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ABSTRACT

We consider truthful combinatorial auctions with items M = [m]
for sale to n bidders, where each bidder i has a private monotone
valuation function v; : 2M — R,. Among truthful mechanisms,
maximal-in-range (MIR) mechanisms (sometimes called VCG-based)
achieve the best-known approximation guarantees among all poly-
communication deterministic truthful mechanisms in all previously-
studied settings. Our work settles the communication complexity
necessary to achieve any approximation guarantee via an MIR
mechanism. Specifically:

Let MIRsubMmod (M, k) denote the best approximation guarantee
achievable by an MIR mechanism using 2 communication be-
tween bidders with submodular valuations over m items. Then
for all k = Q(log(m)), MIRsubmod (M. k) = Q(y/m/(klog(m/k))).
When we set k = ©(log(m)), this improves the previous best lower
bound for polynomial communication maximal-in-range mecha-
nisms from Q(m1/3/logz/3(m)) to Q(+v/m/log(m)). Additionally,
MIRs bMod (M, k) = O(\/m_/k) Moreover, our mechanism can be
implemented with 2k simultaneous value queries and computa-
tion, and is optimal with respect to the value query and computa-
tional/succinct representation models. The mechanism also works
for bidders with subadditive valuations. When k = ©(log(m)), this
improves the previous best approximation guarantee for polyno-
mial communication maximal-in-range mechanisms from O(+/m)
to O(4/m/log(m)).

Let also MIRGen (m, k) denote the best approximation guaran-
tee achievable by an MIR mechanism using 2* communication
between bidders with general valuations over m items. Then for all
k = Q(log(m)), MIRGen(m, k) = Q(m/k). When k = O(log(m)),
this improves the previous best lower bound for polynomial com-
munication maximal-in-range mechanisms from Q(m/log?(m)) to
Q(m/log(m)). Additionally, MIRGen (m, k) = O(m/k). Moreover,
our mechanism can be implemented with 2k simultaneous value
queries and computation, and is optimal with respect to the value
query and computational/succinct representation models. When
k = ©(log(m)), this improves the previous best approximation
guarantee for polynomial communication maximal-in-range mech-

anisms from O(m/+/log(m)) to O(m/log(m)).
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1 INTRODUCTION

In a combinatorial auction, a central designer has a set of items
M := [m], and bidders N := [n]. Each bidder i has a monotone
valuation v; : 2 — R,, unknown to the designer. The designer
interacts with the bidders to produce an allocation A = (A4, ..., Ap)
of the items (where A; N Aj = (0 for all i # j), and their goal is to
select one maximizing the welfare, defined ;< N v (A)).

As an algorithmic resource allocation problem, combinatorial
auctions are extremely well-studied — see further discussion in
Section 1.3. Combinatorial auctions are similarly well-studied in
economic settings, where the bidders’ incentives are now relevant.
That is, while an efficient communication protocol suffices in a
purely algorithmic setting, that protocol must also be incentive
compatible and incentivize all bidders to follow it. Here, the designer
may also charge each bidder i a price p;, and the bidder aims to
optimize their utility: v;(A;) — p;.

When considering either desiderata separately, the state of affairs
is well-understood. For example, with polynomial communication,
a tight ®(+/m)-approximation for monotone valuations [5, 32, 36],
a tight 2-approximation for subadditive valuations [24, 25], and a
tight e/(e—1)-approximation for XOS valuations [17, 25] are known.
Additionally, the optimal achievable guarantee for submodular val-
uations is known to lie in [2e/(2e — 1),e/(e — 1) — 107°] [21, 26].
However, these protocols are not incentive compatible. Similarly,
the classical Vickrey-Clark-Groves (VCG) mechanism is incentive
compatible and finds the welfare-maximizing allocation [8, 27, 37],
but requires exponential communication for any of the above-
referenced valuation classes.

As such, a central open problem within Economics and Computa-
tion is understanding the extent to which communication-efficient
truthful mechanisms can match the approximation guarantees
of communication-efficient (not necessarily incentive compatible)
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protocols. A key framework to tackle this agenda is maximal-in-
range (MIR) mechanisms. For example, state-of-the-art determinis-
tic truthful mechanisms for monotone, subadditive, XOS, and sub-
modular valuations are maximal-in-range [17, 28]. Our main results
settle the approximation guarantees achievable by MIR mechanisms.
We overview this agenda and our results below.

1.1 Maximal-in-Range Mechanisms

MIR mechanisms leverage the VCG mechanism to trade off approxi-
mation guarantees for efficiency. In particular, the VCG mechanism
implies a truthful mechanism that maximizes welfare over any set
of (possibly unstructured) outcomes. Specifically, one can define
any allocation bank A of allocations, and the VCG mechanism will
truthfully optimize welfare over all allocations in A. Formally:

THEOREM 1.1 (VCG MECHANISM (8, 27, 37]). Let A be a collection
of allocations, and let P be any communication protocol among the n
bidders to find the welfare-maximizing allocation in ‘A. Then there is
a deterministic truthful mechanism that selects a welfare-maximizing
allocation in A using n + 1 black-box calls to P.

The resulting mechanism is termed a Maximal-in-Range Mecha-
nism for A [35].

MIR mechanisms therefore provide a structured algorithmic
framework to design deterministic truthful mechanisms: one se-
lects an allocation bank A and designs a protocol # to optimize
over it. This framework induces a tradeoff between efficiency and
optimality: richer allocation banks may contain allocations whose
welfare better approximates the true optimal welfare, but smaller
allocation banks may require less communication to optimize over.

For the following reasons, there is significant interest in under-
standing the approximation guarantees achievable by MIR Mecha-
nisms:

e In all settings, the best-known approximation guarantees
achieved by polynomial communication deterministic truth-
ful mechanisms are achieved by MIR mechanisms [17, 28].
Moreover, this claim has held for the entire duration of the
study of combinatorial auctions (that is, no polynomial com-
munication deterministic truthful mechanisms that outper-
form the best-known MIR mechanism at the time have ever
been discovered).!

o All deterministic truthful mechanisms satisfying four nat-
ural properties are affine maximizers, a generalization of
MIR mechanisms [30].2 Moreover, if an affine maximizer
guarantees an a-approximation using f§ communication on
all submodular/X0OS/subadditive/monotone valuations, then
the MIR mechanism with the same allocation bank does so
for the same valuation class as well.

!Note that [14] discover exponential-communication non-MIR deterministic truthful
mechanisms that outperform the best poly-communication MIR mechanisms in multi-
unit domains [14], but poly-communication deterministic truthful mechanisms have
never outperformed MIR mechanisms.

2 An affine maximizer also is defined by an allocation bank A, scalars ¢ € ]R';O, and
an adjustment vy : A — A. The affine maximizer selects an allocation (A, ..., A;)
optimizing v (A1, ..., An) + Yien Ci - 0i(A;). Affine maximizers are also truthful
using the VCG payment scheme.
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e Some conjecture that indeed MIR mechanisms are the opti-
mal deterministic mechanisms (and therefore settling the ap-
proximation guarantees of poly-communication MIR mech-
anisms will eventually settle the approximation guarantees
of all poly-communication deterministic truthful mecha-
nisms), although this conjecture remains far from settled.
However, we show that MIR mechanisms indeed achieve op-
timal approximation guarantees for all deterministic truthful
mechanisms in the value query model and the computa-
tional/succinct representation model (see Table 1).

