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Abstract—We study the communication complexity of truthful
combinatorial auctions, and in particular the case where valua-
tions are either subadditive or single-minded, which we denote
with SubAdd∪SingleM. We show that for three bidders with valu-
ations in SubAdd∪SingleM, any deterministic truthful mechanism
that achieves at least a 0.366-approximation requires exp(m)
communication. In contrast, a natural extension of [Fei09] yields
a non-truthful poly(m)-communication protocol that achieves a
1
2

-approximation, demonstrating a gap between the power of
truthful mechanisms and non-truthful protocols for this problem.

Our approach follows the taxation complexity framework laid
out in [Dob16b], but applies this framework in a setting not
encompassed by the techniques used in past work. In particular,
the only successful prior application of this framework uses
a reduction to simultaneous protocols which only applies for
two bidders [AKSW20], whereas our three-player lower bounds
are stronger than what can possibly arise from a two-player
construction (since a trivial truthful auction guarantees a 1

2
-

approximation for two players).

I. INTRODUCTION

1) Background: Combinatorial Auctions: Combinatorial

Auctions are a paradigmatic problem at the intersection of

Economics and Computation; see e.g. [LOS02, LLN06, NS06,

MSV08, DNS10, DSS15, AKS21] and many others. Here,

an auctioneer has m items to allocate among n bidders,

where each bidder i has a combinatorial valuation vi over

subsets of items (that is, vi : 2[m] → Rg0), and seeks

to do so in a way that maximizes the welfare. That is,

the auctioneer seeks to partition the items into n subsets,

A1, . . . ,An, so as to maximize
∑

i vi(Ai). The challenge is

that only Bidder i knows her valuation vi(·), and therefore:

(a) the auctioneer must communicate with the bidders to

learn sufficient information about vi(·) to find a high-welfare

allocation, and (b) the bidders may strategically manipulate

the protocol, and therefore the auctioneer must further design

a truthful communication protocol.1

Subject only to constraint (a), the problem is fairly

well understood for several canonical valuation classes. For

example, poly(m)-communication (not necessarily truthful)

protocols are known to achieve: an asymptotically tight

Θ(1/
√
m)-approximation for arbitrary monotone valuations

S. Matthew Weinberg and Qianfan Zhang are supported by NSF CCF-
1955205.

1See Section II for a formal definition – informally, a protocol is truthful
if every player is incentivized to follow the protocol.

[LS05, NS06], a tight 1/2-approximation for subadditive valua-

tions [Fei09], a tight (1−1/e)-approximation is known for XOS

valuations [Fei09, DNS10], and the tight constant for submod-

ular valuations is known to lie in [1 − 1/e + 1/105, 1 − 1/2e]
[DV13, FV10, Von07]. Thus, for all of these problems, the

optimal approximation guarantee of poly-communication non-

truthful protocols are well-understood.

Subject only to constraint (b), the problem can be solved

optimally by the classical Vickrey-Clark-Groves (VCG) mech-

anism [Vic61, Cla71, Gro73]; however, this solution re-

quires exponential communication for any of the above-

mentioned valuation classes.2 Subject to both constraints (a)

and (b), the problem is still quite poorly understood despite

significant effort over the past two decades. For example,

the state-of-the-art deterministic truthful mechanisms with

poly(m)-communication achieve approximation guarantees

of Ω(ln(m)/m) for arbitrary monotone valuations, and just

Ω(
√

ln(m)/m) for each of subadditive/XOS/submodular val-

uations [QW24]. Thus, these canonical settings each have a

Θ̃(
√
m) gap in approximation guarantees for state-of-the-art

truthful vs. non-truthful protocols. Despite these massive gaps,

corresponding impossibility results remain starkly rare; indeed,

for each of the above examples, no lower bounds for truthful

mechanisms are known beyond those that also hold for non-

truthful protocols. Thus, for each of these canonical settings,

it remains unknown whether there should be any gap at all!

This question has received significant attention since [NS06]

introduced the study of communication complexity for com-

binatorial auctions, and it is generally conjectured that the

more significant missing piece is stronger impossibility results.

Developing such impossibility results necessarily requires

leveraging truthfulness, which imposes significant technical

barriers. For example, a natural first attempt would be to

characterize all truthful auctions in a given setting, perhaps

a là Roberts’ Theorem [Rob79], and then prove impossibility

results for communication-efficient auctions using this clas-

sification. [LMN03, DN15] push the classification approach

2The VCG mechanism reduces non-truthful protocols to truthful ones, but
only for protocols that exactly optimize welfare. Thus, the VCG mechanism
makes the problem easy in any setting where describing a valuation function
only takes polynomially-many bits. Richer classes, like the four mentioned,
require exponentially-many bits to describe, and require high communication
for exact welfare maximization, thus motivating approximations.
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roughly to its limit, but bizarre deterministic truthful mecha-

nisms exist and it appears that any classification attempt may

be intractable (see the discussion in [Dob11], for example).

Interest in the question revitalized when [Dob16b] proposed

an alternative framework termed Taxation Complexity. This

framework does not attempt to classify truthful mechanisms,

but merely identifies one key complexity measure that bounds

the communication complexity of a truthful auction: namely,

the logarithm of the maximum number of menus presented

to a player, also called the taxation complexity. The Taxation

Complexity framework further implies the following corollary:

communication lower bounds on two-player simultaneous

(non-truthful) protocols imply communication lower bounds

on two-player interactive truthful mechanisms (whereas simul-

taneous lower bounds certainly do not generally imply inter-

active lower bounds for non-truthful protocols [Yao79]). Even

this corollary proved challenging to leverage, but [AKSW20]

later established an impossibility of 3/4 − 1/240 for two XOS

bidders, which exhibits the first separation of truthful and

non-truthful protocols, since there is a non-truthful protocol

that gives a 3/4-approximation for two XOS bidders [Fei09,

DNS10].

[AKSW20] remains to-date the only known separation

between what is achievable by poly(m)-communication truth-

ful mechanisms and poly(m)-communication (non-truthful)

protocols. Yet, this separation holds only for two bidders.

Indeed, while a poly(m)-communication non-truthful protocol

can guarantee a 3/4-approximation for two XOS bidders,

the best possible guarantee for even three XOS bidders is
18/27 < 3/4 − 1/240.3 That is, while we now know that

two-bidder poly(m)-communication protocols achieve strictly

better guarantees than two-bidder poly(m)-communication

truthful mechanisms, it is still plausible that truthful mecha-

nisms are just as powerful as non-truthful protocols for n g 3
XOS bidders. Moreover, the approach of [AKSW20] heavily

leverages the two-bidder corollary of [Dob16b]: their result

follows from a communication lower bound on simultaneous

protocols, which does not imply anything about interactive

truthful mechanisms for n g 3 bidders.

2) Our Contributions: In our main result, we provide the

first separation of poly(m)-communication truthful vs. non-

truthful protocols for more than 2 bidders. Specifically, we

consider the class of bidders that are either Single-Minded or

Subadditive (and term the class SubAdd∪SingleM). We show

that for this class, any deterministic truthful mechanism beat-

ing a (
√
3−1)/2 ≈ 0.366 approximation requires exp(m) com-

munication, whereas a simple extension of [Fei09] achieves a
1/2-approximation with a non-truthful protocol.4

3) Brief Overview of Approach: We leverage the Taxation

Complexity framework of [Dob16b], which hinges around the

3Moreover, [BMW18] design a simultaneous protocol for two XOS
bidders achieving an approximation guarantee of 23/32 > 18/27, so no lower
bound via two-player simultaneous protocols can possibly achieve a separation
for more than 2 players.

4We also include novel results on related classes of valuations with two
bidders; see Section I-A.

concept of a menu. The menu for Bidder i of an auction A
is a function M = MenuAi (v−i), parameterized by v−i, that

takes as input vi and outputs the set of items (and price paid)

that Bidder i gets on input (vi, v−i). That is, a menu fixes the

valuations of bidders other than i, and stores the impact that

Bidder i’s valuation vi has on i’s own allocation and prices.

