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ABSTRACT

We consider truthful combinatorial auctions with items" ≔ [<]
for sale to = bidders, where each bidder 8 has a private monotone

valuation function E8 : 2" → R+. Among truthful mechanisms,

maximal-in-range (MIR) mechanisms (sometimes called VCG-based)

achieve the best-known approximation guarantees among all poly-

communication deterministic truthful mechanisms in all previously-

studied settings. Our work settles the communication complexity

necessary to achieve any approximation guarantee via an MIR

mechanism. Speci�cally:

Let MIRSubMod (<,:) denote the best approximation guarantee

achievable by an MIR mechanism using 2: communication be-

tween bidders with submodular valuations over < items. Then

for all : = Ω(log(<)), MIRSubMod (<,:) = Ω(
√
</(: log(</:))).

When we set : = Θ(log(<)), this improves the previous best lower

bound for polynomial communication maximal-in-range mecha-

nisms from Ω(<1/3/log2/3 (<)) to Ω(√</log(<)). Additionally,
MIRSubMod (<,:) = $ (

√
</:). Moreover, our mechanism can be

implemented with 2: simultaneous value queries and computa-

tion, and is optimal with respect to the value query and computa-

tional/succinct representation models. The mechanism also works

for bidders with subadditive valuations. When : = Θ(log(<)), this
improves the previous best approximation guarantee for polyno-

mial communication maximal-in-range mechanisms from $ (√<)
to $ (

√
</log(<)).

Let also MIRGen (<,:) denote the best approximation guaran-

tee achievable by an MIR mechanism using 2: communication

between bidders with general valuations over< items. Then for all

: = Ω(log(<)), MIRGen (<,:) = Ω(</:). When : = Θ(log(<)),
this improves the previous best lower bound for polynomial com-

munication maximal-in-range mechanisms from Ω(</log2 (<)) to
Ω(</log(<)). Additionally, MIRGen (<,:) = $ (</:). Moreover,

our mechanism can be implemented with 2: simultaneous value

queries and computation, and is optimal with respect to the value

query and computational/succinct representation models. When

: = Θ(log(<)), this improves the previous best approximation

guarantee for polynomial communication maximal-in-range mech-

anisms from $ (</
√
log(<)) to $ (</log(<)).
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1 INTRODUCTION

In a combinatorial auction, a central designer has a set of items

" ≔ [<], and bidders # ≔ [=]. Each bidder 8 has a monotone

valuation E8 : 2
" → R+, unknown to the designer. The designer

interacts with the bidders to produce an allocation� = (�1, . . . , �=)
of the items (where �8 ∩� 9 = ∅ for all 8 ≠ 9 ), and their goal is to

select one maximizing the welfare, de�ned
∑
8∈# E8 (�8 ).

As an algorithmic resource allocation problem, combinatorial

auctions are extremely well-studied – see further discussion in

Section 1.3. Combinatorial auctions are similarly well-studied in

economic settings, where the bidders’ incentives are now relevant.

That is, while an e�cient communication protocol su�ces in a

purely algorithmic setting, that protocol must also be incentive

compatible and incentivize all bidders to follow it. Here, the designer

may also charge each bidder 8 a price ?8 , and the bidder aims to

optimize their utility: E8 (�8 ) − ?8 .

When considering either desiderata separately, the state of a�airs

is well-understood. For example, with polynomial communication,

a tight Θ(√<)-approximation for monotone valuations [5, 32, 36],

a tight 2-approximation for subadditive valuations [24, 25], and a

tight 4/(4−1)-approximation for XOS valuations [17, 25] are known.

Additionally, the optimal achievable guarantee for submodular val-

uations is known to lie in [24/(24 − 1), 4/(4 − 1) − 10−5] [21, 26].
However, these protocols are not incentive compatible. Similarly,

the classical Vickrey-Clark-Groves (VCG) mechanism is incentive

compatible and �nds the welfare-maximizing allocation [8, 27, 37],

but requires exponential communication for any of the above-

referenced valuation classes.

As such, a central open problemwithin Economics and Computa-

tion is understanding the extent to which communication-e�cient

truthful mechanisms can match the approximation guarantees

of communication-e�cient (not necessarily incentive compatible)

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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protocols. A key framework to tackle this agenda is maximal-in-

range (MIR) mechanisms. For example, state-of-the-art determinis-

tic truthful mechanisms for monotone, subadditive, XOS, and sub-

modular valuations are maximal-in-range [17, 28]. Our main results

settle the approximation guarantees achievable byMIRmechanisms.

We overview this agenda and our results below.

1.1 Maximal-in-Range Mechanisms

MIR mechanisms leverage the VCG mechanism to trade o� approxi-

mation guarantees for e�ciency. In particular, the VCG mechanism

implies a truthful mechanism that maximizes welfare over any set

of (possibly unstructured) outcomes. Speci�cally, one can de�ne

any allocation bank A of allocations, and the VCG mechanism will

truthfully optimize welfare over all allocations in A. Formally:

Theorem 1.1 (VCGMechanism [8, 27, 37]). LetA be a collection

of allocations, and let P be any communication protocol among the =

bidders to �nd the welfare-maximizing allocation in A. Then there is

a deterministic truthful mechanism that selects a welfare-maximizing

allocation in A using = + 1 black-box calls to P.

The resulting mechanism is termed a Maximal-in-Range Mecha-

nism for A [35].

MIR mechanisms therefore provide a structured algorithmic

framework to design deterministic truthful mechanisms: one se-

lects an allocation bank A and designs a protocol P to optimize

over it. This framework induces a tradeo� between e�ciency and

optimality: richer allocation banks may contain allocations whose

welfare better approximates the true optimal welfare, but smaller

allocation banks may require less communication to optimize over.

For the following reasons, there is signi�cant interest in under-

standing the approximation guarantees achievable by MIR Mecha-

nisms:

• In all settings, the best-known approximation guarantees

achieved by polynomial communication deterministic truth-

ful mechanisms are achieved by MIR mechanisms [17, 28].

Moreover, this claim has held for the entire duration of the

study of combinatorial auctions (that is, no polynomial com-

munication deterministic truthful mechanisms that outper-

form the best-known MIR mechanism at the time have ever

been discovered).1

• All deterministic truthful mechanisms satisfying four nat-

ural properties are a�ne maximizers, a generalization of

MIR mechanisms [30].2 Moreover, if an a�ne maximizer

guarantees an U-approximation using V communication on

all submodular/XOS/subadditive/monotone valuations, then

the MIR mechanism with the same allocation bank does so

for the same valuation class as well.

1Note that [14] discover exponential-communication non-MIR deterministic truthful
mechanisms that outperform the best poly-communication MIR mechanisms in multi-
unit domains [14], but poly-communication deterministic truthful mechanisms have
never outperformed MIR mechanisms.
2An a�ne maximizer also is de�ned by an allocation bank A, scalars ®2 ∈ R=≥0 , and
an adjustment E0 : A → A. The a�ne maximizer selects an allocation (�1, . . . , �= )
optimizing E0 (�1, . . . , �= ) +

∑
8∈# 28 · E8 (�8 ) . A�ne maximizers are also truthful

using the VCG payment scheme.

• Some conjecture that indeed MIR mechanisms are the opti-

mal deterministic mechanisms (and therefore settling the ap-

proximation guarantees of poly-communication MIR mech-

anisms will eventually settle the approximation guarantees

of all poly-communication deterministic truthful mecha-

nisms), although this conjecture remains far from settled.

However, we show that MIR mechanisms indeed achieve op-

timal approximation guarantees for all deterministic truthful

mechanisms in the value query model and the computa-

tional/succinct representation model (see Table 1).

Indeed, MIR mechanisms have been studied since the start of

Economics and Computation as a �eld [35], and several works over

the past two decades make signi�cant progress understanding their

strengths and limitations. Our main results close these gaps. We

now state our main results, and afterwards discuss their context.

In the following theorem statements (and the rest of this paper),

de�neMIRSubMod (<,:) (andMIRGen (<,:), respectively) to be the
optimal approximation guarantee that can be achieved by an MIR

mechanism using at most 2: communication between bidders with

submodular (and general, respectively) valuations over< items.

Theorem 1.2. For all : = Ω(log(<)) and for all = = Ω(
√
</:),

MIRSubMod (<,:) = Ω(
√
</(: log(</:))). In particular, the best

possible approximation guarantee for submodular valuations by MIR

mechanisms with poly(<) communication is Ω(√</log(<)).

