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Abstract

It is well-known that RANDAO manipulation is possible in Ethereum if an adversary controls the

proposers assigned to the last slots in an epoch. We provide a methodology to compute, for any

fraction ³ of stake owned by an adversary, the maximum fraction f(³) of rounds that a strategic

adversary can propose. We further implement our methodology and compute f(·) for all ³. For

example, we conclude that an optimal strategic participant with 5% of the stake can propose a

5.048% fraction of rounds, 10% of the stake can propose a 10.19% fraction of rounds, and 20% of

the stake can propose a 20.68% fraction of rounds.
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1 Introduction

Randomness is an essential component of blockchain protocols. With the invention of Proof

of Work blockchains [20], a major innovation in Bitcoin was to use the randomness of the

SHA256 function to select the next block proposer. In particular, a participant in the Bitcoin

ecosystem is able to propose a block of their choice with probability proportional to their

computational power. While this system satisfies many desirable properties, it is in many

ways not desirable due to inefficiency. With the move to Proof of Stake blockchain protocols,

the dependence on computation is replaced with stake in the digital currency itself. However,

a new source of randomness is needed to select the next block proposer with probability

proportional to one’s stake. A major security requirement for this randomness is for it to

be verifiable (i.e. everyone can verify that the block proposer lottery was not rigged) and

unpredictable (i.e. before the lottery happens, no one can know the winner).

Several approaches exist to provide this source of randomness to Proof of Stake blockchain

protocols. One approach is to use an external randomness beacon [13] which achieves similar

guarantees as in Bitcoin. However, implementing such a beacon comes with trust central-

ization concerns. A more practical approach is to use protocols that rely on pseudorandom

cryptographic primitives to select block proposers, which are adopted by Proof of Stake

blockchains such as Ethereum.
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While the system safety and liveness are not compromised by the randomness mechanism in

current Proof of Stake blockchains, it is well-known that they are susceptible to manipulation

(see [23, 7]). In particular, incentive-incompatibilities that result in block-withholding

behavior exist in many Proof of Stake blockchain protocols – analogous to selfish mining for

Bitcoin [10, 26, 22].

There is a recent line of work focusing on Proof of Stake incentive incompatibilities

[4, 13, 15, 3, 14], some of which derive concrete bounds on optimally manipulating randomness

for the Algorand protocol. However, while some analyses such as [23, 9] and simulation-based

approaches such as [2] conclude that randomness manipulation is likely to be negligible for

Ethereum, it is currently unknown how much more an adversary that optimally manipulates

Ethereum can make. In this paper, we focus on answering this question and compute optimal

strategies for randomness manipulation in Ethereum. Our approach relies on modeling the

randomness manipulation game as a Markov decision process.

1.1 Brief overview of Proof of Stake Ethereum

We now briefly cover the relevant details of the Proof of Stake Ethereum protocol. In the

Ethereum protocol, time is divided into epochs, each epoch is divided into 32 slots, and each

slot is 12 seconds. Each epoch is assigned 32 block proposers (one for each slot) who can

construct and broadcast a block to be added to the blockchain at that slot. If the block

proposer fails to do so, the slot is missed (no block is added) and the blockchain moves on to

the next slot.

Proof of Stake Ethereum provides randomness by a scheme that maintains a random

value called the RANDAO (also known as randao_reveal) in each block [9]. As each block is

proposed, the previous RANDAO value is mixed using the private key of the proposer. Since

the private key is used to sign the epoch number and is mixed into the previous RANDAO

value by the xor operation, the mixing is verifiable. Moreover, as the signature is assumed

to be uniformly random and the private key is unknown to the public, it is unpredictable.

These properties ensure that the only actions available to an adversary in influencing the

RANDAO value is to choose between broadcasting or withholding a block.

At the end of each epoch, the RANDAO value is used to select a set of 32 new proposers

for the next epoch1. For example, if an adversary controls multiple validators and happens

to get assigned to propose in slot 30 and 31 (the last two slots of an epoch), after slot 29

passes, the adversary can use the RANDAO value at slot 29 to compute 4 different RANDAO

outcomes for the next epoch. If the adversary withholds both 30 and 31, the RANDAO

value remains the same. If the adversary withholds 30 and broadcasts 31, the RANDAO

value is only mixed with the signature of the proposer of 31, and so on. By precomputing 4

possible outcomes, the adversary is able to select one of the 4 RANDAO values (at the cost

of missing the relevant block rewards). Similarly, in general, an adversary that controls the

last k proposers in an epoch is able to choose from 2k RANDAO values that determine the

proposers for the next epoch. We call the longest contiguous adversarial slots at the end of

an epoch the tail. With this scheme, it is conceivable that an adversary may strategically

withhold their block at specific slots to win the right to produce more blocks in expectation.

1 Ethereum actually skips an epoch in this process so the RANDAO value at the end of epoch i determines
the 32 proposers for epoch i + 2 – we discuss this in more detail in Section 3
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1.2 Main contributions

Our main technical contributions in this paper are:

We model and formalize the game that an adversary with ³ < 1 proportion of the total

staked Ethereum plays in manipulating the RANDAO value.

We show that the RANDAO manipulation game can be formulated as a Markov Decision

Process, and we show how to significantly reduce the state space so that policy iteration

on a laptop quickly converges.2

We present precise answers to the fraction of slots a strategic player can propose after

optimally manipulating Ethereum’s RANDAO.

1.3 Related Work

Manipulating Ethereum’s RANDAO. The name RANDAO comes from (and the scheme

is inspired by) an earlier project [1], and its manipulability has been acknowledged and

discussed in the Ethereum community [6, 5]. Work of [2] focuses on modeling the RANDAO

mechanism3 in probabilistic rewrite logic and evaluating greedy strategies (analogous to

Tail-max of Section 5.1). In evaluating the model, they follow a simulation based approach

with epoch length 10 and report some biasability. In [23], some probabilistic analysis of how

many blocks an adversary controlling the last two proposers in the current epoch can get

in the next epoch is presented. In addition, it is demonstrated that in specific instances,

some staking pools had the opportunity to control more than half the next epoch. Lastly, [9]

shows that the number of proposers an adversary controls at the tail is expected to shrink as

long as the adversarial stake is less than roughly 1/2. It also provides an strategy analysis

that considers tails of length 0 and 1, concluding marginal improvement over the honest.