Informally speaking, one can think of the results of

[Dob16b] as showing that, in terms of the communication-

efficiency of truthful auctions (in sufficiently rich settings),

the auction might as well be implemented by fully learning

a bidder’s menu, and then allocating to that bidder according

to their menu and their valuation. Indeed, in these settings,

[Dob16b] proves that for any truthful auction, the communi-

cation complexity of the auction is at least (some polynomial

function of) the communication complexity of learning one

bidder’s menu.5 To prove our main result, we establish that in

order for a truthful mechanism to beat a 0.366-approximation

for SubAdd ∪ SingleM, the Communication Complexity of

learning a bidder’s menu must be exponential in the number

of items m. The Communication Complexity of all truthful

mechanisms achieving the same approximation ratio then

follows via results from [Dob16b].

We defer technical details, but now briefly give intuition for

the role of both Subadditive bidders and the Single-Minded

bidder, and how the 0.366-approximation factor arises. A

construction of [EFN+19] establishes that exponential com-

munication is necessary in order for a (not necessarily truthful)

protocol to beat a 1/2-approximation for two subadditive bid-

ders. So intuitively, truthful welfare-maximizing auctions face

the following challenge. Suppose there is one Single-Minded

and two Subadditive bidders. Imagine that the maximum

possible welfare between the two Subadditive bidders is c.
Then if, based on the two Subadditive bidders, the price of

set S for the Single-Minded bidder is set to p(S), it could be

that:

• Perhaps the Single-Minded bidder has interest set S, has

value barely exceeding p(S) (and therefore chooses to

purchase set S), and yet the maximum welfare achievable

between the two Subadditive bidders for S is ≈ 0.

Therefore, we could have welfare as bad as ≈ p(S) when

the optimum is c.
• Perhaps the Single-Minded bidder has interest set S,

has value barely below p(S) (and therefore chooses not

to purchase anything), and yet the maximum welfare

achievable between the two Subadditive bidders for S
is also c. Moreover, even when allocating all items to

the two Subadditive bidders, we don’t expect to achieve

welfare greater than c/2 without exp(m)-communication,

based on the results of [EFN+19]. Therefore, we could

have welfare as bad as c/2 when the optimum is c+p(S).

Therefore, the best ratio we can hope to achieve is

min{p(S)
c , c/2

c+p(S)}, which (it turns out) is at most
√
3−1
2 ≈

0.366 no matter how we set p(S).

5[Dob16b] provides other ways to bound the communication complexity
of truthful auctions, as we discuss below.
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Of course, this is just intuition—we need an actual construc-

tion where the above arguments hold even after the bidders

have engaged in polynomial communication. For example, if

we know the Single-Minded Bidder is interested in a particular

set S, then it is trivial to determine whether the maximum

welfare achievable between the two Subadditive bidders for S
is ≈ 0 or ≈ c. Nevertheless, the high-level intuition of our

proof closely follows the outline above. In particular, the role

of the two Subadditive Bidders in the is to: (a) have uncertainty

regarding whether S can generate non-trivial welfare between

them, and (b) require exp(m) communication to beat welfare

c/2 allocating any set of items to them. The role of the Single-

Minded Bidder is for a clean and direct analysis of what the

price of a single set S might mean for the resulting allocation,

thus allowing us to reason about the menu presented to the

Single-Minded Bidder.

A. Roadmap and Conclusions

We give preliminaries in Section II. In Section III, we

give a “warmup” to our main result, namely, we give a false

proof attempting to implement the intuitive hardness outline

discussed above, but leaving a gap in one step of the proof.

After explaining this gap and the main ideas used to fix it, in

Section IV, we prove our main result: a welfare approximation

lower bound of 0.366 for poly-communication truthful auc-

tions for three bidders with valuations in SubAdd ∪ SingleM.

We then observe that this gives a separation between truthful

auctions and non-truthful protocols, by showing that non-

truthful protocols can achieve a higher welfare approximation

of 1
2 .6

In Section V, we study auctions for two bidders in the

class of valuations XOS ∪ SingleM. Observe that to obtain

a separation for two-bidder mechanisms, it is necessary to

consider a “smaller” class than SubAdd∪SingleM.7 We show

that for two bidders in the class of valuations XOS∪SingleM,

the communication complexity of every truthful mechanism

that has an approximation better than (
√
5−1)/2 ≈ 0.618

is exp(m). We show this bound by two different proofs

based on two different approaches from [Dob16b]. Finally,

in Section V-C we also discuss difficulties for generalizing it

to a stronger lower bound for more than two XOS ∪ SingleM

bidders. Holisticly, our results in Section V illustrate additional

ways to achieve impossibility results, and in fact served as

stepping stones en-route to our main result.

6Additionally, we note that our results get a separation for any n =
O(logn) bidders (since our upper bound of a 1/2-approximation extends to
any n = O(logn) bidders, and not only 3; see Lemma II.3). This is in
contrast to [AKSW20]: while they prove upper and lower bounds yielding a
separation for 2 bidders, there is no known separation with 3 or more bidders
in their setting (since, while their lower bounds trivially also holds for more
bidders, their upper bound degrades as the number of bidders increases).

7The reason for it is that for SubAdd∪SingleM, there is provably no gap
between the power of communication efficient truthful mechanisms and non-
truthful protocols for two bidders, as the second-price auction on the grand
bundle is truthful, communication-efficient, and 1/2-approximates the social
welfare, which is optimal even for non-truthful protocols [EFN+19]. Thus,
to show a gap for two bidders, it is necessary to consider a “smaller” class.

We conclude by restating that our main result is the first

separation between the approximation guarantees of poly(m)-
communication truthful and non-truthful combinatorial auc-

tions beyond two bidders for any class of valuations. Still, the

major open problem of whether poly(m)-communication de-

terministic truthful mechanisms can achieve an approximation

guarantee better than Ω̃(
√
m) remains open. An obvious direc-

tion for future work is to make further progress, extending our

result either by removing the need for a single-minded bidder,

or by achieving super-constant lower bounds for more bidders.

It is also important to investigate whether our techniques open

doors for similar results with other canonical valuation classes

(e.g., submodular valuations, arbitrary monotone valuations),

or the related setting of multi-unit auctions.

B. Related Work

1) Communication Complexity of Deterministic Truthful

Combinatorial Auctions: The most related work to ours con-

cerns the Communication Complexity of Truthful Combinato-

rial Auctions. Here, the best approximation ratios are guar-

anteed by “VCG-Based” (also called “Maximal-in-Range”)

mechanisms [HKMT04, DNS10, DN11, QW24], which are

a factor of Θ̃(
√
m) worse than those of the best non-truthful

protocols [LOS02, Fei09, DNS10, FV10] for the canonical

settings of Submodular, XOS, Subadditive, and Monotone. It

is plausibly conjectured that the aforementioned VCG-based

mechanisms are optimal among deterministic truthful mech-

anisms, which would imply that strong separations between

truthful and non-truthful protocols exist.

The lone prior separation is [AKSW20]. This separation

relies on a result of [Dob16b] which reduces the problem to

showing impossibilities for two-bidder simultaneous protocols;

this reduction does not extend beyond two bidders.8 In contri-

bution to this line of works, we provide the first separation

for > 2 bidders and directly via the Taxation Complexity

framework [Dob16b] in a manner that is not restricted to a

particular number of bidders. Finally, we also note that the

particular notion of truthfulness we consider is the standard

“Ex-Post Nash,” meaning that it is always a Nash equilibrium

for Bidders to follow the protocol, no matter their valuations.

A stronger notion of truthfulness asks that it is a “Dominant

Strategy” to follow the protocol, and [RST+21, DRV22]

establish separations between the achievable guarantees of

poly(m)-communication Dominant Strategy Truthful mech-

anisms and non-truthful protocols.9

2) Communication Complexity of Randomized Truthful

Combinatorial Auctions: There is also a significant line of

work developing randomized truthful combinatorial auctions.

Here, the state-of-the-art approximation guarantees are much

8[DNO14, DRV22] also prove lower bounds for simultaneous combina-
torial auctions. However, their results hold only for a large number of bidders.

