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Abstract

We consider a fundamental pricing problem in combinatorial auctions. We are given a

set of indivisible items and a set of buyers with randomly drawn monotone valuations

over subsets of items. A decision-maker sets item prices and then the buyers make

sequential purchasing decisions, taking their favorite set among the remaining items.

We parametrize an instance by d, the size of the largest set a buyer may want. Our

main result asserts that there exist prices such that the expected (over the random

valuations) welfare of the allocation they induce is at least a factor 1/(d +1) times the

expected optimal welfare in hindsight. Moreover, we prove that this bound is tight.

Thus, our result not only improves upon the 1/(4d − 2) bound of Dütting et al., but

also settles the approximation that can be achieved by using item prices. The existence

of these prices follows from the existence of a fixed point of a related mapping, and

therefore, it is non-constructive. However, we show how to compute such a fixed point

in polynomial time, even if we only have sample access to the valuation distributions.

We provide additional results for the special case when buyers’ valuations are known

(but a posted-price mechanism is still desired), and an improved impossibility result

for the special case of prophet inequalities for bipartite matching.
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1 Introduction

In combinatorial auctions, a set of valuable items is to be allocated among a set of

interested agents. Who should get which items in order to maximize the social welfare?

This is a fundamental economic question, and a ubiquitous allocation mechanism is to

simply set a price for each item and let the agents buy their preferred subset of items

under those prices. The study of these mechanisms dates back to the investigations

of Leon Walras over a century ago, and is closely related to the notion of Walrasrian

equilibrium. Understanding the existence and approximation of Walrasrian equilib-

rium and related notions under pricing mechanisms has been an active area of research

in recent years [3, 4, 15, 16, 23].

In this paper, we follow the approach of online combinatorial auctions and study

the welfare achieved by posted-price mechanisms in a very general setup. Specifically,

our mechanisms post a price pi on each item i . Then, buyers with randomly-drawn

arbitrary monotone valuations over the subsets of items arrive in arbitrary order, and

upon arrival pick their preferred subset among those items that are left (at the posted

prices). Of course, in this generality little can be said about the social welfare induced

by posted-price mechanisms, so it is common to parametrize the instances by d, the

largest size of a set a buyer might be interested in. This parametrization is interesting

from a combinatorial perspective: finding a socially optimal allocation is NP-hard

already when d ≥ 3, and even hard to approximate [27]. Moreover, if we restrict

the buyers’ valuations to be deterministic and single-minded,1 we recover the classic

hypergraph matching problem.

A natural goal in this context is thus to obtain prices for each item, such that the

expected welfare of the resulting allocation when adversarial-order buyers iteratively

purchase their preferred set is high with respect to the expected welfare of an optimal

allocation. In other words, our goal in this paper is to find posted-price mechanisms

with good approximation guarantees of the expected welfare of an optimal allocation,

as a function of d.

1.1 Our results

Our main result in this paper is to determine the tight approximation guarantee of item

pricing as a function of d. Specifically, we prove that there always exists a posted-price

mechanism such that the expected welfare of the resulting allocation when adversarial-

order buyers iteratively purchase their preferred set (at the posted prices) is at least a

1/(d + 1) fraction of the expected welfare of an optimal allocation (Theorem 3.1). In

particular, our results improve the bound of 1/(4d − 2) given in [10] to 1/(d + 1),

which is tight (Proposition 3.5).

In Sect. 6, we further consider the special case that arises when valuations are

deterministic and buyers are single-minded. In this situation the welfare optimization

problem corresponds to matching in a hypergraph with edges of size at most d. So the

1 Note that this is a particular case of monotone valuations. Indeed, a single-minded buyer can be modeled

through a fixed set T , such that the buyer values a set S at a certain positive amount if T ⊆ S, and at 0

otherwise.
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problem of finding item prices boils down to finding a set of thresholds, one for each

vertex, such that the value of the solution in which hyperedges arrive sequentially (in

any order) and are greedily included in the solution when their weight is higher that

the sum of the corresponding vertex thresholds, is as close as possible to the optimal

solution. For the case of standard matching (d = 2) we prove that there exist prices

guaranteeing a factor of 1/2 of the optimal solution and that there do not exist prices

guaranteeing a factor better than 2/3. The tight factor is left as an open problem.

More generally, we prove that there are prices obtaining a fraction 1/d of the optimal

solution (thus slightly improving our general 1/(d + 1)), and that it is not possible to

do better than ≈ 1/
√

d.

Finally, in Sect. 7, we prove that no bipartite matching prophet inequality can beat

a 3/7 approximation.2 Note that prophet inequality for matching corresponds to a

special case of our main result with d = 2. Therefore our Proposition 3.5 establishes

that no non-adaptive vertex-pricing prophet inequality can guarantee better than a

1/3-approximation to the expected offline optimum. However, adaptive non-pricing

prophet inequalities are known to achieve .337 > 1/3 [14]. So the content of Theo-

rem 7.1 is that no prophet inequality can beat 3/7, even those that are adaptive and not

based on vertex-pricing. It remains an open question to nail the precise approximation

guarantee of prophet inequalities for bipartite matchings within [.337, 3/7].

1.2 Context and related work

Posted-price Mechanisms Posted-price mechanisms are ubiquitous within economics

and computation owing to their simplicity. They are commonly used as subroutines in

truthful mechanisms that approximately maximize welfare [1, 2, 12, 13, 21]. They are

also used as subroutines in simple mechanisms to approximately maximize revenue

in Bayesian settings [7–9, 22]. Our work considers the same model initiated by [15]

(welfare maximization in Bayesian settings). Other works consider restrictions on the

valuations, such as subadditive [11], while others consider the unrestricted case [10].

In this last work [10] consider unrestricted valuations over sets of size at most d, and

derive a collection of prices leading to an approximation guarantee of 1/(4d −2). Our

paper contributes to this line of work by providing the tight approximation guarantee

of 1/(d + 1) for posted-price mechanisms in this model.

Prophet inequalities When there is a single item (and thus d = 1) our problem is equiv-

alent to the single-item prophet inequality and thus our result takes the same form as

the classic result of [25], who proved that the optimal prophet inequality (whose factor

is 1/2) can be achieved with a single threshold. A special case of our problem when

buyers are single-minded corresponds to various multiple-choice prophet inequality

settings, and our results improve upon the state-of-the-art. In particular, all prophet

2 Recall that a prophet inequality instance specifies a set system S of elements and I ⊆ 2S of feasible

sets, together with a distribution De for each e ∈ S. The elements of S are revealed one at a time, together

with a draw Xe ∼ De independently, at which time the gambler must immediately and irrevocably decide

whether to accept e (gaining reward Xe), or reject forever. The gambler must maintain at all times that the

collection of accepted elements is in I, and aims to maximize its expected reward. Bipartite matching refers

to the case where each element of S is an edge in a bipartite graph, and I contains all matchings.
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432 J. Correa et al.

inequalities deduced from our main result are non-adaptive: for each element e, a

threshold Te is set at the beginning of the algorithm. Element e is accepted if and only

if the buyers’ valuation we exceeds the threshold, i.e., we ≥ Te (and it is feasible to

accept e).

When d = 2 and buyers are single-minded, our problem translates into the matching

prophet inequality problem. In this setting [18] obtained 1/3-approximation for the

case of bipartite graphs. So our paper also contributes by extending this result to

general graphs. Note that recent work of [14] provides a .337-approximation in this

case, although it sets thresholds adaptively. We further contribute to the d = 2 case

by proving that no prophet inequality (adaptive or not) can guarantee better than a

3/7-approximation for the bipartite matching prophet inequality (Theorem 7.1).

For arbitrary d when buyers are single-minded, our problem translates into the d-

dimensional hypergraph prophet inequality, which generalizes the prophet inequality

problem over the intersection of d partition matroids. Here, a 1/(4d−2)-approximation

was first given in [22], and improved to 1/(e(d + 1)) in [17]. Our work improves this

to 1/(d + 1), and with non-adaptive thresholds. A lower bound of [22, 26] proves

that it is not possible to achieve an ω(1/d1/2+1/ log log d) approximation even for this

special case, but it remains an open problem to determine the tight ratio for prophet

inequalities for the intersection of d partition matroids (and for the d-dimensional

hypergraph prophet inequality).

Very recent work establishes a constant-factor prophet inequality for combinatorial

auctions with subadditive valuations [6]. An important open question at the intersection

of this paper and ours is whether their guarantee can also be achieved by a posted-price

mechanism.

1.3 Brief technical highlight

The proof of our main result breaks down the expected welfare into the “revenue” and

“utility” achieved by setting prices and searches for properly “balanced thresholds.”

This idea has been widely used in the context of combinatorial prophet inequalities

[10, 15, 18, 22]. In particular, we target prices that are “low enough” so that a buyer

with high value for some set will choose to purchase it, yet also “high enough” so

that the revenue gained when a bidder purchases items they should not receive in the

optimal allocation compensates for the lost welfare. In comparison to prior work using

this framework, the conditions that guarantee such prices are more involved, and we

prove their existence using Brouwer’s fixed point theorem.