These results are consistent with ours, and as expected the reported improvement in rewards

is less than the optimal strategy we compute. For example, a 25% adversary with their

single look-ahead strategy makes 2.99% more than the honest while we compute that the

optimal strategy makes 4.09% more than the honest. In comparison to these works, our work

nails down the optimal RANDAO manipulation, and via a principled framework that can

accommodate slight modifications (such as epoch length) as well.

Computing Optimal Manipulations. The most related methodological papers are [22, 14],

who also compute optimal strategic manipulations. [22] computes optimal manipulations

in Bitcoin’s longest-chain protocol, and [14] computes optimal manipulations in Algorand’s

cryptographic self-selection. Our work is methodologically similar, as we also formulate

an MDP and use some technical creativity to solve it. On the methodological front, our

state-space reduction in Section 4 is perhaps most distinct from prior work.

Manipulating Consensus Protocols, generally. There is a significant and rapidly-growing

body of work on manipulating consensus protocols broadly [10, 22, 19, 8, 17, 16, 13, 11, 25,

24, 3, 14]. Aside from the aforementioned works, most of these do not compute optimal

manipulations, but instead understand when profitable manipulations exist. For Ethereum’s

RANDAO, it is already well-understood that profitable manipulations exist for arbitrarily

small stakers, and so the key open problem is how profitable they are (which our work

resolves).

2 Our implementation is available here: https://github.com/kalpturer/randao-manipulation
3 The RANDAO model in [2] is an earlier variation of the RANDAO mechanism that uses a commit-reveal

scheme. The induced game, however, is quite similar.

AFT 2024
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1.4 Roadmap

In Section 2, we briefly cover the relevant background on Markov Decision Processes. In

Section 3 we formalize the RANDAO manipulation process as a game. In Section 4, we

formulate the RANDAO manipulation game as a Markov Decision Process and reduce the

state space to a tractable regime. In Section 5 and 6 we describe how to evaluate and solve for

optimal policies. Lastly, in Section 7 we conclude with a discussion on modeling assumptions,

future work, and block miss rates.

2 Preliminaries: Markov Decision Processes

In this section, we quickly review the necessary background for Markov chains and Markov

decision/reward processes. The material in this section is largely drawn from [18] and [21].

These texts can be consulted for a more detailed treatment.

A Markov chain C = (S, P ) consists of a set of states S and transition probabilities

P : S × S → R. Given a current state s ∈ S, we transition to the next state with the

probability distribution induced by P (s, ·). Rewards can be added to this framework with a

reward function R : S × S → R such that if we transition from state s to s′, we get R(s, s′)

reward. A Markov chain with rewards is a Markov reward process (MRP).

An agent navigating a Markovian system can be modelled using a Markov decision process

(MDP). An MDP is a tuple M = (S, A, {Pa}a∈A, {Ra}a∈A) where S is a set of states, A is a

set of actions, Pa : S × S → R is a transition probability function representing the probability

of individual transitions given an action a ∈ A, and Ra : S × S → R represents the reward of

transitioning between individual states with action a ∈ A.

A policy Ã : S → A is a function specifying which actions to take given the current state.

Once we fix a policy in an MDP, we get an MRP. We only consider deterministic policies

since the standard results [21] show that in the models we consider, an optimal deterministic

policy exists.

We will be modeling the RANDAO manipulation game as an MDP. We now introduce

some definitions and properties that will be useful when we introduce our MDP.

2.1 Properties of Markovian systems

One important property concerns whether some states are visited infinitely often.

A state s in a Markov Chain is recurrent if, conditioned on currently being at state s, the

probability of later returning to state s is 1. If a state is not recurrent, it is called transient.

A recurrent class of states is a set of recurrent states Ŝ such that, for all s ∈ Ŝ, conditioned

on being at state s: for all s′ ∈ Ŝ, the probability of visiting s′ at a later time is > 0.

A Markov chain is ergodic if it consists of a single recurrent class of states. Similarly an

MDP is ergodic if for every deterministic policy,4 the Markov chain induced by the policy is

ergodic. All MDPs we will consider will be ergodic so for the rest of this section we assume

ergodicity.

A stationary distribution σ of a transition probability matrix P in a Markov chain is

defined to be a solution to the following:

σ = σP and
∑

i

Ãi = 1

4 We only work with stationary policies which are policies that do not change over time. For the processes
we consider a stationary optimal policy is guaranteed to exist.
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▶ Proposition 1 ([21]). If a Markov chain is ergodic, then there exists a unique stationary

distribution.

2.2 Reward criteria

Now we define the reward criteria for a Markov decision process M . For our application,

average reward is more appropriate than discounted reward since we are concerned with the

infinite behavior of the system.

Let ÄÃ,s(m) be a random variable that is equal to the reward at time m while transitioning

the state at time m to the state at time m + 1 in some MDP when running policy Ã starting

at state s.

The average reward of a policy Ã is defined as:

ΓÃ = lim
N→∞

E

[

1

N

N
∑

m=0

ÄÃ(m)

]

where we rely on the following result to ignore the initial state.

▶ Proposition 2 ([21]). The average reward for ergodic MDPs is initial state independent.

Let q(s) be the expected reward of transitioning from state s. More formally q(s) =
∑

s′∈S RÃ(s)(s, s′)PÃ(s)(s, s′). Then, ΓÃ can be computed using the stationary distribution

σ
Ã of the Markov chain induced by fixing policy Ã.