9The distinction between Ex-Post Nash and Dominant-Strategy Truthful is
that the former need only incentivize each bidder to behave truthfully when the
other bidders are truthful according to some, but possibly arbitrary, valuation,
whereas the latter faces the much stiffer task of incentivizing each bidder to be
truthful even when other bidders are behaving in a bizarre manner inconsistent

with any valuation function.
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better, poly(1/ log logm) for Submodular, XOS, and Subaddi-

tive [AKS21] (building upon [AS19, Dob16a, Dob07, KV12]),

and Θ(
√
m) for arbitrary monotone valuations [DNS12]. The

latter is asymptotically tight, whereas it remains a major open

problem whether the former can be improved to a constant.

3) Computational Complexity of Truthful Combinatorial

Auctions: A significant body of work also considers the com-

putational complexity of truthful Combinatorial Auctions. This

line of research indeed concludes strong separations between

the constant-factor approximations achievable by poly-time

algorithms [LLN06, MSV08, Von08] and poly-time truthful

mechanisms for Submodular valuations [Dob11, DV12b,

DV12a, DV16, DV11]. These results establish an Ω̃(
√
m)

lower bound on the approximation guarantees of randomized

poly-time truthful mechanisms. The simple posted-price mech-

anisms of the prior paragraph ‘break’ these bounds because

they use demand queries, and [CTW20] identifies a relaxed no-

tion of “truthfulness” under which these mechanisms achieve

their guarantees in poly-time. This counterintuitive interaction

between computation and incentives further motivates the

communication model for combinatorial auctions.

II. PRELIMINARIES

1) Combinatorial auctions: Recall that in a combinatorial

auction, there are m heterogeneous items and n bidders. We

denote items by j ∈ [m] = {1, 2, . . . ,m}, and bidders by

i ∈ [n]. The set of allocations of items to the n bidders, i.e.,

sets (A1, . . . ,An) with Ai ¦ [m] and Ai ∩ Aj = ∅ for all

i ̸= j, is denoted by Σ. Each bidder i holds a private valuation

function vi : 2
[m] → R which is drawn from some set Vi. The

sets Vi differ depending on the auction problem considered;

we discuss different canonical cases below. We assume that

all valuations are monotone non-decreasing (vi(S) f vi(T )
for S ¦ T ) and normalized (vi(∅) = 0). The goal is to find

an allocation of items (A1, . . . ,An) ∈ Σ that (approximately)

maximizes the social welfare
∑

i∈[n] vi(Ai).
An auction rule, equivalently known as a direct-revelation

mechanism, is a function A : V1 × · · · × Vn → Σ × R
n,

that maps a valuation profile (v1, . . . , vn) to an outcome(
(A1, . . . ,An), p1, . . . , pn

)
, where Si is the allocation of

player i and pi is her payment. The auction rule can also be

equivalently be defined as a tuple (f , p1, . . . , pn), where the

allocation is determined via the function f : V1×· · ·×Vn → Σ
and the payments are determined via the functions pi : V1 ×
· · ·×Vn → R for each player i ∈ [n]. When no confusion can

arise, we do not distinguish between these two representations

of the auction rule. We denote by fi(v1, . . . , vn) the bundle

that bidder i receives in f(v1, . . . , vn). When bidder i receives

bundle Si and is charged payment pi, bidder i’s utility is

vi(Si)−pi. We assume that bidders are rational and strategic,

and thus aim to maximize their utility.

We say that an auction rule is truthful (for the relevant

classes of valuations V1, . . . ,Vn) if it satisfies the following:

for every bidder i, for every two valuations vi, v
′
i ∈ Vi for

bidder i, and valuations v−i ∈ V−i for other players,

vi(fi(vi, v−i))− pi(vi, v−i) g vi(fi(v
′
i, v−i))− pi(v

′
i, v−i).

Intuitively, this means truthfully-reporting is always i’s best

strategy.10 An auction rule gives an ³-approximation to the

optimal welfare (for the valuation classes V1, . . . ,Vn) if for

every valuation profile (v1, . . . , vn) ∈ V1 × · · · × Vn:

n∑

i=1

vi(fi(v1, . . . , vn)) g ³ · max
(S1,...,Sn)

∈Σ

n∑

i=1

vi(Si).

2) Communication complexity and protocols: We study

the communication complexity of implementing auction rules

(which, we recall, calculate both the allocation and the pay-

ments charged). Technically, we study the n-player determinis-

tic number-in-hand blackboard communication model, where

the input known to each player i is her valuation function

vi ∈ Vi and all the messages sent are visible to all the bidders.

The communication cost of a protocol is the maximum number

of bits that are written to the blackboard in the worst case.

The communication complexity of some problem, denoted

with cc(·), is the minimum communication cost of a protocol

that computes it. For clarity, we phrase our results (e.g.,) as

“for any truthful auction rule A for valuations V achieving an

³-approximation to the optimal welfare, the communication

complexity of A is at least C”. It is well known and easy

to see that the communication complexity of a protocol is at

least the log of the number of transcripts; see e.g. [KN97].

Our lower bounds will be based on this fact.

In our main results, we discuss three-player protocols for

three-bidder auctions. We refer to these three bidders as Alice,

Bob, and Charlie, and we denote i ∈ {A,B,C} for shorthand

(so that, for example, these bidders’ valuation functions are

vA, vB , vC).

3) Valuation classes: As mentioned above, different com-

binatorial auction problems are defined by different classes of

bidder valuations; typically, one studies valuations with some

canonical property.11 Our main result concerns the following

two classes.

Definition II.1 (Single-minded valuations). A valuation func-

tion v : 2[m] → R is single-minded if there exists a weight

10Note that, following most of the algorithmic mechanism design litera-
ture, we consider a mechanism truthful so long as the underlying auction rule
is truthful, i.e., our definition is independent of the communication protocol
used to implement the mechanism. In technical jargon, this means we we
study implementations of truthful auction rules in ex-post equilibria, i.e., ex-

post incentive-compatible auction rules, as opposed to the stronger notion
of dominant-strategy incentive compatibility (where no bidder would regret
acting according the true value even if other bidders act in a way which is
inconsistent with any valuation function, see e.g. [RST+21, DRV22]). Note
that working with a weaker notion of truthfulness makes our lower bounds
only stronger.

11Formally, specifying a class of valuation functions for use in a com-
munication protocol requires specifying a number of items, and a range /
precision of possible numerical values. Formally, one can say that a class of
valuations uses precision k if for all v in the class and all bundles S, we
have v(S) ∈ {0} ∪ {x/2k | x ∈ [22k]}. Following most of the algorithmic
mechanism design literature, we leave k implicit in all our communication
complexity bounds. Formally, this means that we always hide factors of
poly(k) in the communication costs of the protocols we construct, and that all
of our lower bounds / impossibility theorems hold for some k = poly(m,n).
For more discussion of the issue of representation of numbers, see [Dob16b,
Appendix A.4.1] and our Section D.
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w ∈ Rg0 and a set T ¦ [m] such that v(S) = w · I[S § T ]
for all S ∈ 2[m], where I[·] denotes the indicator function.

We denote the family of all single-minded valuation functions

over m items by SingleM = SingleMm.

Definition II.2 (Subadditive valuations). A valuation function

v : 2[m] → R is subadditive if, for all bundles S,T ¦ [m], we

have v(S ∪ T ) f v(S) + v(T ). We denote the family of all

subadditive valuation functions over m items by SubAdd =
SubAddm.

SingleM is in some sense the most basic class of valuations

with economic complementarities—the bidder gets positive

utility w if and only if she gets her desired bundle T . On

the other hand, SubAdd is often considered the most general

canonical class of valuations without complementarities—

when two bundles are combined, the bidder’s utility can

never increase beyond the sum of her value on the individual

bundles.

4) Black-box welfare approximation reduction with

O(logm) single minded bidders: In our paper, we focus on

showing a separation between the power of communication-

efficient truthful auctions and their non-truthful counterparts

for the class SubAdd ∪ SingleM. However, the known

non-truthful protocols are defined only for subadditive

bidders. Fortunately, we can easily extend the existent

protocols to take care of single-minded bidders without loss

in the approximation guarantee, via the following black-box

reduction:

Lemma II.3. Let P be a protocol that achieves an approx-

imation ³ for n bidders with valuations in the class C with

poly(m) bits. Then, there exists a protocol P ′ that achieves

an approximation ³ for n bidders with valuations in the class

C ∪ SingleM with poly(m, 2n) bits.