As our proof makes use of Brouwer’s fixed point theorem, it is inherently non-

constructive. We however show in Sects. 4 and 5 how to compute our prices in

polynomial time. In particular, our approach makes use of a configuration LP relax-

ation to cope with the APX-hardness of optimizing welfare, and a convex optimization

formulation to find our fixed point.
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1.4 Summary and roadmap

We precisely define our model in Sect. 2. Section 3 presents our main result: a posted-

price mechanism that achieves a 1/(d + 1)-approximation to the optimal expected

welfare, when buyers have arbitrary monotone valuations and are interested in sets

of size at most d. Recall that this approximation guarantee is tight (we provide a

simple example witnessing this in Proposition 3.5). Sect. 4 extends some of the bounds

derived in Sect. 3 by using as benchmark the configuration LP. In Sect. 5, we show how

to compute our desired prices in polynomial time. In Sect. 6, we consider the special

case where the distributions are point-masses, and in Sect. 7, we give an improved

impossibility result for bipartite matching prophet inequalities.

2 Model

In our basic model, we have a (multi)set of items M in which there are k j ≥ 1

copies of each item j ∈ M .3 The set of buyers, denoted by N , arrive sequentially

(in arbitrary order) and buy some of those items. Each buyer i ∈ N has a valuation

function vi : 2M → R≥0, which is randomly and independently chosen according

to a given distribution Fi (defined over a set of possible valuation functions). As it

is standard, we assume that each possible realization of each vi is monotone (i.e.,

A ⊆ B ⇒ vi (A) ≤ vi (B)). We parametrize an instance of the problem by d, the size

of the largest set a buyer might be interested in. Thus, if A ⊆ M is such that |A| > d,

then

v(A) = max
B⊆A,|B|=d

v(B) (1)

Note that while there are k j ≥ 1 copies of each item j ∈ M , no bidder achieves value

from additional copies (and therefore, without loss of generality, bidders cannot buy

more than one copy).

In this paper, we are interested in exploring the limits of using item prices as a

mechanism to assign items to buyers. In a pricing mechanism, we set item prices

p ∈ RM
≥0 and then consider an arbitrary arrival order of the buyers (note different

copies of the same item must have the same price). Thus, buyer i buys the set of

remaining items according to

max
A⊆Ri

⎛

⎝vi (A) −
∑

j∈A

p j

⎞

⎠ , (2)

where Ri denotes the items for which there remains an unsold copy when i arrives.

Note that Eq. (2) might be solved by A = ∅, i.e., buyer i might opt not to buy anything.

3 Throughout the paper M is actually a set and refers to the set of different items.
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434 J. Correa et al.

When there is a tie between different sets, the buyer can choose arbitrarily, implying

that our results need to be valid even for the worst-case tiebreaking.4

More precisely, if σ is the arrival order of the buyers, so that buyer i comes at

time σ(i), then buyer i gets the set Bi (σ ) = arg maxA⊆Ri (σ )

(

vi (A) −
∑

j∈A p j

)

,

where Ri (σ ) = { j ∈ M : k j > |{� ∈ N : σ(�) < σ(i) and j ∈ B�(σ )}|}. With this,

given an instance of the problem (determined by M , k j for all j ∈ M , N , and Fi

for all i ∈ N ), the quality measure of a price vector p ∈ RM
≥0 is the worst case (over

the arrival orders) expected (over the valuations) welfare of the allocation it induces.

Denoting this quantity by ALG(p) we have that:

ALG(p) := min
σ

E

(

∑

i∈N

vi (Bi (σ ))

)

.

On the other hand, the benchmark we compare to throughout the paper is the expected

value of the optimal welfare-maximizing allocation, O PT , formally defined as

O PT := E

(

max
{Ai }i∈N

{

∑

i∈N

vi (Ai ) : s.t. |{i ∈ N : j ∈ Ai }| ≤ k j , for all j ∈ M

})

.

We denote by O PTi the random set that buyer i gets in an optimal allocation.

In Sect. 6 we consider the special case of our problem in which

(i) valuations are deterministic,

(ii) there is a single copy of each item (i.e., k j = 1 for all j ∈ M), and

(iii) buyers are single-minded, i.e., each buyer i has a set Ai , with |Ai | ≤ d, such that

Ai � B ⇒ vi (B) = 0, Ai ⊆ B ⇒ vi (B) = vi (Ai ).

Interestingly, already in this particular setup, the problem of maximizing the welfare of

an allocation corresponds to the classic NP-hard combinatorial optimization problem

of hypergraph matching with hyperedges of size at most d. Indeed, in an optimal

allocation buyer i either gets Ai or ∅, implying that maximizing the (now deterministic)

welfare of the allocation is equivalent to finding a subset of pairwise disjoint Ai ’s of

maximum total valuation.

In Sect. 7 we continue to focus on single-minded buyers with one copy of every

item, but allow random valuations; this captures the prophet inequality model with a

large class of feasibility constraints (we focus on bipartite matching).

3 Main result: a 1/(d + 1)-approximation for random valuations

In this section we prove there exists a vector of item prices such that the resulting

allocation yields in expectation at least a 1/(d + 1) fraction of the optimal social

welfare. Additionally, we show that this bound is tight.

4 In some of the constructions in Sect. 6 we break ties conveniently but all the results hold by slightly

tweaking the instances.
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Theorem 3.1 There exists a vector of prices p ∈ RM
≥0 such that

(d + 1) · ALG(p) ≥ O PT .

To prove the theorem we will make use of the following function. For each A ⊆ M

and i ∈ N , we define zi,A : RM
≥0 → R as

zi,A(p) := E

⎛

⎝1O PTi =A ·

⎡

£vi (A) −
∑

j∈A

p j

¤

§

+

⎞

⎠ ,

where [x]+ denotes max{x, 0}. The function zi,A(p) can be interpreted as follows:

imagine we calculate the optimal allocation and offer buyer i the set O PTi at the prices

given by p. Then, zi,A would be the contribution of the set A to the non-negative part

of the expected utility of buyer i .

We assume without loss of generality that |O PTi | ≤ d for all i ∈ N , so zi,A(p) = 0

if |A| > d. We start by showing a lower bound for ALG(p) in terms of the values

zi,A(p). This type of analysis is, by now, standard in combinatorial prophet inequalities

[15, 18, 22].

Lemma 3.2 For any vector of prices p ∈ RM
≥0,

ALG(p) ≥ min
C⊆M

¨

©

ª

∑

j /∈C

k j · p j +
∑

i∈N

∑

A⊆C

zi,A(p)

«

¬

­

.

Proof In this proof we assume the arrival order σ is arbitrary, and for simplicity we

denote Bi (σ ) and Ri (σ ) simply by Bi and Ri . We separate the welfare of the resulting

allocation into revenue and utility, i.e., we separate
∑

i∈N vi (Bi ) into

Revenue =
∑

i∈N

∑

j∈Bi

p j and Utility =
∑

i∈N

⎛

⎝vi (Bi ) −
∑

j∈Bi

p j

⎞

⎠ .

Recall that Ri is the set of items with remaining copies when i arrives. Similarly,

denote by R the set of items that have remaining copies by the end of the process.

Note first that

E(Revenue) ≥ E

⎛

⎝

∑

j /∈R

k j · p j

⎞

⎠ .

This is simply because each item j /∈ R has had all k j copies purchased. As for the

utility, for any i ∈ N , by the definition of Bi it holds that

vi (Bi ) −
∑

j∈Bi

p j = max
A⊆Ri

vi (A) −
∑

j∈A

p j
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Note now that vi and Ri are independent. Let (ṽi )i∈N be independent realizations of

the valuations, and Õ PT i the corresponding optimal solution. With this, and noting

that R ⊆ Ri , we can rewrite the expected utility of agent i as

E

⎛

⎝max
A⊆Ri

vi (A) −
∑

j∈A

p j

⎞

⎠ = E

⎛

⎝max
A⊆Ri

ṽi (A) −
∑

j∈A

p j

⎞

⎠ ≥ E

⎛

⎝max
A⊆R

ṽi (A) −
∑

j∈A

p j

⎞

⎠ .

(3)

We replace the maximization over subsets of R with a particular choice, Õ PT i ,

whenever it is contained in R and gives positive utility (otherwise we take ∅). This

obtains the following lower bound on the expected utility of agent i :

E

⎛

⎜

⎝
1{Õ PT i ⊆R} ·

⎡

⎢

£
ṽi (Õ PT i ) −

∑

j∈Õ PT i

p j

¤

⎥

§

+

⎞

⎟

⎠

= E

⎛

⎝

∑

A⊆R

1{Õ PT i =A} ·

⎡

£ṽi (A) −
∑

j∈A

p j

¤

§

+

⎞

⎠

= E

⎛

⎝

∑

A⊆R

E

⎛

⎝1{Õ PT i =A} ·

⎡

£ṽi (A) −
∑

j∈A

p j

¤

§

+

⎞

⎠

⎞

⎠

= E

⎛

⎝

∑

A⊆R

zi,A(p)

⎞

⎠ . (4)

Summing over all agents, we get that

E(Utility) ≥ E

⎛

⎝

∑

i∈N

∑

A⊆R

zi,A(p)

⎞

⎠ .

