).

4 Determining how to measure correctness. Model
correctness is often left to the best judgment of domain
experts who manually inspect large amounts of multivariate
time-series data. While our main contribution is a perfor-
mance-guided case study to complement existing performance-
agnostic work, we consult with a domain expert to design cor-
rectness criteria that suffice for our purposes (Section III-D).

5 Determining how to measure performance. Because
existing automated dynamic-analysis-based FPPT tools target
smaller programs in their entirety, the chosen metric encapsu-
lates the time spent executing the entire program. In this case,
because we target hotspots within large models, we measure
the CPU time spent within the hotspot (Section III-E).

By applying the above methodology to real-world weather
and climate models, we make the following contributions:

• A first-of-its-kind case study of automated, performance-
guided FPPT applied to three weather and climate mod-
els: MPAS-A, ADCIRC, and MOM6.

• A variant of the MPAS-A hotspot with 1.95× speedup
that incurs less error than the uniform 32-bit model.

• A discussion of lessons learned and recommendations for
feasible FPPT of large programs in complex domains.
Namely, we identify three criteria for a tunable hotspot
and then use these criteria as the bases for recommen-
dations toward designing/selecting targets that maximize
tuning efficacy and toward statically evaluating mixed-
precision variants in order to make tuning more scalable.

II. PRELIMINARIES

A. Reduced Precision

Because reducing the precision shrinks the range of rep-
resentable values and can lead to incorrect results or excep-
tions, it is often over-engineered using the highest precision
available. However, precision reduction can also boost the
performance of both memory-bound and computation-bound
programs because more values can be packed into caches and
vector registers. This leads to fewer expensive cache misses
and increased computational throughput respectively.

Three requirements must be met to achieve performance
gains from reduced precision. First is compiler/hardware syn-
ergy. Vectorization occurs only if the proper operations/-
operands are supported by the hardware’s ISA and the com-
piler supports that ISA. Second, the alignment and access pat-
terns of memory must facilitate the packing of like-precision
values. Irregular access patterns and poor data alignment can
prevent optimizations that increase throughput. While compil-
ers rearrange code to be optimization-friendly, programmer
choices affecting control flow and data dependencies can
prevent this. Third, the cost of precision conversion – i.e.,
casting overhead – must be minimized. Traditional ISA’s de-
fine operations on like-precision operands. The compiler there-
fore generates extra conversion instructions for any mixed-
precision operations in the source code.

B. Precision Tuning: A Motivating Example

Let us use a brute-force search to apply the FPPT workflow
in Figure 1 to funarc [29]. This program performs a hard-
coded arc length calculation and is often used to show the
effects of precision on performance and correctness.

First, we specify the search space: search atoms are variable
declarations in source code, all atoms are targeted except
result, and we consider 64- and 32-bit precision. n search
atoms at p precision levels yield pn possible mixed-precision
variants; here, our search space consists of 28 = 256 variants.

Next, we parameterize the dynamic variant evaluation. Be-
cause funarc performs a hard-coded calculation, we do not
need representative inputs. For the performance metric, we
measure the elapsed time of each variant’s execution. For the
correctness metric, we measure the relative error of the end
result compared to the original uniform 64-bit funarc.

Figure 2 plots all possible variants on a speedup-error
coordinate system. One can use the optimal frontier of this
plot to select a mixed-precision variant. For example, given
an error threshold of 4 × 10−4, we can see that performance
is maximized with the variant yielding ∼1.3× speedup and
∼ 2×10−4 relative error. This variant reduces all atoms to 32-
bit except for s1 and is almost as performant as the uniform
32-bit variant while incurring 4.5× less error. Figure 3 shows
the diff between this variant and the original.

The variants on the optimal frontier show how precision
reduction can trade increasing amounts of correctness for
commensurate performance gains. Conversely, the variants to
the left of the dotted line show how it can deteriorate both

149

Fig. 2: Plot of funarc mixed-precision variants on a speedup-
error coordinate system.

subroutine funarc(result)
- real(kind=8) :: s1, h, t1, t2, dppi
+ real(kind=8) :: s1
+ real(kind=4) :: h, t1, t2, dppi

...
function fun(x) result(t1)
- real(kind=8) :: x, t1, d1
+ real(kind=4) :: x, t1, d1

...

Fig. 3: The diff between the original uniform 64-bit funarc
program and the mixed-precision variant that allows a relative
error of 2× 10−4 in exchange for a 1.3× speedup.

correctness and performance: ∼67% of variants are worse
than the original on both fronts despite having more 32-bit
variables! This is due to excessive casting overhead.

The exponential search space presents a scalability chal-
lenge that is compounded by the cost of dynamic evaluation.
The brute-force search used here is only feasible due to
the program’s small size, the relatively-coarse search atom
granularity, the limited precision levels, and the short runtime.

C. Precision Tuning: Weather and Climate Models

Like many of the programs targeted by existing FPPT tools,
funarc is idealistic. In contrast, weather and climate models
contain more search atoms and longer runtimes with CPU
time distributed between many hotspots [23]. The challenges
brought by this are evident in the limitations of the few FPPT
studies in this domain. Many do not consider performance and
only demonstrate error tolerance [17], [18], [20], [22], [21].
Those that consider performance require laborious manual
code transformation/refactoring by a small group of domain
experts at the intersection of Earth modeling systems, soft-
ware engineering, numerical analysis, and Fortran [15], [19],
[16], [30], [31]. The two automated FPPT approaches we
have found in this domain require unrealistic simplifications:
[20] eases Fortran transformation via low-precision emulation
which obscures performance; [32] reduces search space size by
targeting smaller/simpler mini-apps that can be tuned in their
entirety and manually clustering search atoms which requires a
priori knowledge and for which no methodology is discussed.

Tuning full models is costly, yet developers undertake such
efforts. This is due to both the model’s high cost and the
ways they are used: a single model can be rerun many times
in practice, e.g., generating large ensembles with perturbations
(e.g., [12]). Tuning cost is therefore naturally amortized. FPPT
can offer valuable guidance by automating tedious design-

space exploration and concretely measuring the performance/-
correctness of hundreds of mixed-precision variants.

III. METHODOLOGY

Automated dynamic-analysis-based tools for FPPT imple-
ment the cycle shown in Figure 1. For a target program,
users specify a search space, a representative input, a correct-
ness criteria, and a performance metric. The mixed-precision
design space is then systematically explored via a search
algorithm which suggests precision assignments, a program
transformation which generates the corresponding program
variants, and a dynamic evaluation which executes variants to
measure performance/correctness. When a termination criteria
is reached, it returns mixed-precision variants which maximize
performance subject to the correctness criteria. This cycle has
not been applied to Fortran or to programs as large as weather
and climate models. Accordingly, we reconsider the following.

A. Search Space Construction

To address the well-known scalability issues for FPPT, we
adopt three means of reducing the size of the search space:

Tuning Hotspots: First, we tune computationally-intensive
hotspots. Doing so is consistent with Amdahl’s Law and a
common practice for optimizing large systems [23]. Applying
automated performance-guided FPPT to hotspots within full
model runs is a substantial step forward compared to past
manual efforts. We profile each model using the workload from
the dynamic evaluation and select hotspots based on CPU-
time. Our selections are corroborated by a domain expert.