Indeed, MIR mechanisms have been studied since the start of
Economics and Computation as a field [35], and several works over
the past two decades make significant progress understanding their
strengths and limitations. Our main results close these gaps. We
now state our main results, and afterwards discuss their context.
In the following theorem statements (and the rest of this paper),
define MIRs,pbmod (M, k) (and MIRGen (m, k), respectively) to be the
optimal approximation guarantee that can be achieved by an MIR
mechanism using at most 2K communication between bidders with
submodular (and general, respectively) valuations over m items.

TaEOREM 1.2. For all k = Q(log(m)) and for alln = Q(\/m/k),
MIRsubMod (M, k) = Q({/m/(klog(m/k))). In particular, the best
possible approximation guarantee for submodular valuations by MIR
mechanisms with poly(m) communication is Q(\/m/log(m)).

This improves prior work, beginning with the impossibility
of m!/6 with polynomial communication for MIR mechanisms
for submodular valuations by [14], which was later improved to
m1/3 [log?/? (m) by [9].

The particular constant of 1/2 in the exponent is significant be-
cause we now know that the MIR mechanism of [17] achieving an
O(+/m)-approximation using polynomial communication is essen-
tially tight. Still, our second main result improves their guarantee

slightly.

THEOREM 1.3. For all k = Q(log(m)) and for all n, we have
MIRsubMod (M, k) = O(\/m_/k). In particular, our mechanism guar-
antees a O(+/m/log m) approximation in poly(m) communication.

Moreover, the mechanism we construct can be implemented us-
ing 20(k)
cinct representation model. Our mechanism guarantees an O(\/m_/k)—
approximation for subadditive valuations as well.

simultaneous value queries, or in time 20(K) in the suc-

Theorem 1.3 is a mild improvement over [17] (it saves a /log(m)
factor). Still, we note that the MIR mechanism of [17] is excep-
tionally simple, and no better guarantee was previously known.
Together, Theorems 1.2 and 1.3 nail down the achievable approxi-
mation guarantees for submodular valuations by MIR mechanisms
with poly(m) communication up to a factor of ©(+/log(m)), expo-
nentially improved over the prior gap of O(m!/5). Additionally, it
is worth noting that in the value query and computational/succinct
representation models, the MIR mechanism we construct for sub-
additive valuations is optimal for all deterministic truthful mecha-
nisms; see [22] and the appendix of the full paper.>

Shttps://arxiv.org/pdf/2404.00831
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We also consider general valuations. Here, nearly-tight bounds
were previously known, and we improve both to be tight up to
constant factors.

THEOREM 1.4. For allk = Q(log(m)), MIRGen(m, k) = ©(m/k).
In particular, the best possible approximation guarantee for mono-
tone valuations by MIR mechanisms with poly(m) communication
is ©(m/log m). Moreover, the mechanism we construct can be imple-
mented using 20K) simultaneous value queries, or in time 20(k) ip
the succinct representation model.

When considering poly(m) communication, this gives logarith-
mic improvements for the previous best impossibility result of
Q(m/ log2 (m)) by [9], and the previous best approximation guar-
antee of O(m/+/log(m)) by [28].% Still, the minor improvements
are significant as both bounds are now tight.

Table 1 places our work alongside prior work for all three consid-
ered models. Our main results consider the communication model,
but also imply minor improvements in the value query or computa-
tional model for free (or modest additional work). We contextualize
the key takeaways from this table.

e In the communication model with arbitrary monotone val-
uations, we improve both the state-of-the-art mechanism
and lower bound, reducing the gap between them from
O(log!®(m)) to ©(1). In other words, @(m/log(m)) is the
best achievable guarantee in poly(m) communication.

In the communication model with subadditive/XOS/submod-
ular valuations, we improve the state-of-the-art lower bounds
and slightly improve the state-of-the-art mechanism, reduc-
ing the gap between them from O(m'/%) to O(+/log(m)).
In other words, ©(y/m) is the best achievable guarantee in
poly(m) communication.

In the value queries model and computational model with
either arbitrary monotone or subadditive/XOS/submodular
valuations, we slightly improve state-of-the-art mechanisms.
In the value queries model, these improvements match pre-
existing lower bounds on any poly(m)-query deterministic
truthful mechanism.” In the computational model, we further
slightly improve prior-best lower bounds on any poly(m)-
time deterministic truthful mechanism to match our MIR
mechanisms. That is, we now know that MIR mechanisms
achieve the optimal approximation guarantees among all
poly(m)-query deterministic truthful mechanisms, and all
poly(m)-time deterministic truthful mechanisms in the suc-
cinct representation model. These MIR mechanisms follow
by observing that our new communication-efficient mecha-
nisms can be implemented with poly(m) value queries (in
fact, simultaneous value queries). Our slight improvement
on lower bounds follows a similar outline as prior work, but
is more careful with lower order terms.®

4 Although the © (y/log(m)) improvement in the upper bound seems small, the mech-
anism of [28] is actually far from optimal for large k; for example, if we allow 200m)
communication for a sufficiently small constant, then the mechanism of [28] is only
O(+/m)-approximate, whereas ours is O(1)-approximate.

5For arbitrary monotone, subadditive, and XOS valuations, our mechanisms even
match pre-existing lower bounds on any poly (m)-query deterministic algorithm.
5Our computational lower bounds also use the stronger assumption of the randomized
Exponential Time Hypothesis instead of the assumption RP # NP used in prior work.
However, this is essentially necessary if we care about lower order terms.
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1.2 Technical Highlights

Below, we overview one technical highlight from our algorithms,
and one technical highlight from our lower bounds.

Technical Background: Prior Algorithms. The state-of-the-art
MIR mechanism for general valuations [28] and for submodular
valuations [17] are quite different. Parameterizing their approaches
by k, the MIR mechanism of [28] partitions the items into k chunks
of size m/k, and considers A to be the set of allocations that keeps
together all items in the same chunk. Observe that there are only
2k sets that any bidder might possibly receive in A, so optimizing
over A can be done with 2¥ communication.

On the other hand, [17] considers A to be the set of allocations
that either give all items to the same bidder, or that gives each
bidder a set of at most O(k/log(m/k)) items. Again, there are only
ok
done with 2% communication.

sets that any bidder might receive, so optimizing over A can be

Technical Highlight: Our Algorithms. Our algorithm for mono-
tone valuations adds just one new idea to that of [28]: consider
multiple partitions. Specifically, repeat the process z times of par-
titioning M into k chunks, calling the chunks Bs([) for ¢ € [z] and
s € [k]. Let A be the set of allocations such that each bidder re-
ceives a set of the form (e s Bs(f) forsome £ € [z] and S C [k] (that
is, each bidder receives a set that picks a single partition, and then is
a union of chunks for that partition). Taking z = 20(k) still requires
just 20(k) communication. The main difference to [28] is that while
any single partition can only give an m/Vk-approximation, the best
of 20(K) partitions improve the guarantee to m/k. Informally, this is
because by taking many partitions, it is likely that for every set of k
items, there exists a partition where the items go to different chunks.
This allows any k items to be optimally allocated, so allocating the
“most important” k items will yield an m/k-approximation.

Our algorithm for subadditive/XOS/submodular valuations is in
some sense more like [28] than [17]. Sticking exclusively to an ap-
proach like [17] is almost optimal, but doomed to lose a /log(m/k)
factor due to the fact that we can only exhaust over sets of size
O(k/log(m/k)) in 2K communication. On the other hand, sticking
exclusively to an approach like [28] cannot guarantee an o(m/k)
approximation since at most k bidders are given items, so signifi-
cant changes are needed to leverage this approach. Our algorithm
is as follows:

e Take z = 20(K) partitions of the items into y/m/k buckets of
Vmk items (so there are 20(k) \/m_/k total buckets).

e Within each bucket, take z’ = 20(k) partitions of the items
into k chunks of \/m_/k items. This induces sets of the form
Cs ¢,5,0, Where ¢ € [z] determines which bucketing we use,
s € [\/m_/k] labels the bucket, £’ € [z’] determines which
partition of that bucket into chunks we use, and s” € [k]
labels the chunk.