Therefore, adding the revenue and the utility we get that

ALG(p) ≥ E

⎛

⎝

∑

j /∈R

k j · p j +
∑

i∈N

∑

A⊆R

zi,A(p)

⎞

⎠ .

Replacing the expectation over R with a minimization over subsets of M yields the

bound of the lemma.
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Lemma 3.3 For any vector of prices p ∈ RM
≥0,

O PT ≤
∑

j∈M

k j · p j +
∑

i∈N

∑

A⊆M

zi,A(p).

Proof We have that O PT equals

∑

i∈N

E(vi (O PTi )) = E

⎛

⎝

∑

i∈N

∑

j∈O PTi

p j

⎞

⎠+
∑

i∈N

E

⎛

⎝vi (O PTi ) −
∑

j∈O PTi

p j

⎞

⎠ .

Now we upper bound these two terms separately. Note that in the first term each item

j ∈ M appears at most k j times, so

E

⎛

⎝

∑

i∈N

∑

j∈O PTi

p j

⎞

⎠ ≤
∑

j∈M

k j · p j .

For the second part, we upper bound with the positive part of the difference, and sum

over all possible realizations of O PTi :

∑

i∈N

E

⎛

⎝vi (O PTi ) −
∑

j∈O PTi

p j

⎞

⎠ =
∑

i∈N

∑

A⊆M

E

⎛

⎝1{O PTi =A}

⎛

⎝vi (A) −
∑

j∈A

p j

⎞

⎠

⎞

⎠

≤
∑

i∈N

∑

A⊆M

zi,A(p).

Putting together the two upper bounds we obtain the bound on O PT .

Lemmas 3.2 and 3.3 provide a similar form to lower bound ALG(p) and upper

bound O PT as a function of p. Now, we will prove the existence of a good choice of

p where these bounds differ by at most a factor of d + 1.

Lemma 3.4 There exists a vector of prices p ∈ RM
≥0 such that for every j ∈ M we

have

p j = 1

k j

∑

i∈N

∑

A⊆M : j∈A

zi,A(p).

Proof The proof will be an application of Brouwer’s fixed point theorem. Let K

denote the compact set K := [0, O PT ]M ⊆ RM
≥0. We define a function ψ : K → K

as follows: for a vector p ∈ K and item j ∈ M , the j th coordinate of ψ is

ψ j (p) = 1

k j

∑

i∈N

∑

A⊆M : j∈A

zi,A(p). (5)
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We prove now that ψ is a well-defined continuous function, from the compact set K

into itself, and therefore it has a fixed point by Brouwer’s fixed point theorem. Note

that a fixed point of ψ is exactly the vector of prices we are looking for.

In fact, recall that we defined zi,A(p) = E(1O PTi =A · [vi (A)−
∑

j∈A p j ]+), which

is a nonincreasing function of p j , for all j ∈ M . Moreover, note that since [·]+ is a

convex function, zi,A is also a convex function of p j for all j ∈ M . The monotonicity

of zi,A implies that for all p ∈ K and j ∈ M , ψ j (p) ≤ ψ j (0) ≤ 1
k j

O PT , and

therefore ψ(p) ∈ K for all p ∈ K . The convexity of zi,A implies it is also continuous,

so ψ is a continuous function.

We’ve now argued that ψ is a continuous function from K to itself, and therefore

a fixed point exists, which proves the lemma.

Proof of theorem 3.1 Using the vector of prices from Lemma 3.4, we apply the bound

of Lemma 3.2 and conclude

ALG(p) ≥ min
C⊆M

¨

©

ª

∑

j /∈C

k j · p j +
∑

i∈N

∑

A⊆C

zi,A(p)

«

¬

­

.

≥ min
C⊆M

¨

©

ª

∑

j /∈C

k j · 1

k j

∑

i∈N

∑

A⊆M : j∈A

zi,A(p) +
∑

i∈N

∑

A⊆C

zi,A(p)

«

¬

­

= min
C⊆M

¨

©

ª

∑

i∈N

∑

A⊆M

zi,A(p) · (|A \ C | + 1A⊆C )

«

¬

­

≥ min
C⊆M

¨

©

ª

∑

i∈N

∑

A⊆M

zi,A(p) · (1|A\C|≥1 + 1A⊆C )

«

¬

­

=
∑

i∈N

∑

A⊆M

zi,A(p).

For O PT , substituting our fixed point in the upper bound of Lemma 3.3 gives

O PT ≤
∑

j∈M

∑

i∈N

∑

A⊆M : j∈A

zi,A(p) +
∑

i∈N

∑

A⊆M

zi,A(p)

=
∑

i∈N

∑

A⊆M

(|A| + 1) · zi,A(p)

≤ (d + 1)
∑

i∈N

∑

A⊆M

zi,A(p).

Comparing the two bounds we see that (d + 1) · ALG(p) ≥ O PT .

To wrap up the section, we establish that the bound of Theorem 3.1 is best possible

by modifying a simple example of [15]. This example establishes a lower bound of d

if we restrict to deterministic valuations. Here we add stochasticity to match the bound

of Theorem 3.1.
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Before doing so, we note that even without stochasticity, the bound of d +1 is tight

for our fixed point approach. For this, consider a deterministic instance with d items

and two single-minded buyers: buyer A has value v = 1/(d + 1) < 1 for a single

item and buyer B has value 1 for the set of all items. Then the fixed point sets price

1/(d + 1) on all items, since the fixed point equations are p j = 1 −
∑

j∈M p j , for all

j ∈ M (Buyer B has utility 1/(d + 1) at these prices). Then the online algorithm will

assign an item to buyer A so that the bound of d + 1 is tight.

Proposition 3.5 For all d, and all · > 0, there exists an instance on |N | = 2 buyers

and |M | = d items such that for all p, ALG(p) ≤ 1, yet O PT = d + 1 − ·.

Proof Consider a set M of exactly d items with a single copy of each, and a very

small ¸ > 0. There are two buyers. Buyer A values any nonempty subset of the items

at 1. Buyer B only assigns value to getting all d items, and this value is d − ¸ with

probability 1 − ¸ and it is 1/¸ with probability ¸.

In any instance where buyer A purchases a non-empty subset, the resulting social

welfare is 1. Note that this is certain to happen if we set the prices so that
∑

j∈M p j < d

and buyer A arrives before buyer B. If, on the contrary, 1/¸ ≥
∑

j∈M p j ≥ d and buyer

A does not purchase anything, buyer B will only purchase items with probability ¸. In

this case, the expected total welfare is also 1. This establishes that ALG(p) = 1 for all

p such that
∑

j∈M p j ≤ 1/¸, and ALG(p) = 0 otherwise. Finally, it is clear that in

this instance the optimal welfare is achieved by always assigning all items to buyer B,

which results in an expected welfare of (d −¸) · (1−¸)+¸ · (1/¸) ≥ d +1− (d +1)¸.

Setting ¸ = ·/(d + 1) completes the proof.

4 Bounds using an optimal LP solution

Our next step is to make Theorem 3.1 constructive and show that the underlying prices

can be efficiently computed. To this end, we need to establish that Lemmas 3.2 and 3.3

also hold when in the definition of zi,A(p) we replace 1O PTi =A with xi,A, an optimal

solution of the linear relaxation of the optimal allocation problem. This means we

replace zi,A(p) with

z̃i,A(p) = E

⎛

⎝xi,A ·

⎡

£vi (A) −
∑

j∈A

p j

¤

§

+

⎞

⎠ ,

where x = (xi,A)i∈N ,A⊆M , solves

(LP) max
x≥0

∑

i∈N

∑

A⊆M

xi,A · vi (A)

s.t.
∑

A⊆M

xi,A ≤ 1, for all i ∈ N ,

∑

i∈N

∑

A: j∈A

xi,A ≤ k j , for all j ∈ M .
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These results will be used in the next section and their proofs are almost identical to

the original ones in Sect. 3.

Lemma 4.1 For any vector of prices p ∈ RM
≥0,

ALG(p) ≥ min
C⊆M

¨

©

ª

∑

j /∈C

k j · p j +
∑

i∈N

∑

A⊆C

z̃i,A(p)

«

¬

­

.

Proof In this proof we assume the arrival order σ is arbitrary, and for simplicity we

denote Bi (σ ) and Ri (σ ) simply by Bi and Ri . We separate the welfare of the resulting

allocation into revenue and utility, i.e., we separate
∑

i∈N vi (Bi ) into

Revenue =
∑

i∈N

∑

j∈Bi

p j and Utility =
∑

i∈N

⎛

⎝vi (Bi ) −
∑

j∈Bi

p j

⎞

⎠ .