ΓÃ =
∑

s∈S

q(s)ÃÃ
s

Value Functions. In any recurrent process, it is a useful concept to understand the “value”

of being in one state over another, due to the potential future rewards. With non-discounted

rewards, this requires some subtlety to properly define (because the expected future reward

from any state is infinite). One standard method is to define the value of a state as its

average adjusted sum of rewards:

vÃ(s) = lim
N→∞

E

[

N
∑

m=0

(ÄÃ,s(m) − ΓÃ).

]

That is, the average adjusted sum of rewards captures the additive difference between

an unbounded process starting from state s and iterating Ã and an unbounded process that

earns ΓÃ (the average per-round reward of Ã) per round.

▶ Lemma 3 ([18]). For an ergodic MDP M ,

vÃ(s) + ΓÃ = q(s) +
∑

s′∈S

PÃ(s)(s, s′)vÃ(s′)

Since we can compute ΓÃ first given a policy, this equation determines all vÃ up to an

additive constant which we can solve for after setting vÃ(s) = 0 for some s ∈ S.5

5 The average reward ΓÃ is sometimes called gain and what we call the value vÃ, which is the average
adjusted sum of rewards, is sometimes called bias in the literature.

AFT 2024
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To find the optimal policy with respect to the average reward criterion, we can run the

policy iteration algorithm of [18, 21]. Starting from an arbitrary policy Ã0, evaluate the

policy to compute ΓÃ0
and vÃ0

. Then, a policy improvement step is performed which defines

Ãi+1(s) := arg maxa∈A{qa(s) +
∑

s′∈S Pa(s, s′)vÃi
(s′)}. The following Bellman optimality

equation guarantees that once this process stabilizes, we have an average reward optimal

policy.

▶ Theorem 4 (Bellman optimality equation for average-reward MDPs, [18]). If a policy Ã∗

satisfies the following equations in an MDP, then Ã∗ is average reward optimal.

vÃ∗(s) + ΓÃ∗ = max
a∈A

{

qa(s) +
∑

s′∈S

Pa(s, s′)vÃ∗(s′)

}

∀s ∈ S

3 The RANDAO manipulation game

We now review RANDAO in more detail, and formulate the RANDAO manipulation game.

RANDAO is a pseudorandom seed that updates every block, and is used to select Ethereum

proposers. Below, we use the terminology R(b) to denote the RANDAO value after the bth

slot has finished.

Updating RANDAO. The process for updating R(b) is quite simple. If no one proposes a

block during slot b of epoch x, then R(b) = R(b − 1). If a block is proposed during slot b, the

proposer must also digitally sign the epoch number x and the hash of this digital signature is

XORed with R(b − 1) to produce R(b). Note, in particular, that there is a unique private key

eligible to propose a block during slot b, and therefore the only two possibilities for R(b) are

either R(b − 1) (if no block is proposed) or R(b − 1) XOR hash(signature of x by proposer

for slot b).

Using RANDAO to seed epochs. The Ethereum blockchain consists of epochs, where each

epoch contains 32 blocks. Within each epoch t, a seed S(t) determines which private keys

are eligible to propose during each slot. That is, for each of the 32 slots in an epoch, the

proposer of that slot is a deterministic function of S(t) (but S(t) is a pseudorandom number).

Moreover, if S(t) is a uniformly random number, then each slot proposer is independently

and uniformly randomly drawn proportional to stake.

S(t) is set based on RANDAO. Specifically, S(t) is equal to the value of RANDAO at the

end of epoch t − 2. To be extra clear, there have been 32(t − 2) slots completed by the end

of epoch t − 2, so S(t) := R(32t − 64).

Rewards. In practice, proposer rewards involve transaction fees, Maximal Extractable Value

(MEV), and any payments made in the Proposer-Builder-Separation (PBS) ecosystem. To

streamline analysis, and to be consistent with an overwhelming majority of prior work, we

focus on the fraction of slots where an adversary proposes.6 That is, we consider an adversary

who aims to maximize the fraction of slots where they propose.

6 Of course, it is an appropriate direction for future work to instead explicitly model transaction fees,
MEV, etc. Such modeling would only make an adversary stronger, as their strategy can now depend on
the value of each slot [8].
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Ideal Cryptography. It is widely-believed that digital signatures of a previously-unsigned

message using an unknown private key (and hashes of previously-unhashed inputs, etc.) are

indistinguishable from uniformly-random numbers by computationally-bounded adversaries.

However, such cryptographic primitives do not generate truly uniformly-random numbers.

For the sake of tractability, and in a manner that is consistent with all prior work studying

strategic manipulations of consensus protocols, we consider a mathematical model based on

idealized cryptographic primitives (i.e. that hashing a previously-unhashed input produces a

uniformly random number, independent of all prior computed hashes).

RANDAO Manipulation Game v1. We now formally define the RANDAO Manipulation

Game (v1). After defining the game, we note its connection to Ethereum’s RANDAO, and

then proceed to simplify the game. Consistent with an overwhelming majority of prior work,

we consider a single strategic manipulator optimizing against honest participants.7

▶ Definition 5 (RANDAO Manipulation Game v1). The RANDAO Manipulation Game

proceeds in epochs 1, 2, . . . , n, . . .. Each epoch has ℓ := 32 slots. The strategic player has an

³ fraction of stake.

Initialize Reward:=0.

At all times, there is a RANDAO-generated list R := ïR1, . . . , R32ð ∈ {S, H}ℓ. R denotes

the list of ℓ proposers based on the current value of RANDAO, and Ri denotes whether

the strategic player (S) or an honest player (H) would propose in an epoch using the

current value of RANDAO.

Initialize R so that each coordinate of R is drawn iid, and equal to S with probability ³.

For each epoch n := 1, . . .

Store Rn := R and set the proposers for epoch n equal to Rn.

At all times during this epoch, for any set B of slots such that Rn
i = S for all i ∈ B,

Strategic Player can compute R|B, which represents how the list of 32 proposers would

update if Strategic Player were to propose a block in exactly slots B and no other blocks

are proposed, given that the current RANDAO induces R.