Variable Declarations as Search Atoms: Second, we use
FP variable declarations as the atoms of our search. This is
demonstrated in Section II-B. Compared to a finer-grained
approach, this offers three advantages: (1) it limits the number
of search atoms and, consequently, reduces the search space
magnitude, (2) it is consistent with past work on performance-
guided reduced-precision computation in weather and climate
models [16], [15], and (3) it results in mixed-precision code
that is easily interpretable by domain expert collaborators.

Two Precision Levels: Third, we consider only 64-bit and
32-bit precision. This is the only setup that could yield speedup
based on existing hardware support in supercomputer CPUs
and the CPU-dominant nature of weather and climate models.

B. Search Space Exploration

We improve upon the Θ(2n) complexity of a brute-force
search by adopting the widely-used delta-debugging-based
FPPT approach [2] which exhibits O(nlogn) average case
complexity and O(n2) worst case complexity [33]. This al-
gorithm searches for a 1-minimal variant, i.e., one possessing
the smallest set of 64-bit variables for which lowering any one
violates correctness or performance criteria [2], [7]. We justify
our choice to reimplement this single strategy based on the
goals of our study and the results of past comparisons between
FPPT search algorithms. First, the goal of this case study is
not to compare the efficacy of different search techniques in
this domain, nor is it to propose a novel search algorithm that

150

1 function fun_wrapper_4_to_8(x) result(output)
2 real(kind=4) :: x, output
3 real(kind=8) :: x_temp
4 x_temp = x
5 output = fun(x_temp)
6 end function fun_wrapper_4_to_8

Fig. 4: A simple example of the wrappers required for mixed-
precision parameter-passing.

would warrant a comparison. Rather, the goal is to gain initial
insight into the challenges presented by weather and climate
models to FPPT in general. Accordingly, we adopt the most
canonical strategy. Second, past comparisons of FPPT search
algorithms show this technique is competitive [4], [28]. This
is corroborated by its use in FPPT research as a baseline or
as a feature of a framework [7], [6], [27], [4], [28], [20].

C. Program Transformation for Fortran

To enable dynamic evaluation, we generate mixed-precision
variants via source-to-source transformations. This is consis-
tent with past work and yields interpretable code that facilitates
domain expert collaboration. Furthermore, type changes at the
source level fully leverage the compiler toolchain, yielding
optimizations that are missed when transforming a lower-level
intermediate representation [28]. Automating source-to-source
transformations of Fortran presents two challenges:

Wrappers for Mixed-Precision Parameter-Passing: The
Fortran standard specifies that implicit type conversions shall
occur only via the assignment operator, meaning that in-
stances of mixed-precision parameter-passing require explicit
wrappers. For example, while the funarc variant shown in
Figure 3 is compilable as-is, changing the precision of fun’s
x parameter to 64-bits would require the wrapper shown in
Figure 4 which uses an assignment to a temporary variable
with the precision required by fun. To accomplish this, we
construct a graph whose nodes are FP variables annotated
with their precisions and whose edges represent instances
of parameter-passing. After applying a precision assignment,
we generate wrappers to maintain the invariant that adjacent
nodes should have matching annotations. For example, adding
the wrapper in Figure 4 adds a node for x_temp, replaces
“mismatching” edges between any arguments for fun and x
with “matching” edges to x_temp, and adds a “matching”
edge between x and x_temp, thus maintaining the invariant.

Overcoming Lack of Language Support in Frameworks
for Source Code Transformation: To support wrapper gen-
eration, we use type information in the program’s abstract
syntax tree (AST) representation. For this, we use the ROSE
compiler [34] which is the only tool we are aware of that offers
partial support for source-to-source transformation of Fortran
ASTs. However, ROSE often generates uncompilable source
for unsupported language constructs. This is exacerbated by
model code which is large, complex, and a mix of legacy
and modern Fortran. To overcome this, our key insight is that
transformations only require a subset of the full AST which
contains: (1) the statements declaring target variables; (2) the
statements passing target variables as arguments to procedure
calls; (3) any statements defining symbols referenced in 1,

2, and recursively 3; (4) any import statements required to
make the symbols defined in 1, 2, and 3 available for use
where needed in 1, 2, and 3; and (5) any program structures –
modules, procedures, derived-types, and so on – that contain
any of 1, 2, 3. Consequently, we can automatically reduce
the source code fed to ROSE using an approach analogous to
a taint analysis: apply a taint to the target FP variables and
iteratively apply propagation rules that capture 2-5 until a fixed
point is reached. Tainted statements ultimately remain in the
reduced program which is parsed into the AST, transformed,
unparsed, and reinserted into the original model code.

D. Quantifying Correctness

Model correctness can be subjective and context-dependent
and is often left to the best judgment of climate scientists
and meteorologists who inspect the enormous amounts of
multivariate time-series data output by these models (see,
e.g., [16], [18], [15]). To move towards automated correctness
checks, we look at typical practice in automated FPPT [27],
[2], [6] which calculates a metric from output data which is
then compared to the baseline to yield a relative error via the
expression |(outbaseline−outvariant)/outbaseline|. We collab-
orate with a domain expert to design a scalar metric from each
model’s output to use in the relative error calculation. Given
the aforementioned complexity of ensuring model correctness,
we note that the resulting criteria are not intended to provide a
guarantee; rather they should effectively detect obviously bad
variants which will suffice for this case study. Each model’s
correctness criteria is discussed in more detail in Section IV-A.

We emphasize that guaranteeing correctness is not the focus
of this paper; our contribution centers on the incorporation
of concrete performance information to complement existing
works [17], [18], [20], [22], [21] that study correctness alone.

E. Quantifying Performance

The search algorithm considers the performance of past
variants to inform the generation of new variants. Key con-
siderations are what to dynamically measure for each variant
and how to calculate a comparable metric from that quantity.

Collecting Hotspot CPU Time: Existing automated
dynamic-analysis tools for FPPT target smaller programs in
their entirety and thus measure the time spent executing the
entire program. By contrast, this case study targets hotspots
within large models whose CPU time is distributed across
many smaller hotspots [23]. We therefore choose to measure
the CPU time spent only within the hotspot in order to better
emulate typical practice. We use the GPTL library [35] for this
purpose. Note that we exclude non-targeted functions defined
in the model source but do not exclude time spent in intrinsic
or library functions. Timing incurs overhead from 1%-7%.

Speedup =
median(Tbaseline 1, ..., Tbaseline n)

median(Tvariant 1, ..., Tvariant n)
(1)

A Noise-Tolerant Metric for Speedup: Excessive runtime
variance in the target program can exacerbate a known issue
where the search algorithm gets stuck in a local minimum [2].

151

TABLE I: Summary statistics for targeted hotspots.

Model Targeted Module % CPU Time # FP Vars
MPAS-A atm_time_integration 15% 445
ADCIRC itpackv 12% 468

MOM6 MOM_continuity_PPM 9% 351

Accordingly, we define our speedup metric in Equation (1)
to be parameterized by n which defines the size of a set of
runs from which we use the median to remove outliers. We
select the value of n based on the observed relative standard
deviation in a set of 10 baseline runs of each targeted model.
Any speedup greater than 1× represents improvement.