Recall that Ri is the set of items with remaining copies when i arrives. Similarly,

denote by R the set of items that have remaining copies by the end of the process.

Note first that

E(Revenue) ≥ E

⎛

⎝

∑

j /∈R

k j · p j

⎞

⎠ .

This is simply because all items j /∈ R have sold all k j copies. For the utility, for

any i ∈ N , by the definition of Bi it holds that

vi (Bi ) −
∑

j∈Bi

p j = max
A⊆Ri

vi (A) −
∑

j∈A

p j

Note now that vi and Ri are independent. Let (ṽi )i∈N be independent realizations of

the valuations. With this and noting that R ⊆ Ri , we can rewrite the expected utility

of agent i as

E

⎛

⎝max
A⊆Ri

vi (A) −
∑

j∈A

p j

⎞

⎠ = E

⎛

⎝max
A⊆Ri

ṽi (A) −
∑

j∈A

p j

⎞

⎠ ≥ E

⎛

⎝max
A⊆R

ṽi (A) −
∑

j∈A

p j

⎞

⎠ .

(6)

Let x̃ denote an optimal solution of LP when the values are (ṽi )i∈N . Since (ṽi )i∈N

is independent of R, x̃ is also independent of R. Since x̃ is feasible for LP, for any

given i ∈ N ,
∑

A⊆R x̃i,A ≤
∑

A⊆M x̃i,A ≤ 1. We can replace the maximization over

subsets of R in Eq. (6) with the convex combination of particular choices given by
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(x̃i,A)A⊆R . Thus, we obtain the following lower bound.

E

⎛

⎝max
A⊆R

ṽi (A) −
∑

j∈A

p j

⎞

⎠ ≥ E

⎛

⎝

∑

A⊆R

x̃i,A ·

⎡

£ṽi (A) −
∑

j∈A

p j

¤

§

+

⎞

⎠

= E

⎛

⎝

∑

A⊆R

E

⎛

⎝x̃i,A ·

⎡

£ṽi (A) −
∑

j∈A

p j

¤

§

+

⎞

⎠

⎞

⎠

= E

⎛

⎝

∑

A⊆R

z̃i,A(p)

⎞

⎠ . (7)

The positive part [·]+ comes from the fact that we can always choose ∅ ⊆ R in the

maximization in Eq. (6). Summing over all agents, we get that

E(Utility) ≥ E

⎛

⎝

∑

i∈N

∑

A⊆R

z̃i,A(p)

⎞

⎠ .

Therefore, adding the revenue and the utility we get that

ALG(p) ≥ E

⎛

⎝

∑

j /∈R

k j · p j +
∑

i∈N

∑

A⊆R

z̃i,A(p)

⎞

⎠ .

Replacing the expectation over R with a minimization over subsets of M we obtain

the bound of the lemma.

Lemma 4.2 For any vector of prices p ∈ RM
≥0,

O PT ≤
∑

j∈M

k j · p j +
∑

i∈N

∑

A⊆M

z̃i,A(p).

Proof Let x be an optimal solution of LP. We have that

O PT ≤ E

⎛

⎝

∑

i∈N

∑

A⊆M

xi,A · vi (A)

⎞

⎠

= E

⎛

⎝

∑

i∈N

∑

A⊆M

xi,A ·
∑

j∈A

p j

⎞

⎠+ E

⎛

⎝

∑

i∈N

∑

A⊆M

xi,A ·

⎛

⎝vi (A) −
∑

j∈A

p j

⎞

⎠

⎞

⎠ .
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Now we upper bound these two terms separately. Since x is feasible for LP, for all

j ∈ M we have that
∑

i∈N

∑

A: j∈A xi,A ≤ k j , so the first term satisfies

E

⎛

⎝

∑

i∈N

∑

A⊆M

xi,A ·
∑

j∈A

p j

⎞

⎠ ≤
∑

j∈M

k j · p j .

For the second term we simply upper bound the difference with its positive part.

E

⎛

⎝

∑

i∈N

∑

A⊆M

xi,A ·

⎛

⎝vi (A) −
∑

j∈A

p j

⎞

⎠

⎞

⎠

≤
∑

i∈N

∑

A⊆M

E

⎛

⎝xi,A ·

⎡

£vi (A) −
∑

j∈A

p j

¤

§

+

⎞

⎠

≤
∑

i∈N

∑

A⊆M

z̃i,A(p).

Putting together the two upper bounds we obtain the bound on O PT .

5 Efficient computation

So far, our main result is nonconstructive for several reasons. First, it requires a fixed-

point computation (which is PPAD-hard in general). Second, evaluating the function

for which we hope to find a fixed point requires computing the expected value of

a random variable with exponential support (which is #P-hard in general). Finally,

sampling the random variable whose expected value defines our function requires

computing the optimal allocation, which is NP-hard in general, even to approximate.

As a first step, in the previous section, we showed that we can replace the optimal

solution with the solution to a (exponentially large) linear program.

In this section, we show how to overcome all three barriers, and efficiently (in time

polynomial in |M | and |N |) compute the prices, even when d is not a constant. Notice

that when d is not a constant, a complete description of the distributions, or even of a

single deterministic valuation function, might be exponentially large. Thus, we assume

instead that we can draw samples from the distributions of valuation functions, which

we access in a black-box manner via demand queries.

Definition 5.1 A demand query of a valuation function v : 2M → R≥0 accepts

a price vector p ∈ RM
≥0 and returns a subset of items A such that v(A) =

maxB⊆M

(

v(B) −
∑

j∈B p j

)

.

We note that while a demand query only returns the subset A and not the associated

valuation v(A), we can compute the valuation of any subset using polynomially-many

demand queries [24, Lemma 11.22].
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Theorem 5.1 If there is a number vmax such that vi (A) ≤ vmax for all i ∈ N , A ⊆ M

with probability 1, and such that vmax/O PT ≤ poly(|M |, |N |), then for every ¸ > 0

we can calculate prices p̂ such that

(d + 1 + ¸) · ALG( p̂) ≥ O PT ,

with probability 1−¸, in time poly(|M |, |N |, 1/¸), using poly(|M |, |N |, 1/¸) samples

of the valuations and poly(|M |, |N |, 1/¸) demand queries in total.

To prove this theorem we first show that under the condition vmax/O PT ≤
poly(|M |, |N |) we can approximate the function ψ (as defined in Sect. 3) using

polynomially-many samples. This approximation requires computing the optimal frac-

tional allocation, which can be done in polynomial time using demand queries. Finally,

we show that the structure of ψ allows us to efficiently compute a fixed point through

a convex quadratic program.

Even though vmax/O PT ≤ poly(|M |, |N |) is a seemingly strong condition, the

following example illustrates its necessity in our approach. Consider an instance with

one item and two buyers. For a small · > 0, the first buyer has a valuation of · for the

item, while the second has a valuation of 1/· with probability ·, and 0 otherwise. In

this instance O PT = 1 + · − ·2. Most of the time the optimal allocation gives the

item to the first buyer; however, most of the value in O PT comes from the second

buyer. Thus, in order to obtain a good approximation of O PT using samples, we need

to sample the valuation functions enough times to see at least once the 1/· valuation of

the second buyer, i.e., we require �(1/·) samples. Otherwise, we could not distinguish

the instance from one where the second buyer has valuation identically 0 (in which

case we should allocate the item to the first buyer, obtaining a welfare of only ·).

5.1 Proof of Theorem 5.1

Our strategy to find the prices has several steps. First, we use an estimate ψ̂ of ψ

(recall the definition of ψ from Sect. 3). The function ψ̂ differs from ψ in two ways:

first, it replaces the optimal integral allocation with the optimal fractional allocation in

the definition of zi,A(p), according to the configuration LP specified in the previous

section. Second, it takes polynomially-many samples and computes the empirical

average, rather than an exact expected value. This allows us to compute ψ̂ in poly-

time. Finally, we write a convex quadratic minimization program whose solution is a

fixed-point of ψ̂ . Because we can minimize convex quadratic functions in poly-time,

we can then find a fixed point of ψ̂ .

More precisely we proceed as follows:

1. For s ∈ {1, . . . , S}, with S = poly(|M |, |N |, 1/¸), draw independent sets of

samples of the valuations (v
(s)
i )i∈N .
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2. For each set of samples (v
(s)
i )i∈N find an optimal fractional allocation x (s) =

(x
(s)
i,A)i∈N ,A⊆M , i.e., one that solves

(LP) max
x≥0

∑

i∈N

∑

A⊆M

xi,A · v
(s)
i (A)

s.t.
∑

A⊆M

xi,A ≤ 1, for all i ∈ N ,

∑

i∈N

∑

A: j∈A

xi,A ≤ k j , for all j ∈ M .