For each slot i := 1, . . . , ℓ:

∗ If Rn
i = H:

· Update R to redraw each coordinate of R iid, and equal to S with probability ³.

· For all B, update R|B to redraw each coordinate of R iid, and equal to S with

probability ³.

∗ If Rn
i = S:

· Strategic Player chooses whether to propose or not.

· If they choose to propose: (a) Add +1 to Reward, and (b) update R := R|i, and

R|B := R|B\{i} for all B.

∗ Store Reward(n) := Reward.

Strategic Player’s reward is lim infn→∞{Reward(n)/(ℓn)}.

Let us now overview the game above, highlight why it captures RANDAO manipulation

on Ethereum, and where we’ve made stylizing assumptions.

First, observe that the epoch’s slot proposers are a deterministic function of RANDAO.

We have skipped explicitly representing the RANDAO value, and focused only on the

resulting proposers in R.

7 An honest participant proposes a block during every round they are eligible.

AFT 2024
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Next, observe that every time RANDAO changes due to an Honest digital signature,

we’ve randomly redrawn each proposer i.i.d. and equal to S with probability ³. This

makes two stylizing assumptions.

First, we’ve assumed that uniformly RANDAO seed generates proposers iid proportional

to stake. This may not be literally true, as Ethereum employs a more complicated

sampling8. However, this stylizing assumption has negligible effect for the vast majority

of real-world conditions9.

Second, we’ve assumed that the hash of an honest digital signature is distributed

uniformly at random from the perspective of Strategic Player. This assumes an Ideal

hash function and Ideal digital signature (as consistent with prior work [12, 11, 14]),

although in practice it only holds that the distribution is indistinguishable from uniform

to a computationally-bounded adversary.

In our game, the RANDAO value relevant for epoch t is whatever RANDAO is at the end

of epoch t − 1. In Ethereum proper, the RANDAO value relevant for epoch t is at the

end of epoch t − 2. However, we claim our modeling choice is almost wlog. Specifically,

observe that there are essentially two RANDAO Manipulation Games being played: one

on odd epochs, and one on even epochs. That is, the RANDAO value at the end of

epoch 2t − 1 determines the proposers for epoch 2t + 1 for all t, just as in our RANDAO

Manipulation Game. The only distinction to our game is that the RANDAO value at

the start of epoch 2t + 1 is not equal to the RANDAO value at the end of epoch 2t − 1

(whereas in our RANDAO Manipulation Game, it is) – the RANDAO value can change

during round 2t. However, as long as there is at least one Honest proposer during round

2t + 1, the RANDAO value at the start of epoch 2t + 1 doesn’t matter anyway, because

it will be reset to uniformly random (at least, from the Strategic Player’s perspective).

To elaborate on the previous bullet, as long as an Honest player proposes in at least

one slot in every epoch, our RANDAO Manipulation Game v1 correctly models all odd

Ethereum epochs, and separately correctly models all even Ethereum epochs.

Finally, observe that our Strategic Player receives a reward of one exactly when they

propose a block, and their reward is indeed equal to the time-averaged fraction of rounds

in which they propose.

To summarize, our stylized game captures RANDAO manipulation in Ethereum with three

exceptions: (a) it assumes Ideal cryptography for simplicity of analysis, (b) it assumes

proposers in each epoch are drawn i.i.d. proportional to fixed stake, (c) it assumes that

every epoch contains at least one Honest proposer. (a) is a natural assumption consistent

with prior works, and essentially abstracts strategic manipulation away from breaking

cryptography. The impact of (b) is negligible, as the distinction with Ethereum’s shuffling

and iteration based approach is negligible for an essentially uniform10 set of over one

million validators. (c) is also negligible, as the probability that a Strategic Player could

ever induce the next epoch to be the first with no Honest proposers is at most (2³)32. 11

8 Roughly speaking, for each slot Ethereum shuffles the set of active validators and starts iterating over
the shuffled list. A validator is selected to be the proposer for this slot with probability equal to its
effective balance over 32.

9 As long as most validators have effective balance equal to the maximum, Ethereum essentially selects the
proposer using a uniformly random sample. Ethereum’s real world conditions match this assumptions
since the vast majority of validators have maximum effective balance.

10 Here, by uniform, we are referring to the effective balance of validators. For Ethereum’s current validator
set, almost all have maximum effective balance which is 32 ETH.

11 To see this, observe that Strategic Player has at most 232 options to seed the subsequent epoch, and for
each option the probability that it has no Honest proposers is ³32. The calculation follows by a union
bound. Observe that even for ³ = 30%, this is 2−32, meaning we would need to wait 232 epochs, or
over 150 years.
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Manipulating RANDAO. To build intuition, we first give an example of how and why one

might manipulate RANDAO. First, imagine that the Strategic Player proposes in slots 25

and 30 during epoch 1. Observe that RANDAO will get reset to uniformly random during

epoch 31, and the RANDAO value between rounds 25 and 30 has no impact on any future

proposers. Therefore, the Strategic Player gains nothing by skipping these proposal slots.

On the other hand, imagine that the Strategic Player proposes in slots 31 and 32. The

Strategic Player knows the RANDAO value going into slot 32, and therefore has two options

to set the RANDAO for epoch 2. If they choose not to propose in slot 32, they miss out on a

one-slot reward, but perhaps this leaves the RANDAO in a favorable place for epoch 2 as

compared to the RANDAO value if they were to propose. In fact, the Strategic Player knows

the RANDAO value going into slot 31, and has four choices between {propose twice, propose

zero times, propose only in 31, propose only in 32}. Each of these will seed a different set of

proposers for epoch 2, and forego a different number of rewards.

This example helps establish that the Strategic Player never benefits from foregoing a

proposal before an Honest slot, but has 2k options for the next epoch’s RANDAO when

they propose the last k slots. We therefore call the largest number of slots k such that the

adversary controls the last k slots of an epoch the tail of the epoch. The adversary can

influence the next epoch only through these slots and intuitively these slots represent how

much predictive power the adversary holds for the next epoch.