IV. EXPERIMENTAL EVALUATION

We apply our methodology to three real-world weather and
climate models in a first-of-its-kind case study with the goal
of exploring the efficacy of automated, performance-guided
FPPT in this important domain.

A. Experimental Setup

Experiments used 20 Derecho nodes, each with two 3rd
Gen AMD 7763 processors (64 cores each @ 2.45 GHz)
and 256 GB of DDR4 memory [36]. The transformation,
compilation, and execution of variants is parallelized with each
receiving a dedicated node. Each experiment uses the system’s
max job length of 12-hours. Each variant’s timeout is 3× the
time required for the 64-bit baseline. We consider the MPAS-
A, ADCIRC, and MOM6 weather/climate models. We now
describe the experimental setup specific to each model.

MPAS-A [24] is the atmosphere component of a family
of Earth System Models collectively know as MPAS. It is
the only model in this study engineered to support com-
pilation with either 64-bit or 32-bit FP values; the 32-bit
version is ∼1.4× faster than the 64-bit version. Here, we
tune the 64-bit version. To exercise the model, we use a 5-
day, global simulation described in recent publicly-available
tutorials for the model [37] that uses 64 MPI ranks and runs
in about 90 seconds. We target the work routines within the
atm_time_integration module which consist of 445 FP
variables and which constitute ∼15% of the CPU time. We
quantify correctness by taking the relative error of the kinetic
energy at the center of each cell in the domain, taking the
most extreme error across all cells at each timestep, and then
taking the L2-norm over time. We set the error threshold to
1.4×102 which is the relative error we observed for this metric
between the double and single precision versions of the model
provided by the developers. Because a 10-member ensemble of
baseline model executions showed only a 1% relative standard
deviation in performance, we set n = 1 for Equation (1).

ADCIRC [25] is an ocean model suited to high-resolution
coastal modeling of inundation physics. To exercise the model,
we use one of the examples on the ADCIRC website [38]:
a 40-day tidal simulation off the coast of North Carolina,
USA that uses 128 MPI ranks and runs in about 200 seconds.
We target the itpackv module which consists of 468 FP
variables and which constitutes ∼12% of the CPU time. We
quantify correctness by calculating the relative error of the

TABLE II: Summary metrics for variants explored. Columns
2-6 give the number of variants and the percentage that passed,
failed correctness checks, timed out, or had a runtime error.
The last column gives the speedup of the optimal variant.

Model Total Pass Fail Timeout Error Speedup
MPAS-A 48 37.5% 56.2% 6.3% 0% 1.95 ×
ADCIRC 74 36.4% 33.8% 0% 29.7% 1.12 ×

MOM6 858 17.2% 31.0% 0% 51.7% 1.04 ×

most extreme water surface elevation at each grid point over
the course of the simulation and taking the L2-norm of these
relative errors across the entire grid. This is a methodology
supported by domain experts authoring the relevant litera-
ture [39]. Following the advice of a domain expert, we set the
threshold to be 1.0×10−1. Because a 10-member ensemble of
baseline model executions showed only a 1% relative standard
deviation in performance, we set n = 1 for Equation (1).

MOM6 [26] is an ocean model suited to larger spatio/tem-
poral scales than ADCIRC. To exercise the model, we use a
benchmark simulation [40] modified by a domain expert to
more closely resemble a workhorse MOM6 configuration; it
uses 128 MPI ranks and runs in about 60 seconds. We target
the MOM_continuity_PPM module which contains 351 FP
variables and which constitutes ∼9% of the CPU time. We
quantify correctness by calculating the relative error of the
maximum Courant-Friedrichs-Lewy (CFL) condition at each
time step of the simulation and then taking the L2-norm over
time. CFL is a stability criterion of numerical simulations and
one of several global quantities used for MOM6 regression
testing. Following the advice of a domain expert, we set the
threshold to be 2.5 × 10−1. Because a 10-member ensemble
of baseline model executions showed a 9% relative standard
deviation in performance, we set n = 7 for Equation (1).

B. Weather/Climate Model Hotspot Tuning

The MPAS-A search was the most successful, discov-
ering a 1-minimal variant of the hotspot that achieved
a 1.95× speedup while incurring less relative error than
the supported 32-bit version of the model. Figure 5 depicts
three clusters: <30% 32-bit with ≤1× speedup, >90% 32-
bit with ≥1.8× speedup, and 50-89% 32-bit with speedup
from 0.7-1.8×. The first two clusters support the intuition that
more low-precision applied more uniformly yields increased
speedup while more mixed-precision incurs excessive casting
overhead and reduced vectorization. The low performance
variants of the third cluster suffer from mixed-precision in-
terprocedural data flow to a pair of flux functions; due to
a high-volume of calls, the casting overhead increases the
hotspot’s CPU time by 15-22% of the baseline. This suggests
a strategy for statically evaluating variant performance via
a cost model which assigns a penalty for mixed-precision
interprocedural data flow as a function of the number of calls.

Figure 6 shows the speedup of using reduced-precision in
the most expensive hotspot procedures. Furthermore, note that
both atm_recover_large_step_variables_work
and atm_advance_acoustic_step_work have only
a few unique procedure variants; this shows how quickly

152

Fig. 5: Plots of mixed-precision hotspot variants on a speedup-
error coordinate system. Dotted lines represent the speedup
and error thresholds used by the search algorithm.

correct/performant variants were found. This contrasts with the
flux functions and the atm_compute_dyn_tend_work
procedure for which the large number of unique variants
indicates that they presented more difficulty for the search.

Figure 6 also depicts some flux function variants with
critical slowdown. The aforementioned casting overhead of
interprocedural data flow is indirectly responsible for this; the
extra conversion instructions hindered compiler optimizations
by preventing function inlining. This suggests a possible
strategy for statically evaluating the performance of a variant
via feedback from the compiler’s optimization pass.

For atm_compute_dyn_tend_work, the increased ex-
ploration ultimately led to the three variants on the optimal
frontier in Figure 5 which were both more correct and more
performant than uniform 32-bit; these variants lowered the
precision of all variables except for either 7, 14, or 42 variables
in atm_compute_dyn_tend_work. This means that, with
respect to our choice of performance/error metrics, FPPT was
able to automatically identify a set of variables that act as a
“knob” for the performance and correctness of the hotspot.

The ADCIRC search discovered a 1-minimal variant
with only one FP variable remaining in 64-bit, meeting
the error threshold set by our domain expert but only
achieving ∼1.1× speedup. There is no optimal frontier de-
picted in Figure 5 as the variants in the bottom-right quadrant
are all effectively the same with respect to performance and
correctness and the more performant variants in the upper-right
quadrant exhibit excessive relative errors of at least 1×102.