3. For each s = 1, . . . , S define the functions ψ̂ (s) : RM
≥0 → RM

≥0 as

ψ̂
(s)
j (p) = 1

k j

∑

i∈N

∑

A: j∈A

x
(s)
i,A ·

⎡

£v
(s)
i (A) −

∑

j ′∈A

p j ′

¤

§

+

, for each j ∈ M, (8)

and denote their average as ψ̂ := 1
S

∑S
s=1 ψ̂ (s).

4. Find a fixed point of ψ̂ , i.e., a vector p̂ such that ψ̂( p̂) = p̂.

As said before, ψ̂ does not exactly approximate ψ , but another function ψ̃ := E(ψ̂).

Notice that if we define

z̃i,A(p) = E

⎛

⎝xi,A ·

⎡

£vi (A) −
∑

j∈A

p j

¤

§

+

⎞

⎠ ,

then ψ̃ is analogous to ψ as defined in Eq. (5), but using z̃ instead of z, i.e.,

ψ̃ j (p) = 1

k j

∑

i∈N

∑

A⊂M : j∈A

z̃i,A(p).

To prove Theorem 5.1, we show that (i) given a set of valuation functions, we

can efficiently compute an optimal solution of the linear program (LP) using demand

queries; (ii) with polynomially many samples, the function ψ̂ approximates ψ̃ suffi-

ciently well; (iii) we can efficiently compute a fixed point of ψ̂ ; and (iv) a fixed point

of ψ̂ (and thus an approximate fixed point of ψ̃) gives a (d + 1 + ¸)-approximation

of O PT .

Even though the linear program (LP) has exponentially many variables, its dual has

only |M | + |N | variables. It turns out the demand queries provide a separation oracle

for it, and therefore, it can be solved using the Ellipsoid method in polynomial time.

For more details we refer to [24, Chapter 11.5.2]. This completes step (i). For each of

the other three steps we prove a separate lemma.
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Lemma 5.2 Using S = poly(|M |, |N |, 1/¸) samples we can guarantee that with prob-

ability 1 − ¸ we have that
∑

j∈M |ψ̂ j (p) − ψ̃ j (p)| ≤ ¸ · O PT /(|M | · |N |), for all

p ∈ [0, vmax]M .

Proof Consider the following discretization of [0, vmax]M . In each coordinate we take

multiples of · = ¸ · O PT /(4 · |M |3 · |N |), i.e., we consider vectors in P = {i · · :
i ∈ N}M ∩ [0, vmax]M . Recall that ψ̃ = E(ψ̂). For any given p ∈ P , λ > 0, j ∈ M ,

and number of samples S, an additive Chernoff bound indicates that

P(|ψ̂ j (p) − E(ψ̂ j (p))| > λ) ≤ 2 exp

(

−2 · S · λ2

v2
max

)

.

Taking a union bound over all j ∈ M and all p ∈ P , we have that
∑

j∈M |ψ̂ j (p) −
E(ψ̂ j (p))| ≤ |M | · λ for all p ∈ P with probability at least

1 − |M | · |P| · 2 exp

(

−2 · S · λ2

v2
max

)

= 1 − |M | ·
(vmax

·

)|M|
· 2 exp

(

−2 · S · λ2

v2
max

)

= 1 − ¸ · exp

(

log
|M |
¸

+ |M | · log
vmax

·
− S · 2 · λ2

v2
max

)

(9)

Now take any vector p ∈ [0, vmax]M . By the definition of P , there is a vector p̂ ∈ P

such that ||p− p̂||1 ≤ |M | ··. It is easy to check from the definition of ψ̂ in Eq. (8) and

the constraints that x (s) satisfies in LP that for all j ∈ M , |ψ̂ j (p)−ψ̂ j ( p̂)| ≤ ||p− p̂||1.

Therefore, ψ̂ and E(ψ̂) are |M |-lipschitz functions. By the triangle inequality, we have

that

||ψ̂(p) − E(ψ̂(p))||1 ≤ ||ψ̂(p) − ψ̂( p̂)||1 + ||ψ̂( p̂) − E(ψ̂( p̂))||1
+ ||E(ψ̂( p̂)) − E(ψ̂(p))||1

≤ 2 · |M |2 · · + |M | · λ. (10)

Now, taking λ = ¸ · O PT /(2 · |M |2 · |N |) and replacing in Eq. (10), we obtain that

||ψ̂(p) − E(ψ̂(p))||1 is at most ¸ · O PT /(|M | · |N |) for all p ∈ [0, vmax]M ; with

probability at least the expression in Eq. (9). Assuming vmax/O PT ≤ poly(|M |, |N |),
we can make make the probability in Eq. (9) larger than 1 − ¸ by taking S =
poly(|M |, |N |, |1/¸).
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Lemma 5.3 If S = poly(|M |, |N |, 1/¸) we can compute a fixed point of ψ̂ in time

poly(|M |, |N |, 1/¸).

Proof Recall that p is a fixed point of ψ̂ if for all j ∈ M ,

p j = ψ̂ j (p) = 1

S

S
∑

s=1

∑

i∈N

∑

A: j∈A

1

k j

· x
(s)
i,A ·

⎡

£v
(s)
i (A) −

∑

j ′∈A

p j ′

¤

§

+

.

Note that in this sum, the only non-zero terms are those such that x
(s)
i,A > 0. A basic

solution for the LP has at most |M | + |N | non-zero variables, so there are at most

S · (|M | + |N |) = poly(|M |, |N |, 1/¸) combinations of indices such that x
(s)
i,A > 0.

Denote by E the set of such indices, i.e., E = {(i, A, s) : i ∈ N , A ⊆ M, 1 ≤ s ≤
S, and x

(s)
i,A > 0}.

Now, for a vector p, define

ye :=
√

x
(s)
i,A ·

⎡

£v
(s)
i (A) −

∑

j∈A

p j

¤

§

+

, for all e = (i, A, s) ∈ E . (11)

If p is a fixed point, then it satisfies

p j =
∑

(i ′,A′,s′)=e′:
e′∈E, j∈A′

√

x
(s′)
i ′,A′

S · k j

· ye′ . (12)

By replacing p j back in Eq. (11), we have that p is a fixed point if and only if

y = (ye)e∈E satisfies

ye =
√

x
(s)
i,A ·

⎡

⎢

⎢

⎢

£

v
(s)
i (A) −

∑

j∈A

∑

(i ′,A′,s′)=e′:
e′∈E, j∈A′

√

x
(s′)
i ′,A′

S · k j

· ye′

¤

⎥

⎥

⎥

§

+

, for all e = (i, A, s) ∈ E .

(13)

We write a quadratic program with variables (ye)e∈E whose optimal solutions

correspond to solutions of Eq. (13).

(QP) min
y

∑

e=(i,A,s)∈E

ye ·

⎛

⎜

⎜

⎜

⎝

ye −
√

x
(s)
i,A

·

⎛

⎜

⎜

⎜

⎝

v
(s)
i

(A) −
∑

j∈A

∑

(i ′,A′,s′)=e′:
e′∈E, j∈A′

√

x
(s′)
i ′,A′

S · k j
· ye′

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

s.t.
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ye ≥
√

x
(s)
i,A

·

⎛

⎜

⎜

⎜

⎝

v
(s)
i

(A) −
∑

j∈A

∑

(i ′,A′,s′)=e′:
e′∈E, j∈A′

√

x
(s′)
i ′,A′

S · k j
· ye′

⎞

⎟

⎟

⎟

⎠

, e = (i, A, s) ∈ E

(14)

ye ≥ 0, e ∈ E . (15)

To see that it suffices to optimize this quadratic program, take first a vector y

that satisfies Eq. (13) (note that such a vector must exist, by Brouwer’s fixed-point

theorem). It is immediately implied by Eq. (13) that y satisfies both Eqs. (14) and (15).

Moreover, it is also evident that for all e ∈ E one of the two constraints must be tight,

implying that the objective function must take a value of 0. Notice that the objective

function is necessarily non-negative for feasible solutions, so y is an optimal solution.

Observe also that for any optimal solution y′ to the quadratic program, because the

objective function takes a value of zero it must be the case that for every e ∈ E , at

least one of Eqs. (14) and (15) is tight. This directly shows that y′ satisfies Eq. (13).

We finally argue that the quadratic program is convex and hence can be solved in

polynomial time [20]. To do so, it suffices to argue that the objective function can be

written in the form bT y + yT (BT B + I )y for some vector b and matrix B. We define

B ∈ RM×E by

B j,e=(i,A,s) :=

√

√

√

√

x
(s)
i,A

S · k j

· 1 j∈A.

Now, for e = (i, A, s) and e′ = (i ′, A′, s′) observe that

(BT B)e,e′ =
∑

j∈M

√

x
(s)
i,A · x

(s′)
i ′,A′

S · k j

· 1 j∈A, j∈A′ =
√

x
(s)
i,A ·

⎛

⎝

∑

j∈A∩A′

√

x
(s′)
i ′,A′

S · k j

⎞

⎠ .