Refining the RANDAO Manipulation Game. Since the length of the tail fully captures the

manipulation power of the Strategic Player, we further analyze this and refine our RANDAO

Manipulation Game. We first observe that the length of the tail for a single RANDAO draw

is distributed according to a roughly geometric distribution. A tail of length t occurs if we

have t slots at the end of an epoch controlled by the strategic player which happens with

probability ³t, preceded by a single honest slot which happens with probability (1 − ³). We

call the remaining non-tail slots that the adversary controls the count. The count follows a

binomial distribution conditioned on the length of the tail. Specifically:

geom′(³) is the distribution of the tail given an adversary with stake ³. It is defined such

that for T ∼ geom′(³),

Pr(T = t) =

{

(1 − ³)³t 0 f t < ℓ

³ℓ t = ℓ

Binom′(ℓ − t − 1, ³) is the distribution of the remaining count (how many slots the

adversary gets from the non-tail part of the epoch) given that the tail is t. For C ∼

Binom′(ℓ − t − 1, ³),

Pr(C = c) =















(

ℓ−t−1
c

)

³c(1 − ³)ℓ−t−1−c 0 f c < ℓ − t ' 0 f t < ℓ − 1

1 c = 0 ' (t = ℓ − 1 ( t = ℓ)

0 c ̸= 0 ' (t = ℓ − 1 ( t = ℓ)

F is the distribution of (C, T ) where we first sample T ∼ geom′(³) and then sample

C ∼ Binom′(ℓ − T − 1, ³).

Given our reasoning above, an optimal Strategic Player will always propose during any of

the “count” rounds, and will only manipulate the “tail” rounds. In particular, this means

that the Strategic Player need not know the full slate of proposers in an epoch, but only the

count and the tail. With this in mind, we can now refine our RANDAO Manipulation Game

v1 to an equivalent RANDAO Manipulation Game v2.

Using the definitions above, formally, the RANDAO manipulation game G is:
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▶ Definition 6 (RANDAO Manipulation Game v2).

1. Initialize Reward := 0, and Rounds := 0.

2. Initialize (c, t) drawn from F .

3. For i = 1 to t,

For j = 1 to
(

t
i

)

,

Sample (ci,j , ti,j) from F .

4. The Strategic Player chooses an (i∗, j∗) pair.

5. Update t := ti∗,j∗ , add ci∗,j∗ + ti∗,j∗ − i∗ to Reward and ℓ to Rounds.

6. Repeat from step 3.

The final payoff is lim inf{Reward/Rounds}.

RANDAO Manipulation Game v2 is equivalent to RANDAO Manipulation Game v1,

after assuming that the Strategic Player optimally proposes during all non-tail slots. Our

method of counting the rewards observes that in the next epoch we will always propose

during the “count” rounds (and hence just add them directly to our reward), and miss i tail

proposals in order to influence the RANDAO (and hence get only ti,j − i slot rewards from

the tail).

Before we proceed with the analysis, we define two sets of interest. Let O be the set of

all possible values of (Ci,j − i, Ti,j) when (Ci,j , Ti,j) gets sampled from F for all 0 f i f t,

1 f j f
(

t
i

)

for some current tail t ∈ {0, . . . , ℓ}. Given the range of the tail, count and the

epoch length, O = {(É, t) : t ∈ [0..ℓ] ' É ∈ [−ℓ..ℓ] ' ((t = ℓ ' É f 0) ( (t < ℓ ' É f ℓ − t − 1))}.

Let Ω be the set of all possible multisets of observations. More formally, Ω is the set of

all multisets {(Ci,j − i, Ti,j) : 0 f i f ℓ, 1 f j f
(

t
i

)

} for some tail length t. Note that this

makes all observation multisets Obs ∈ Ω have size equal to some power of 2.

4 MDP formulation

We can now directly formulate the RANDAO manipulation game as an MDP given the

RANDAO Manipulation Game v2.

▶ Definition 7 (RANDAO MDP MG). The Markov decision process representing the RANDAO

manipulation game is MG = (S, A, {PÃ}Ã, {RÃ}Ã) where

S = {(t, Obs) : t ∈ N, 0 f t f ℓ, Obs ∈ Ω)}. Each state represents the length of the tail t

and the observations available to the adversary corresponding to the RANDAO samples.

The action space A = O, each action is selecting a future state from the given observations.

Ã ∈ Π is the policy space where Π is the set of all functions Ã : Ω → O such that

Ã(Obs) = (É, t) ∈ Obs. Ã chooses on of the sample in Obs to transition towards.

PÃ and RÃ are determined by the process in the game where given a state (t, Obs), we

transition to (t′, Obs′) such that Ã(Obs) = (É′, t′) and Obs′ consists of 2t pairs (ci,j −i, ti,j)

each sampled using F as in step 2 of the game. The reward of this transition is É′ + t′.

▶ Lemma 8. MG is ergodic.

Proof. It suffices to observe for any policy Ã, we can transition from any state to any other

state in three steps with non-zero probability. Consider the Markov chain induced by fixing Ã

in MDP MG. Suppose we are at state (t, Obs) and we consider (t′, Obs′). Let t∗ = log(|Obs′|).

We then observe that the following sequence of transitions have non-zero probability:

(t, Obs) → (t1, Obs1) → (t∗, Obs2) → (t′, Obs′)

where Obs1 is the set of observations where all have tail equal to t∗ and Obs2 is the set of

observations where all have tail equal to t′. ◀
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It is fairly straight-forward to see that this MDP formulation accurately captures the

RANDAO Manipulation Game v2 – the state captures the point in time after drawing

(ci,j , ti,j) for all (i, j), and our only action at this point is to choose one such (i, j) and

transition, getting reward Reward. Note also that every state transition corresponds to

exactly an increase of ℓ in Rounds, so the time-averaged reward in this MDP is exactly the

payoff in RANDAO Manipulation Game v2.