Variant 42 of 74 is the first that satisfied both correctness
and performance criteria. It left only 25/468 variables in
high precision, all in the jcg procedure. While not a kernel

Fig. 6: Performance plots for variants of select procedures.
Each marker represents a unique precision assignment of
variables in that procedure. Speedup is based on the average
CPU time per call and is plotted on a log axis with labeled
minor ticks. Each procedure’s share of the hotspot’s CPU time
in the 64-bit model is given in parentheses.

itself, jcg is the driver for the hotspot’s core computation
and defines its key parameters. The remaining 32 variants
were spent exploring jcg variants. Remarkably, the search
ultimately identified a single parameter that must remain
in 64-bit to satisfy the error threshold; otherwise, control
flow substantially changes, yielding the higher speedup and
intolerable error observed in the uniform 32-bit variant.

In Figure 6, the two most expensive procedures (peror and
pjac) do not appear to benefit from reducing precision. We
find two reasons for this. First, most of peror’s execution
is spent on an MPI_ALLREDUCE for which many vendor
implementations do not support the vectorization which is the
main source of speedup when reducing precision [41]. Second,
pjac spends its execution on a nested for loop which,
while typically a prime candidate for vectorization, contains
a data dependency that prevents this. Together, these points
suggest ensuring that targets for FPPT support vectorization
to achieve the full benefit of reduced-precision.

Lastly, note that the lowest-performing variants in Figure 5
suffered from control flow changes that led to much higher
procedure execution counts, a factor not depicted in Figure 6.

The MOM6 search did not finish within the allotted

153

Fig. 7: Plots of the mixed-precision hotspots variants on a
speedup-error coordinate system as in Figure 5. Performance
of the whole model rather than hotspot is measured.

12 hours, at which point the best speedup was negligible.
The MOM6 hotspot could not tolerate much low precision:
of variants that were >10% 32-bit, 95% gave runtime errors.
While the search did find some executable variants that were
>98% 32-bit, these variants surprisingly yielded the worst
slowdowns. This contrasts with MPAS-A and ADCIRC where
trading correctness generally led to increased performance.
We identified two causes for this. The first is kernels that
perform substantially worse with mixed-precision. Particularly,
two flux_adjust procedures that implement an iterative
algorithm can take 10-100× longer to converge (Figure 6).
While these procedures can be omitted, variants would still
suffer for the second reason: the overhead from mixed-
precision interprocedural data flow of large array variables.
For example, consider variant 58 represented by the yellow
marker between the two clusters in the top left quadrant of
Figure 5. This variant keeps several large arrays in 64-bit
precision within the zonal_mass_flux procedure while its
callees (all depicted in Figure 6) operate on those arrays in
32-bit precision. As a result, 40% of the CPU time is spent
on casting overhead. This echoes the aforementioned issue
with MPAS-A’s flux functions except the overhead is further
compounded by the number of elements in these arrays. This
suggests a strategy for static performance evaluation via a cost
model which assigns a penalty for cases of mixed-precision
interprocedural data flow as a function of both the number of
calls and the number of array elements.

C. Impact on Overall Model Performance

Knowing that the MPAS-A hotspot can be successfully
tuned with our approach, we conduct a new search guided
by the wall-clock time spent executing the entire model.

The 1-minimal variant discovered by the search lowers the
precision of 10% of the variables yielding no appreciable
speedup. Figure 7 depicts two clusters of variants: high-
precision variants with 0.8-1× speedup and low-precision
variants with < 0.6× speedup. This is a stark contrast to the
MPAS-A low-precision/high-performance variants in Figure 5
caused by the casting overhead of passing high-precision data
into low-precision hotspots vastly outweighing the speedups.
When MPAS-A is compiled in uniform 32-bit, this overhead
does not exist. Crucially, this includes all the input data which
are generated by a separate pre-processing step. This up-
front and offline overhead allows the model to realize the
performance benefits of reduced-precision computation.

The challenge of realizing the performance benefits of low-
precision hotspots is analogous to a well-known challenge with
hardware-accelerators like GPUs: despite impressive speedups
with FP arithmetic on such devices versus the CPU, care must
be taken to ensure that the overhead of moving data to the
accelerator does not obscure the performance gains.

V. LESSONS LEARNED

In this case study, we observed very different performance
distributions with respect to the reduced-precision hotspot
variants explored in each search (Figures 5 and 7). Regard-
ing variants that were tolerably correct with respect to the
chosen metrics, MOM6 yielded massive slowdown, ADCIRC
yielded minimal speedup, and MPAS-A yielded high speedup
that nonetheless led to slowdown in the overall model. In
Section IV-B, we describe the results of manual variant
analyses to explain these varied distributions. In this section,
we provide a discussion of lessons learned and insights for best
practices regarding feasible FPPT for larger programs in more
complex domains such as this. First, we identify three key
criteria for a tunable hotspot. Then, using these criteria, we
provide recommendations toward designing/selecting targets
that maximize tuning efficacy and toward statically evaluating
mixed-precision variants in order make tuning more scalable.

Three Key Criteria for Tunable Hotspots:
1) Source code that supports compiler auto-vectorization.
2) A low volume/frequency of FP data flow between kernels

within the hotspot that require different precisions.
3) A low volume/frequency of FP data flow into the hotspot.
The results and analyses described in Section IV-B make

sense when viewed through this lens: We saw that the MPAS-
A hotspot succeeded with respect to (1) and (2) leading to
high-performance variants, the ADCIRC hotspot suffered with
respect to (1) leading to variants with minimal speedup, and
the MOM6 hotspots suffered with respect to (2) leading to
variants with massive slowdown. In Section IV-C, measuring
overall model performance showed that the MPAS-A hotspot
ultimately suffers with respect to (3) leading to overall model
slowdown despite higher-performance variants.

Recommendations for Scalable FPPT: We divide the
discussion of these recommendations based on when they
apply: at design time, just prior to tuning, and during tuning.

Designing hotspots to synergize with FPPT: One should
design software to support (1). As discussed in Section II-A,
memory alignment and access patterns must support the pack-
ing of like-precision values in order to support compiler auto-
vectorization. Developer choices can negatively affect this.
Compiler manuals offer guidance, from the design of vector-
izable loops to hints provided to the compiler via pragmas.

Selecting hotspots that are amenable to FPPT: One should
select hotspots which support both (1) and (3). For (1), one
should check compiler vectorization reports or check assembly
code for vector instructions. For (3), one could expand beyond
the source code boundaries of hotspots (e.g., procedures, mod-
ules) to also optimize the “surrounding” code that moves data
into and out of these hotspots to minimize casting overhead.

154

Work by [27] uses a static analysis on a DAG to cluster sets
of operations that minimize the ratio of casting overhead to
low-precision arithmetic; while their approach does not take
into account execution counts and is limited to small GPU
kernels, techniques like this could be powerful in this domain.

Minimizing overhead of variant evaluation during FPPT:
One should use both (1) and (2) to minimize the overhead of
dynamic evaluation. For (1), one could filter out variants that
have less vectorization than the baseline prior to execution
by inspecting compiler vectorization reports or generated
assembly. For (2), one could use the same DAG that supports
(3) during target selection to filter out generated variants that
pass too much FP data between kernels in different precisions.

While designing code to synergize with FPPT will always
be beneficial, the limitation of selecting hotspots comes as a
consequence of the high overhead of dynamic variant eval-
uation. Minimizing this overhead could theoretically enable
tuning of large programs in their entirety. Innovations in
search algorithm design which avoid evaluating bad variants
is needed, such as recent work [42] that uses ML to predict
the performance and accuracy of mixed-precision programs.