This improves prior work, beginning with the impossibility

of <1/6 with polynomial communication for MIR mechanisms

for submodular valuations by [14], which was later improved to

<1/3/log2/3 (<) by [9].

The particular constant of 1/2 in the exponent is signi�cant be-

cause we now know that the MIR mechanism of [17] achieving an

$ (√<)-approximation using polynomial communication is essen-

tially tight. Still, our second main result improves their guarantee

slightly.

Theorem 1.3. For all : = Ω(log(<)) and for all =, we have

MIRSubMod (<,:) = $ (
√
</:). In particular, our mechanism guar-

antees a $ (
√
</log<) approximation in poly(<) communication.

Moreover, the mechanism we construct can be implemented us-

ing 2$ (: ) simultaneous value queries, or in time 2$ (: ) in the suc-

cinct representation model. Our mechanism guarantees an$ (
√
</:)-

approximation for subadditive valuations as well.

Theorem 1.3 is a mild improvement over [17] (it saves a
√
log(<)

factor). Still, we note that the MIR mechanism of [17] is excep-

tionally simple, and no better guarantee was previously known.

Together, Theorems 1.2 and 1.3 nail down the achievable approxi-

mation guarantees for submodular valuations by MIR mechanisms

with poly(<) communication up to a factor of Θ(
√
log(<)), expo-

nentially improved over the prior gap of Θ̃(<1/6). Additionally, it
is worth noting that in the value query and computational/succinct

representation models, the MIR mechanism we construct for sub-

additive valuations is optimal for all deterministic truthful mecha-

nisms; see [22] and the appendix of the full paper.3

3https://arxiv.org/pdf/2404.00831
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We also consider general valuations. Here, nearly-tight bounds

were previously known, and we improve both to be tight up to

constant factors.

Theorem 1.4. For all : = Ω(log(<)),MIRGen (<,:) = Θ(</:).
In particular, the best possible approximation guarantee for mono-

tone valuations by MIR mechanisms with poly(<) communication

is Θ(</log<). Moreover, the mechanism we construct can be imple-

mented using 2$ (: ) simultaneous value queries, or in time 2$ (: ) in
the succinct representation model.

When considering poly(<) communication, this gives logarith-

mic improvements for the previous best impossibility result of

Ω(</log2 (<)) by [9], and the previous best approximation guar-

antee of $ (</
√
log(<)) by [28].4 Still, the minor improvements

are signi�cant as both bounds are now tight.

Table 1 places our work alongside prior work for all three consid-

ered models. Our main results consider the communication model,

but also imply minor improvements in the value query or computa-

tional model for free (or modest additional work). We contextualize

the key takeaways from this table.

• In the communication model with arbitrary monotone val-

uations, we improve both the state-of-the-art mechanism

and lower bound, reducing the gap between them from

Θ(log1.5 (<)) to Θ(1). In other words, Θ(</log(<)) is the
best achievable guarantee in poly(<) communication.

• In the communication model with subadditive/XOS/submod-

ular valuations, we improve the state-of-the-art lower bounds

and slightly improve the state-of-the-art mechanism, reduc-

ing the gap between them from Θ̃(<1/6) to Θ(
√
log(<)).

In other words, Θ̃(√<) is the best achievable guarantee in
poly(<) communication.

• In the value queries model and computational model with

either arbitrary monotone or subadditive/XOS/submodular

valuations, we slightly improve state-of-the-art mechanisms.

In the value queries model, these improvements match pre-

existing lower bounds on any poly(<)-query deterministic

truthful mechanism.5 In the computational model, we further

slightly improve prior-best lower bounds on any poly(<)-
time deterministic truthful mechanism to match our MIR

mechanisms. That is, we now know that MIR mechanisms

achieve the optimal approximation guarantees among all

poly(<)-query deterministic truthful mechanisms, and all

poly(<)-time deterministic truthful mechanisms in the suc-

cinct representation model. These MIR mechanisms follow

by observing that our new communication-e�cient mecha-

nisms can be implemented with poly(<) value queries (in
fact, simultaneous value queries). Our slight improvement

on lower bounds follows a similar outline as prior work, but

is more careful with lower order terms.6

4Although the Θ(
√
log(<) ) improvement in the upper bound seems small, the mech-

anism of [28] is actually far from optimal for large : ; for example, if we allow 2$ (<)

communication for a su�ciently small constant, then the mechanism of [28] is only

$ (√<)-approximate, whereas ours is$ (1)-approximate.
5For arbitrary monotone, subadditive, and XOS valuations, our mechanisms even
match pre-existing lower bounds on any poly(<)-query deterministic algorithm.
6Our computational lower bounds also use the stronger assumption of the randomized
Exponential Time Hypothesis instead of the assumption RP ≠ NP used in prior work.
However, this is essentially necessary if we care about lower order terms.

1.2 Technical Highlights

Below, we overview one technical highlight from our algorithms,

and one technical highlight from our lower bounds.

Technical Background: Prior Algorithms. The state-of-the-art

MIR mechanism for general valuations [28] and for submodular

valuations [17] are quite di�erent. Parameterizing their approaches

by : , the MIR mechanism of [28] partitions the items into : chunks

of size</: , and considers A to be the set of allocations that keeps

together all items in the same chunk. Observe that there are only

2: sets that any bidder might possibly receive in A, so optimizing

over A can be done with 2: communication.

On the other hand, [17] considers A to be the set of allocations

that either give all items to the same bidder, or that gives each

bidder a set of at most $ (:/log(</:)) items. Again, there are only

2: sets that any bidder might receive, so optimizing over A can be

done with 2: communication.

Technical Highlight: Our Algorithms. Our algorithm for mono-

tone valuations adds just one new idea to that of [28]: consider

multiple partitions. Speci�cally, repeat the process I times of par-

titioning" into : chunks, calling the chunks �
(ℓ )
B for ℓ ∈ [I] and

B ∈ [:]. Let A be the set of allocations such that each bidder re-

ceives a set of the form
⋃

B∈( �
(ℓ )
B for some ℓ ∈ [I] and ( ⊆ [:] (that

is, each bidder receives a set that picks a single partition, and then is

a union of chunks for that partition). Taking I = 2$ (: ) still requires
just 2$ (: ) communication. The main di�erence to [28] is that while

any single partition can only give an</
√
:-approximation, the best

of 2$ (: ) partitions improve the guarantee to</: . Informally, this is

because by taking many partitions, it is likely that for every set of :

items, there exists a partition where the items go to di�erent chunks.

This allows any : items to be optimally allocated, so allocating the

“most important” : items will yield an</:-approximation.

Our algorithm for subadditive/XOS/submodular valuations is in

some sense more like [28] than [17]. Sticking exclusively to an ap-

proach like [17] is almost optimal, but doomed to lose a
√
log(</:)

factor due to the fact that we can only exhaust over sets of size

$ (:/log(</:)) in 2: communication. On the other hand, sticking

exclusively to an approach like [28] cannot guarantee an > (</:)
approximation since at most : bidders are given items, so signi�-

cant changes are needed to leverage this approach. Our algorithm

is as follows:

• Take I = 2$ (: ) partitions of the items into
√
</: buckets of√

<: items (so there are 2$ (: )√</: total buckets).

• Within each bucket, take I′ = 2$ (: ) partitions of the items

into : chunks of
√
</: items. This induces sets of the form

�B′,ℓ ′,B,ℓ , where ℓ ∈ [I] determines which bucketing we use,

B ∈ [
√
</:] labels the bucket, ℓ′ ∈ [I′] determines which

partition of that bucket into chunks we use, and B′ ∈ [:]
labels the chunk.

• Finally, A denotes the set of allocations where each bidder

either receives all the items" , or receives a set of the form

∪B′∈(�B′,ℓ ′,B,ℓ for some ( ⊆ [:] and ℓ′, B, ℓ . In other words,

each bidder chooses a bucket (ℓ chooses the bucketing and B

chooses a bucket in that bucketing), chooses a partition of
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Table 1: Summary of our results (bolded) compared to prior work (unbolded) when : = Θ(log(<)). All models referenced above

are for deterministic mechanisms.