Unfortunately, the state space of this MDP is enormous, and we have absolutely no hope

of even writing it down (let alone solving it). Luckily since our MDP is ergodic, we can

exploit the structure of the optimal policy and drastically simplify the state space.

Reducing the state space

We now refine our formulation of the RANDAO manipulation MDP to make it tractable.

We know that for each policy Ã, there exists a valuation vÃ : {0, . . . , ℓ} → R, the average

adjusted sum of rewards. We also know from the Bellman optimality equation that the

optimal policy will take the action maximizing the immediate reward plus the weighted sum

of potential future states with their values. Hence, any plausibly optimal policy, given the

set of samples {(ci,j , ti,j) : 0 f i f t, 1 f j f
(

t
i

)

}, will simply choose the one that maximizes

ci,j − i + ti,j + vÃ(ti,j). Motivated by this observation we reformulate the RANDAO MDP

MG as the following reduced state space MDP M ′
G.

Below, intuitively we no longer need to explicitly store all (count, tail) options, because

any optimal policy can be fully specified by assigning a value to the tail. So our new state

space is simply the tail, but it is now more complex to iterate a transition.

▶ Definition 9 (RANDAO MDP M ′
G). The reduced Markov decision process representing the

RANDAO manipulation game is M ′
G = (S, Π, {PÃ}Ã, {RÃ}Ã) where

S = {t ∈ N : 0 f t f ℓ}. Each state represents the length of the tail.

Π is the policy space where Π is the set of all total orders on O.

We treat the action space as the same as the policy space. In other words, we only consider

constant strategies that pick a total order on O.

PÃ and RÃ are determined as follows. Follow RANDAO Manipulation Game v2 in Steps

3-4 (drawing several (c, t)s and choosing one), where in Step 4 we choose the future state

that is earliest in the total order according to Ã. We then transition according to the

selected t (this defines PÃ) and accumulate reward according to c + t − i (this defines

RÃ).12

Intuitively, the key difference between MG and M ′
G is at which point in the process we

pause and determine a state. In MG, we pause after seeing a large set of (count, tail) pairs

and declare this a state. We then make a very simple decision (pick a pair), a very simple

reward update (plus count, plus tail, minus number of missed slots), and a fairly simple state

transition (draw the new collection of pairs from a known distribution based on the chosen

tail).

In M ′
G, we instead pause after selecting the tail, and declare this a state. We then make

a complex decision (pick a total ordering over all plausible pairs), a complex and randomized

reward update (sample the set of pairs according to the known distribution based on the

state, pick the highest in the total order, and take the reward), and a complex state transition

(sample the set of pairs according to the known distribution based on the state, pick the

12 In Section 5, we explicitly describe how these transition probabilities and rewards are computed.
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highest in the total order, and take the reward). That is, MG has a very complicated state

space but simple transitions, whereas M ′
G has a very complicated action space but simple

states. Moreover, we use the Bellman optimality principle to narrow down the plausibly

optimal actions for consideration in M ′
G. We now proceed to establish their equivalence

formally.

▶ Lemma 10. M ′
G is ergodic.

Proof. It suffices to observe that under any policy Ã ∈ Π the transition probability between

any pair of states is positive. Suppose that we are running policy Ã and are at state t ∈ S

and we consider destination tail t′ ∈ S. Now, if all 2t sampled future states have tail t′, the

next state is t′. Since this happens with small but non-zero probability, ergodicity holds. ◀

While we are no longer explicitly keeping track of individual observations in the state,

the optimal policy for M ′
G still achieves reward equal to the optimal reward in MG (in

expectation).

▶ Proposition 11. If Ã ∈ Π is an optimal policy for MG and Ã′ ∈ Π′ is an optimal policy

for M ′
G, then ΓÃ(MG) = ΓÃ′(M ′

G).

Proof. Suppose Ã ∈ Π is an optimal policy for MG and Ã′ ∈ Π′ is an optimal policy for

M ′
G. We first show that given Ã ∈ Π for MG, there exists a corresponding policy Ã∗ ∈ Π′ for

M ′
G such that ΓÃ(MG) = ΓÃ∗(M ′

G). Since every optimal policy attains the same expected

average reward, without loss of generality, assume that Ã satisfies the Bellman optimality

equation. As a consequence, Ã selects the observation (É, t) that maximizes É + t + vÃ(t).

This precisely defines a total order on (É, t) as vÃ is fixed. Let Ã∗ be the total order defined

by maximizing É + t + vÃ(t). As both MG and M ′
G sample from the same distributions the

same number of times, ΓÃ(MG) = ΓÃ∗(M ′
G).

Hence, we know that given Ã∗
0 , there exists a corresponding policy Ã∗′

0 playing M ′
G such that

ΓÃ∗

0
(MG) f Γ

Ã∗
′

0

(M ′
G). By the optimality of Ã∗

1 , we also know that Γ
Ã∗

′

0

(M ′
G) f ΓÃ∗

1
(M ′

G).

Therefore, ΓÃ∗

0
(MG) = ΓÃ∗

1
(M ′

G) and the claim holds. ◀

5 Evaluating policies

In this section, we first analyze the policy that only cares about maximizing the tail length

(Tail-max) as an instructive example. Intuitively, this policy can be implemented by (a) for

each subset of slots that the Strategic Player can choose to propose, computing the resulting

RANDAO value and hence the next epoch proposer assignments, and (b) the Strategic Player

choosing to propose in the subset of slots that results in the longest tail in the next epoch.

Subsequently, we describe how to evaluate arbitrary policies in our Markov decision process

M ′
G formulation of the RANDAO manipulation game.

5.1 Analyzing the Tail-max policy

The Tail-max policy can be defined as the policy Ã that given the current state t and 2t

samples (Ci,j , Ti,j) ∼ F , picks (i, j) that maximizes Ti,j . Note that in case of ties, we pick

the transition with higher reward (i.e. breaking ties in favor of higher Ci,j − i).

To analyze Tail-max, we are interested in computing the following quantities.