Support for (2) and (3) requires tools for IR manipulation/-
analysis to construct a DAG based on def-use and use-def
chains [43], [44], [6], [27], [4]. At the time of this writing,
such tools targeting the Fortran language are still in their
infancy and lack the robustness of the analogous tools used
by the aforementioned works for their target languages (e.g.,
compare Flang+LLVM to the more mature Clang+LLVM).
Still, automated FPPT can be useful to model developers by
guiding the investment of expensive manual efforts.

VI. THREATS TO VALIDITY

Our search atoms are variable declarations, not individual
uses of variables. This is consistent with FPPT tools that
transform source code. Changing the precision of variable uses
in source code requires substantial engineering effort; omitting
this functionality does not threaten the above insights.

We do not compare against other tools/algorithms. Our goal
is not to compare techniques in this new domain, nor is it to
propose a novel algorithm that would warrant a comparison.
Instead, we use the most canonical strategy to explore general
challenges of FPPT in this important domain (Section III-B).

The generalizability of our insights are threatened by our
choices of search algorithm, of programs to tune, and of
hotspots to target. Respectively, we address these by selecting
a widely-used search algorithm (Section III-B), by selecting
real-world models (Section IV-A), and by corroborating our
hotspot selection with a domain expert (Section III-A).

Our correctness checks do not guarantee model correctness.
Because there is no firm consensus for model correctness short
of bit-for-bit reproducibility, we collaborate with a domain
expert to design criteria that test for necessary conditions for
model correctness, not sufficient conditions (Section III-D).

VII. RELATED WORK

Section II-C discussed related FPPT efforts [23], [17], [18],
[20], [22], [21], [15], [19], [16], [30], [31], [20], [32] of

weather and climate models in order to motivate the method-
ology used in this paper. Here, we provide further discussion
of FPPT approaches not mentioned thus far.

Not all tools for FPPT operate on the same search atoms.
Some approaches [45], [46], [8], [47], [48] tune values in
single-line expressions or calls to library functions [9]. Our
objective in this case study is orthogonal to theirs.

Of the FPPT tools that target variable declarations, not all
of them transform source code. ADAPT [49], TypeForge [4],
[44], and Blame Analysis [5] provide analyses that guide a
search but do not perform the tuning themselves. Precimo-
nious [2], HiFPTuner [6], and GPUMixer [27] all transform
variables at the IR level and CRAFT [3] at machine code level.

Of the tools that lower variable precision via source-code
transformations, not all of them measure performance dynam-
ically. Some [8], [50] use static cost models for arithmetic
operations while others [5], [49], [7] disregard performance
by minimizing overall bit allocation. However, as shown in
this study, this does not necessarily correspond to optimal
performance. Furthermore, other factors that are not captured
by static performance models can effect performance, e.g.,
compiler toolchains [28]. Dynamic measurements therefore
offer the clearest feedback for the search.

The most comparable approaches to ours are FloatSmith [4]
and AMPT-GA [43]. Both target variable declarations, trans-
form code at the source level, and dynamically evaluate perfor-
mance. However, they provide support for C/C++ and CUDA
respectively and are therefore not applicable to Fortran.

VIII. CONCLUSION

In this paper, we presented and applied a methodology
for automated, performance-guided FPPT to three real-world
weather and climate models. Based on this first-of-its-kind
case study, we identify three key criteria for tunable hotspots
and offer a set of recommendations for both tuning target
design and selection as well as for the static evaluation of
variant performance to increase FPPT’s scalability. Notably,
we discover an MPAS-A hotspot variant that exhibits 1.95×
speedup while incurring less error than the uniform 32-
bit model. We also demonstrated the need for better tool
development frameworks for Fortran, the ability of auto-
mated FPPT to foster understanding of program properties
that can guide the development of mixed-precision variants,
and the novel challenges that require innovation in the area
of automated FPPT. Source code and data are available at
https://github.com/ucd-plse/PROSE.

ACKNOWLEDGMENTS

This work was supported by the National Science Foun-
dation under award CCF-1750983, the U.S. Department of
Energy Office of Science, Advanced Scientific Computing
Research under award DE-SC0020286. We also acknowledge
high-performance computing support from the Derecho sys-
tem [36] provided by the NSF National Center for Atmo-
spheric Research (NCAR), sponsored by the National Science
Foundation. We would also like to thank Dolores Miao for her
engineering support with early prototypes of this work.

155

REFERENCES

[1] S. Cherubin and G. Agosta, “Tools for reduced precision computation:
A survey,” ACM Comput. Surv., vol. 53, no. 2, pp. 33:1–33:35, 2020.
[Online]. Available: https://doi.org/10.1145/3381039

[2] C. Rubio-González, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan,
K. Sen, D. H. Bailey, C. Iancu, and D. Hough, “Precimonious: tuning
assistant for floating-point precision,” in International Conference
for High Performance Computing, Networking, Storage and Analysis,
SC’13, Denver, CO, USA - November 17 - 21, 2013, W. Gropp and
S. Matsuoka, Eds. ACM, 2013, pp. 27:1–27:12. [Online]. Available:
https://doi.org/10.1145/2503210.2503296

[3] M. O. Lam, J. K. Hollingsworth, B. R. de Supinski, and M. P. LeGendre,
“Automatically adapting programs for mixed-precision floating-point
computation,” in International Conference on Supercomputing, ICS’13,
Eugene, OR, USA - June 10 - 14, 2013, A. D. Malony, M. Nemirovsky,
and S. P. Midkiff, Eds. ACM, 2013, pp. 369–378. [Online]. Available:
https://doi.org/10.1145/2464996.2465018

[4] M. O. Lam, T. Vanderbruggen, H. Menon, and M. Schordan, “Tool
integration for source-level mixed precision,” in 2019 IEEE/ACM 3rd
International Workshop on Software Correctness for HPC Applications
(Correctness), Denver, CO, USA, November 18, 2019, I. Laguna and
C. Rubio-González, Eds. IEEE, 2019, pp. 27–35. [Online]. Available:
https://doi.org/10.1109/Correctness49594.2019.00009

[5] C. Rubio-González, C. Nguyen, B. Mehne, K. Sen, J. Demmel,
W. Kahan, C. Iancu, W. Lavrijsen, D. H. Bailey, and D. Hough,
“Floating-point precision tuning using blame analysis,” in Proceedings
of the 38th International Conference on Software Engineering, ICSE
2016, Austin, TX, USA, May 14-22, 2016, L. K. Dillon, W. Visser, and
L. A. Williams, Eds. ACM, 2016, pp. 1074–1085. [Online]. Available:
https://doi.org/10.1145/2884781.2884850

[6] H. Guo and C. Rubio-González, “Exploiting community structure for
floating-point precision tuning,” in Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2018, Amsterdam, The Netherlands, July 16-21, 2018, F. Tip
and E. Bodden, Eds. ACM, 2018, pp. 333–343. [Online]. Available:
https://doi.org/10.1145/3213846.3213862