Finally, A denotes the set of allocations where each bidder
either receives all the items M, or receives a set of the form
UgesCs ¢.5,¢ for some S C [k] and ¢’ s, ¢. In other words,
each bidder chooses a bucket (£ chooses the bucketing and s
chooses a bucket in that bucketing), chooses a partition of
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Table 1: Summary of our results (bolded) compared to prior work (unbolded) when k = ©(log(m)). All models referenced above

are for deterministic mechanisms.

Communication

General

Subadditive/XOS/Submodular

Prior Best Mechanisms
Our MIR Mechanisms
Our MIR Lower Bounds
Prior MIR Lower Bounds

O(m/+/log(m)) [28]
O(m/log(m)) (Thm. 1.4)
Q(m/log(m)) (Thm. 1.4)

Q(m/log?(m)) [9]

O(ym) [17]
O(ym/log(m)) (Thm. 1.3)

Q(v¥m/log(m)) (Thm. 1.2)
Q(m'3 /log?/3 (m)) [9]

Value Queries

General

Subadditive/X0OS/Submodular

Prior Best Mechanisms
Our MIR Mechanisms
Truthful Lower Bounds
Algorithmic Lower Bounds

O(m/+/log(m)) [28]
O(m/log(m)) (Thm. 1.4)
!
Q(m/log(m)) [5]

O(vm) [17]
O(y/m/log(m)) (Thm. 1.3)
Q(ym/log(m)) [22]
Q(+/m/log(m)) for Subadditive/XOS [17]

Computation (Succ. Rep.)

General

Subadditive/XOS/Submodular

Prior Best Mechanisms
Our MIR Mechanisms
Our Truthful Lower Bounds

O(m/+/log(m)) [28]
O(m/log(m)) (Thm. 1.4)
Q(m/log(m)) (Full Paper)

O(ym) [17]
O(ym/log(m)) (Thm. 1.3)
Q(ym/log(m)) (Full Paper)

Prior Truthful Lower Bounds

ml—@(l) [9]

Vm1-0(1) [22]

that bucket into chunks, and then receives a subset of the
chunks for the chosen partition of the chosen bucket.

Observe that there are again only 2000) k- 20(k) .ok = 20(k)
ways to choose such a set that a bidder might get in A, so A can
be optimized over in 29 communication.

Broadly, the idea is to use subadditivity and binomial tail bounds
to argue that a bucketing exists where we only need to allocate k
items optimally within each bucket to get a \/m_/k—approximation.
Then we leverage our mechanism for general valuations within
each bucket to allocate the k items.

The key high-level technical takeaway we wish to emphasize is
that exhausting over collections of large chunks of items, versus
exhausting over collections of a few items, seems to be “the right”
way to achieve optimal approximation guarantees for MIR mecha-
nisms. This is because each partition into large chunks of items can
achieve the desired approximation ratios for many configurations
of bidders simultaneously, which allows us to overcome the barrier
that there are too many configurations of bidders to try satisfying
them by asking for small sets.

Technical Background: Prior Lower Bounds. Prior lower bounds
on MIR mechanisms follow from an argument of the following form:
(1), derive structure on A, using the fact that A guarantees a good
approximation, then (2), show that this structure embeds a hard
communication problem. At a very high-level, the initial approach
of [14] could be described as using first-principles for (1), and then
a non-trivial reduction from SETD1sJOINTNESS for (2). The state-of-
the-art approaches of [7, 9] instead use advanced machinery based
on generalizations of the VC-dimension for (1), so that a trivial
argument for (2) suffices.
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In slightly more detail, [7, 9] find a set N’ of bidders and M’ of
items such that A must contain every possible allocation of items in
M’ to bidders in N’ (in this case, we say that A shatters (M’, N")).
Then if the valuation class requires exponential communication to
exactly optimize welfare, a communication lower bound of 22(IM°])
follows immediately for (2), because when restricting attention to

M’ and N’, A considers all allocations and is exactly optimal.

Technical Highlight: Our Lower Bounds. Our lower bounds
leverage some of the advanced machinery developed in [7, 9] to
understand the structure of any A that achieves a good approxi-
mation, but stops short of going all the way to shattering. Indeed,
the bounds in [9] are tight (up to perhaps logarithmic factors) for
approaches that insist on fully shattering some (M’, N”). Instead,
we leverage just enough structure to move towards a communica-
tion lower bound. For general valuations, the structure established
in prior work actually suffices for a direct reduction from SETD1s-
JOINTNESS that saves a log(m) factor. For submodular valuations, we
derive a novel structure on A, but ultimately avoid a full shattering
argument to save a (:)(ml/ %) factor.

The high-level takeaway is that our lower bounds improve over
prior results by uncovering “the right” structure on A to enable
a simple-but-not-trivial communication lower bound, rather than
pushing all the way towards fully shattering.

1.3 Related Work

We’ve previously discussed the most-related work to ours: [35]
introduces the concept of MIR mechanisms, based off principles of
the VCG mechanism [8, 27, 37]. [28] provides the first (and until
our work, state-of-the-art) approximation for general valuations
via an MIR mechanism, which is also the best previous truthful
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deterministic mechanism. [17] provides the first (and until our
work, state-of-the-art) approximation for submodular valuations
via an MIR mechanism, which is also the best previous truthful
deterministic mechanism. [14] provide the first lower bounds on
poly (m)-communication MIR mechanisms for submodular valua-
tions. [9], building on tools developed in [7], improve their bounds
for submodular valuations and provide the first bounds for general
valuations.

Beyond these directly-related works, there is a rich body of works
on combinatorial auctions broadly. These works provide context
for the study of MIR mechanisms specifically. For example, [30]
establish that all mechanisms satisfying four natural properties
are affine maximizers (a generalization of MIR mechanisms that
achieve identical approximation guarantees). Therefore, our results
on MIR mechanisms also immediately bound approximation guar-
antees achievable by this class of mechanisms. There are, however,
deterministic mechanisms that are not affine maximizers (posted-
price mechanisms are one such example). As such, there is also an
active body of research aiming to understand the approximation
guarantees of deterministic truthful mechanisms with bounded
communication. Our mechanisms are now the state-of-the-art de-
terministic truthful mechanisms with poly(m) communication for
submodular, XOS, subadditive, and general valuations. On the other
hand, there are significantly fewer lower bounds that hold for all
deterministic truthful mechanisms. Specifically, the only such result
for any of these four classes is a 4/3 + ¢ lower bound for two XOS
bidders [3, 6, 13].

The discussion of the previous paragraph considers a protocol to
be truthful if it is an ex-post Nash equilibrium for bidders to follow
it. That is, as long as every other bidder is following the protocol for
some plausible valuations_;, it is in bidder i’s best interest to follow
the protocol as well (for all i). One could instead seek mechanisms
that are dominant strategy truthful: even if the other players use
bizarre strategies that are not prescribed for any 9_;, it is still in
bidder i’s best interest to follow the protocol. On this front, [18] re-
cently establish that no dominant strategy truthful mechanism can
1=¢ approximation for general valuations in poly(m)
communication. This means that, up to lower-order terms, the MIR
mechanisms we develop are also optimal among dominant strategy
truthful mechanisms (our mechanisms are dominant strategy truth-
ful because they can be implemented using poly(m) simultaneous
communication).