Briefly, the protocol P ′ proceeds by asking each bidder

whether they are single-minded, and running protocol P
separately for each of the f 2n sub-problem assuming that a

given subset of single-minded bidders are allocated. We defer

the full proof of Lemma II.3 to Section A.

5) Menus: Following the seminal work of [Dob16b], our

approach to studying the communication complexity of truth-

ful auctions centers around the notion of bidders’ menus.

Given a truthful mechanism A, bidder i’s menu given the

valuations v−i of the other players specifies a price pS for

every subset of items S ¦ [m]. Thus, if player i wins S, then

she pays pS ; the fact that such a pS is well-defined follows

immediately from truthfulness, via Proposition II.5 below. We

use the following notation for menus:

Definition II.4 (Menus). For any truthful auction rule A =
(f , p1, . . . , pn), any player i, and any valuation profile v−i ∈
V−i, define the menu of player i as the function MenuAi (v−i) :
2[m] → R such that, for all bundles S ¦ [m] such that there

exists a vi with fi(vi, v−i) = S, we have MenuAi (v−i)(S) =
pi(vi, v−i). We often write Menu(v−i) where the mechanism

and the player presented with the menu are clear from context.

Note that the menu is well-defined only if for every player i,
and for every valuation profile v−i ∈ V−i of the other players,

the price a bidder is charged can depend only on the bundle

S that player i receives, and cannot vary with valuation vi (so

long as player i still receives bundle S). Fortunately, this fact

follows immediately from truthfulness, goes back to at least

[Ham79], and (following [Gue81]) is known as the taxation

principle:

Proposition II.5 (Taxation Principle). Consider a truthful

auction rule A = (f , p1, . . . , pn) : V1 × · · · × Vn → Σ× R
n.

For every bidder i ∈ [n], every valuation profile v−i ∈ V−i,

and every bundle S ¦ [m], if fi(vi, v−i) = fi(v
′
i, v−i) = S

for two valuations vi, v
′
i ∈ Vi, then pi(vi, v−i) = pi(v

′
i, v−i).

Note also that truthfulness directly implies that for all

(vi, v−i), the bundle of items i receives is (one of) the bundles

S that maximizes vi(S)−M(S), where M = Menui(v−i).
A property of menus that will be useful is that we can as-

sume that they are be non-decreasing and normalized without

loss of generality, just like valuation functions.

Proposition II.6 (Menu monotonicity [Dob16b]). Let A =
(f , p1, . . . , pn) : V1×· · ·×Vn → Σ×R

n be any deterministic

truthful auction rule. There exists some other mechanism

A′ = (f , p′1, . . . , p
′
n) : V1×· · ·×Vn → Σ×R

n with the same

allocation function f , such that for every i ∈ [n], v−i ∈ V−i,

the menu MenuA
′

i (v−i) for bidder i is non-decreasing, i.e.,

MenuA
′

i (v−i)(S) f MenuA
′

i (v−i)(T ) for S ¦ T , and nor-

malized, i.e., MenuA
′

i (v−i)(∅) = 0.

6) Lower Bounds through Menus: [Dob16b] gives several

techniques for lower bounding the communication complexity

of truthful auctions; all of these techniques hinge around

the concept of the menu. To get some intuition as to how

this works, observe that one way to implement a truthful

combinatorial auction is to select a player i, run an (n − 1)-
player communication protocol among the bidders other than

i to determine i’s menu M = Menui(v−i), then query

i to determine i’s highest-utility bundle according to M .12

Informally, [Dob16b] shows that something quite special

happens for truthful auctions (in sufficiently rich domains),

namely, truthful auctions can do essentially no better in terms

of communication-efficiency than this approach of explicitly

learning bidders’ menus.

The above intuition is actually formalized multiple different

ways in [Dob16b], with a large emphasis on the Taxation

Complexity, which counts (the log of) the number of distinct

menus. We recall this technique (and the reduction to simulta-

neous protocols exploited in [AKSW20]) when we need them

in Section V. To prove our main result, we use the following

result from [Dob16b], which gives an even stronger lower

bound technique than Taxation Complexity:

Theorem II.7 (Follows from [Dob16b]). Consider any de-

terministic, truthful auction rule A for m items and n g 2

12Note that this intuitive sketch ignores potentially-complex issues of tie-
breaking; these considerations are handled in full detail in [Dob16b].
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bidders with valuation functions in V . Suppose V § SubAdd.

Let cc(A) be the communication complexity of A. Then, for

any player i ∈ [n], there exists an (n− 1)-player protocol P
with poly(cc(A),m,n) bits of communication that computes

(the index of) the menu MenuAi (v−i).

Theorem II.7 is a direct corollary of [Dob16b]’s Theorem

3.1, Theorem 2.3, and Proposition F.1. See the proof in

Section A.

III. BUILDING UP TO OUR MAIN RESULT

The main result of this paper is a lower bound on the

communication complexity of getting good welfare in a three-

bidder truthful auctions. In particular, we will show that

for the class of bidder valuations SubAdd ∪ SingleM, any

truthful auction for three bidders which gets
√
3−1
2 ≈ 0.366

approximation requires exp(m) communication.

In this section, we give exposition into the proof of this

result via a simplified, but ultimately faulty, version of the

proof which conveys much of the ideas (and how our real

proof overcomes the faults of this expository version).

A. Failed Proof Attempt

To give exposition into our proof, we first give a simpler

“failed attempt”. In this “failed attempt”, there will be a gap in

the proof (as we explain when the gap appears); we will also

gloss over techniques from previous works and claim without

proof that a certain constructions exist. In our actual proof, we

will correct the gap, and also provide full details and proofs

for all constructions.

1) (Failed) proof outline: Let A be a truthful auctions

for SubAdd ∪ SingleM with three-bidder and m items. By

Theorem II.7, the communication complexity of A is at most

(a polynomial function of) the communication complexity of

determining a bidder’s menu. Thus, our goal is to show that if

A gets a good approximation to the optimal welfare, then the

communication complexity of determining a bidder’s menu is

exp(m).
Our approach is inspired by the classical rectangle argument

in communication complexity. This argument proves lower

bounds on communication complexity by constructing a large

set of inputs (the “fooling set”), considering any pair of inputs

in the fooling set, and showing that every protocol computing a

function f must use a different transcript for those two inputs.

However, in order to make our argument work, it turns out

we need to extend this approach to consider 4-tuples of inputs

rather than pairs.

After constructing the valuations used in our hard instance,

we lower bound the communication complexity of Bob and

Charlie calculating Alice’s menu. Our (failed) proof outline

for this proceeds in two steps.

• First, we show that, if a communication-efficient and

truthful auction rule induces the same menu on a 4-tuple

of “sufficiently different” inputs, then the auction cannot

get a good approximation to the optimal welfare. If such

a 4-tuple uses the same menu, we call this a “bad” 4-

tuple; for a precise definition, see below. This step uses

direct arguments about our hard instance, and about the

welfare obtainable under different menus and different

possible valuations of Alice.

• Second, we consider any protocol for calculating Alice’s

menu which avoids all bad 4-tuples, and show that all

such protocols must have high communication. This step

is a direct, simple lemma in communication complexity.

Combining these two steps finishes the (failed) proof.
2) Description of the Class of Valuations: We begin by

defining the class of subadditive valuation functions that our

simplified construction uses. This construction is based on

exponentially many overlapping 4-cell partitions of all of the

items; say these partitions are denoted Gi,1∪Gi,2∪Gi,3∪Gi,4 =
[m] for many different values of i, say i ∈ [K] for some

large K. The key property of the construction is that, for each

way to select one cell of each partition, there is a valuation

in this class who, for each partition i simultaneously, wants

only elements of the selected cell of partition i. Intuitively,

[EFN+19] construct valuations like this in order to hide an

allocation with good welfare by reducing it to an equality

problem—high welfare can be achieved among two bidders

with valuations in this class if and only if there is some

partition on which the bidders want different items.