[7] S. Graillat, F. Jézéquel, R. Picot, F. Févotte, and B. Lathuilière,
“Auto-tuning for floating-point precision with discrete stochastic
arithmetic,” J. Comput. Sci., vol. 36, 2019. [Online]. Available:
https://doi.org/10.1016/j.jocs.2019.07.004

[8] E. Darulova, E. Horn, and S. Sharma, “Sound mixed-precision
optimization with rewriting,” in Proceedings of the 9th ACM/IEEE
International Conference on Cyber-Physical Systems, ICCPS 2018,
Porto, Portugal, April 11-13, 2018, C. Gill, B. Sinopoli, X. Liu, and
P. Tabuada, Eds. IEEE Computer Society / ACM, 2018, pp. 208–219.
[Online]. Available: https://doi.org/10.1109/ICCPS.2018.00028

[9] H. Brunie, C. Iancu, K. Z. Ibrahim, P. Brisk, and B. Cook,
“Tuning floating-point precision using dynamic program information
and temporal locality,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
SC 2020, Virtual Event / Atlanta, Georgia, USA, November 9-19, 2020,
C. Cuicchi, I. Qualters, and W. T. Kramer, Eds. IEEE/ACM, 2020,
p. 50. [Online]. Available: https://doi.org/10.1109/SC41405.2020.00054

[10] I. Karlin, J. Keasler, and J. Neely, “Lulesh 2.0 updates and changes,”
Lawrence Livermore National Lab.(LLNL), Livermore, CA (United
States), Tech. Rep., 2013.

[11] G. Danabasoglu, J.-F. Lamarque, J. Bacmeister, D. Bailey, A. DuVivier,
J. Edwards, L. Emmons, J. Fasullo, R. Garcia, A. Gettelman et al., “The
community earth system model version 2 (cesm2),” Journal of Advances
in Modeling Earth Systems, vol. 12, no. 2, 2020.

[12] A. Baker, D. Hammerling, M. Levy, H. Xu, J. Dennis, B. Eaton,
J. Edwards, C. Hannay, S. Mickelson, R. Neale et al., “A new ensemble-
based consistency test for the community earth system model (pycect
v1. 0),” Geoscientific Model Development, vol. 8, no. 9, pp. 2829–2840,
2015.

[13] A. H. Baker, Y. Hu, D. M. Hammerling, Y.-h. Tseng, H. Xu, X. Huang,
F. O. Bryan, and G. Yang, “Evaluating statistical consistency in the
ocean model component of the community earth system model (pycect
v2. 0),” Geoscientific Model Development, vol. 9, no. 7, pp. 2391–2406,
2016.

[14] R. Kelly, “Hpc at ncar for climate and weather,” https://www.
hpcuserforum.com/event/hpc-user-forum-spring-2022/, 2022.

[15] F. Váňa, P. Düben, S. Lang, T. Palmer, M. Leutbecher, D. Salmond,
and G. Carver, “Single precision in weather forecasting models: An

evaluation with the ifs,” Monthly Weather Review, vol. 145, no. 2, pp.
495–502, 2017.

[16] D. J. Milroy, A. H. Baker, J. M. Dennis, and A. Gettelman,
“Investigating the impact of mixed precision on correctness for
a large climate code,” in 2019 IEEE/ACM 3rd International
Workshop on Software Correctness for HPC Applications (Correctness),
Denver, CO, USA, November 18, 2019, I. Laguna and C. Rubio-
González, Eds. IEEE, 2019, pp. 44–51. [Online]. Available:
https://doi.org/10.1109/Correctness49594.2019.00011

[17] P. D. Düben, H. McNamara, and T. N. Palmer, “The use of imprecise
processing to improve accuracy in weather & climate prediction,”
Journal of Computational Physics, vol. 271, pp. 2–18, 2014.

[18] P. D. Düben, A. Subramanian, A. Dawson, and T. Palmer, “A study
of reduced numerical precision to make superparameterization more
competitive using a hardware emulator in the openifs model,” Journal of
Advances in Modeling Earth Systems, vol. 9, no. 1, pp. 566–584, 2017.

[19] J. Ackmann, P. D. Dueben, T. Palmer, and P. K. Smolarkiewicz, “Mixed-
precision for linear solvers in global geophysical flows,” Journal of
Advances in Modeling Earth Systems, vol. 14, no. 9, p. e2022MS003148,
2022.

[20] O. Tintó-Prims, M. C. Acosta, A. M. Moore, M. Castrillo, K. Serradell,
A. Cortés, and F. J. Doblas-Reyes, “How to use mixed precision in ocean
models: exploring a potential reduction of numerical precision in nemo
4.0 and roms 3.6,” Geoscientific Model Development, vol. 12, no. 7, pp.
3135–3148, 2019.

[21] S. Hatfield, M. Chantry, P. Düben, and T. Palmer, “Accelerating high-
resolution weather models with deep-learning hardware,” in Proceedings
of the platform for advanced scientific computing conference, 2019, pp.
1–11.

[22] A. Dawson, P. D. Düben, D. A. MacLeod, and T. N. Palmer, “Reliable
low precision simulations in land surface models,” Climate Dynamics,
vol. 51, pp. 2657–2666, 2018.

[23] S. Zhang, H. Fu, L. Wu, Y. Li, H. Wang, Y. Zeng, X. Duan, W. Wan,
L. Wang, Y. Zhuang et al., “Optimizing high-resolution community earth
system model on a heterogeneous many-core supercomputing platform,”
Geoscientific Model Development, 2020.

[24] “MPAS-A (commit 09bb84c),” https://github.com/MPAS-Dev/
MPAS-Model/tree/09bb84c6b239c112103758bd31b707f0f9e56c0d,
2023.

[25] R. A. Luettich, J. J. Westerink, N. W. Scheffner et al., “Adcirc: an
advanced three-dimensional circulation model for shelves, coasts, and
estuaries. report 1, theory and methodology of adcirc-2dd1 and adcirc-
3dl,” 1992.

[26] “MOM6 (commit fd68ffa),” https://github.com/mom-ocean/MOM6/tree/
fd68ffa0b537fc0814b8bce73edc530bdf2f3166, 2023.

[27] I. Laguna, P. C. Wood, R. Singh, and S. Bagchi, “Gpumixer:
Performance-driven floating-point tuning for GPU scientific
applications,” in High Performance Computing - 34th International
Conference, ISC High Performance 2019, Frankfurt/Main, Germany,
June 16-20, 2019, Proceedings, ser. Lecture Notes in Computer
Science, M. Weiland, G. Juckeland, C. Trinitis, and P. Sadayappan,
Eds., vol. 11501. Springer, 2019, pp. 227–246. [Online]. Available:
https://doi.org/10.1007/978-3-030-20656-7\ 12

[28] K. Parasyris, I. Laguna, H. Menon, M. Schordan, D. Osei-Kuffuor,
G. Georgakoudis, M. O. Lam, and T. Vanderbruggen, “Hpc-mixpbench:
An HPC benchmark suite for mixed-precision analysis,” in IEEE
International Symposium on Workload Characterization, IISWC 2020,
Beijing, China, October 27-30, 2020. IEEE, 2020, pp. 25–36. [Online].
Available: https://doi.org/10.1109/IISWC50251.2020.00012

[29] D. H. Bailey, “Resolving numerical anomalies in scientific computation,”
2008.