From this is is straightforward to see that all the nonlinear terms in the objective of

QP can be written as yT (BT B + I )y as we wanted to show.

Lemma 5.4 If p̂ ∈ [0, vmax]M is such that
∑

j∈M | p̂ j −ψ̃ j (p)| ≤ ¸·O PT /(|M |·|N |),
then

(d + 1 + O(¸)) · ALG( p̂) ≥ O PT .

Proof. We simply re-do the proof of Theorem 3.1, but replacing with the approximate

fixed point. Thus, we take p̂ ∈ [0, vmax]M such that
∑

j∈M | p̂ j − ψ̃ j (p)| ≤ ¸ ·
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O PT /(|M | · |N |), and replace in the bound of Lemma 4.1 We obtain that

ALG( p̂) ≥ min
C⊆M

¨

©

ª

∑

j∈C

k j · p̂ j +
∑

i∈N

∑

A⊆C̄

z̃i,A( p̂)

«

¬

­

≥
∑

i∈N

∑

A⊆M

z̃i,A( p̂) − ¸ · O PT

|M | · |N | · max
j∈M

k j

≥
∑

i∈N

∑

A⊆M

z̃i,A( p̂) − ¸ · O PT

|M | .

The last inequality comes from the fact that we can assume without loss of generality

that max j∈M k j ≤ |N |, since a buyer buys at most one copy of each item. Then, we

use the upper bound of Lemma 4.2.

O PT ≤
∑

j∈M

k j · p̂ j +
∑

i∈N

∑

A⊆M

z̃i,A( p̂)

≤ (d + 1)
∑

i∈N

∑

A⊆M

z̃i,A( p̂) + ¸ · O PT

|M | · |N | · max
j∈M

k j .

This implies that

(1 − ¸) · O PT ≤ (d + 1) ·
∑

i∈N

∑

A⊆M

z̃i,A( p̂).

Putting together the lower bound on ALG( p̂) and the upper bound on O PT we

conclude that

(d + 1 + O(¸))ALG( p̂) ≥ O PT .

The proof of the theorem is straightforward from the lemmas: we take S =
poly(|M |, |N |, ¸) samples of the valuations, as required by Lemma 5.2 so that ψ̂

is a good approximation of ψ̃ . For each sample, we solve (LP) in polynomial time, so

we can calculate ψ̂ in polynomial time. Then, by Lemma 5.3, we can compute a fixed

point of ψ̂ . Finally, taking the computed fixed point as prices, we get a (d +1+ O(¸))-

approximation of O PT , by Lemma 5.4.

6 Deterministic single-minded valuations

In this section, we consider the special case where there is a single copy of each

item (i.e., ki = 1 for all i ∈ M), buyers’ valuations are deterministic, and buyers are

single-minded. The latter means each buyer i has a set Ai , with |Ai | ≤ d, such that

Ai � B ⇒ vi (B) = 0, Ai ⊆ B ⇒ vi (B) = vi (Ai ). The problem of maximizing

the welfare of an allocation in this context can be seen as the classic combinatorial
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Fig. 1 Example of a bipartite

graph in which, when all edges

have the same weight, no pricing

scheme can guarantee obtaining

more than 2/3 of the optimal

solution

problem of hypergraph matching with hyperedges of size at most d, where the buyers

correspond to the hyperedges and the items are the vertices. Indeed, in an optimal

allocation for this setting buyer i either gets Ai or ∅, implying that maximizing the

welfare of the allocation is equivalent to finding a subset of pairwise disjoint Ai ’s of

maximum total valuation. As this is a traditional problem, in the rest of this section

we will refer to hypergraphs, hyperedges and vertices, rather than buyers and items,

using the usual notation G = (V , E) and denoting by w(e) the valuation (or weight)

of the hyperedge e.

6.1 Matching in graphs: d = 2

We first focus on the traditional matching problems, showing that using prices has

limits even for this scenario. A similar discussion appears in [5], though not for single-

minded valuations. While our results are simple, and moreover Lemma 6.1 is implied

by [5]), we describe them here in full since we believe it helps complete the picture

of the single-minded case. In particular, we show in Lemmas 6.1 and 6.3, there are

instances in which no pricing scheme can guarantee recovering more than 2/3 of the

optimal solution. This is true even if the graph is bipartite or if there is a unique optimal

matching; on the other hand, if both conditions are fulfilled — the graph is bipartite

and there is a unique optimal matching — using the dual prices leads precisely to such

optimal solution.

Lemma 6.1 Prices cannot guarantee obtaining more than 2/3 of the optimal matching,

even if the graph is bipartite.

Proof Consider the graph depicted in Fig. 1, in which all edges have unit weight. There

are two optimal solutions, given by the black and the red perfect matchings; no perfect

matching can be constructed using arcs of different colors. Assume we have prices that

are able to build an optimal solution (i.e., include three edges) regardless of the order

in which the edges arrive. This implies that for at least one of the optimal solutions,

all the edges will be included if their vertices are available when they arrive. Without

loss assume this is the case for the black matching, i.e. for i = 1, 2, 3, pL i
+ pRi

≤ 1.

On the other hand, we need to prevent the red edges to be included if they appear;

to see why this is necessary, consider for instance the case in which the edge (L1, R2)

is not discarded when appearing first. Then, if the edge (L3, R3) appears second,
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no more edges could be added. To preclude this, we need to impose that for i =
1, 2, 3, pL i

+pR(i+1)mod 3
> 1. A contradiction follows by adding these and the previous

three inequalities.

Finally, if, for instance, all vertex prices are 1/2, exactly two edges will be added

regardless of the order in which they appear.

In the case of bipartite graphs, it is natural to consider the usual linear programming

formulation, since it has integer optimal solutions. The following lemma shows that

when we require the additional hypothesis that there is a unique optimal matching.

the prices given by the optimal solution of the dual problem lead to that optimal

assignment.

Lemma 6.2 If the graph G = (V , E) is bipartite and has a unique optimal matching,

then such a matching is obtained using the dual prices.

Proof Because the graph is bipartite, the problem reduces to solving the following

linear program: max{
∑

e∈E xew(e) :
∑

e∈·(v) xe ≤ 1 for all v ∈ V , x ≥ 0}; which

has an integral optimal solution. Because there is only one optimal matching, the LP

has a unique optimal solution (x∗
e )e∈E . Consider the prices (p∗

u)u∈V corresponding to

an optimal dual solution, satisfying strict complementary slackness.

Consider an edge e = (u, v) that is not part of the optimal matching. Hence, the

corresponding primal variable takes the value x∗
e = 0. By complementary slackness,

the corresponding dual constraint is not tight, i.e. p∗
u + p∗

v > w(e). This last condition

implies that buyer e will not buy the edge upon arrival. On the other hand, if e is part

of the optimal solution, the corresponding dual constraint must be tight (again due to

strict complementary slackness), so that those buyers will choose to buy.

The assumption of a unique solution is crucial for the dual prices to be useful.

Indeed, when there is more than one solution, using the dual prices can be arbitrarily

inefficient. Indeed, consider the same example depicted in Fig. 1, but modify the weight

of the edges f = (L1, R1) and g = (L2, R3) to be ¸, so that that the optimal solution

has value 2 + ¸. On the other hand, consider an edge e = (u, v) and the resulting dual

prices pu, pv: complementary slackness now states that we have pu + pv = w(e) iff e

is part of any optimal solution. Edge f is part of the black optimal solution, and edge

g is part of the red, hence those edges will be bought if the corresponding vertices are

available when they appear. In particular, if they are the first two edges to appear, then

they will both be in the final solution, and no other edge can be added, leading to a

final weight of 2¸.

However, in general graphs, even the uniqueness assumption is not enough. Indeed

we have the following result.

Lemma 6.3 Prices cannot guarantee obtaining more than 2/3 of the optimal matching

in a general graph, even if there is only one optimal matching.

Proof Consider the graph depicted in Fig. 2, where every edge has unit weight. The

optimal matching is given by the three black edges with total value of 3. On the other

hand, if any red edge enters the solution, the resulting total weight will be at most 2.
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Fig. 2 Example of a graph in

which, when all edges have the

same weight, there is a unique

optimal matching but no pricing

scheme can guarantee obtaining

more than 2/3 of its weight

We now show that any pricing scheme in which every black edge is willing to buy will

also include at least one red edge if it comes first. Let (pi )i=A,...,F prices such that for

every black edge, the sum of the involved vertices is lower than 1. In particular, we

have that pC + pD ≤ 1, so without loss of generality we assume that pC ≤ 1/2. If

pB ≤ 1/2 as well, then the red edge (B, C) will want to buy and the proof is complete.

Otherwise, if pB > 1/2, it implies that pA ≤ 1/2 because the black edge (A, B) wants

to buy. But this implies that the red edge (A, C) will buy if appearing first.