Ptail(t, t′): the probability of transitioning from state t to t′ when running game G with

Tail-max.

Rtail(t): the expected reward of transitioning from state t when running game G with

Tail-max.
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Let maxTail(t) be a random variable representing the maximum sampled tail in the current

round of the game. More formally, it is defined as the following:

maxTail(t) := max
(Ci,j ,Ti,j)∼F

0fift

1fjf(t

i)

{Ti,j}

which is identically distributed as maxTi∼geom′(³)

0fif2t−1

{Ti}. Then, we have the following proba-

bilities.

Ptail(t, t′) = Pr(maxTail(t) = t′)

=

{

Pr(maxTail(t) f t′) − Pr(maxTail(t) f t′ − 1) 0 < t′ f ℓ

Pr(maxTail(t) f t′) t′ = 0

where we use the following:

▶ Lemma 12. Pr(maxTail(t) f T ′) =







(

1 − ³t′+1
)2t

0 f t′ < ℓ

1 t′ = ℓ

Proof. Using the fact that each {Ti} are i.i.d.,

Pr(maxTail(t) f T ′) = Pr
Ti∼geom′(³)

0fi<2t





∧

0fi<2t

(Ti f t′)





=
∏

0fi<2t

Pr
Ti∼geom′(³)

(Ti f t′)

=

(

Pr
T ′′∼geom′(³)

(T ′′ f t′)

)2t

=







(

1 − ³t′+1
)2t

0 f t′ < ℓ

1 t′ = ℓ
◀

The transition reward can be computed in a similar way. Let ¯∈ Π of M ′
G be defined

as (t, v) ¯ (t′, v′) if and only if t < t′ or (t = t′ ' v f v′). Intuitively, these pairs represent

choices that a policy can make where t is the tail and v is the amount of reward we get from

the rest of the count. The Tail-max policy picks the maximum such pair according to ¯.

Equality and strict ordering are defined in the usual way. Also let prev¯(v, t) be defined

as the previous pair in the ordering ¯ if it exists and § otherwise. Note that Pr(· ¯ §) is

interpreted as 0.

Let maxPair¯(t) be a random variable representing the maximum tail, and the non-tail

reward pair in the current round of the game according to the total order ¯. More formally,

it is defined as the following:

maxPair¯(t) :=
¯

max
(Ci,j ,Ti,j)∼F

0fift

1fjf(t

i)

{(Ti,j , Ci,j − i)}

AFT 2024



10:14 Optimal RANDAO Manipulation in Ethereum

Note that ¯ is a total order and we have the property that maxPair¯(t) ¯ (a, b) if and only

if (Ti,j , Ci,j − i) ¯ (a, b) for all 0 f i f t, 0 f j f
(

t
i

)

. Therefore,

Rtail(t) = E
[

T ′ + V ′ | maxPair¯(t) = (T ′, V ′)
]

=
∑

0ft
′fℓ

−tfv
′fℓ−t

′

Pr(maxPair¯(t) = (t′, v′))(t′ + v′)

=
∑

0ft
′fℓ

−tfv
′fℓ−t

′

(Pr(maxPair¯(t) ¯ (t′, v)) − Pr(maxPair¯(t) ¯ prev¯(t′, v)))(t′ + v)

where we can use the following:

▶ Lemma 13. Let ¯∈ Π of M ′
G be the Tail-max policy. For f(x) := PrT ∼geom′(³)(T < x),

g(x) := PrT ∼geom′(³)(T = x), and h(x, y) := PrC∼Binom(ℓ−x−1,³)(C f y),

Pr(maxPair¯(t) ¯ (t′, v)) =
∏

0fift

(

Pr
(C,T )∼F

((T, C − i) ¯ (t′, v))

)(t

i)

and

Pr
(C,T )∼F

((T, C − i) ¯ (t′, v)) =















f(t′) t′ = ℓ ' 0 > v′ + i

f(t′) + g(ℓ) t′ = ℓ ' 0 f v′ + i

f(t′) + g(t′)h(t′, v′ + i) otherwise

Proof. Using standard properties, we observe that

Pr(maxPair¯(t) ¯ (t′, v)) = Pr
(Ci,j ,Ti,j)∼F

0fift

1fjf(t

i)











∧

0fift

1fjf(t

i)

((Ti,j , Ci,j − i) ¯ (t′, v))











=
∏

0fift

0fjf(t

i)

Pr
(C,T )∼F

((T, C − i) ¯ (t′, v))

=
∏

0fift

(

Pr
(C,T )∼F

((T, C − i) ¯ (t′, v))

)(t

i)

and

Pr(C,T )∼F ((T, C − i) ¯ (t′, v))

= Pr
(C,T )∼F

(T < t′ ( (T = t′ ' C − i f v′))

= Pr
T ∼geom′(³)

(T < t′) + Pr
(C,T )∼F

(T = t′ ' C f v′ + i)

= Pr
T ∼geom′(³)

(T < t′) + Pr
T ∼geom′(³)

(T = t′) Pr
(C,T )∼F

(C f v′ + i | T = t′)

= Pr
T ∼geom′(³)

(T < t′)

+















0 t′ = ℓ ' 0 > v′ + i

PrT ∼geom′(³)(T = ℓ) t′ = ℓ ' 0 f v′ + i

PrT ∼geom′(³)(T = t′) PrC∼Binom(ℓ−t′−1,³)(C f v′ + i) otherwise

◀
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Proof. Using standard properties of independent samples, we observe that:

Pr(maxPair¯(t) ¯ (v, t′)) = Pr
(Ci,j ,Ti,j)∼F

0fift

1fjf(t

i)











∧

0fift

1fjf(t

i)

((Ti,j , Ci,j − i) ¯ (t′, v))











=
∏

0fift

1fjf(t

i)

Pr
(C,T )∼F

((T, C − i) ¯ (t′, v))

=
∏

0fift

1fjf(t

i)

∑

∀(t∗,v∗)¯(t′,v)

Pr
(C,T )∼F

((T, C − i) = (t∗, v∗))

=
∏

0fift





∑

∀(t∗,v∗)¯(t′,v)

Pr
(C,T )∼F

((T, C) = (t∗, v∗ + i))





(t′

i )

◀

Therefore we can also evaluate arbitrary policies by computing the quantities above.