Communication General Subadditive/XOS/Submodular

Prior Best Mechanisms $ (</
√
log(<)) [28] $ (√<) [17]

Our MIR Mechanisms U (m/log(m)) (Thm. 1.4) U (
√

m/log(m)) (Thm. 1.3)

Our MIR Lower Bounds 
(m/log(m)) (Thm. 1.4) 
(√m/log(m)) (Thm. 1.2)

Prior MIR Lower Bounds Ω(</log2 (<)) [9] Ω(<1/3/log2/3 (<)) [9]

Value Queries General Subadditive/XOS/Submodular

Prior Best Mechanisms $ (</
√
log(<)) [28] $ (√<) [17]

Our MIR Mechanisms U (m/log(m)) (Thm. 1.4) U (
√

m/log(m)) (Thm. 1.3)

Truthful Lower Bounds ↓ Ω(
√
</log(<)) [22]

Algorithmic Lower Bounds Ω(</log(<)) [5] Ω(
√
</log(<)) for Subadditive/XOS [17]

Computation (Succ. Rep.) General Subadditive/XOS/Submodular

Prior Best Mechanisms $ (</
√
log(<)) [28] $ (√<) [17]

Our MIR Mechanisms U (m/log(m)) (Thm. 1.4) U (
√

m/log(m)) (Thm. 1.3)

Our Truthful Lower Bounds 
(m/log(m)) (Full Paper) 
(
√

m/log(m)) (Full Paper)
Prior Truthful Lower Bounds <1−Θ(1) [9]

√
<1−Θ(1) [22]

that bucket into chunks, and then receives a subset of the

chunks for the chosen partition of the chosen bucket.

Observe that there are again only 2$ (: ) ·
√
<: ·2$ (: ) ·2: = 2$ (: )

ways to choose such a set that a bidder might get in A, so A can

be optimized over in 2$ (: ) communication.

Broadly, the idea is to use subadditivity and binomial tail bounds

to argue that a bucketing exists where we only need to allocate :

items optimally within each bucket to get a
√
</:-approximation.

Then we leverage our mechanism for general valuations within

each bucket to allocate the : items.

The key high-level technical takeaway we wish to emphasize is

that exhausting over collections of large chunks of items, versus

exhausting over collections of a few items, seems to be “the right”

way to achieve optimal approximation guarantees for MIR mecha-

nisms. This is because each partition into large chunks of items can

achieve the desired approximation ratios for many con�gurations

of bidders simultaneously, which allows us to overcome the barrier

that there are too many con�gurations of bidders to try satisfying

them by asking for small sets.

Technical Background: Prior LowerBounds. Prior lower bounds

onMIRmechanisms follow from an argument of the following form:

(1), derive structure on A, using the fact that A guarantees a good

approximation, then (2), show that this structure embeds a hard

communication problem. At a very high-level, the initial approach

of [14] could be described as using �rst-principles for (1), and then

a non-trivial reduction from SetDisjointness for (2). The state-of-

the-art approaches of [7, 9] instead use advanced machinery based

on generalizations of the VC-dimension for (1), so that a trivial

argument for (2) su�ces.

In slightly more detail, [7, 9] �nd a set # ′ of bidders and"′ of
items such thatA must contain every possible allocation of items in

"′ to bidders in # ′ (in this case, we say that A shatters ("′, # ′)).
Then if the valuation class requires exponential communication to

exactly optimize welfare, a communication lower bound of 2Ω ( |" ′ | )

follows immediately for (2), because when restricting attention to

"′ and # ′, A considers all allocations and is exactly optimal.

Technical Highlight: Our Lower Bounds. Our lower bounds

leverage some of the advanced machinery developed in [7, 9] to

understand the structure of any A that achieves a good approxi-

mation, but stops short of going all the way to shattering. Indeed,

the bounds in [9] are tight (up to perhaps logarithmic factors) for

approaches that insist on fully shattering some ("′, # ′). Instead,
we leverage just enough structure to move towards a communica-

tion lower bound. For general valuations, the structure established

in prior work actually su�ces for a direct reduction from SetDis-

jointness that saves a log(<) factor. For submodular valuations, we

derive a novel structure onA, but ultimately avoid a full shattering

argument to save a Θ̃(<1/6) factor.
The high-level takeaway is that our lower bounds improve over

prior results by uncovering “the right” structure on A to enable

a simple-but-not-trivial communication lower bound, rather than

pushing all the way towards fully shattering.

1.3 Related Work

We’ve previously discussed the most-related work to ours: [35]

introduces the concept of MIR mechanisms, based o� principles of

the VCG mechanism [8, 27, 37]. [28] provides the �rst (and until

our work, state-of-the-art) approximation for general valuations

via an MIR mechanism, which is also the best previous truthful
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deterministic mechanism. [17] provides the �rst (and until our

work, state-of-the-art) approximation for submodular valuations

via an MIR mechanism, which is also the best previous truthful

deterministic mechanism. [14] provide the �rst lower bounds on

poly(<)-communication MIR mechanisms for submodular valua-

tions. [9], building on tools developed in [7], improve their bounds

for submodular valuations and provide the �rst bounds for general

valuations.

Beyond these directly-relatedworks, there is a rich body of works

on combinatorial auctions broadly. These works provide context

for the study of MIR mechanisms speci�cally. For example, [30]

establish that all mechanisms satisfying four natural properties

are a�ne maximizers (a generalization of MIR mechanisms that

achieve identical approximation guarantees). Therefore, our results

on MIR mechanisms also immediately bound approximation guar-

antees achievable by this class of mechanisms. There are, however,

deterministic mechanisms that are not a�ne maximizers (posted-

price mechanisms are one such example). As such, there is also an

active body of research aiming to understand the approximation

guarantees of deterministic truthful mechanisms with bounded

communication. Our mechanisms are now the state-of-the-art de-

terministic truthful mechanisms with poly(<) communication for

submodular, XOS, subadditive, and general valuations. On the other

hand, there are signi�cantly fewer lower bounds that hold for all

deterministic truthful mechanisms. Speci�cally, the only such result

for any of these four classes is a 4/3 + Y lower bound for two XOS

bidders [3, 6, 13].

The discussion of the previous paragraph considers a protocol to

be truthful if it is an ex-post Nash equilibrium for bidders to follow

it. That is, as long as every other bidder is following the protocol for

some plausible valuations ®E−8 , it is in bidder 8’s best interest to follow
the protocol as well (for all 8). One could instead seek mechanisms

that are dominant strategy truthful: even if the other players use

bizarre strategies that are not prescribed for any ®E−8 , it is still in
bidder 8’s best interest to follow the protocol. On this front, [18] re-

cently establish that no dominant strategy truthful mechanism can

achieve an<1−Y approximation for general valuations in poly(<)
communication. This means that, up to lower-order terms, the MIR

mechanisms we develop are also optimal among dominant strategy

truthful mechanisms (our mechanisms are dominant strategy truth-

ful because they can be implemented using poly(<) simultaneous

communication).

Finally, there is signi�cant related work on the communica-

tion complexity of combinatorial auctions broadly, considering

protocols (without incentives) [1, 15, 17, 21, 24–26, 36], determin-

istic truthful mechanisms [32], and randomized truthful mecha-

nisms [2, 4, 10, 12, 16, 29]. There is also signi�cant related work on

the computational complexity of combinatorial auctions broadly,

again considering protocols without incentives [31, 33, 38], and

strong inapproximability results for truthful and computationally

e�cient mechanisms [11, 19, 20, 22, 23].

2 PRELIMINARIES AND NOTATION

2.1 Shattering

When convenient, we may think of an allocation � : " → # ∪ {∗}
as a function from items to bidders, where ∗ denotes an item not

allocated to any bidder. As such, we may use notation such as

�|" ′ ≔ (�1 ∩"′, . . . , �= ∩"′) and A|" ′ ≔ {�|" ′ : � ∈ A} to
denote the restriction of an allocation/allocation bank to the items

"′. For allocation banks on disjoint sets of items A and B, we

may also use the notation A ×B ≔ {(�1 ∪ �1, . . . , �= ∪ �=) : � ∈
A, � ∈ A} to denote an allocation bank where each combination

of � ∈ A and � ∈ B is possible.

For a set of bidders E1, . . . , E= : 2" → R+, de�ne �∗ (®E) to be

an optimal allocation, and let OPT(®E) be the welfare under �∗ (®E).
For any # ′ ⊆ # , de�ne OPT(®E, # ′) to be the welfare of bidders # ′

under�∗ (®E). LetMIRA (®E) be thewelfare from an optimal allocation

in A.

One concept that will repeatedly appear in our arguments is that

of an allocation bank A shattering a collection of items/bidders.

De�nition 2.1 (Shattering). An allocation bank A 3-shatters a

pair ("′, # ′) if for all items 9 ∈ "′, there exists a set)9 ⊆ # ′ with
|)9 | = 3 such that

>
9∈" ′ )9 ⊆ A|" ′ . That is, for each of the 3 |"

′ |

ways to allocate each item 9 ∈ "′ to a bidder in )9 , there exists an

allocation in A that allocates the items in"′ in this manner.