[30] N. C. Swart, J. N. S. Cole, V. V. Kharin, M. Lazare, J. F. Scinocca,
N. P. Gillett, J. Anstey, V. Arora, J. R. Christian, S. Hanna, Y. Jiao,
W. G. Lee, F. Majaess, O. A. Saenko, C. Seiler, C. Seinen, A. Shao,
M. Sigmond, L. Solheim, K. von Salzen, D. Yang, and B. Winter, “The
canadian earth system model version 5 (canesm5.0.3),” Geoscientific
Model Development, vol. 12, no. 11, pp. 4823–4873, 2019. [Online].
Available: https://gmd.copernicus.org/articles/12/4823/2019/

[31] “Mpas-a release notes,” https://mpas-dev.github.io/atmosphere/mpas-a
release notes.html, 2023.

[32] J. Yao and W. Xue, “Automatic search guided code optimization frame-
work for mixed-precision scientific applications,” in Proceedings of the
SC’23 Workshops of The International Conference on High Performance
Computing, Network, Storage, and Analysis, 2023, pp. 399–403.

156

[33] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-
inducing input,” IEEE Trans. Software Eng., vol. 28, no. 2, pp.
183–200, 2002. [Online]. Available: https://doi.org/10.1109/32.988498

[34] D. Quinlan and C. Liao, “The ROSE source-to-source compiler in-
frastructure,” in Cetus users and compiler infrastructure workshop, in
conjunction with PACT, vol. 2011. Citeseer, 2011, p. 1.

[35] E. Hartnett and J. Rosinsk, “Using standard tools to package and
distribute scientific software c and fortran libraries: a demonstration with
the general purpose timing library (gptl),” Legacy, vol. 30, p. 4807, 2019.

[36] “Derecho: Hpe cray ex system (university community computing),”
doi:10.5065/qx9a-pg09, Computational and Information Systems Lab-
oratory, Boulder, CO: NSF National Center for Atmospheric Research,
2023.

[37] “Mpas tutorial – practice session guide,” https://www2.mmm.ucar.edu/
projects/mpas/tutorial/Boulder2019/index.html.

[38] “Adcirc example problems,” https://adcirc.org/home/documentation/
example-problems/beaufort-inlet-nc-example.

[39] J. Baugh, A. Altuntas, T. Dyer, and J. Simon, “An exact reanalysis
technique for storm surge and tides in a geographic region of interest,”
Coastal Engineering, vol. 97, pp. 60–77, 2015.

[40] R. Hallberg and A. Gnanadesikan, “The role of eddies in determining
the structure and response of the wind-driven southern hemisphere
overturning: Results from the modeling eddies in the southern ocean
(meso) project,” Journal of Physical Oceanography, vol. 36, no. 12, pp.
2232–2252, 2006.

[41] D. Zhong, Q. Cao, G. Bosilca, and J. Dongarra, “Using long vector
extensions for mpi reductions,” Parallel Computing, vol. 109, p. 102871,
2022.

[42] Y. Wang and C. Rubio-González, “Predicting performance and accuracy
of mixed-precision programs for precision tuning,” in Proceedings of
the 46th IEEE/ACM International Conference on Software Engineering,
ICSE 2024, Lisbon, Portugal, April 14-20, 2024. ACM, 2024, pp. 15:1–
15:13. [Online]. Available: https://doi.org/10.1145/3597503.3623338

[43] P. V. Kotipalli, R. Singh, P. Wood, I. Laguna, and S. Bagchi, “Ampt-ga:
automatic mixed precision floating point tuning for gpu applications,” in

Proceedings of the ACM International Conference on Supercomputing,
2019, pp. 160–170.

[44] “TypeForge Tool,” https://github.com/LLNL/typeforge, 2021.
[45] W. Chiang, M. Baranowski, I. Briggs, A. Solovyev, G. Gopalakrishnan,

and Z. Rakamaric, “Rigorous floating-point mixed-precision tuning,” in
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages, POPL 2017, Paris, France, January 18-20,
2017, G. Castagna and A. D. Gordon, Eds. ACM, 2017, pp. 300–315.
[Online]. Available: http://dl.acm.org/citation.cfm?id=3009846

[46] N. Damouche and M. Martel, “Salsa: An automatic tool to improve
the numerical accuracy of programs,” in Automated Formal Methods,
AFM@NFM 2017, Moffett Field, CA, USA, May 19-20, 2017, ser.
Kalpa Publications in Computing, B. Dutertre and N. Shankar,
Eds., vol. 5. EasyChair, 2017, pp. 63–76. [Online]. Available:
http://www.easychair.org/publications/paper/x58n

[47] R. Rabe, A. Izycheva, and E. Darulova, “Regime inference for
sound floating-point optimizations,” ACM Trans. Embed. Comput.
Syst., vol. 20, no. 5s, pp. 81:1–81:23, 2021. [Online]. Available:
https://doi.org/10.1145/3477012

[48] B. Saiki, O. Flatt, C. Nandi, P. Panchekha, and Z. Tatlock,
“Combining precision tuning and rewriting,” in 28th IEEE Symposium
on Computer Arithmetic, ARITH 2021, Lyngby, Denmark, June
14-16, 2021. IEEE, 2021, pp. 1–8. [Online]. Available: https:
//doi.org/10.1109/ARITH51176.2021.00013

[49] H. Menon, M. O. Lam, D. Osei-Kuffuor, M. Schordan, S. Lloyd,
K. Mohror, and J. Hittinger, “ADAPT: algorithmic differentiation
applied to floating-point precision tuning,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage, and Analysis, SC 2018, Dallas, TX, USA, November 11-16,
2018. IEEE / ACM, 2018, pp. 48:1–48:13. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3291720

[50] D. Cattaneo, M. Chiari, N. Fossati, S. Cherubin, and G. Agosta,
“Architecture-aware precision tuning with multiple number representa-
tion systems,” in 2021 58th ACM/IEEE Design Automation Conference
(DAC). IEEE, 2021, pp. 673–678.

157

Appendix: Artifact Description
I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS

A. Paper’s Main Contributions

C1 A case study of automated, performance-guided
floating-point precision tuning applied to three cli-
mate and weather models.

C2 A bespoke tool for precision tuning that facilitates the
case study by applying the widely-used adaptation of
the delta-debugging algorithm for precision tuning to
weather and climate models written in Fortran.

B. Computational Artifacts

A1 https://github.com/ucd-plse/PROSE†

Artifact ID Contributions Related
Supported Paper Elements

A1 C1, C2 Table 2
Figures 5-7

II. ARTIFACT IDENTIFICATION

A. Computational Artifact A1

Relation To Contributions

This artifact supports the paper’s contributions by us-
ing the bespoke Fortran tool C2 on the Derecho system
(doi:10.5065/qx9a-pg09) to conduct the same precision tuning
experiments that constitute the case study C1. (Note that
for convenience, we also provide a Docker-based artifact for
partial reproduction which generates the paper’s figures from
the raw data and runs the tool on the funarc motivating
example. See the repo README for more details.)