Finally, there is significant related work on the communica-
tion complexity of combinatorial auctions broadly, considering
protocols (without incentives) [1, 15, 17, 21, 24-26, 36], determin-
istic truthful mechanisms [32], and randomized truthful mecha-
nisms [2, 4, 10, 12, 16, 29]. There is also significant related work on
the computational complexity of combinatorial auctions broadly,
again considering protocols without incentives [31, 33, 38], and
strong inapproximability results for truthful and computationally
efficient mechanisms [11, 19, 20, 22, 23].

achieve an m

2 PRELIMINARIES AND NOTATION
2.1 Shattering

When convenient, we may think of an allocation A : M — N U {x}
as a function from items to bidders, where * denotes an item not
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allocated to any bidder. As such, we may use notation such as
Alpr = (AinM,...,Apyn M) and Alpp = {Alpmr : A € A} to
denote the restriction of an allocation/allocation bank to the items
M’. For allocation banks on disjoint sets of items A and B, we
may also use the notation A X B := {(Aj UBy,...,ApUBp): A€
A, B € A} to denote an allocation bank where each combination
of A € A and B € B is possible.

For a set of bidders vy, .. s oM R, define A*(%) to be
an optimal allocation, and let OPT(9) be the welfare under A*(9).
For any N’ C N, define OPT(5, N”) to be the welfare of bidders N’
under A*(3). Let MIR & (9) be the welfare from an optimal allocation
in A.

One concept that will repeatedly appear in our arguments is that
of an allocation bank A shattering a collection of items/bidders.

.,0n

Definition 2.1 (Shattering). An allocation bank A d-shatters a
pair (M’, N’) if for all items j € M’, there exists a set T; C N’ with
|Tj| = d such that X ;epr Tj € Alpr. That is, for each of the dMl
ways to allocate each item j € M’ to a bidder in Tj, there exists an
allocation in A that allocates the items in M’ in this manner.

If A |N’|-shatters (M’, N"), we will simply say that A shatters
(M’,N’).

Prior lower bounds of [7, 9] use this concept extensively, and
eventually find a large set of items that are shattered. Our lower
bound for submodular functions leverage this machinery for d <
IN’| instead of d = |N’| to achieve a ©(m!/®) improvement. This
concept is also helpful for understanding intuitively how our mech-
anisms provide good approximation guarantees.

2.2 Formal Statement of Models

Our main results consider the communication model, where each
player i holds the valuation function v;(-) and we consider only
the communication cost of the protocol (for concreteness, in the
blackboard model). Our new mechanisms (like the previous-best
mechanisms) can be implemented simultaneously using only value
queries. As such, these also imply results in the value query model,
and the succinct representation model. In the succinct representa-
tion model, each player has a v;(-) that can be represented by an
explicit circuit of size at most poly(m). Because our main results
are parameterized by k, we will further refer to the 2¥-succinct rep-
resentation model as the case where each v;(-) can be represented
by an explicit circuit of size at most 20(k)

Additionally, we make the simplifying assumption that when
considering the class of mechanisms that can be run in 2°%) com-
munication/value queries/computation, all numbers are integers
less than 22”" (and therefore can be represented in 20(K) bits
in a standard fashion). We make this assumption to avoid any
strangeness with things like arithmetic, value queries representing
arbitrary precision numbers, etc.

3 AN OPTIMAL MAXIMAL-IN-RANGE

MECHANISM FOR GENERAL VALUATIONS
In this section, we will prove the upper bound in Theorem 1.4
by constructing an m/k-approximate MIR mechanism which uses
20(K) communication.
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Definition 3.1 (Chunking Mechanism). Let B, .. B ¢ [M
partition M into t chunks each. The allocation bank A contains
every allocation where each bidder gets a set of the form C(S, ¢) :=
Ujes B;f) for some ¢ € [z],S C [t], and the chunking mechanism

forB(l), ...,B® is MIR over A.

The prior state-of-the-art for general valuations is simply a
chunking mechanism for a single partition into k chunks of equal
size [28] (i.e. a chunking mechanism with z = 1). They prove their
mechanism guarantees an m/ Vk approximation ratio for all mono-
tone valuations (and this is tight — no chunking mechanism with
z = 1 can guarantee better than m/ Vk).

Our only new idea is to instead consider a chunking mechanism
for multiple carefully chosen partitions which satisfy the following

property.

Definition 3.2 (r-Itemizing). A partition B itemizes a set S if
each chunk of B(Y) contains at most one item of S. A list of partitions
BW, . .. B s r-itemizing if for any set S of size at most r, there
exists B(Y) which itemizes .

LEmMA 3.3. Forallr = Q(loglog(m)) and somez = 291 there
exists a list of partitions BV, ..., B(?) € [r]M intor chunks which
is r-itemizing.

Proor. Suppose we randomly sample the partitions such that
B(1>, . ..,B(Z) € [r]M are independent and uniformly random.
Then for a fixed set S of size r, the partition B{) itemizes r w.p.
ri/r" = 270() Therefore, by independence, no partition itemizes
S w.p. at most (1 — 2_®(r))z = 2-2%"
(T) < orlog(m) < 22°") sets of size r, B, .. B s r-itemizing
w.p. > 0. Thus, there exists a fixed list of partitions B(l), .. .,B(z)
that is r-itemizing. O

. By a union bound over the

Turorem 3.4. Letk = Q(log(m)) and let z = 2°2K)  Additionally,
let B, .. B ¢ [F1M be a (4k)-itemizing list of partitions, which
exists by Lemma 3.3. Then the chunking mechanismforB(l), ...,B®
is m/k-approximate and can be implemented using 20K) communi-
cation.

Moreover, the mechanism can be implemented simultaneously with
20(K) value queries, and in time 20(K) in the 2K -succinct representa-
tion model.

Proor. The first step in our analysis for general valuations is
similar to the analysis of [17] for subadditive valuations, which
separately analyzes the bidders who receive many items versus few
items in the optimal allocation.

Let t = m/(2k). We will partition bidders into sets Ny, N, ..., N;
such that i € Ny if and only if |A](7)| > 2k, and for all s > 0,
YieN, A7 (9)| < 4k. Observe that the condition on all N is possible
because the bidders not in Ny all get at most 2k items each.”

Let A be the allocation bank which defines the chunking mech-
anism and observe that A can allocate all items to a single bidder.

"That is, this partition can be created by first placing all bidders with |A} ()| > 2k in
Nj, and then greedily filling N; with remaining bidders without exceeding the cap of
4k. Because each bidder not in Nj gets at most 2k items, each non-empty bidder set
will have at least 2k items.
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Then since there are at most m/(2k) bidders who get more than 2k
items, MIR 4 (7) > (2k/m) OPT(3, Ny).

Now, observe that any set S which is itemized by some B(®)
is shattered by A, as the chunking mechanism can assign any
combination of the chunks (and hence any combination of the
items) to the bidders. Thus, A shatters every set of size 4k. Since
each set of bidders N; gets at most 4k items in A*(3), MIR #(3) >
maXge[¢] OPT(g, Ns) > (2k/m) OPT (3, N \ Np).

Therefore, we get that for all valuations vy, .. ., v,

2 2
MIR#(3) > max{—k OPT(3, Ny), —kOPT(H,N\NO)}
m m

> L2 OPT(9) .
m

Communication and Computation. Each bidder can only
receive at most 2%z = 20(k) possible sets in A, so optimizing
over A can be done with just 2°(%) simultaneous value queries per
bidder. On the computation side, we will make use of the following
lemma.

LEMMA 3.5. In the 2™ -succinct representation model with items
M’ := [m’] and bidders N’ := [n’], a welfare-maximizing allocation
’
can be found in time 200™) . p’.