If A |# ′ |-shatters ("′, # ′), we will simply say that A shatters

("′, # ′).

Prior lower bounds of [7, 9] use this concept extensively, and

eventually �nd a large set of items that are shattered. Our lower

bound for submodular functions leverage this machinery for 3 <

|# ′ | instead of 3 = |# ′ | to achieve a Θ̃(<1/6) improvement. This

concept is also helpful for understanding intuitively how our mech-

anisms provide good approximation guarantees.

2.2 Formal Statement of Models

Our main results consider the communication model, where each

player 8 holds the valuation function E8 (·) and we consider only

the communication cost of the protocol (for concreteness, in the

blackboard model). Our new mechanisms (like the previous-best

mechanisms) can be implemented simultaneously using only value

queries. As such, these also imply results in the value query model,

and the succinct representation model. In the succinct representa-

tion model, each player has a E8 (·) that can be represented by an

explicit circuit of size at most poly(<). Because our main results

are parameterized by : , we will further refer to the 2: -succinct rep-

resentation model as the case where each E8 (·) can be represented

by an explicit circuit of size at most 2$ (: ) .
Additionally, we make the simplifying assumption that when

considering the class of mechanisms that can be run in 2$ (: ) com-

munication/value queries/computation, all numbers are integers

less than 22
$ (: )

(and therefore can be represented in 2$ (: ) bits
in a standard fashion). We make this assumption to avoid any

strangeness with things like arithmetic, value queries representing

arbitrary precision numbers, etc.

3 AN OPTIMAL MAXIMAL-IN-RANGE
MECHANISM FOR GENERAL VALUATIONS

In this section, we will prove the upper bound in Theorem 1.4

by constructing an</:-approximate MIR mechanism which uses

2$ (: ) communication.
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De�nition 3.1 (Chunking Mechanism). Let � (1) , . . . , � (I ) ∈ [C]"
partition " into C chunks each. The allocation bank A contains

every allocation where each bidder gets a set of the form � ((, ℓ) :=
⋃

9∈( �
(ℓ )
9 for some ℓ ∈ [I], ( ⊆ [C], and the chunking mechanism

for � (1) , . . . , � (I ) is MIR over A.

The prior state-of-the-art for general valuations is simply a

chunking mechanism for a single partition into : chunks of equal

size [28] (i.e. a chunking mechanism with I = 1). They prove their

mechanism guarantees an</
√
: approximation ratio for all mono-

tone valuations (and this is tight – no chunking mechanism with

I = 1 can guarantee better than</
√
:).

Our only new idea is to instead consider a chunking mechanism

for multiple carefully chosen partitions which satisfy the following

property.

De�nition 3.2 (A -Itemizing). A partition � (ℓ ) itemizes a set ( if

each chunk of � (ℓ ) contains at most one item of ( . A list of partitions

� (1) , . . . , � (I ) is A -itemizing if for any set ( of size at most A , there

exists � (ℓ ) which itemizes ( .

Lemma 3.3. For all A = Ω(log log(<)) and some I = 2Θ(A ) , there
exists a list of partitions � (1) , . . . , � (I ) ∈ [A ]" into A chunks which

is A -itemizing.

Proof. Suppose we randomly sample the partitions such that

� (1) , . . . , � (I ) ∈ [A ]" are independent and uniformly random.

Then for a �xed set ( of size A , the partition � (ℓ ) itemizes A w.p.

A !/AA = 2−Θ(A ) . Therefore, by independence, no partition itemizes

( w.p. at most (1 − 2−Θ(A ) )I = 2−2
Θ(A )

. By a union bound over the
(<
A

)
≤ 2A log(<) ≤ 22

Θ(A )
sets of size A , � (1) , . . . , � (I ) is A -itemizing

w.p. > 0. Thus, there exists a �xed list of partitions � (1) , . . . , � (I )

that is A -itemizing. □

Theorem 3.4. Let : = Ω(log(<)) and let I = 2Θ(: ) . Additionally,
let � (1) , . . . , � (I ) ∈ [A ]" be a (4:)-itemizing list of partitions, which

exists by Lemma 3.3. Then the chunkingmechanism for � (1) , . . . , � (I )

is</:-approximate and can be implemented using 2$ (: ) communi-

cation.

Moreover, the mechanism can be implemented simultaneously with

2$ (: ) value queries, and in time 2$ (: ) in the 2: -succinct representa-

tion model.

Proof. The �rst step in our analysis for general valuations is

similar to the analysis of [17] for subadditive valuations, which

separately analyzes the bidders who receive many items versus few

items in the optimal allocation.

Let C =</(2:). We will partition bidders into sets #0, #1, . . . , #C

such that 8 ∈ #0 if and only if |�∗
8 (®E) | > 2: , and for all B > 0,∑

8∈#B
|�∗

8 (®E) | ≤ 4: . Observe that the condition on all #B is possible

because the bidders not in #0 all get at most 2: items each.7

Let A be the allocation bank which de�nes the chunking mech-

anism and observe that A can allocate all items to a single bidder.

7That is, this partition can be created by �rst placing all bidders with |�∗
8
(®E) | > 2: in

#0 , and then greedily �lling #8 with remaining bidders without exceeding the cap of
4: . Because each bidder not in #0 gets at most 2: items, each non-empty bidder set
will have at least 2: items.

Then since there are at most</(2:) bidders who get more than 2:

items, MIRA (®E) ≥ (2:/<) OPT(®E, #0).
Now, observe that any set ( which is itemized by some � (ℓ )

is shattered by A, as the chunking mechanism can assign any

combination of the chunks (and hence any combination of the

items) to the bidders. Thus, A shatters every set of size 4: . Since

each set of bidders #B gets at most 4: items in �∗ (®E), MIRA (®E) ≥
maxB∈[C ] OPT(®E, #B ) ≥ (2:/<) OPT(®E, # \ #0).

Therefore, we get that for all valuations E1, . . . , E= ,

MIRA (®E) ≥ max

{
2:

<
OPT(®E, #0),

2:

<
OPT(®E, # \ #0)

}

≥ :

<
OPT(®E) .

Communication and Computation. Each bidder can only

receive at most 24:I = 2Θ(: ) possible sets in A, so optimizing

overA can be done with just 2Θ(: ) simultaneous value queries per

bidder. On the computation side, we will make use of the following

lemma.

Lemma 3.5. In the 2<
′
-succinct representation model with items

"′
≔ [<′] and bidders # ′

≔ [=′], a welfare-maximizing allocation

can be found in time 2$ (<′ ) · =′.

Proof. For ) ⊆ # ′ and ( ⊆ "′, de�ne E) (() to be the optimal

welfare for bidders) and items ( , and de�ne�) (() to be an optimal

allocation of items ( to bidders ) . Suppose the functions E [8 ] and
�[8 ] are known for some 8 ∈ [=′ − 1]. Then E [8+1] and �[8+1] can
be computed in 2$ (<′ ) computation by brute forcing over all 2<

′

sets ( ⊆ " and all of at most 2<
′
allocations of ( between E [8 ] and

E8+1. Hence, we can iteratively compute E# ′ and �# ′ in 2$ (<′ )=′

time, and the optimal allocation is �# ′ ("′). □

Observe that to run our mechanism, we only need to solve I

welfare maximization problems over 4: “items,” where we inter-

pret a chunk as a single item. Therefore, by Lemma 3.5, the total

computation needed is 2$ (: )=I = 2$ (: ) . □

Remark 3.6. Note that while we can run the above mechanism

in polynomial time given an A -itemizing list of partitions, we do not

know how to explicitly �nd such a list in polynomial time. There-

fore, if we want an explicit mechanism, then we can only achieve

an</log(<) approximation in polynomial time w.h.p. by sampling

a random list of partitions. Note that this is still stronger than a

mechanism which achieves the desired approximation with con-

stant probability/in expectation since not all truthful mechanisms

can have their success probability ampli�ed by repetition.

A similar statement holds true for the subadditive mechanism in

the next section.

4 A MAXIMAL-IN-RANGE MECHANISM FOR
SUBADDITIVE VALUATIONS

In this section, we will prove Theorem 1.3 by giving a
√
</:-

approximate MIR mechanism for subadditive valuations which

uses 2$ (: ) communication.