Finally, if all vertex prices are 1/2, then it is straightforward to see that at least two

edges will be added regardless of the order in which they appear.

In general, there are item prices that guarantee obtaining at least half of the optimal

welfare. This is achieved by splitting the weight of the edges of an optimal matching

uniformly between the two corresponding vertices. We present this result in Lemma

6.6 for general d.

6.2 Hypergraphmatching: d > 2

We begin this section proving two negative results. First we show an upper bound of

(1 + o(1)) ·
√

1
d

on the fraction of the optimal solution that can be guaranteed with

prices. We then show a specific bound for the case d = 3, in which we cannot guarantee

obtaining more than 1/2 of the optimal welfare. Finally, we provide a pricing scheme

that always obtains at least 1/d of the optimal welfare.

Lemma 6.4 Prices cannot guarantee welfare more than an (1+o(1)) ·
√

1
d

fraction of

the optimal welfare, even if the arrival order is known. More preicsely, for any q such

that q2 − q + 1 ≤ d, prices cannot guarantee more than a
q

q2−q+1
approximation.

Proof Our example is based on constructions for finite projective planes; namely, we

will use the fact that if q − 1 is a prime power there exists a hypergraph on q2 − q + 1

vertices with q2 − q + 1 hyperedges that are q-regular, q-uniform and intersecting,

i.e. every pair of hyperedges has at least one shared vertex (see, e.g., [19, Chapter 12]

for a reference).

To build our example, we will assume that for each hyperedge there exists a corre-

sponding buyer interested in exclusively that subset of items with a total valuation of

q. We will also add one buyer whose only subset of interest is the entire set of items,

with a valuation of d = q2 − q + 1. Note that clearly the optimal welfare attainable

is q2 − q + 1.
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It hence suffices to show that prices cannot achieve welfare greater than q. Assume

the buyer interested in the entire set of items arrives last. Note that if there is any edge

e such that the sum of the prices of the vertices in e is at most than q, we are guaranteed

welfare at most q. However, if the sum of the prices of the vertices in every hyperedge

is more than q, because our graph is q-uniform that means the sum of the prices of all

vertices is more than q2 − q + 1, meaning the final buyer would not select anything

and the welfare attained is zero. Hence, the total welfare attainable by prices is at most

a

q

q2 − q + 1
= (1 + o(1)) · 1

√

q2 − q + 1

fraction of the optimum.

Finally, if d cannot be written as q2 − q + 1, we replicate the same construction

for the largest d ′ < d that can, and the result holds.

When d = 3, taking q = 2 in the above proof demonstrates no prices achieve better

than a 2/3-approximation. Below, we provide a tighter bound for this special case.

Lemma 6.5 When d = 3, no prices exist obtaining a better than 1/2-approximation.

Proof Consider a hypergraph G = (V , E) with V = {1, 2, 3, 4, 5, 6} and the follow-

ing hyperedges with unit weight:

{1, 2, 3}, {4, 5, 6}, {1, 2, 4}, {1, 3, 5}, {2, 5, 6}, {3, 4, 6}.

First, note that there is a perfect matching (of weight 2), given by the two first hyper-

edges. Also note that each of the remaining hyperedges intersect all other hyperedges,

thus only one of them could be included in a feasible solution. Therefore, it suffices to

prove that there is no pricing scheme in which the first two edges ({1, 2, 3}, {4, 5, 6})
want to buy but all the others do not.

Let us assume that there are prices p1, . . . , p6 that achieve the aforementioned

property. For the first two edges to be taken when they appear, we need p1+p2+p3 ≤ 1

and p4+ p5+ p6 ≤ 1. To prevent the other edges to buy when they appear, we need the

sum of the corresponding vertices to be strictly greater than 1, hence we obtain four

additional inequalities. Adding up all the six inequalities, we obtain
∑6

i=1 pi > 2.

And the exact opposite result is obtained adding the first two inequalities.

We now provide our positive result. Consider a hypergraph G = (V , E), with

weights (w(e))e∈E . To define the prices, take an optimal matching given by the hyper-

edges O PT1, . . . , O PT�. For each a ∈ O PT j , define pa = w(O PT j )/d. The prices

of the items not covered by the optimal solution are set to ∞. The following simple

result shows that these prices obtain at least a fraction 1/d of the optimal welfare.

Lemma 6.6 Consider prices defined as above, and hyperedges arriving in an arbitrary

order. Denote Q the set of edges that are bought. Then

∑

e∈Q

w(e) ≥ 1

d

�
∑

j=1

w(O PT j )
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Proof First note that for each e ∈ Q, it must hold that

w(e) ≥
∑

i∈e

pi (16)

As otherwise the buyer associated to e would have decided not to buy. Therefore:

∑

e∈Q

w(e) ≥
∑

e∈Q

∑

i∈e

pi (17)

On the other hand, for each O PT j in the optimal solution, there must be at least

one vertex, with its corresponding price w(O PT j )/d that is covered by the edges in

Q. To see this, note that there are two possible cases: either O PT j ∈ Q and all its

vertices are covered, or O PT j /∈ Q, meaning that when O PT j arrived, at least one

of its vertices was not available, i.e., it was covered by an edge previously bought.

The result follows directly, noting that in the right side of Eq. (17), we are summing

at least once w(O PT j )/d for each j = 1 . . . , �.

7 Prophet inequalities for single-minded random valuations

In this section, we continue to study the setting with single-minded buyers, but allow

them to have random valuations. This captures the well-studied prophet inequality

setting. Indeed, when d = 2, our result recovers the 1/3-approximate thresholding

prophet inequality of [18] for bipartite matching under edge-arrivals and extends this

to matching in general graphs. (Vertices correspond to items, and each edge with a

random weight corresponds to a buyer interested in two items with a random valuation).

In this section, we show that in this setting there does not exist a prophet inequality

guaranteeing better than a 3/7-approximation for bipartite matching, improving on

the previous upper bound of 4/9 given by [18]. We stress that this upper bound holds

against any online algorithm, not just thresholding algorithms. We also note that this

bound extends the 3/7 upper bound given by [14] for matching in general graphs to

bipartite graphs.5

Theorem 7.1 No prophet inequality for bipartite matching in the edge-arrival setting

is better than 3/7-competitive.

The remainder of this section proves Theorem 7.1. We construct a family of hard

instances {Gn,k}, indexed by integers k ≥ 2 and n ≥ 2. Below, we specify the

construction of Gn,k including an ordering on the edges and distribution W (e) for the

weight of each edge e. Gn,k consists of:

• Nodes: {�0, . . . , �n−1, r0, . . . , rn−1}, for 2n total nodes.

• Edge: a := (�0, r0). W (a) = k3 with probability 1/k3, and 0 otherwise.

5 The constructions are independent and require different techniques. It is interesting that the current upper

bounds for general vs. bipartite graphs stand at the same number.
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Fig. 3 The structure of the hard instance

• Edges: bi := (�0, ri ), i ≥ 1. W (bi ) = (k−1)2i−1+k2i−1

(2k−1)k2i−2 with probability 1/k, and 0

otherwise.

• Edges: ci := (�i , r0), i ≥ 1. W (ci ) = k−1
k

· (k−1)2i−1+k2i−1

(2k−1)k2i−2 with probability 1/k,

and 0 otherwise.

• Edges arrive in the order (cn−1, bn−1, cn−2, bn−2, . . . , c1, b1, a).

This is depicted in Fig. 3. To gain some intuition for this construction, observe that the

realized weight of the final edge a has expectation 1. For all other edges, if this edge

realizes with non-zero weight and an optimal online algorithm accepts, the remaining

expected gain can be computed by solving a single-item Bayesian selection problem

for the remaining disjoint edges. The weights {W (bi ), W (ci )} are carefully set so that

at each point, if the realized weight is non-zero, the gain of an optimal online algorithm

from accepting is exactly 1.

We first characterize the offline optimum. We let O PT (W , Gn,k) denote the

expected performance of the optimum offline algorithm on the instance (W , Gn,k)

and ALG(W , Gn,k) denote the expected performance of an online algorithm ALG.

Lemma 7.2 limk→∞ limn→∞ O PT (W , Gn,k) = 7
3
.

Proof Observe first that maximal feasible sets can either take the single edge a, or two

edges of the form {bi , c j }. Observe first that for all i ≥ 1:

(k − 1)2i−1 + k2i−1

(2k − 1)k2i−2
≤ k2i−1 + k2i−1

(2k − 1)k2i−2
= 2k

2k − 1
≤ 2.

On the other hand, k3 ≥ 8. This means that whenever W (a) > 0, the offline

optimum is a. Whenever W (a) = 0, the offline optimum is to accept the heaviest b
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edge together with the heaviest c edge. Observe next that for any i ≥ 1, we have

(k − 1)2i−1 + k2i−1

(2k − 1)k2i−2
>

(k − 1)2i+1 + k2i+1

(2k − 1)k2i
.