Proor. For T € N” and S € M’, define u7(S) to be the optimal
welfare for bidders T and items S, and define A1 (S) to be an optimal
allocation of items S to bidders T. Suppose the functions v[;; and
A(j) are known for some i € [n" — 1]. Then v[;;1] and A[;,1] can
be computed in 20(™") computation by brute forcing over all 2’
sets S € M and all of at most 2™ allocations of S between u[;] and
vi+1. Hence, we can iteratively compute vns and A in 20(m") 1
time, and the optimal allocation is AN (M”). ]

Observe that to run our mechanism, we only need to solve z
welfare maximization problems over 4k “items,” where we inter-
pret a chunk as a single item. Therefore, by Lemma 3.5, the total

computation needed is 20(k) pz = 20(k) O

Remark 3.6. Note that while we can run the above mechanism
in polynomial time given an r-itemizing list of partitions, we do not
know how to explicitly find such a list in polynomial time. There-
fore, if we want an explicit mechanism, then we can only achieve
an m/log(m) approximation in polynomial time w.h.p. by sampling
a random list of partitions. Note that this is still stronger than a
mechanism which achieves the desired approximation with con-
stant probability/in expectation since not all truthful mechanisms
can have their success probability amplified by repetition.

A similar statement holds true for the subadditive mechanism in
the next section.

4 A MAXIMAL-IN-RANGE MECHANISM FOR
SUBADDITIVE VALUATIONS

In this section, we will prove Theorem 1.3 by giving a \/m_/k—
approximate MIR mechanism for subadditive valuations which
uses 20%) communication.

The prior state-of-the-art for subadditive valuations asks each
bidder for their value for the entire set of items, and each set of
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O(k/log(m/k)) items [17]. Then we can either give one influential
bidder every item (not too many influential bidders = good ap-
proximation), or we can give every bidder their k/log(m/k) favorite
items (subadditivity = good approximation).

Our mechanism for subadditive valuations deviates from this
approach of asking for smaller sets, and is instead more closely
related to our approach for general mechanisms.

Definition 4.1 (Bucketing Mechanism). Let B, .. B ¢ [

partition M into t buckets each, and for each ¢ € [z],s € [¢],

(6)

and T C N, let ﬂs(? C TBS‘;

By) among bidders T. Also, let A denote the allocation that

awards all items to bidder i. Then the bucketing mechanism for
{ﬂs(? :t € [z],s € [t],T € N} is MIR over the allocation bank

A= (Uun)o[U U Xag).

ieN z] Pe[t]N s€|
In other words, A includes all allocations that award all items to
the same bidder. All other allocations in A first choose a bucketing
¢ € [z], then partitions bidders among buckets (with bidders Ps

be an allocation bank for items

going to bucket s), and then finally chooses an allocation in ﬂs(iz
of items in bucket Bs(f) to bidders Ps. The bucketing mechanism for
A is MIR over A.

Definition 4.2 (Regular). A partition B € [t]M is regular for
a (possibly incomplete) partition of the items B into ¢ buckets if
for all s € [t] where |Bs| = O(m/t), |B§,€) N Bs| = O(m/t?) for all
s’ € [t]. Alist of partitions B(t), ..., B(®) e [(|M
all B, some B(*) is regular for B.

LEMMA 4.3. Fort = O(y/m/log(m)), there exists a regular list of
partitionsB(l),...,B(’") Ak

is regular if for

PRrROOF. Suppose we randomly sample the partitions such that
B(l), . ..,B(m) € [t]M are independent and uniformly random.
Then for a fixed (possibly incomplete) partition B into t buckets
and any s € [t] where |Bs| < Cm/t for some constant C, |BS(,[) N Bs|
is stochastically dominated by X ~ Binom(Cm/t, 1/t). Thus, noting
that m/t? = Q(log(m)), we have

Pr [BW, ..., BU™ is not regular for B]

IA

2 Pr[X = w(m/tz)])

IN

m
mt? Pr[X = 3Cm/t2])

AT

Cm/t
3Cm/t2

<
<
|
|

Cem/t 3Cm/t? 3Cm/t*\ m
mt -
fee) ()
_ mt2 E 3Cm/t*\ m L
3 mm

Hence, by a union bound over < 2™t™ < m™ (possibly incom-
plete) partitions of the items into ¢ buckets, B, . BM g reg-
ular w.p. > 0, and therefore there exists a fixed list of partitions

B, ..., B which is regular. O
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We now present a 4/m/k-approximate mechanism for subaddi-
tive valuations using 20(k) simultaneous value queries.

Definition 4.4 (Bucket-Shattering Mechanism). Letk = Q(log(m))
and let t = y/m/k/2. Additionally, let B1), ..., B(™) ¢ [¢]M be a
regular list of partitions, which exists by Lemma 4.3. For each
t € [z],s € [t], fix a ©(k)-itemizing list of 20(k) partitions for
Bm (which exists by Lemma 3.3), and for each T C N, let ﬂ([) be
its chunking mechanism (i.e. the ©(m/k)-approximate MIR mech—
anism from Theorem 3.4 for this specific list of partitions). The
bucket-shattering mechanism for k is the bucketing mechanism for

this choice of ﬂs(tg .

Example 4.5. Suppose we have m = 8 and n = 4. Then one
bucketing and chunking is

Buckets 1: ({1, 2,3, 4}, {5,6,7,8})

Chunks 1a: ({1, 2}, {3,4}), Chunks 2a: ({1,3},{2,4})
Chunks 1b: ({5,6}, {7,8}), Chunks 2b: ({5,7},{6,8})
Buckets 2: ({1,3,5,7},{2,4,6,8})

Chunks 1a: ({1,3}, {5,7}), Chunks 2a: ({1,5},{3,7})
Chunks 1b: ({2, 4}, {6,8}), Chunks 2b: ({2,6}, {4,8})
Then we could

e Choose bucketing 1

e Choose chunking 1a for bucket a and chunking 2b for the
bucket b.

e Assign bidder 1 to the bucket a and bidders 2, 3, 4 to the
bucket b.

e Give bidder 1 chunks {1, 2} and {3, 4} from bucket a.

e Give bidder 2 chunk {5, 7} and bidder 4 chunk {6, 8} from
bucket b.

This results in the allocation ({1, 2, 3,4}, {5, 7}, 0, {6, 8}). Any allo-
cation resulting from a similar procedure would be in the allocation
bank of the bucket-shattering mechanism.

On the other hand, the allocation ({1, 2,5, 6}, {3,4}, {7, 8},0) is
impossible, because while we could choose bucketing 1, and chunk-
ings 1a for bucket a and 1b for bucket b, bidder 1 can only receive
chunks from a single bucket. This is a crucial restriction that saves
a large factor of communication.

Remark 4.6. One can think of the bucket-shattering mechanism
as adding an additional layer of shattering to the mechanism for
general valuations: we first shatter the bidders among the buckets,
in the sense that any allocation of the bidders to buckets is possible.
Then we run the general mechanism within each bucket, which
shatters the items among the bidders for that bucket.

Note that once the general mechanism within each bucket is
solved, no additional communication is needed to find the optimal
bucketing. However, 2%(") computation is needed (at least naively),
which is too much when n = w(k). This can be avoided by restrict-
ing consideration to only poly(m) random allocations of bidders
to buckets instead of all ¢" allocations. We first analyze the more
elegant, computationally inefficient version.
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THEOREM 4.7. Fork = Q(log(m)), the bucket-shattering mech-
anism for k (Definition 4.4) is \/m_/k-approximate for subadditive
valuations and can be implemented using 20K) communication.

Moreover, the mechanism can be implemented simultaneously with
20(K) value queries.