The prior state-of-the-art for subadditive valuations asks each

bidder for their value for the entire set of items, and each set of
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$ (:/log(</:)) items [17]. Then we can either give one in�uential

bidder every item (not too many in�uential bidders =⇒ good ap-

proximation), or we can give every bidder their :/log(</:) favorite
items (subadditivity =⇒ good approximation).

Our mechanism for subadditive valuations deviates from this

approach of asking for smaller sets, and is instead more closely

related to our approach for general mechanisms.

De�nition 4.1 (Bucketing Mechanism). Let � (1) , . . . , � (I ) ∈ [C]"
partition " into C buckets each, and for each ℓ ∈ [I], B ∈ [C],
and ) ⊆ # , let A (ℓ )

B,)
⊆ )�

(ℓ )
B be an allocation bank for items

�
(ℓ )
B among bidders ) . Also, let �(8 ) denote the allocation that

awards all items to bidder 8 . Then the bucketing mechanism for

{A (ℓ )
B,)

: ℓ ∈ [I], B ∈ [C],) ⊆ # } is MIR over the allocation bank

A ≔

( ⋃

8∈#
{�(8 ) }

)
∪
( ⋃

ℓ∈[I ]

⋃

%∈[C ]#

?

B∈[C ]
A (ℓ )

B,%B

)
.

In other words, A includes all allocations that award all items to

the same bidder. All other allocations in A �rst choose a bucketing

ℓ ∈ [I], then partitions bidders among buckets (with bidders %B

going to bucket B), and then �nally chooses an allocation in A (ℓ )
B,%B

of items in bucket �
(ℓ )
B to bidders %B . The bucketing mechanism for

A is MIR over A.

De�nition 4.2 (Regular). A partition � (ℓ ) ∈ [C]" is regular for

a (possibly incomplete) partition of the items � into C buckets if

for all B ∈ [C] where |�B | = $ (</C), |� (ℓ )
B′ ∩ �B | = $ (</C2) for all

B′ ∈ [C]. A list of partitions � (1) , . . . , � (I ) ∈ [C]" is regular if for

all �, some � (ℓ ) is regular for �.

Lemma 4.3. For C = $ (
√
</log(<)), there exists a regular list of

partitions � (1) , . . . , � (<) ∈ [C]" .

Proof. Suppose we randomly sample the partitions such that

� (1) , . . . , � (<) ∈ [C]" are independent and uniformly random.

Then for a �xed (possibly incomplete) partition � into C buckets

and any B ∈ [C] where |�B | ≤ �</C for some constant� , |� (ℓ )
B′ ∩�B |

is stochastically dominated by- ∼ Binom(�</C, 1/C). Thus, noting
that</C2 = Ω(log(<)), we have

Pr
[
� (1) , . . . , � (<) is not regular for �

]

≤
(
C2 Pr[- = l (</C2)]

)<

≤
(
<C2 Pr[- = 3�</C2]

)<

≤
(
<C2

(
�</C
3�</C2

) (
1

C

)3�</C2 )<

≤
(
<C2

(
�4</C
3�</C2

)3�</C2 (
1

C

)3�</C2 )<

=

(
<C2

(
4

3

)3�</C2 )<
≤ 1

<<
.

Hence, by a union bound over ≤ 2<C< < << (possibly incom-

plete) partitions of the items into C buckets, � (1) , . . . , � (<) is reg-
ular w.p. > 0, and therefore there exists a �xed list of partitions

� (1) , . . . , � (<) which is regular. □

We now present a
√
</:-approximate mechanism for subaddi-

tive valuations using 2$ (: ) simultaneous value queries.

De�nition 4.4 (Bucket-ShatteringMechanism). Let: = Ω(log(<))
and let C =

√
</:/2. Additionally, let � (1) , . . . , � (<) ∈ [C]" be a

regular list of partitions, which exists by Lemma 4.3. For each

ℓ ∈ [I], B ∈ [C], �x a Θ(:)-itemizing list of 2Θ(: ) partitions for
�
(ℓ )
B (which exists by Lemma 3.3), and for each ) ⊆ # , let A (ℓ )

B,)
be

its chunking mechanism (i.e. the Θ(</:)-approximate MIR mech-

anism from Theorem 3.4 for this speci�c list of partitions). The

bucket-shattering mechanism for : is the bucketing mechanism for

this choice of A (ℓ )
B,%B

.

Example 4.5. Suppose we have < = 8 and = = 4. Then one

bucketing and chunking is

Buckets 1: ({1, 2, 3, 4}, {5, 6, 7, 8})
{
Chunks 1a: ({1, 2}, {3, 4}), Chunks 2a: ({1, 3}, {2, 4})
Chunks 1b: ({5, 6}, {7, 8}), Chunks 2b: ({5, 7}, {6, 8})

Buckets 2: ({1, 3, 5, 7}, {2, 4, 6, 8})
{
Chunks 1a: ({1, 3}, {5, 7}), Chunks 2a: ({1, 5}, {3, 7})
Chunks 1b: ({2, 4}, {6, 8}), Chunks 2b: ({2, 6}, {4, 8})

Then we could

• Choose bucketing 1

• Choose chunking 1a for bucket a and chunking 2b for the

bucket b.

• Assign bidder 1 to the bucket a and bidders 2, 3, 4 to the

bucket b.

• Give bidder 1 chunks {1, 2} and {3, 4} from bucket a.

• Give bidder 2 chunk {5, 7} and bidder 4 chunk {6, 8} from
bucket b.

This results in the allocation ({1, 2, 3, 4}, {5, 7}, ∅, {6, 8}). Any allo-

cation resulting from a similar procedure would be in the allocation

bank of the bucket-shattering mechanism.

On the other hand, the allocation ({1, 2, 5, 6}, {3, 4}, {7, 8}, ∅) is
impossible, because while we could choose bucketing 1, and chunk-

ings 1a for bucket a and 1b for bucket b, bidder 1 can only receive

chunks from a single bucket. This is a crucial restriction that saves

a large factor of communication.

Remark 4.6. One can think of the bucket-shattering mechanism

as adding an additional layer of shattering to the mechanism for

general valuations: we �rst shatter the bidders among the buckets,

in the sense that any allocation of the bidders to buckets is possible.

Then we run the general mechanism within each bucket, which

shatters the items among the bidders for that bucket.

Note that once the general mechanism within each bucket is

solved, no additional communication is needed to �nd the optimal

bucketing. However, 2Ω (=) computation is needed (at least naively),

which is too much when = = l (:). This can be avoided by restrict-

ing consideration to only poly(<) random allocations of bidders

to buckets instead of all C= allocations. We �rst analyze the more

elegant, computationally ine�cient version.
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Theorem 4.7. For : = Ω(log(<)), the bucket-shattering mech-

anism for : (De�nition 4.4) is
√
</:-approximate for subadditive

valuations and can be implemented using 2$ (: ) communication.

Moreover, the mechanism can be implemented simultaneously with

2$ (: ) value queries.

Proof. We again �rst partition bidders into sets #0, #1, . . . , #C

such that 8 ∈ #0 if and only if |�∗
8 (®E) | ≥ 2

√
<: , and for all B ∈ [C],

∑
8∈#B

|�∗
8 (®E) | ≤ 4

√
<: .

Observe that A can allocate all items to a single bidder, so since

there are at most
√
</:/2 bidders who get more than 2

√
<: items,

MIRA (®E) ≥ 2
√
:/<OPT(®E, #0).

De�ne �∗B ≔
⋃

8∈#B
�∗
8 (®E), meaning that �∗B is the items that

bidders in bucket B get in an optimal allocation. By construction of

#1, . . . , #C , |�∗B | ≤ 4
√
<: = 2</C for all B ∈ [C]. Then if we interpret

�∗ ≔ (�∗1, . . . , �∗C ) as an incomplete partition into C buckets, there

exists ℓ ∈ [<] such that � (ℓ ) is regular for �∗.
Now, de�ne �

(ℓ )
B for B ∈ [C + 1, 2C] by �

(ℓ )
B−C , and observe that by

subadditivity of E1, . . . , E= ,
∑

Δ∈[C ]

∑

B∈[C ]

∑

B∈#B

E8 (� (ℓ )
B+Δ ∩�∗

8 (®E)) ≥
∑

B∈[C ]

∑

8∈#B

E8 (�∗
8 (®E))

= OPT(®E, # \ #0) ,

because
⋃

Δ∈[C ] (� (ℓ )
B+Δ ∩�∗

8 (®E)) = �∗
8 (®E) for any B, 8 . Hence,

max
Δ∈[C ]

{ ∑

B∈[C ]

∑

8∈#B

E8 (� (ℓ )
B+Δ ∩�∗

8 (®E))
}

≥ 2

√
:

<
OPT(®E, # \ #0) .