Formally, for some family of partitions{
{Gi,1,Gi,2,Gi,3,Gi,4}

}
i,j

, we define a class of valuations V
such that there exists a constant ℓ such that for every pair of

i ∈ [K] and j ∈ [4], there exists a valuation v ∈ V such that

v(Gi,j) = ℓ−1 and v([m]\Gi,j) = 1. We use strings b ∈ [4]K

to denote ways to pick a cell of each partition, where b[i]
denotes the ith character in the string and b[i] = j ∈ [4]
denotes selecting cell Gi,j from partition i.

Formally, the class of valuation functions we consider is

given by the following:

Proposition III.1. Fix any constant ℓ. For all sufficiently large

m, and for some K = Ω(exp(m)), there exists:

1) a family of 4-cell partitions {Gi,j | i ∈ [K], j ∈ [4]}
of [m] (i.e., for all i, we have

⋃
j∈[4] Gi,j = [m] and

Gi,j ∩ Gi,j′ for all j ̸= j′), and

2) a family of subadditive valuation functions vb : 2[m] →
Rg0 indexed by strings b ∈ [4]K , such that for all b ∈
[4]K and all i ∈ [K]:

a) vb([m]) = ℓ,
b) vb(Gi,b[i]) = ℓ− 1, and

c) vb([m] \ Gi,b[i]) = 1.

We name this class V4-cell.

For an illustration of the construction, see Figure 1. To

prove this proposition, one can use the main construction of

[EFN+19], along with an argument using the probabilistic

method. We will later specify and formally prove an even

stronger construction; for now, we assert this proposition

without proof.

[EFN+19] use a construction analogous to the valuations

in Proposition III.1 to lower bound the communication com-

plexity of maximizing welfare with two subadditive bidders.
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reflecting the (1/2)-approximation hardness result of

[EFN+19]. This argument is not actually correct, because

the communication-efficient protocol for A can actually

use information from Alice’s valuation to focus on the

specific partition Gi∗ .13 However, to illustrate the idea,

let us pretend that this is true for the remainder of the

proof, and that A gets welfare at most ℓ in this case.

On the other hand, consider the allocation that gives S
to Alice, gives Gi,3 to Bob, and gives Gi,4 to Charlie.

The welfare of this allocation is x + 2(ℓ − 1), and thus

the optimal welfare on this instance is at least this large.

Thus, the welfare approximation ratio in this case is at

most ℓ/
(
x+ 2(ℓ− 1)

)
.

Therefore, under our assumption that the menus for Alice with

respect to (vb1
, vb2

) and (vb3
, vb4

) are identical, the welfare

approximation ratio of A can be at most

max

{
x+ 2

2(ℓ− 1)
,

ℓ

x+ 2(ℓ− 1)

}
.

Taking x = (
√
3− 1)ℓ, the ratio above converges to

√
3−1
2 ≈

.366 as ℓ → ∞.14

4) “No bad 4-tuple” implies high communication: (Failed)

Proposition III.3 implies in particular that if the auction rule

has any bad 4-tuples, then the auction cannot get a good

approximation to the optimal welfare. We will show next

that for any protocol which avoids all bad 4-tuples, the

communication cost of the protocol must be high. For clarity

and generality, we state this part of the argument for general

communication problems.

Lemma III.4 (4-tuple rectangle argument). For a function

f : T × T → R, let S = {vb}b∈[4]K ¦ T be a set of distinct

inputs to f parameterized by a K-length string b ∈ [4]K .

Suppose that for every 4-tuple (b1,b2,b3,b4) ∈ S4 that dif-

fers on some index i ∈ [K] (i.e., {b1[i],b2[i],b3[i],b4[i]} =
{1, 2, 3, 4}), we have f(vb1 , vb2) ̸= f(vb3 , vb4). Then, the

communication complexity of f is at least

log2
(
4K/3K

)
= Ω(K).

Proof. Consider any communication protocol for f , and for

any inputs vB , vC ∈ T , let Ä(vB , vC) be the transcript

of the protocol on inputs vB , vC . Recall that, as in stan-

dard rectangle arguments, if f(vB , vC) ̸= f(v′B , v
′
C) then

Ä(vB , vC) ̸= Ä(v′B , v
′
C). Also, if Ä(vB , vC) = Ä(v′B , v

′
C) then

Ä(v′B , vC) = Ä(vB , v
′
C) = Ä(vB , vC).

13Put another way, Theorem III.2 directly implies the following: if a poly-
communication auction rule never allocates any items to Alice, then there must
exist some inputs where the auction rule gets welfare ℓ, while the optimal
welfare Bob and Charlie could get amongst themselves is at least 2(ℓ −
1). Completing this proof would require a stronger property: for any poly-
communication auction rule, there exists some case where the auction rule
gets welfare ℓ, but the optimal total welfare is in fact x+ 2(ℓ− 1).

14This specific value of x arises from assuming x = Äℓ for some Ä ∈
(0, 1), then making the two terms in the above maximum equal to each other
while ignoring lower-order factors. In more detail, assuming that Äℓ/(2ℓ) =
ℓ/(Äℓ+2ℓ) for Ä > 0 implies that Ä2+2Ä−2 = 0, and thus that Ä =

√
3−1.

Then, the above maximum goes to Ä/2 as ℓ → ∞.

To show our lower bound, we focus on the transcripts used

when both players have the same input in S . For any transcript

T of the protocol, let I(T ) ¦ S denote the (possibly empty)

set of all vb ∈ S such that the transcript given the input

(vb, vb) is T .

We will now show that for all transcripts T , we have

|I(T )| f 3K . For that, we claim that for every transcript T and

for every i ∈ [K], we have {b[i]
∣∣ b ∈ I(T )} ̸= {1, 2, 3, 4}.

To see this, assume for contradiction that there is such a

transcript T and an index i such that Ä(vbj
, vbj

) = T for

each j = 1, . . . , 4. Then, by a standard rectangle argument, we

have T = Ä(vb1
, vb2

) = Ä(vb3
, vb4

) as well. However, by the

assumption of the lemma, we have f(vb1
, vb2

) ̸= f(vb3
, vb4

),
which is a contradiction. Thus, since the string corresponding

to elements in I(T ) can take at most 3 values on each index

i, we know that |I(T )| f 3K .

Now, this implies that any protocol correctly computing f
requires at least |S|/3K = 4K/3K distinct transcripts in total.

Thus, the communication complexity of the protocol has to be

Ω(K).

If the failed Proposition III.3 had actually been true, then

combining it with Lemma III.4 would immediately imply

that the communication complexity of the two-player function

f = MenuA(·, ·) is Ω(K) = exp(m). Furthermore, by the

techniques of [Dob16b] recalled in our Theorem II.7, we could

then conclude that the auction rule itself has communication

complexity at least exp(m).

B. Correcting the gap in this proof

We now briefly discuss the main idea we use below to

correct the gap in the failed proof of Proposition III.3. For

an argument like the above to work, we need to have a

construction such that it will not only be hard (communication-

wise) to decide whether we want to allocate to Alice or

not, but even conditional on our decision regarding Alice, it

will be communication-hard for us to find a “good enough”

partition of the items of Bob and Charlie. For that, we create

a two-layered construction, which we describe in detail in

Section IV.15 This two-layered construction is more involved

that the one discussed in Section III-A2 and Theorem III.2,

but its proof is a straightforward extension of the techniques

used, i.e., those of [EFN+19].

After making this adjustment, the (false) Proposition III.3

remains nearly identical in how we argue about the welfare

achieved by the auction with a “bad 4-tuple”. However, the

definition of a “bad 4-tuple” becomes considerably more

involved. For instance, a “bad 4-tuple” is defined by a con-

dition both about protocols for calculating the menu, and

about protocols for calculating the auction rule. This technical

fact precludes using a clean and self-contained “generalized

15Note that we do not overrule that it is possible to prove Theorem IV.1
using the construction specified in this failed attempt, i.e., we do not know
whether the exists a poly(m)-communication truthful auction for the classes
of valuations considered above.
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rectangle argument” such as Lemma III.4; still, our transcript-

counting arguments follow much of the intuition provided by

Lemma III.4. For the full argument, see Section IV.