ProOF. We again first partition bidders into sets No, Ny, ..., N;
such that i € Ny if and only if |A} (9)] > 2Vmk, and for all s € [¢],
Tien, AL (B)] < 4VmE.

Observe that A can allocate all items to a single bidder, so since
there are at most \/m_/k /2 bidders who get more than 2Vmk items,
MIR #(3) > 2y/k/m OPT(3, N).

Define By = U;en, A} (¥), meaning that By is the items that
bidders in bucket s get in an optimal allocation. By construction of
Ni,...,N:, |Bj| < 4Vmk = 2m/t for all s € [¢]. Then if we interpret
B* = (B},...,B}) as an incomplete partition into ¢ buckets, there
exists £ € [m] such that B is regular for B*.

Now, define Bs([) fors € [t +1,2t] by Bs(f)[,
subadditivity of vy, ..., 0,

D DT wBY), 3 4 @)

A€[t] se[¢t] seNs se[t] ieENs
OPT(3,N \ No) ,

and observe that by

\%

N A; (@)

because Une(s] (B N A} (7)) = A (0) for any s, i. Hence,

s+A
{ * o>
A PIPICAREY
se[t] iENs 1)
> 24K opT@E N\ M) -
m

Now, observe that:

* Xselr] ﬂs(Jr)AN CAforallAe

[t].
. .ﬂi?A N, shatters every subset 0fB§ ) of size O(k) (see proof

of Theorem 3.4).
4
o Sien, B\ N A7
regular for B*.

By the above points, there exists A € A such that Bii)A NA} (D) C A;
for alli € N and A € [t]. Therefore, by (1),

@) = IBY), N B;| = O(k), since B") is

[k
MIR #(3) > 24/— OPT(3,N\Np) ,
m

max {z,/ﬁ OPT(3, No), 2+ & OPT(,N \ No)}
m m
,/% OPT(3) .

Communication. Observe that for each £ € [m], s € [¢], and

TcN Al cal,

20(k) possible sets in ﬂs(f) , as it is a Chunking mechanism with

and thus,

MIR 4 ()

Y

v

and each bidder can only receive at most

20(K) partitions into ®(k) chunks. Hence, each bidder can only
receive at most 22 mt = 20(k) gets in A, so optimizing over
A can be done with just 29(K) simultaneous value queries per
bidder. O
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4.1 Computational Efficiency

Naively, the bucket-shattering mechanism requires 20(n) compu-
tation to implement, as there are exponentially many allocations
of bidders to buckets. We can resolve this by randomly sampling
polynomially-many allocations of bidders to buckets, and optimiz-
ing over this restricted subset instead. We define the mechanism
below, but leave the proofs to the appendix of the full paper.

Definition 4.8 (P-Bucketing Mechanism). Let # C [t]N be a set
of partitions of the bidders into ¢ buckets, and for each ¢ € [z],

s € [t],and T C N, define .7(5(? as in Definition 4.1. Similarly, let

AW denote the allocation that awards all items to bidder i. Then
the P-bucketing mechanism for {ﬂi? € [z],s € [t],T C N}is

MIR over the allocation bank
(t)
Jo(U U X ).

( Uy
te[z] PeP se(t]

ieN
In other words, the $-bucketing mechanism is the bucketing mech-
anism with a restricted range for the assignment of bidders to
buckets.

Definition 4.9 (Balanced). Let g = (vy,...,0p), and let Ny (0) =
{i € N :|A}(9)| < m/t}. For any bucketing of the bidders P € [N
and s € [t], let B{(P) = Ujep,an, (5) Aj (9), let Sp(D) = {s € [¢] :
|BS(3,P)] = O(m/t)}, and let Np(9) = Usesp(z) (Ps N N1). In
other words, Np(9) is the set of bidders which belong to buckets
that do not receive many items, when we restrict attention only to
items awarded in OPT to bidders who do not individually receive
many items (in OPT). Then a bucketing P@ e [t]N is balanced
for 4 if OPT(g, Np(9)) = ©(OPT(q, N1(9))). A list of bucketings
P p@ e [N
for .

is balanced if for all 7, some P is balanced

LEMMA 4.10. For y = poly(m), there exists a balanced list of
bucketingsP(l),...,P(y) e [N

Definition 4.11 (Efficient Bucket-Shattering Mechanism). For y =
poly(m), let P, PY be a balanced list of bucketings, which
exists by Lemma 4.10. Let # be the set of all P*) and their shifts

(e.g. (Pl(fg, ... Pt(fg) forall A € [t]). The efficient bucket-shattering

mechanism for k is defined as the #-bucketing mechanism for
{f[([) € [z],s € [t],T € N} as defined by the bucket-shattering
mechanism for k.

THEOREM 4.12. Fork = Q(log(m)), the efficient bucket-shattering
mechanism for k (Definition 4.11) is \/m_/k-approximatefor subaddi-
tive valuations and can be implemented simultaneously with 20(k)
value queries, and in time 20(K) in the 2% -succinct representation

model.

5 COMMUNICATION LOWER BOUNDS

In this section, we will prove the lower bound in Theorem 1.4 and
Theorem 1.2.

Our approach can be broken down into the same two parts as
prior approaches: we first show that guarantees on the approxima-
tion ratio implies a rich allocation bank, then show that optimizing
over the allocation bank requires lots of communication. While
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the first part primarily adapts existing results, the second part uses
novel techniques to close the m1/6 gap between the upper and lower
bounds for submodular valuations.

5.1 Part 1: Approximation Implies Rich
Allocation Bank

We will show that a rich allocation bank 2-shatters a large set of
items. To do so, we make use of the following results.

emnz

A
& -

<

A € NM does not 2-shatter any set of size d. Then
)d
i=0

PRroPOSITION 5.1 ([9], THEOREM 1.5). Suppose an allocation bank
d i
m\(n
> <
HIHE
For an allocation bank A, there exists S C M such that ‘A 2-shatters
(S,N) and

< 2yIsl

|Al

PROPOSITION 5.2 ([7], LEMMA 3.2). If the MIR mechanism for A

is n/3-approximate for additive valuations, then there exists S C M
such that | A|g| > 2m/".

(mn

LemMa 5.3. Letk = Q(log(m)) and n = 34/m/k. Then if the MIR
mechanism for A is \/m/k-approximate for submodular valuations,
there exists S € M of size Q(Vmk [log(m/k)) such that A 2-shatters
(S,N).

ProoOF. Suppose that A does not 2-shatter any sufficiently large
set. Then by Proposition 5.1, choosing the correct constants yields

a ( emn? )@o/ﬂ/log(m/k))
O(Vmk/log(m/k))
O (Vmk/log(m/k))
) O(rg_j) B

However, by Proposition 5.2, | A| > Zm/ 3 a contradiction. Thus,
A must 2-shatter some set of size Q(Vmk/log(m/k)). O

LEMMA 5.4. Let k = Q(log(m)) and n > 2m/k. Then if the MIR
mechanism for A is m/k-approximate for all monotone valuations,
there exists S € M of size Q(k) and T C N of size 2 such that A
shatters (S,T).

Proor. Suppose for simplicity that n = 2m/k is an integer and
k is even. Let 8 C NM be the collection of partitions such that
each part has k/2 items. The valuations induced by B € B are
0;(R) = 1 gop,. Consider all partitions B € NM where |B;| = k/2
for all i € N, and consider the valuations v;(S) := 1s5p, induced
by each such B.

Since the MIR mechanism for A is m/k-approximate, for every
set of valuations induced by B € B, there exist two bidders who get
value 1. Since there are only (}) < m? pairs of bidders, there exists
a fixed pair of bidders T = {i, j} such that the MIR mechanism for
A gives bidder i items B; and bidder j items B; fora 1/ m? fraction
of the B € B.