(1)

Now, observe that:

• >
B∈[C ] A (ℓ )

B+Δ,#B
⊆ A for all Δ ∈ [C].

• A (ℓ )
B+Δ,#B

shatters every subset of �
(ℓ )
B of size$ (:) (see proof

of Theorem 3.4).

• ∑
8∈#B

|� (ℓ )
B+Δ ∩ �∗

8 (®E) | = |� (ℓ )
B+Δ ∩ �∗B | = $ (:), since � (ℓ ) is

regular for �∗.

By the above points, there exists� ∈ A such that �
(ℓ )
B+Δ∩�

∗
8 (®E) ⊆ �8

for all 8 ∈ # and Δ ∈ [C]. Therefore, by (1),

MIRA (®E) ≥ 2

√
:

<
OPT(®E, # \ #0) ,

and thus,

MIRA (®E) ≥ max

{
2

√
:

<
OPT(®E, #0), 2

√
:

<
OPT(®E, # \ #0)

}

≥
√

:

<
OPT(®E) .

Communication. Observe that for each ℓ ∈ [<], B ∈ [C], and
) ⊆ # , A (ℓ )

B,)
⊆ A (ℓ )

B,#
, and each bidder can only receive at most

2Θ(: ) possible sets in A (ℓ )
B,#

, as it is a Chunking mechanism with

2Θ(: ) partitions into Θ(:) chunks. Hence, each bidder can only

receive at most 2Θ(: )<C = 2Θ(: ) sets in A, so optimizing over

A can be done with just 2Θ(: ) simultaneous value queries per

bidder. □

4.1 Computational E�ciency

Naively, the bucket-shattering mechanism requires 2Ω (=) compu-

tation to implement, as there are exponentially many allocations

of bidders to buckets. We can resolve this by randomly sampling

polynomially-many allocations of bidders to buckets, and optimiz-

ing over this restricted subset instead. We de�ne the mechanism

below, but leave the proofs to the appendix of the full paper.

De�nition 4.8 (P-Bucketing Mechanism). Let P ⊆ [C]# be a set

of partitions of the bidders into C buckets, and for each ℓ ∈ [I],
B ∈ [C], and ) ⊆ # , de�ne A (ℓ )

B,)
as in De�nition 4.1. Similarly, let

�(8 ) denote the allocation that awards all items to bidder 8 . Then

the P-bucketing mechanism for {A (ℓ )
B,)

: ℓ ∈ [I], B ∈ [C],) ⊆ # } is
MIR over the allocation bank

A ≔

( ⋃

8∈#
{�(8 ) }

)
∪
( ⋃

ℓ∈[I ]

⋃

%∈P

?

B∈[C ]
A (C )

B,%B

)
.

In other words, the P-bucketing mechanism is the bucketing mech-

anism with a restricted range for the assignment of bidders to

buckets.

De�nition 4.9 (Balanced). Let ®E ≔ (E1, . . . , E=), and let #1 (®E) ≔
{8 ∈ # : |�∗

8 (®E) | ≤ </C}. For any bucketing of the bidders % ∈ [C]#
and B ∈ [C], let �∗B (%) ≔

⋃
8∈%B∩#1 (®E) �

∗
8 (®E), let (% (®E) ≔ {B ∈ [C] :

|�∗B (®E, %) | = $ (</C)}, and let #% (®E) ≔
⋃

B∈(% (®E) (%B ∩ #1). In
other words, #% (®E) is the set of bidders which belong to buckets

that do not receive many items, when we restrict attention only to

items awarded in OPT to bidders who do not individually receive

many items (in OPT). Then a bucketing % (ℓ ) ∈ [C]# is balanced

for ®E if OPT(®E, #% (®E)) = Θ(OPT(®E, #1 (®E))). A list of bucketings

% (1) , . . . , % (I ) ∈ [C]# is balanced if for all ®E , some % (ℓ ) is balanced
for ®E .

Lemma 4.10. For ~ = poly(<), there exists a balanced list of

bucketings % (1) , . . . , % (~) ∈ [C]# .

De�nition 4.11 (E�cient Bucket-Shattering Mechanism). For ~ =

poly(<), let % (1) , . . . , % (~) be a balanced list of bucketings, which

exists by Lemma 4.10. Let P be the set of all % (G ) and their shifts

(e.g., (% (G )
1+Δ, . . . , %

(G )
C+Δ) for all Δ ∈ [C]). The e�cient bucket-shattering

mechanism for : is de�ned as the P-bucketing mechanism for

{A (ℓ )
B,)

: ℓ ∈ [I], B ∈ [C],) ⊆ # } as de�ned by the bucket-shattering
mechanism for : .

Theorem 4.12. For : = Ω(log(<)), the e�cient bucket-shattering

mechanism for : (De�nition 4.11) is
√
</:-approximate for subaddi-

tive valuations and can be implemented simultaneously with 2$ (: )

value queries, and in time 2$ (: ) in the 2: -succinct representation

model.

5 COMMUNICATION LOWER BOUNDS

In this section, we will prove the lower bound in Theorem 1.4 and

Theorem 1.2.

Our approach can be broken down into the same two parts as

prior approaches: we �rst show that guarantees on the approxima-

tion ratio implies a rich allocation bank, then show that optimizing

over the allocation bank requires lots of communication. While
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the �rst part primarily adapts existing results, the second part uses

novel techniques to close the<1/6 gap between the upper and lower
bounds for submodular valuations.

5.1 Part 1: Approximation Implies Rich
Allocation Bank

We will show that a rich allocation bank 2-shatters a large set of

items. To do so, we make use of the following results.

Proposition 5.1 ([9], Theorem 1.5). Suppose an allocation bank

A ⊆ #" does not 2-shatter any set of size 3 . Then

|A| ≤
3∑

8=0

(
<

8

) (
=

2

)8
≤

(
4<=2

3

)3
.

For an allocation bank A, there exists ( ⊆ " such that A 2-shatters

((, # ) and
|A| ≤ (<=2) |( | .

Proposition 5.2 ([7], Lemma 3.2). If the MIR mechanism for A
is =/3-approximate for additive valuations, then there exists ( ⊆ "

such that |A|( | ≥ 2</= .

Lemma 5.3. Let : = Ω(log(<)) and = = 3
√
</: . Then if the MIR

mechanism for A is
√
</:-approximate for submodular valuations,

there exists ( ⊆ " of size Ω(
√
<:/log(</:)) such thatA 2-shatters

((, # ).

Proof. Suppose that A does not 2-shatter any su�ciently large

set. Then by Proposition 5.1, choosing the correct constants yields

|A| ≤
(

4<=2

Θ(
√
<:/log(</:))

)Θ(
√
<:/log(</: ) )

= $

(
<2

:2

)Θ(
√
<:/log(</: ) )

< 2
√
<:/3 .

However, by Proposition 5.2, |A| ≥ 2
√
<:/3, a contradiction. Thus,

A must 2-shatter some set of size Ω(
√
<:/log(</:)). □

Lemma 5.4. Let : = Ω(log(<)) and = ≥ 2</: . Then if the MIR

mechanism for A is</:-approximate for all monotone valuations,

there exists ( ⊆ " of size Ω(:) and ) ⊆ # of size 2 such that A
shatters ((,) ).

Proof. Suppose for simplicity that = = 2</: is an integer and

: is even. Let B ⊆ #" be the collection of partitions such that

each part has :/2 items. The valuations induced by � ∈ B are

E8 (') ≔ 1'⊇�8
. Consider all partitions � ∈ #" where |�8 | = :/2

for all 8 ∈ # , and consider the valuations E8 (() ≔ 1(⊇�8
induced

by each such �.

Since the MIR mechanism for A is</:-approximate, for every

set of valuations induced by � ∈ B, there exist two bidders who get

value 1. Since there are only
(=
2

)
< <2 pairs of bidders, there exists

a �xed pair of bidders ) = {8, 9} such that the MIR mechanism for

A gives bidder 8 items �8 and bidder 9 items � 9 for a 1/<2 fraction

of the � ∈ B.

Now, partition B into {B' : ' ⊆ ", |' | = :} so that � ∈ B( if

�8 ∪ � 9 = '. It follows that there exists some B' such that the MIR

mechanism for A gives bidder 8 items �8 and bidder 9 items � 9 for

a 1/<2 fraction of the � ∈ B' .