Expected Results

• Three interactive HTML visualizations reproducing Fig-
ure 5. This figure plots all explored mixed-precision vari-
ants from the delta-debugging precision tuning searches
of the MPAS-A, ADCIRC, and MOM6 models on
speedup-error coordinate axes.

• Three interactive HTML visualizations reproducing Fig-
ure 6. This figure plots the performance of unique mixed-
precision variants of select procedures from the MPAS-A,
ADCIRC, and MOM6 models that were explored in the
above-mentioned precision-tuning searches.

• An interactive HTML visualization reproducing Figure
7. This figure plots the all explored mixed-precision
variants from the delta-debugging precision tuning search
of MPAS-A which is guided by the performance of the
whole model rather than the tuned hotspot.

†Upon this paper’s acceptance, a DOI will be assigned.

Expected Reproduction Time (in Minutes)

• Artifact Setup (5 minutes): After a user account/core-
hour allocation is acquired for the Derecho system
(doi:10.5065/qx9a-pg09), setup should take five minutes.

• Artifact Execution (12 hours): Experiments are executed
in parallel. Barring non-deterministic wait time for each
job submission to start running, no experiment will last
longer than 12 hours.

• Artifact Analysis (30 minutes)

Artifact Setup (incl. Inputs)

Hardware: Each experiment runs on a set of 20 dedicated
nodes; executing all experiments in the case study in parallel
therefore requires 4× 20 = 80 nodes.

Software: Note that all the listed software after Artifact A 1
are included as submodules in A 1 and therefore do not need
to be acquired separately.

• Artifact A1 (https://github.com/ucd-plse/
precimonious-w-rose/tree/SC24 artifact*)

• MPAS-A + Section IV-B Experiment (https://github.com/
ucd-plse/MPAS-tuning/tree/figures 5 and 6*)

• MPAS-A + Section IV-C Experiment (https://github.com/
ucd-plse/MPAS-tuning/tree/figure 7*)

• MOM6 + Section IV-B Experiment (https://github.com/
ucd-plse/MOM6-tuning/tree/figures 5 and 6*)

• ADCIRC + Section IV-B Experiment (https://github.com/
ucd-plse/ADCIRC-tuning/tree/figures 5 and 6*)

• ROSE Compiler (https://github.com/ucd-plse/rose/tree/
precimonious-w-rose*)

Datasets / Inputs: All inputs and datasets are bundled with
the software artifact.

Installation and Deployment: Note that all of the below
should be available on the Derecho system either as Lmod
modules, as pre-installed libraries, or within a python vir-
tual environment; everything will be loaded automatically by
scripts in the software artifact.

General Dependencies
• PBS job scheduler (2021.1.3.20220217134230)
• craype (2.7.20)
• ncarenv (23.06)
• gptl (8.1.1)
Python Dependencies
• python (3.8)
• plotly (5.18.0)
• numpy (1.24)
• pandas (2.0.3)
• networkx (3.1)
• xarray (2023.1.0)
• scipy (1.10.1)
Weather/Climate Model Dependencies
• gcc (12.2.0)
• ifort (2021.8.0)

158

• netcdf (4.9.2)
• parallel-netcdf (1.12.3)
• PIO (2.6.1)
• cray-mpich (8.1.25)
• craype (2.7.20)
• hdf5 (1.12.2)
ROSE Compiler Dependencies
• flex (2.6.4)
• boost (1.67.0)
• JDK (1.8.0 241)
• gcc (7.4.0)

Artifact Execution
Automated Precision Tuning Workflow
T0 One-time preprocessing of target: search space cre-

ation (Section III-A), construction of interprocedural
floating-point flow (Section III-C), taint analysis to
find minimal program to be parsed into AST for
transformation (Section III-C)

T1 The Delta-Debugging search algorithm generates a
batch of potential precision assignments for the tar-
geted floating-point variables.

T2 In parallel, each precision assignment is applied to
the model source code in order to yield mixed-
precision variants.

T3 In parallel, each mixed-precision variant is compiled,
executed, and evaluated to measure performance and
correctness.

T4 Performance and correctness measurements from the
batch of mixed-precision variants are fed back to
the Delta-Debugging search algorithm in order to
provide guidance for the next batch.

Each experiment begins by executing T0 which takes on
the order of 1% of the total time of the experiment. Then,
execution iterates over the cycle T1 → T2 → T3 → T4 →
T1 → ... until the termination criteria for the Delta-Debugging
algorithm is met. Specifically, this is when a 1-minimal variant
is found, i.e., a mixed-precision variant for which lowering the
precision of any one variable violates the specified correctness
criteria or results in a variant that is less-performant than the
baseline.

For this artifact, four different instances of this automated
precision tuning workflow are applied in parallel. These gen-
erate the three plots in Figures 5 and 6 as well as the single
plot in Figure 7.

Additional experimental parameters specified for each ex-
periment include what variables in the model to target for tun-
ing, what representative input to use to exercise the model (i.e.,
what simulation should be run), the correctness criteria, the
performance metric to be collected, and the number of times
to run each mixed-precision variant. Choices for each and the
corresponding justifications are provided in the Methodology
(Section III) and the Experimental Setup (Section IV-A). Note
that none of these need be manually-specified when executing
this artifact in order to reproduce the results of the case study;
we mention them here for the sake of completeness.

Artifact Analysis (incl. Outputs)

Because of the inherent non-determinism of a performance-
guided search, one cannot expect bit-for-bit reproduciblity.
Instead, the results of each experiment should be validated
by visual inspection of generated plots and ensuring that they
possess the following properties:

MPAS-A + Section IV-B
• Best speedup of ∼ 1.9×
• Most variants that are <30% 32-bit have ≤ 1× speedup
• Most variants that are >90% 32-bit have ≥ 1.8× speedup
• Most variants that are 50-89% 32-bit have 0.7-1.8×

speedup
• In Figure 5, these three groups should be identifiable
• In Figure 6, many more procedure variants

plotted for atm_compute_dyn_tend_work
and the flux procedures compared to the
atm_recover_large_step_variables_work
and atm_advance_acoustic_step_work
procedures

• In Figure 6, some variants of the flux procedures
exibiting large slowdowns on the order of 0.03-0.1×

ADCIRC + Section IV-B
• Best speedup of ∼ 1.1×
• In Figure 6, speedup on the order of 1.1-1.2× for the

best peror and pjac variants
• In Figure 6, bimodal distribution for speedups of variants

of the jcg procedure: one with ≤ 1× speedup and the
other with 3-10× speedup.

MOM6 + Section IV-B
• Best speedup of < 1.1×
• All of the executable variants with > 98% 32-bit vari-

ables exhibit slowdowns on the order of 0.2-0.6×
• In Figure 6, some variants of the
zonal_flux_adjust procedure exhibit slowdowns
on the order of 0.01-0.1×

MPAS-A + Section IV-C
• Best speedup of < 1.1×
• Most variants that are >90% 32-bit have <0.6× speedup
• Most variants that are <50% 32-bit have 0.8-1× speedup
• In Figure 7, these two clusters should be visible

159