Now, partition 8 into {Bg : R C M, |R| = k} so that B € Bg if
B; U Bj = R. It follows that there exists some Bg such that the MIR
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mechanism for A gives bidder i items B; and bidder j items B; for
a 1/m? fraction of the B € Bp.

Therefore, there exists R C M of size k such that [TR N A|g| >
|Brlg|/m?® = (kljz)/m2 = 2Q(k), Applying Sauer’s Lemma to TR N
A|R, there exists S of size Q(k) such that A shatters (S, T). o

Remark 5.5. We have demonstrated that good approximations
in either the submodular or arbitrary monotone valuation setting
imply a rich allocation bank in the sense that there is a large set
of 2-shattered items. This unified view then allows us (in the next
section) to derive, from 2-shattering, a useful structure for a lower
bound, which then implies lower bounds for both submodular and
arbitrary monotone valuations. However, we note that enough
structure is already recovered by Lemma 5.4 to give a direct lower
bound for monotone valuations, e.g., by noting that it requires 2 (k)
communication to maximize the sum of two monotone functions
over the k items shattered between 2 bidders [36].

5.2 Part 2a: Rich Allocation Bank Contains
Structure

For simplicity, let S := [s] and T := [t]. Our aim now is to find a
structure within the 2-shattered (S, T) which will be suitable for
embedding SETDI1sJOINTNESS. Let T; for j € S be the pair of bidders
that item j can go to. In other words, X jeg Tj is the allocation
bank witnessing the 2-shattering. Our end goal will be to prove the
following:

PROPOSITION 5.6. Fort = O(s/log(s)) and z = 20G/1) | there
exist BV, ... B ¢ ><jeS T; such that

o There exists V C T such that any f : V — [z] is constant if

and only ifBgf(l)), . .,Bgf(t))

. |B§1)| =---= |Bl.(z)|foralli eT.

are pairwise disjoint.

The next subsection makes clear why this structure allows us to
embed SETDISJOINTNESS. At a high level, the first bullet ensures that
we can encode valuations for the bidders using sets X1, ..., X; such
that a certain welfare can be attained if and only if (;cy X; # 0. The
first bullet alone suffices to give a lower bound for XOS valuations,
and captures the main idea behind the lower bound. The second
bullet introduces highly non-trivial technical challenges, but is
required to extend the lower bound to submodular valuations. We
only provide the proof of the claim in its entirety, but will comment
on when simplifications can be made by not satisfying the second
bullet.

Proof of Proposition 5.6. The first step is (with a slight abuse of
notation) to consider A C X jesTj such that there exist ay, ..., a;
such that for all A € A, |A;| = a; for all i. In other words, A satisfies
the second bullet. Since there are (s + 1)! < 25 possible values
for ay, ..., a; for any constant ¢ > 0, there exists such A such that
[Al > 275X jes Tjl = 2(1-£)s_Thus, we can achieve the second
bullet without losing too many allocations from our bank.

Step I: A Helpful Interpretation. Intuitively, we may think of the
first bullet as saying that there exist z allocations such that there
is no way to combine two or more allocations into another valid
allocation. In other words, the function f chooses which allocation
each bidder in V receives a set from, and f will always cause some
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item to be allocated to two bidders unless f assigns each bidder to
the same allocation.

Because each item can only go to one of two bidders, only items
that go between bidders who are assigned different allocations
under f are able to cause the allocation induced by f to be invalid.
As such, it is helpful to interpret the 2-shattering structure as a
graph, and reason about the viability of mixing allocations across
cuts in the graph.

Definition 5.7. For V.C T and E C S such that ;e Tj €V,
define G(V, E) to be the graph where each bidder denotes a vertex
and each item j € E denotes an edge between bidders Tj.

Our eventual goal is to sample z allocations independently and
uniformly from (A, and show that the probability that the first
bullet is satisfied is nonzero. Had we instead considered X jeg Tj
rather than A (i.e., disregarded the second bullet), then observe that
sampling uniformly from X ;<5 T; assigns each item j to a bidder
in Tj independently and uniformly, and hence the probability that
independently sampled allocations can be combined is exponen-
tially small in the number of edges crossing the cut separating the
bidders who are assigned to different allocations. Then, it roughly
suffices to take a subgraph with min-cut Q(k), and apply some
clever union bounds.

However, when we instead consider A, restricting to a 27
fraction of the original 2-shattered structure introduces correlations
between items when we sample uniformly from A, and hence a
more complex argument is needed. Importantly, the analysis focuses
on the following quantity.

Definition 5.8. For a graph G := G(V,E), edges C C E (typically,
we will take C to be the edges across a cut), and allocation bank
A C XjeE T;, define p(G, C, A) to be the maximum fraction of
allocations that remain after fixing the allocation of the items in C.
In other words,

[{B € A :A=B|c}
[ A

p(G,C,A)

max
AedA|c

Observe that p(G,C, X g Tj) = 27I€1. To eventually apply a
similar probabilistic argument as we would apply to a 2-shattered
structure, we will try to find a subgraph H := H(V,E) of G(T,S)
such that the min-cut of H is Q(k) and p(H,C, A|g) ~ 2711 for
all cuts C.

Step II: Finding a Good Subgraph. From here on, we will denote
cuts by the set of their edges. Additionally, for a graph G, let y,(G)
denote its r-way min-cut, i.e., the smallest cut which partitions the
bidders into r non-empty parts.

LemMMA 5.9. Let A € Xjes Tj and |A| 2 2(1=6)s for some con-
stant ¢ > 0. Then there exists V C T where |V| > 2 and E C S such
that H == H(V,E) satisfies y,(H) > e(r —1)s/t for all r, and for any
edges C across a cut in H, p(H,C) < 2~ (172¢)s,

ProOOF. Initialize S’ := S, and while there exists an r-way cut
C across some connected component of G := G(T,S’) such that
p(G,C, Alg) > 27€(r=Ds/ta=(1-26)[C| get &’ := & \ C. By defini-
tion of p(G, C, Als’), we have |A|snc| = p(G,C, Als )| Als |-

Suppose for contradiction that the process results in a discon-
nected graph after removing the ry, ..., rp-way cuts Cy, . . ., Cp. Then
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since removing an r-way cut increases the number of connected
components by r — 1, we have 3;¢[¢(r; — 1) < t. Further, there are
no loops in G, s0 S’ = 0 and ;¢ [¢]|Ci| = s. Therefore,

1 = |Algl
N z—fs/tZie[f](Vi—l)z—(l—Zf)Zie[f]lCillyu
N 2—832—(1—26)32(1—8)3

1,

a contradiction. Thus, the process terminates with a connected
component H = H(V,E) (which is a subgraph of the original
G(T,S)) such that |V| > 2 and every r-way cut C across H satisfies
p(H,C, Alg) < 27¢0r=1)s/ta=(1=20)C < 5-(1=20)IC]  Addition-
ally, p(H,C,Alg) > 271€1 5o the first exponential ensures that
|C| = e(r — 1)s/t for all C. Thus, H satisfies the desired proper-
ties. O

Step III: A Probabilistic Construction. Before we proceed to
the final probabilistic construction, we prove a property of the
subgraph H promised by Lemma 5.9 that makes clear why we need
a structure like H to be contained in G(T, S).

LEMMA 5.10. Let H := H(V, E) satisfy the condition in Lemma 5.9
fore =1/50. Let f : V. — [r] map bidders to parts of an r-way cut
C. Then for independent B, ..., B(") ~ A|g, the probability that
{B(f(i)) (i) : i € V'} are pairwise disjoint is at most 27IC1/3,

Proor. Let V1,...,V; be the partition of V where f(i) = ¢ for
any bidder i € V;. Let Cp for £ € [r] be the 2-way cut between V
and V' \ Vp.