Therefore, there exists ' ⊆ " of size : such that |)' ∩ A|' | ≥
|B' |' |/<2

=
( :
:/2

)
/<2

= 2Ω (: ) . Applying Sauer’s Lemma to )' ∩
A|' , there exists ( of size Ω(:) such that A shatters ((,) ). □

Remark 5.5. We have demonstrated that good approximations

in either the submodular or arbitrary monotone valuation setting

imply a rich allocation bank in the sense that there is a large set

of 2-shattered items. This uni�ed view then allows us (in the next

section) to derive, from 2-shattering, a useful structure for a lower

bound, which then implies lower bounds for both submodular and

arbitrary monotone valuations. However, we note that enough

structure is already recovered by Lemma 5.4 to give a direct lower

bound formonotone valuations, e.g., by noting that it requires 2Ω (: )

communication to maximize the sum of two monotone functions

over the : items shattered between 2 bidders [36].

5.2 Part 2a: Rich Allocation Bank Contains
Structure

For simplicity, let ( ≔ [B] and ) ≔ [C]. Our aim now is to �nd a

structure within the 2-shattered ((,) ) which will be suitable for

embedding SetDisjointness. Let)9 for 9 ∈ ( be the pair of bidders

that item 9 can go to. In other words,
>

9∈( )9 is the allocation

bank witnessing the 2-shattering. Our end goal will be to prove the

following:

Proposition 5.6. For C = $ (B/log(B)) and I = 2Θ(B/C ) , there
exist � (1) , . . . , � (I ) ∈ >

9∈( )9 such that

• There exists + ⊆ ) such that any 5 : + → [I] is constant if
and only if �

(5 (1) )
1 , . . . , �

(5 (C ) )
C are pairwise disjoint.

• |� (1)
8 | = · · · = |� (I )

8 | for all 8 ∈ ) .

The next subsection makes clear why this structure allows us to

embed SetDisjointness. At a high level, the �rst bullet ensures that

we can encode valuations for the bidders using sets -1, . . . , -C such

that a certainwelfare can be attained if and only if
⋂

8∈+ -8 ≠ ∅. The
�rst bullet alone su�ces to give a lower bound for XOS valuations,

and captures the main idea behind the lower bound. The second

bullet introduces highly non-trivial technical challenges, but is

required to extend the lower bound to submodular valuations. We

only provide the proof of the claim in its entirety, but will comment

on when simpli�cations can be made by not satisfying the second

bullet.

Proof of Proposition 5.6. The �rst step is (with a slight abuse of

notation) to consider A ⊆ >
9∈( )9 such that there exist 01, . . . , 0C

such that for all� ∈ A, |�8 | = 08 for all 8 . In other words,A satis�es

the second bullet. Since there are (B + 1)C ≤ 2YB possible values

for 01, . . . , 0C for any constant Y > 0, there exists such A such that

|A| ≥ 2−YB |>9∈( )9 | = 2(1−Y )B . Thus, we can achieve the second

bullet without losing too many allocations from our bank.

Step I: A Helpful Interpretation. Intuitively, we may think of the

�rst bullet as saying that there exist I allocations such that there

is no way to combine two or more allocations into another valid

allocation. In other words, the function 5 chooses which allocation

each bidder in + receives a set from, and 5 will always cause some
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item to be allocated to two bidders unless 5 assigns each bidder to

the same allocation.

Because each item can only go to one of two bidders, only items

that go between bidders who are assigned di�erent allocations

under 5 are able to cause the allocation induced by 5 to be invalid.

As such, it is helpful to interpret the 2-shattering structure as a

graph, and reason about the viability of mixing allocations across

cuts in the graph.

De�nition 5.7. For + ⊆ ) and � ⊆ ( such that
⋃

9∈� )9 ⊆ + ,

de�ne � (+ , �) to be the graph where each bidder denotes a vertex

and each item 9 ∈ � denotes an edge between bidders )9 .

Our eventual goal is to sample I allocations independently and

uniformly from A, and show that the probability that the �rst

bullet is satis�ed is nonzero. Had we instead considered
>

9∈( )9
rather thanA (i.e., disregarded the second bullet), then observe that

sampling uniformly from
>

9∈( )9 assigns each item 9 to a bidder

in )9 independently and uniformly, and hence the probability that

independently sampled allocations can be combined is exponen-

tially small in the number of edges crossing the cut separating the

bidders who are assigned to di�erent allocations. Then, it roughly

su�ces to take a subgraph with min-cut Ω(:), and apply some

clever union bounds.

However, when we instead consider A, restricting to a 2−YB

fraction of the original 2-shattered structure introduces correlations

between items when we sample uniformly from A, and hence a

more complex argument is needed. Importantly, the analysis focuses

on the following quantity.

De�nition 5.8. For a graph � ≔ � (+ , �), edges � ⊆ � (typically,

we will take � to be the edges across a cut), and allocation bank

A ⊆ >
9∈� )9 , de�ne ? (�,�,A) to be the maximum fraction of

allocations that remain after �xing the allocation of the items in � .

In other words,

? (�,�,A) ≔ max
�∈A|�

|{� ∈ A : � = � |� }|
|A| .

Observe that ? (�,�,>9∈� )9 ) = 2−|� | . To eventually apply a

similar probabilistic argument as we would apply to a 2-shattered

structure, we will try to �nd a subgraph � ≔ � (+ , �) of � (), ()
such that the min-cut of � is Ω(:) and ? (�,�,A|� ) ≈ 2−|� | for
all cuts � .

Step II: Finding a Good Subgraph. From here on, we will denote

cuts by the set of their edges. Additionally, for a graph� , let WA (�)
denote its A -way min-cut, i.e., the smallest cut which partitions the

bidders into A non-empty parts.

Lemma 5.9. Let A ⊆ >
9∈( )9 and |A| ≥ 2(1−Y )B for some con-

stant Y > 0. Then there exists + ⊆ ) where |+ | ≥ 2 and � ⊆ ( such

that � ≔ � (+ , �) satis�es WA (� ) ≥ Y (A − 1)B/C for all A , and for any
edges � across a cut in � , ? (�,�) ≤ 2−(1−2Y )B .

Proof. Initialize ( ′ ≔ ( , and while there exists an A -way cut

� across some connected component of � ≔ � (), (′) such that

? (�,�,A|( ′ ) > 2−Y (A−1)B/C2−(1−2Y ) |� | , set ( ′ ≔ ( ′ \� . By de�ni-

tion of ? (�,�,A|( ′ ), we have |A|( ′\� | ≥ ? (�,�,A|( ′ ) |A|( ′ |.
Suppose for contradiction that the process results in a discon-

nected graph after removing the A1, . . . , Aℓ -way cuts�1, . . . ,�ℓ . Then

since removing an A -way cut increases the number of connected

components by A − 1, we have
∑
8∈[ℓ ] (A8 − 1) < C . Further, there are

no loops in � , so ( ′ = ∅ and
∑
8∈[ℓ ] |�8 | = B . Therefore,

1 = |A|∅ |
> 2−YB/C

∑
8∈ [ℓ ] (A8−1)2−(1−2Y ) ∑8∈ [ℓ ] |�8 | |A|

> 2−YB2−(1−2Y )B2(1−Y )B

= 1 ,

a contradiction. Thus, the process terminates with a connected

component � ≔ � (+ , �) (which is a subgraph of the original

� (), ()) such that |+ | ≥ 2 and every A -way cut � across � satis�es

? (�,�,A|� ) ≤ 2−Y (A−1)B/C2−(1−2Y ) |� | ≤ 2−(1−2Y ) |� | . Addition-
ally, ? (�,�,A|� ) ≥ 2−|� | , so the �rst exponential ensures that

|� | ≥ Y (A − 1)B/C for all � . Thus, � satis�es the desired proper-

ties. □

Step III: A Probabilistic Construction. Before we proceed to

the �nal probabilistic construction, we prove a property of the

subgraph � promised by Lemma 5.9 that makes clear why we need

a structure like � to be contained in � (), ().

Lemma 5.10. Let � ≔ � (+ , �) satisfy the condition in Lemma 5.9

for Y = 1/50. Let 5 : + → [A ] map bidders to parts of an A -way cut

� . Then for independent � (1) , . . . , � (A ) ∼ A|� , the probability that

{� (5 (8 ) ) (8) : 8 ∈ + } are pairwise disjoint is at most 2−|� |/3.