IV. MAIN RESULT: A SEPARATION FOR THREE BIDDERS

We now state and prove the main results of our paper: a sep-

aration for three-bidder truthful auction vs. non-truthful proto-

cols. First, we state the lower bound for poly-communication

truthful auctions with bidders in SubAdd ∪ SingleM:

Theorem IV.1. Every deterministic truthful mechanism A for

three bidders with valuations in SubAddm ∪ SingleMm that

guarantees a (
√
3−1
2 + 12

logm )-approximation to the optimal

social welfare requires exp
(
Ω(

√
m

logm )
)

bits of communication.

We prove this lower bound below. To establish a sepa-

ration, we must also give an upper bound for non-truthful

protocols. We prove this next, i.e., we construct a poly(m)-
communication protocol getting a good welfare approxima-

tion. This protocol is a simple extension of a result of [Fei09]:

Theorem IV.2 ([Fei09]). For any number of bidders n and

items m, there is a deterministic, poly(m,n)-communication

(non-truthful) protocol that guarantees a 1
2 -approximation to

the optimal social welfare for bidders with valuations in

SubAddm.

Applying the reduction in Lemma II.3 to the communication

efficient protocol in Theorem IV.2 gives the following:

Corollary IV.3. For any number of bidders n = O(logm),
there is a deterministic poly(m)-communication (non-truthful)

protocol that guarantees a 1
2 -approximation to the optimal

social welfare for bidders with valuations in SubAddm ∪
SingleMm.

Together, Theorem IV.1 and Corollary IV.3 give the main

result of our paper: truthful mechanisms are provably less pow-

erful than non-truthful protocols for bidders with valuations in

SubAdd∪SingleM. Observe that the upper bound, and thus the

separation, holds for every constant n g 3, and indeed even

for every number of bidders that is logarithmic in the number

of items.16

We are now ready to prove Theorem IV.1; this proof

occupies the remainder of Section IV.

A. Proof Outline

As discussed in Section III, our proof proceeds as follows.

To begin, we construct a class of subadditive valuations, gen-

eralizing [EFN+19] and our construction in Proposition III.1.

Then, the proof of our communication lower bound proceeds

in two major steps. First, we show that getting a good welfare

16Observe that a trivial second-price auction on the grand bundle among
the three bidders in SubAdd ∪ SingleM that gives at least 1

3
of the optimal

welfare, is truthful and communication-efficient, whilst by Theorem IV.1, no
truthful and communication efficient has approximation better than ≈ 0.366.
Hence, there remains a small gap in understanding the achievable approxima-
tion ratio for truthful mechanisms in this class.

approximation implies that the auction must always avoid

situations we term “bad 4-tuples” (see below for a definition).

Second, we show that any protocol which always avoids bad

4-tuples requires high communication.

B. Description of the class of valuations

Our construction is a significant generalization the construc-

tion of [EFN+19]. Our goal is to have a set of subadditive

valuations of two bidders, whom we name Bob and Charlie,

and a collection of subsets G = {G1, . . . ,Gk} ¦ 2[m] for a

large enough k such that for each i ∈ [k]:

(1) For every i ∈ [k], we can find valuations of Bob and

Charlie that jointly have high value for Gi and low value

for Gi. Alternatively, we can find valuations of Bob and

Charlie that have low value for Gi and high value for Gi.

(2) For every i ∈ [k] and S ∈ {Gi,Gi}, even if we

know that Bob and Charlie have high joint value for

S, dividing the items in S among Bob and Charlie in

an approximately optimal way takes exponentially-many

bits of communication.

The construction in Proposition III.1 meets condition (1).17

For condition (2) to hold, we build the following two-layered

collection of subsets:

Definition IV.4. A k-width-family F =

(G, {H(t)
i }t∈{0,1},i∈[k]) of [m] consists of 2k + 1

collections G,H(0)
1 , . . . ,H(0)

k , H(1)
1 , . . . ,H(1)

k ¦ 2[m] of

size k each, where we denote G = {G1, . . . ,Gk} and

H(t)
i = {H(t)

i,1 , . . . ,H
(t)
i,k} for each t ∈ {0, 1}, i ∈ [k] such that

for all i, j ∈ [k], H
(0)
i,j ¦ Gi and H

(1)
i,j ¦ Gi.

For every k-width-family F , a vector b ∈ {0, 1}k, and a

k × k binary matrix C ∈ {0, 1}k×k, denote with F [b,C] the

collection of k2 subsets {Si,j}i,j∈[k], where for each i, j ∈ [k],

Si,j =





Gi ∪H
(0)
i,j b[i] = 0,C[i][j] = 0,

Gi ∪ (Gi \H(0)
i,j ) b[i] = 0,C[i][j] = 1,

Gi ∪H
(1)
i,j b[i] = 1,C[i][j] = 0,

Gi ∪ (Gi \H(1)
i,j ) b[i] = 1,C[i][j] = 1.

Recall the following property for a collection (as defined

in [EFN+19]):

Definition IV.5. A collection S of subsets in [m] is called

ℓ-sparse if for all T1,T2, . . . ,Tℓ−1 ∈ S ,
⋃ℓ−1

j=1 Tj ̸= [m].

In words, an ℓ-sparse collection requires at least ℓ elements

to cover all of [m]. We will now use ℓ-sparseness to define an-

other property (mildly generalizing the corresponding property

in [EFN+19]):

17In more detail, Proposition III.1 constructs a large set of 4-cell partitions
{{Gi,1,Gi,2,Gi,3,Gi,4} | i ∈ [k]}, and a set of valuations of Bob and
Charlie, such that the set family {Gi,1 ∪Gi,2 | i ∈ [k]} meets condition (1)
above. Our construction extends the one in Proposition III.1 by replacing the
index j ∈ [4] with another family of sets {Hj | j ∈ [k]} in order to meet
condition (2).
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Definition IV.6. A k-width-family is ℓ-independent if for all

b ∈ {0, 1}k,C ∈ {0, 1}k×k, the collection F [b,C] is ℓ-sparse.

For exposition, we write an example of a 2-independent 2-

width-family in Section C. By using the probabilistic method,

we show that there exists such a family for large enough values

of k and ℓ:

Lemma IV.7. For sufficiently large m, there exists an ℓ-
independent k-width-family, where ℓ = 1

4 logm and k =

exp
(

2
√
m

logm

)
.

The proof of Lemma IV.7 is in Section A; the proof uses

a (somewhat involved, but standard) application of the proba-

bilistic method. In accordance with [EFN+19], we translate ℓ-
sparse collections into modified set-cover valuations, denoted

as vℓS(·). This translation is exactly as in [EFN+19], but

we include it for completeness. Given an ℓ-sparse collection

S = {S1, . . . ,Sd}, for every X ¦ M :

ÃS(X)

=

{
min

{
|Y |

∣∣∣ Y ¦ [d], X ¦ ⋃
i∈Y Si

}
if X ¦ ⋃

i∈[d] Si

max{ℓ, d} otherwise.

In words, ÃS(X) is the minimal number of subsets of S that

cover X , if it exists, and otherwise it is a “large” number. We

now use ÃS to define a valuation function vℓS . For every subset

of items X ¦ M , if ϕS(X) < ℓ
2 , set vℓS(X) = ÃS(X) and

vℓS(X) = ℓ−ÃS(X). For every subset that remains undefined,

let vℓS(X) = ℓ
2 . In principle, it is possible that vℓS is not well

defined. However, [EFN+19] shows that:

Lemma IV.8 ([EFN+19]). For any ℓ-sparse collection S and

vℓS(·):
1) vℓS(·) is well defined.

2) vℓS(·) is monotone, normalized and subadditive.

3) For every S ¦ [m], vℓS(S) + vℓS(S) = ℓ.
4) For every S ∈ S , vℓS(S) = 1 and vℓS(S) = ℓ− 1.

We note one counter-intuitive aspect of the valuations

defined by S: the valuation vℓS has “low” value for the bundles

S that are in the collection S .

We are now ready to define the class of valuations for which

we show hardness. Given an ℓ-independent k-width-family

F = (G, {H(t)
i }t∈{0,1},i∈[k]) and denote G = {G1, . . . ,Gk}

and H(t)
i = {H(t)

i,1 , . . . ,H
(t)
i,k} for each t ∈ {0, 1}, i ∈ [k], we

define the following sub-class of subadditive valuations:

SubAdd∗ =
{
vℓF [b,C](·) | b ∈ {0, 1}k,C ∈ {0, 1}k×k

}

¦ SubAddm.