In particular, this means that bi is the heaviest b edge if and only if W (bi ) > 0 and

W (b j ) = 0 for all j < i . Hence, bi is the largest b edge with probability
(

1 − 1
k

)i−1 · 1
k

.

From this we can directly conclude that the expected weight of the heaviest b edge is

n−1
∑

i=1

(

k − 1

k

)i−1

· 1

k
· (k − 1)2i−1 + k2i−1

(2k − 1)k2i−2

= 1

2k − 1
·

n−1
∑

i=1

(k − 1)3i−2 + k2i−1 · (k − 1)i−1

k3i−2
.

Identical calculations (after multiplying all weights by k−1
k

) yield that the expected

weight of the heaviest c edge is

k − 1

k
· 1

2k − 1
·

n−1
∑

i=1

(k − 1)3i−2 + k2i−1 · (k − 1)i−1

k3i−2
.

Putting everything together, we conclude that

O PT (W , Gn,k) =
(

1

k3

)

· k3 +
(

1 − 1

k3

)

·
(

1

k

n−1
∑

i=1

(k − 1)3i−2 + k2i−1 · (k − 1)i−1

k3i−2

)

.

We now can perform some straightforward manipulations; in particular, first observe

that

∞
∑

i=1

(k − 1)3i−2 + k2i−1 · (k − 1)i−1

k3i−2
=

∞
∑

i=1

(

k − 1

k

)3i−2

+
∞
∑

i=1

(

k − 1

k

)i−1

= k − 1

k · (1 − (1 − 1/k)3)
+ k

= k3 − k2

k3 − (k − 1)3
+ k4 − k(k − 1)3

k3 − (k − 1)3

= 4k3 − 4k2 + k

3k2 − 3k + 1
.

Hence, for fixed k:

lim
n→∞ O PT (W , Gn,k) =

(

1

k3

)

· k3 +
(

1 − 1

k3

)

·
(

1

k
· 4k3 − 4k2 + k

3k2 − 3k + 1

)

= 7k5 + O(k4)

3k5 + O(k4)
.
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From this we directly conclude

lim
k→∞

lim
n→∞

O PT (W , Gn,k) = 7/3

as claimed.

Note that the original sum can be split into two because it is convergent. This can

be seen through the two resulting sums in the first line, which for any fixed k are

a geometrical series of a number lower than 1, namely (k − 1)/k. Our next lemma

considers the power of online algorithms for Gn,k instances. In fact, we will see that for

any Gn,k instance an online algorithm cannot get a score better than 1 in expectation,

which will lead to our lower bound of 7/3 on the competitive ratio.

Lemma 7.3 For all online algorithms ALG and all n, k ≥ 2, ALG(W , Gn,k) ≤ 1.

Proof Fix some n, k ≥ 2. We will prove the lemma with a sequence of intermediate

claims. We first bound the expected reward from a set of edges {bi , bi−1, . . . , b1}
revealed in that order. This is useful because once an algorithm has accepted some

c edge, they cannot accept another c edge, or a, so they are left exactly with this

optimization.

Claim 7.4 The maximum expected reward that any online algorithm can achieve from

the edges {bi , . . . , b1} (revealed in that order) is

1 − k − 1

k
· (k − 1)2i−1 + k2i−1

(2k − 1)k2i−2
= k2i − (k − 1)2i

(2k − 1)k2i−1
.

Proof We proceed by induction on i . Our base case is i = 1; in this case ALG

clearly gets expectation at most E[W (b1)] = 1
k

which indeed is precisely equal to the

expression claimed.

Hence assume the result for some fixed i ≥ 1; we will prove it for i + 1. When

ALG considers whether to accept or reject bi+1, note that if it rejects it is guaranteed

expectation at most k2i −(k−1)2i

(2k−1)k2i−1 by the inductive hypothesis. Note that W (bi+1) could

take either a value of 0 or (k−1)2i+1+k2i+1

(2k−1)k2i >
k2i −(k−1)2i

(2k−1)k2i−1 . This implies that if W (bi+1) >

0, ALG maximizes its expected reward from edges in {bi+1, . . . , b1} by accepting

bi+1. Furthermore, it is clear that if W (bi+1) takes value 0, then it is optimal for ALG

to reject it. This lets us conclude that the expectation ALG can attain is at most

1

k
· (k − 1)2i+1 + k2i+1

(2k − 1)k2i
+
(

1 − 1

k

)

·
(

k2i − (k − 1)2i

(2k − 1)k2i−1

)

= (k − 1)2i+1 + k2i+1

(2k − 1)k2i+1

+ k(k − 1) · (k2i − (k − 1)2i )

(2k − 1)k2i+1

= k2i+2 − (k − 1)2i+2

(2k − 1)k2i+1
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hence proving the inductive hypothesis.

Note that identical calculations, after multiplying all weights by k−1
k

, give the

following as well:

Claim 7.5 The maximum expected reward that any online algorithm can achieve from

the edges {ci , . . . , c1} (revealed in that order) is

k − 1

k
·
(

1 − k − 1

k
· (k − 1)2i−1 + k2i−1

(2k − 1)k2i−2

)

= k − 1

k
· k2i − (k − 1)2i

(2k − 1)k2i−1
.

With these claims in place, we directly get an upper bound on the algorithm’s per-

formance based on the first edge it accepts in {c1, c2, . . . , cn−1} or {b1, b2, . . . , bn−1}.

Claim 7.6 If ALG first accepts some edge in {c1, c2, . . . , cn−1}, then its expected

reward, conditioned on this event, is at most one.

Proof Let ci be the first edge accepted by ALG. Note that the weight ALG gets from

ci is at most

k − 1

k
· (k − 1)2i−1 + k2i−1

(2k − 1)k2i−2
.

Note also that ALG cannot accept a or any other c j (as this would not be a matching).

Hence ALG can only accept at most one edge from {bi , bi−1, . . . , b1}. By Claim 7.4,

the expected reward of the algorithm on the remaining edges is at most:

1 − k − 1

k
· (k − 1)2i−1 + k2i−1

(2k − 1)k2i−2
.

These two terms sum to one, yielding the result.

We similarly have a symmetric claim for {b1, b2, . . . , bn−1}.

Claim 7.7 If ALG first accepts some edge in {b1, b2, . . . , bn−1}, then its expected

reward, conditioned on this event, is at most one.

Proof. Let bi be the first edge accepted by ALG. Note that the weight ALG gets from

bi is at most

(k − 1)2i−1 + k2i−1

(2k − 1)k2i−2
.

Note also that ALG cannot accept a or any other b j . Hence ALG can only accept at

most one edge from {ci−1, . . . , c1}. By Claim 7.5 the expected reward of the algorithm

on the remaining edges is at most:

k − 1

k
· k2i−2 − (k − 1)2i−2

(2k − 1)k2i−3
.
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Hence, in total ALG gets in expectation at most

(k − 1)2i−1 + k2i−1

(2k − 1)k2i−2
+ k − 1

k
· k2i−2 − (k − 1)2i−2

(2k − 1)k2i−3
= 1.

The only other case to consider is when ALG does not accept any edge in

{b1, b2, . . . , bn−1} ∪ {c1, c2, . . . , cn−1}. But conditioned on this, the algorithm can

only accept a. As E[W (a)] = 1, we also see that ALG gets expected value at most

one, conditioned on this. To summarize, we have now shown that no matter what edge

ALG accepts first from {cn−1, bn−1, . . . , c1, b1}, it gets expected value at most one.

We have also shown that if ALG accepts nothing from this set that it also gets expected

value at most one. This completes the proof.

Summarizing, we know from Lemmas 7.2 and 7.3 that for any fixed ¸ > 0, there

exist some large n, k, such that O PT (W , Gn,k) ≥ 7/3 − ¸, while ALG(W , Gn,k) ≤
1 for all online algorithms. This implies an upper bound of 3/7 on the attainable

competitive ratio of online algorithms for bipartite matching, completing the proof of

Theorem 7.1.

8 Conclusion and future directions

In this paper, we provided an efficiently computable 1/(d + 1)-approximate pric-

ing algorithm for maximizing social welfare when buyers have arbitrary and random

monotone valuations on subsets of at most d items. Although this approximation fac-

tor is tight in the worst case, numerous interesting directions for future work remain.

In the special case where buyers are single-minded and have deterministic valua-

tions, for d = 2 we have bounded the best attainable ratio of pricing algorithms in

[1/2, 2/3], so the exact value is yet to be found. It would furthermore be relevant to

understand the asympotics of the optimal ratio for general d, which our results place

in [∼ 1/
√

d, 1/d]. When buyers are single-minded but could have random valuations,

our problem is closely related to the design of thresholding prophet inequalities. Many

open problems remain in this area; we gave an upper bound for prophet inequalities

for bipartite matching and note that there remain large gaps in known bounds for the

optimal competitive ratio for matching in bipartite (and general) graphs.
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