Observe that there are 3/ r-tuples of BV leys - ., B |c, such
that BY (D) (i) for i € V are pairwise disjoint, because for each
Jj € C which can go to either V; or Vv, we need either B 1o
allocate j to Vpr, or B{) to allocate j to Vp, or both.

On the other hand, by definition of p(H, C¢, A|g) and the upper
bound on it given by Lemma 5.9, the probability of any such r-tuple
being sampled is at most

[ pt.co.qip)

te(r]

5= (1-26)[Cel

IA

telr]
4—2(1-26)|C]|

so the probability that the BU D) (j) are pairwise disjoint is at most
31Cl—-2(1-26)|C| < 9=ICI/3, o

In other words, H has the property that for every r-way cut in H,
the probability that r independently sampled allocations from A|g
can be combined into a feasible allocation is exponentially small
in the size of the cut, which is exactly the property we wished to
replicate from the 2-shattered structure! We can now proceed to
the probabilistic construction. First, we give a graph theoretic result
that will be needed for the union bound (proof in the appendix of
the full paper)

LEmMA 5.11. For any graph G = (V,E) (possibly with parallel
edges, but no loops) and ¢ € Z>1, the number of r-way cuts with at
most cyo(G) edges is at most |V |*¢.
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LEMMA 5.12. Let t = O(s/log(s)) and let z = 206/1) | Addition-
ally, let BV .. B ~ A|p. Then wp. > 0, a function f : V — [z]
is constant if and only if{Bl.(f(l)) : i € V} are pairwise disjoint.

Proor. Since B(l), .. .,B(Z) are valid allocations, the forward
direction holds trivially.

For the reverse direction, fix any function f : V' — [z] which
takes on a fixed set of r > 2 values, and let the C be the r-way cut
induced by f. Then by Lemma 5.10, the probability that {B/()) (i) :
i € V'} are pairwise disjoint is at most 27113,

By Lemma 5.11, the number of distinct cuts C with |C| < ces/t <
cy2(H) is at most t4¢. Thus, by a union bound over all possible
values of r, all possible fixed subsets of r values in [z], all possible
values of c, and all possible cuts satisfying these parameters, the
probability that the desired condition is not satisfied is at most

s
((z) Z Z,4(c+1)2—(055/1‘)/3)
r c=r—1

t

2,

r=2
t S
< (Zr 28c(log t—ss/(Gt)))
; c=rz—1
S 3
< (29(”3/[) 2*®(cs/t))
r=2 c=r—1
t
<

22—®(rs/t) < 1,
r=2

where the third line follows because logt < logs = O(s/t). O

Extending the allocations BW ... BB ¢ Alg to any alloca-
tions in A which agree on the allocation of the items E completes
the proof of Proposition 5.6.

5.3 Part 2b: Structure Yields Set Disjointness
Embedding

We now show that the MIR mechanism for A can solve SETDI1s-
JOINTNESS. The bidder valuations we will use are the following.

Definition 5.13. A mild-desires bidder for ¥ C 2M, where all
F € F are the same size g, has the valuation function

2|G| |Gl <a
o(G) = 2|G| - 1geF IG|l=a
2a |G| > a

We say that such a bidder is satisfied if their allocation gives them
value 2a, which occurs when they receive items F € ¥, or any a+1
items. Mild-desires bidders have submodular valuations [36].

For each bidder i € V, associate an input set X; C [z]. For the
bidders i ¢ V, associate the set X; = [z]. Fix B, .. B® e A
promised by Proposition 5.6. By bullet two, we can let each bidder
i € T be mild-desires for {BE[) (t e X}

Note that if we were only interested in a communication lower
bound for MIR mechanisms for XOS valuations, then we would
not have needed bullet two to hold, as we could instead let the
valuation for bidder i be the rank function of the downward-closed
set family defined by {Blm : ¢ € X;} (which is an XOS function).
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Then to solve SETDi1sjoINTNESS with the MIR mechanism for
A, we only need to show that (;cy X; # 0 if and only if the
optimal welfare over A is 2s. The forward direction holds because
the allocation B™*) for some x € ;e X; satisfies every bidder.

For the reverse direction, by Proposition 5.6, we know that any
collection of sets desired by the bidders V are pairwise disjoint (i.e.,
results in a valid allocation) if and only if those collection of sets
belong to the same allocation. To achieve 2s welfare, we need to
satisfy every bidder (since )};c a; = s), and this can only be done
if every bidder receives a desired set (if we satisfy bidder i by giving
them g; + 1 items, some bidder j can only receive at most a; — 1
items and cannot be satisfied). Hence, if the optimal welfare is 2s,
it must be the case that (;cy X; # 0.

Thus, the MIR mechanism for A is capable of solving SETD1s-
JOINTNESS over a universe of size z. Since the communication com-
plexity of SETDISJOINTNESS is Q(z) [34], we conclude that maximiz-
ing the welfare of submodular valuations over A requires 29(s/t)
communication.?

Wrapping Up. By Lemmas 5.3 and 5.4,
e An m/k-approximate MIR mechanism for general valuations
must use 22%) communication.
e A /m/k-approximate MIR mechanism for submodular valu-
ations must use 2% (K/108(m/k)) communication. Therefore,

a \m/(klog(m/k))-approximate MIR mechanism for sub-

modular valuations must use 2%(%) communication.
Thus, we have MIRGen (m, k) = Q(m/k) and MIRgypmod (M, k) =

Q(y/m/(klog(m/k))).
6 CONCLUSION

For all amounts of communication, we improve both upper and
lower bounds for approximation guarantees of MIR mechanisms
over submodular, XOS, subadditive, and general valuations. This
resolves the approximation guarantees of MIR mechanisms for gen-
eral valuations up to a constant factor, and for submodular, etc.
valuations up to a ©(y/log m) factor. In addition, the mechanisms
which witness the upper bounds use only value queries, demon-
strating that using arbitrary communication instead of the far more
restrictive regime of value queries does not give a mechanism much
power. Even so, there are a few open questions for future work.

Closing the Logarithmic Gap for Submodular Valuations.
Although we were able to significantly improve existing lower
bounds for submodular, XOS, and subadditive valuations (reducing
the gap from O((m/k)'/%) to O(+/log(m/k))), we still started from
the same 2-shattering argument of [9] in order to embed a hard
communication game.

If one conjectures that our lower bound can be slightly improved
(as we do), this unfortunately cannot follow after a 2-shattering
argument — there exist mechanisms which are \/m_/k-approximate
(see appendix of full paper) and which do not 2-shatter any pair
(S, T) such that |S|/|T| = Q(k).

If instead one conjectures that our MIR mechanisms can be
slightly improved, then the must be neither implementable 20(k)
8Note that because the randomized communication complexity of SETDISJOINTNESS

is also Q(b), even randomized protocols which maximize the welfare of monotone
submodular valuations over A must use 2%(5/*) communication in expectation.
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value queries (by [22]), nor implementable with 2© %) simultaneous
communication (see appendix of full paper). Such a mechanism
would be fundamentally different than all prior MIR mechanisms,
which can be implemented with simultaneous value queries.

Beyond MIR mechanisms. The major open problem is to under-
stand communication lower bounds that hold for all deterministic
truthful mechanisms, and not just MIR mechanisms. There is sig-
nificantly less progress in this direction - only [18] for dominant
strategy truthful mechanisms, and [3] for two-player mechanisms.
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