Proof. Let +1, . . . ,+A be the partition of + where 5 (8) = ℓ for

any bidder 8 ∈ +ℓ . Let �ℓ for ℓ ∈ [A ] be the 2-way cut between +ℓ
and + \+ℓ .

Observe that there are 3 |� | A -tuples of � (1) |�1
, . . . , � (A ) |�A

such

that � (5 (8 ) ) (8) for 8 ∈ + are pairwise disjoint, because for each

9 ∈ � which can go to either +ℓ or +ℓ ′ , we need either � (ℓ ) to
allocate 9 to +ℓ ′ , or �

(ℓ ′ ) to allocate 9 to +ℓ , or both.

On the other hand, by de�nition of ? (�,�ℓ ,A|� ) and the upper

bound on it given by Lemma 5.9, the probability of any such A -tuple

being sampled is at most
∏

ℓ∈[A ]
? (�,�ℓ ,A|� ) ≤

∏

ℓ∈[A ]
2−(1−2Y ) |�ℓ |

= 2−2(1−2Y ) |� | ,

so the probability that the � (5 (8 ) ) (8) are pairwise disjoint is at most

3 |� |2−2(1−2Y ) |� | ≤ 2−|� |/3. □

In other words,� has the property that for every A -way cut in� ,

the probability that A independently sampled allocations from A|�
can be combined into a feasible allocation is exponentially small

in the size of the cut, which is exactly the property we wished to

replicate from the 2-shattered structure! We can now proceed to

the probabilistic construction. First, we give a graph theoretic result

that will be needed for the union bound (proof in the appendix of

the full paper)

Lemma 5.11. For any graph � = (+ , �) (possibly with parallel

edges, but no loops) and 2 ∈ Z≥1, the number of A -way cuts with at

most 2W2 (�) edges is at most |+ |42 .
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Lemma 5.12. Let C = $ (B/log(B)) and let I = 2Θ(B/C ) . Addition-
ally, let � (1) , . . . , � (I ) ∼ A|� . Then w.p. > 0, a function 5 : + → [I]
is constant if and only if {� (5 (8 ) )

8 : 8 ∈ + } are pairwise disjoint.

Proof. Since � (1) , . . . , � (I ) are valid allocations, the forward

direction holds trivially.

For the reverse direction, �x any function 5 : + → [I] which
takes on a �xed set of A ≥ 2 values, and let the � be the A -way cut

induced by 5 . Then by Lemma 5.10, the probability that {� (5 (8 ) ) (8) :
8 ∈ + } are pairwise disjoint is at most 2−|� |/3.

By Lemma 5.11, the number of distinct cuts� with |� | ≤ 2YB/C ≤
2W2 (� ) is at most C42 . Thus, by a union bound over all possible

values of A , all possible �xed subsets of A values in [I], all possible
values of 2 , and all possible cuts satisfying these parameters, the

probability that the desired condition is not satis�ed is at most

C∑

A=2

((
I

A

) B∑

2=A−1
C4(2+1)2−(2YB/C )/3

)

≤
C∑

A=2

(
IA

B∑

2=A−1
282 (log C−YB/(6C ) )

)

≤
C∑

A=2

(
2Θ(AB/C )

B∑

2=A−1
2−Θ(2B/C )

)

≤
C∑

A=2

2−Θ(AB/C )
< 1 ,

where the third line follows because log C ≤ log B = $ (B/C). □

Extending the allocations � (1) , . . . , � (I ) ∈ A|� to any alloca-

tions in A which agree on the allocation of the items � completes

the proof of Proposition 5.6.

5.3 Part 2b: Structure Yields Set Disjointness
Embedding

We now show that the MIR mechanism for A can solve SetDis-

jointness. The bidder valuations we will use are the following.

De�nition 5.13. A mild-desires bidder for F ⊆ 2" , where all

� ∈ F are the same size 0, has the valuation function

E (�) =




2|� | |� | < 0

2|� | − 1�∉F |� | = 0

20 |� | > 0

.

We say that such a bidder is satis�ed if their allocation gives them

value 20, which occurs when they receive items � ∈ F , or any 0 + 1
items. Mild-desires bidders have submodular valuations [36].

For each bidder 8 ∈ + , associate an input set -8 ⊆ [I]. For the
bidders 8 ∉ + , associate the set -8 = [I]. Fix � (1) , . . . , � (I ) ∈ A
promised by Proposition 5.6. By bullet two, we can let each bidder

8 ∈ ) be mild-desires for {� (ℓ )
8 : ℓ ∈ -8 }.

Note that if we were only interested in a communication lower

bound for MIR mechanisms for XOS valuations, then we would

not have needed bullet two to hold, as we could instead let the

valuation for bidder 8 be the rank function of the downward-closed

set family de�ned by {� (ℓ )
8 : ℓ ∈ -8 } (which is an XOS function).

Then to solve SetDisjointness with the MIR mechanism for

A, we only need to show that
⋂

8∈+ -8 ≠ ∅ if and only if the

optimal welfare over A is 2B . The forward direction holds because

the allocation � (G ) for some G ∈ ⋂
8∈+ -8 satis�es every bidder.

For the reverse direction, by Proposition 5.6, we know that any

collection of sets desired by the bidders+ are pairwise disjoint (i.e.,

results in a valid allocation) if and only if those collection of sets

belong to the same allocation. To achieve 2B welfare, we need to

satisfy every bidder (since
∑
8∈) 08 = B), and this can only be done

if every bidder receives a desired set (if we satisfy bidder 8 by giving

them 08 + 1 items, some bidder 9 can only receive at most 0 9 − 1

items and cannot be satis�ed). Hence, if the optimal welfare is 2B ,

it must be the case that
⋂

8∈+ -8 ≠ ∅.
Thus, the MIR mechanism for A is capable of solving SetDis-

jointness over a universe of size I. Since the communication com-

plexity of SetDisjointness is Ω(I) [34], we conclude that maximiz-

ing the welfare of submodular valuations over A requires 2Ω (B/C )

communication.8

Wrapping Up. By Lemmas 5.3 and 5.4,

• An</:-approximate MIR mechanism for general valuations

must use 2Ω (: ) communication.

• A
√
</:-approximate MIR mechanism for submodular valu-

ations must use 2Ω (:/log(</: ) ) communication. Therefore,

a
√
</(: log(</:))-approximate MIR mechanism for sub-

modular valuations must use 2Ω (: ) communication.

Thus, we have MIRGen (<,:) = Ω(</:) and MIRSubMod (<,:) =
Ω(

√
</(: log(</:))).

6 CONCLUSION

For all amounts of communication, we improve both upper and

lower bounds for approximation guarantees of MIR mechanisms

over submodular, XOS, subadditive, and general valuations. This

resolves the approximation guarantees of MIR mechanisms for gen-

eral valuations up to a constant factor, and for submodular, etc.

valuations up to a Θ(
√
log<) factor. In addition, the mechanisms

which witness the upper bounds use only value queries, demon-

strating that using arbitrary communication instead of the far more

restrictive regime of value queries does not give a mechanism much

power. Even so, there are a few open questions for future work.

Closing the Logarithmic Gap for Submodular Valuations.

Although we were able to signi�cantly improve existing lower

bounds for submodular, XOS, and subadditive valuations (reducing

the gap from Θ̃((</:)1/6) to Θ(
√
log(</:))), we still started from

the same 2-shattering argument of [9] in order to embed a hard

communication game.

If one conjectures that our lower bound can be slightly improved

(as we do), this unfortunately cannot follow after a 2-shattering

argument – there exist mechanisms which are
√
</:-approximate

(see appendix of full paper) and which do not 2-shatter any pair

((,) ) such that |( |/|) | = Ω(:).
If instead one conjectures that our MIR mechanisms can be

slightly improved, then the must be neither implementable 2$ (: )

8Note that because the randomized communication complexity of SetDisjointness
is also Ω (1 ) , even randomized protocols which maximize the welfare of monotone

submodular valuations over A must use 2Ω (B/C ) communication in expectation.
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value queries (by [22]), nor implementable with 2$ (: ) simultaneous

communication (see appendix of full paper). Such a mechanism

would be fundamentally di�erent than all prior MIR mechanisms,

which can be implemented with simultaneous value queries.

Beyond MIR mechanisms. The major open problem is to under-

stand communication lower bounds that hold for all deterministic

truthful mechanisms, and not just MIR mechanisms. There is sig-

ni�cantly less progress in this direction – only [18] for dominant

strategy truthful mechanisms, and [3] for two-player mechanisms.
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