6 Solving for optimal strategies

We can now run policy iteration [18] in our policy space.

1. Start with an arbitrary policy ¯ ∈ Π.

2. Compute P¯ and R¯.

3. Compute average reward Γ¯ using R¯(t) and the stationary distribution of P¯.

4. Determine vt for each t ∈ {0, . . . , ℓ} by setting v0 = 0 and solving the system of linear

equations given by

Γ¯ + v¯(t) = R¯(t) +

ℓ
∑

t′=0

P¯(t, t′)vt′ for t ∈ {0, . . . , ℓ}.

5. Let ¯′ be a new total order constructed by sorting each (É, t) pair by the quantities

É + t + vt in ascending order.

6. If ¯ is equal to ¯′, we converged and ¯ is optimal. Otherwise let ¯ := ¯′ and repeat

from step 2.

Note that this is equivalent to policy iteration as described in Section 2 since sorting by

immediate reward plus future state value to get new policy ¯ is equivalent to picking the

maximum at each state.

For ℓ = 32 and all ³, policy iteration always converged in less than 10 steps. This enables

us to plot the following results on optimal manipulations for RANDAO:
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A key strength of our methodology is the fact that it is constructive, we explicitly construct

the optimal policy for each ³. In order to implement the optimal policy we compute, the

values can be used as in step 5 of the policy iteration routine described above. For instance,

for ³ = 0.2, the optimal policy assigns the the following values to tails of length 0 to 32

(rounded to two decimal points):

(0.00, 0.90, 1.66, 2.30, 2.86, 3.35, 3.79, 4.19, 4.55, 4.89, 5.21,

5.50, 5.78, 6.05, 6.30, 6.55, 6.78, 7.00, 7.22, 7.43, 7.63, 7.82,

8.01, 8.19, 8.37, 8.54, 8.71, 8.87, 9.03, 9.19, 9.34, 9.49, 9.64)

Considering ℓ ̸= 32

One benefit of our approach is that it trivially extends to any ℓ. This allows one to easily

answer, for example, whether RANDAO would be more or less manipulable with different

epoch lengths and by how much.

Policy iteration runs smoothly for ℓ = 32 and smaller. However, when we consider ℓ = 64

or 128, numerical instability becomes a concern, and our experiments are no longer provably

accurate. In particular, 64-bit floats we use in our machine introduce precision error that

explode when evaluating the expression in Lemma 14 with ℓ > 32.

In order to improve the numerical stability of the expression in Lemma 14, when ℓ > 32

we evaluate the inner sum directly to 1 instead of taking the exponential when the sum

reaches within 10−14 of 1 since the error ϵ introduced by the floating point representation

cause (1±ϵ)N to become 0 or a large constant for N k 1. The following figure shows running

our evaluation for different ℓ, using this modification.
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Figure 4 Percentage improvement over honest for ℓ ∈ {16, 32, 64, 128}. Improvement is defined

as (optimal average reward)/(honest average reward) − 1.

We conjecture that this plot is representative of how the results scale with ℓ, although

unlike our main results the experiments are not provably accurate due to the aforementioned

numerical instability. If one desires provable numerical guarantees on these quantities, one

would need an analysis of numerical error induced by floating point representations of the

machines that run the evaluation.
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7 Discussion

We model optimal RANDAO manipulation in Proof-of-Stake Ethereum and frame it as an

MDP. Our main modeling contribution is getting from RANDAO manipulation in practice

to RANDAO Manipulation Game v2, and our key technical insight is getting from there to

the reduced RANDAO MDP M ′
G. From here, simple policy iteration on a laptop suffices

to analyze the optimal strategy. Our main results shed light on exactly how manipulable

Ethereum’s RANDAO is. One could compare our results, for example, to those of [14] for

Proof-of-Stake protocols based on cryptographic self-selection. For example, [14] establishes

that a well-connected Strategic Player with 10% of the stake can propose between 10.08% an

10.15% of the rounds in cryptographic self-selection protocols, and our work establishes that

a Strategic Player with 10% of the stake can propose a 10.19% fraction of rounds in Ethereum

Proof-of-Stake. While our work introduces methodology to compute these numbers, we leave

interpretation of their significance to the Ethereum community since many different factors

come into play when designing the consensus mechanism.

A clear direction for future work would be to consider the impact of slot-varying rewards

as in [8]. This will clearly increase the manipulability (as now the Strategic Player can use

the value of a slot when deciding whether to propose), but it is not obvious by how much. A

second direction would be to consider the impact of idiosyncratic details such as Ethereum’s

sync committees (extra rewards every 256 blocks).

Lastly, we briefly discuss the empirical signature of randomness manipulation. The results

immediately lead to the following question: are there any entities currently manipulating

the RANDAO value? The signature of such an attack would affect the block miss rates

especially around the tail. Some prior analyses suggest that while there has been ample

opportunities that would result in short term gains for certain entities, none have been

observed to manipulate RANDAO [23]. In the figure below, the block miss rates by epoch

slot index is displayed from epoch 146876 to 272341.
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Figure 5 Block miss rate by slot index from epoch 146876 to 272341. The average block miss

rate is 0.9482%.

Our interpretation of this data is that slot index 0, 1, and 2 is missed frequently since

validators have less time to react to their proposer assignments and slot index 24 and 25 is

missed with slightly higher frequency than the baseline due to votes crossing the 2/3 majority.

We do not observe any significant elevation in block miss rates around the tail of the epoch.

It is also an interesting direction for future work to examine whether undetectable profitable

strategies exist for RANDAO manipulation (i.e. strategies that strictly outperform Honest,

but produce the same miss rate for all slots).
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