The following claim lists several properties of the valuation

functions in SubAdd∗, which we will use in Section IV-C:

Claim IV.9. Fix a vector b ∈ {0, 1}k and a matrix C ∈
{0, 1}k×k, and let v(·) be the valuation parameterized by the

collection F [b,C]. Then, for every pair of indices i, j ∈ [k]:

1) If b[i] = 0, then v(Gi) = 1.

2) If b[i] = 0 and C[i][j] = 0, then v(Gi \H(0)
i,j ) = ℓ− 1.

3) If b[i] = 0 and C[i][j] = 1, then v(H
(0)
i,j ) = ℓ− 1.

4) If b[i] = 1 and C[i][j] = 0, then v(Gi \H(1)
i,j ) = ℓ− 1.

5) If b[i] = 1 and C[i][j] = 1, then v(H
(1)
i,j ) = ℓ− 1.

We skip the proof of Claim IV.9, as it directly follows from

the construction and Lemma IV.8.

The class of single-minded valuations SingleM∗ ¦
SingleMm satisfies that each valuation is parameterized by an

index i ∈ [k] and ¶ ∈ {0, 1} such that:

∀X ¦ M , vi,¶(X) =

{
(
√
3− 1)ℓ+ ¶ Gi ¦ X,

0 otherwise.
(1)

C. Getting good welfare implies “no bad 4-tuple”

Now, fix a truthful communication-efficient three-player

mechanism A that gives an approximation strictly better than√
3−1
2 + 3

ℓ when all the bidders’ valuation classes are equal to

SubAddm ∪ SingleMm, where ℓ = 1
4 logm. For convenience,

we name the bidders Alice, Bob and Charlie.

The auction rule A defines two other communication prob-

lems which we reason about and use to define a notion of “bad

4-tuples”. These two communication problems are to calculate

the social welfare of A and to calculate the menu in A. Let

SW(vA, vB , vC) be the communication problem between all

three bidders that computes the social welfare that A gets with

valuations (vA, vB , vC), and denote the transcript function

of its most efficient protocol by ÄSW(vA, vB , vC). Note that

cc(SW) f cc(A) + poly(m).18 Also, let P(vB , vC) be the

communication problem between Bob and Charlie that finds

the menu MenuA(vB , vC) for Alice defined by the auction A,

and denote the transcript function of its most efficient protocol

by ÄP(vB , vC).
We now define 4-bad tuples and show that they cannot exist

when A gets a good approximation to the optimal welfare.

Proposition IV.10. Let v(1), v(2), v(3), v(4) be valuations in

SubAdd∗, parameterized by the vectors b
(1), b(2), b(3), b(4) ∈

{0, 1}k and the matrices C
(1),C(2),C(3),C(4) ∈ {0, 1}k×k,

respectively. We say that {(b(j),C(j))}j∈[4] is a bad 4-tuple

if there exist i∗, j∗1 , j
∗
2 ∈ [k] such that the five following

conditions hold simultaneously:

1) b
(1)[i∗] = b

(2)[i∗] = 0 and b
(3)[i∗] = b

(4)[i∗] = 1.

2) C
(1)[i∗][j∗1 ] = 0 and C

(2)[i∗][j∗1 ] = 1.

3) C
(3)[i∗][j∗2 ] = 0 and C

(4)[i∗][j∗2 ] = 1.

4) ÄP(v(1), v(1)) = ÄP(v(2), v(2)) = ÄP(v(3), v(3)) =
ÄP(v(4), v(4)), i.e. the transcript of the protocol that

computes the menu is identical for all these pairs.

5) ÄSW(vi∗,0, v
(3),x(3)) = ÄSW(vi∗,0, v

(4),x(4)), i.e. the

transcript of the protocol that computes the social welfare

of A is identical for both of these valuation profiles.19

18This follows because one can always calculate SW by simply calcu-
lating A, then having each bidder send their value for the set of items they
receive (and we assume that bidders’ valuations use precision poly(m), as
discussed in Section II).

19We remind that vi∗,0 is the single-minded valuation defined in Equa-
tion 1.
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Then, there cannot exist any bad 4-tuples (i.e., for all such

{(b(j),C(j))}j∈[4], there cannot exist i∗, j∗1 , j
∗
2 ∈ [k] such that

all five above conditions hold).

Informally, this means that for every “sufficiently different”

elements of the valuation family SubAdd∗, their transcript

either in the protocol of menu computation of A or the

protocol that computes the welfare of A should differ.

Proof of Proposition IV.10. We will show that if all conditions

hold simultaneously for some indices i∗, j∗1 , j
∗
2 , then the ap-

proximation ratio must be strictly smaller than
√
3−1
2 + 3

ℓ ,

which leads to a contradiction. We do that by showing

that in particular, the mechanism outputs a bad approxi-

mation for one of the valuation profiles (vi∗,1, v
(1), v(2))

or (vi∗,0, v
(3), v(4)). Note that by condition 4 and by the

rectangle argument, ÄP(v(1), v(2)) = ÄP(v(3), v(4)), so in

particular the menus presented to Alice given the valuations

(v(1), v(2)) and (v(3), v(4)) are identical. Denote this menu

with MA = MenuAA(v
(1), v(2)) = MenuAA(v

(3), v(4)) and

recall that MA(S) is the price in the menu for any bundle

S ¦ [m]. Note that by Proposition II.6, we can assume that

all prices are non-negative. We complete the proof by case

analysis.

Note that if MA(Gi∗) f (
√
3−1)ℓ, then given the valuation

profile (vi∗,1, v
(1), v(2)), Alice wins Gi∗ because all prices

are non-negative, so this is the only valuable bundle for her.

However, since both valuations v(1), v(2) are parameterized

by b
(1), b(2) such that b

(1)[i∗] = b
(2)[i∗], by Property 1 in

Claim IV.9, we have that v(1)(Gi∗) = v(2)(Gi∗) = 1. As

a result, the total welfare of the allocation of A is at most

((
√
3− 1)ℓ+ 1) + 2. However, the optimal welfare is at least

2(ℓ − 1), obtained by giving Gi∗ \H(0)
i∗,j∗1

to Bob and H
(0)
i∗,j∗1

to Charlie (according to Property 2 and 3 of Claim IV.9).

However, if MA(Gi∗) > (
√
3 − 1)ℓ, we claim it still

implies a failure on another valuation profile (vi∗,0, v
(3), v(4)).

For that, we analyze the output of the mechanism A on

(vi∗,0, v
(3), v(3)).

Since the price of Gi∗ that Bob and Charlie present to

Alice is is MA(Gi∗) given (v(3), v(3)), she does not win Gi∗ ,

resulting a welfare of zero. In addition, since Bob and Charlie’s

valuations are identical, the total welfare from them is at most

ℓ by Condition 3 of Lemma IV.8. Therefore, the social welfare

that A obtains on (vi∗,0, v
(3), v(3)) is at most ℓ. Recall that

by assumption, (vi∗,0, v
(3), v(3)) and (vi∗,0, v

(4), v(4)) have

the same transcript in the protocol that computes the social

welfare. By the rectangle argument, (vi∗,0, v
(3), v(4)) must also

have the same transcript, and thus the welfare of the allocation

from A in this case is also at most ℓ. However, the optimal

welfare from (vi∗,0, v
(3), v(4)) is at least (

√
3−1)ℓ+2(ℓ−1),

obtained by giving Gi∗ to Alice, Gi∗ \ H
(1)
i∗,j∗2

to Bob, and

H
(1)
i∗,j∗2

to Charlie.

Thus, the best possible approximation ratio of the mecha-

nism A is at most:

max

{
((
√
3− 1)ℓ+ 1) + 2

2(ℓ− 1)
,

ℓ

(
√
3− 1)ℓ+ 2(ℓ− 1)

}

<

√
3− 1

2
+

3

ℓ
. (for ℓ g 3)

By that, we get a contradiction, which completes the proof.

D. “No bad 4-tuple” implies high communication

We are now ready to finalize the proof of Theorem IV.1.

Note that by Proposition IV.10, a communication-efficient

truthful mechanism with approximation ratio no worse than√
3−1
2 + 3

ℓ cannot have a “bad 4-tuple”. We will now show

eΩ(
√

m

log m
) bits of communication is necessary for the mecha-

nism A to avoid such “bad 4-tuples”.

For any fixed transcript T for P , let C(T ) be the set of pairs

(b,C) ∈ {0, 1}k × {0, 1}k×k such that P uses transcript T
on (vb,C , vb,C), i.e., C(T ) = {(b,C) : ÄP(vb,C , vb,C) = T}.

For any index i ∈ [k] and bit z ∈ {0, 1}, we further define for

each transcript the following subsets of length-k bit-vectors:

Ci,z(T ) = {C[i] : (b,C) ∈ C(T ), b[i] = z} ¦ {0, 1}k.

In other words, for every transcript T of the the menu

computation protocol P , the subset Ci,z(T ) contains for every

(b,C) ∈ C(T ), the i’th rows of C only for cases in which

b[i] = z. Note that Ci,z(T ) may be empty.

We now claim that for every transcript T of the menu

computation protocol, and for every index i, it holds that

|Ci,0(T )| f 1 or |Ci,1(T )| f 2cc(SW). The reason for it is

that if the converse holds, i.e. there exists an index i∗ such

that both |Ci∗,0(T )| > 1 and |Ci∗,1(T )| > 2cc(SW), then there

is a bad 4-tuple.20

Note that |Ci,0(T )| f 1 or |Ci,1(T )| f 2cc(SW) implies

that:

|Ci,0(T )|+ |Ci,1(T )| f 2k + 2cc(SW). (2)

The explanation for it is by a simple case analysis. If

|Ci,0(T )| f 1, then:

|Ci,0(T )|+ |Ci,1(T )| f 1 + 2k f 2cc(SW) + 2k.

If |Ci,1(T )| f 2cc(SW), then similarly:

|Ci,0(T )|+ |Ci,1(T )| f 2k + 2cc(SW).

By definition and by plugging in Equation 2, we have that:

|C(T )| f
∏

i∈[k]

(|Ci,0(T )|+|Ci,1(T )|) f (2k+2cc(SW))k. (3)

20To see why, observe that by the pigeonhole principle, if both
|Ci∗,0(T )| and |Ci∗,1(T )| are greater than 1, then there exist

(b(1),C(1)), (b(2),C(2)), (b(3),C(3)), (b(4),C(4)) that satisfy Property
1, 2, 3, and 4 of Proposition IV.10 for this i∗ and for some j∗1 , j

∗

2 , since they
all share transcript T . Furthermore, the fact that |Ci∗,1(T )| is greater than the
number of transcripts for the protocol that computes the social welfare, implies
that there are two vectors in Ci∗,1(T ) that also share the same transcript for
the protocol SW .
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Denote with T the subset of transcripts in the menu protocol,

i.e. T = {Ä(vB , vC) : (vB , vC) ∈ SubAdd∗)}. Observe that:

2k+k2

=
∑

T∈T
C(T )

(the total number of pairs (b,C) is 2k+k2

)

f |T |max
T∈T

C(T )

f 2cc(P) · (2k + 2cc(SW))k. (by Equation 3)

Therefore, we have:

2cc(P) g 2k+k2

(2k + 2cc(SW))k

=

(
21+k

2k + 2cc(SW)

)k

=

(
2

1 + 2cc(SW)−k

)k

. (4)

To conclude the proof, it suffices to show that 2
1+2cc(SW)−k >

B for some constant B > 1. We can show this as follows.

Consider we use an ℓ-independent and k-width family with

k = e
2
√

m

log m , ℓ = 1
4 logm, which is guaranteed to exist by

Lemma IV.7. Let d = cc(SW)− cc(A). We remind that d is

at most polynomial in m. Observe that if cc(A) g k− d− 1,

then cc(A) = exp(Ω( 2
√
m

logm )), and we are done. Thus, we

can assume that cc(A) < k − d − 1, which implies that

cc(SW) f k− 1. Therefore, a simple computation gives that:

2

1 + 2cc(SW)−k
g 4

3
. (5)

Combining Equation 4 and Equation 5 gives that

cc(P) g k log 4
3 . Thus, applying Theorem II.7 gives

that poly(cc(A),m) g k log 4
3 , so cc(A) g eΩ(

√
m

log m
). This

completes the proof that cc(A) is exponentially high.

Remark IV.11. A discerning reader might have observed that

in the construction utilized in the proof of Theorem IV.1, Al-

ice’s valuation set comprises solely single-minded valuations,

whereas Bob’s and Charlie’s valuation sets consist exclusively

of subadditive valuations. Consequently, one might be inclined

to argue that we demonstrate an impossibility for the scenario

featuring one single-minded bidder and two subadditive bid-

ders, i.e., for the valuation class SingleM×SubAdd×SubAdd.

However, this assertion is not accurate, and the lower bound

and gap that we show are for the class (SingleM∪ SubAdd)3.

The rationale behind this lies in the taxation framework

which, as we restate in Theorem II.7, necessitates all bidders’

valuation classes to be “sufficiently rich” (in this case, the

classes must include subadditive valuations).

V. SUPPLEMENTAL RESULTS: LOWER BOUNDS ON

TWO-BIDDER MECHANISMS

In this section, we give an additional impossibility result

for two bidders which holds when bidders might be single-

minded. In fact, the results of this section served as stepping

stones towards our approach in Sections III and IV.

In contrast to the three-bidder hardness in Sections III

and IV that requires showing hardness of computing the

menu which was more involved, here we use the taxation

framework in a more direct way. We do not need to show

that computing the menu is hard.21 We prove our impossibility

result by showing that the number of menus in every truthful

auction has to be high. Interestingly, our bound can also

be achieved by arguing about the hardness of simultaneous

protocols. We believe that due to the relative simplicity of

the construction, this section serves as a way to learn about

the structure of mechanisms for bidders both with and without

complementarities. We opted to defer this discussion until this

section to keep Sections III and IV self-contained.

We show that for two bidders with valuations in XOS ∪
SingleM, any deterministic truthful mechanism that gives

an approximation asymptotically better than
√
5−1
2 requires

exponential communication.Formally:

Theorem V.1. Every deterministic truthful mechanism A for

two bidders with valuations in XOSm ∪ SingleMm that

guarantees a (
√
5−1
2 + 3m− 1

3 )-approximation to the optimal

social welfare requires exp(Ω(m
1
3 )) bits of communication.

Note that the deterministic protocol that 3
4 -approximates the

optimal welfare for XOS [Fei09, DNS10] can be generalized

to work for XOS ∪ SingleM by using Lemma II.3. Therefore,

Theorem V.7 indeed implies a separation.

The proof of Theorem V.7 is based on a direct taxation

argument, i.e. we show that the number of menus of every

truthful mechanism that gives a “good” approximation has to

be doubly exponential in m. To the best of our knowledge,

this is not easy to do with the lower bound construction of

[AKSW20].22 We begin by describing the class of valuations

that we use to show the separation (Section V-A). We then

prove Theorem V.7 in Section V-B. In Section V-C, we

explore the challenges associated with directly generalizing

Theorem V.7 to a scenario involving three bidders. By that,

we illustrate the challenges encountered when proving Theo-

rem IV.1.

En route, we explore the structure of payments of approxi-

mately optimal and truthful mechanisms, showing that as the

approximation guarantee of a mechanism goes to 1, then its

payments approach VCG payments. We state this formally in

Section B.

A. Description of the Class of Valuations

Recall the definition of XOS valuations:

Definition V.2 (XOS valuations). A valuation function v :
2[m] → R is XOS if there exists a collection of additive clauses

C ¦ R
m such that for all S ∈ 2[m], v(S) = maxc∈C

∑
i∈S ci.

We denote the family of all XOS valuation functions over m
items by XOS = XOSm.

21Actually, there are only two players, so computing the menu is a one
player problem which cannot possibly be hard.

22Theorem V.7 can also be proven by showing a lower bound on
simultaneous protocols, which is the same argument used in [AKSW20]. See
Remark V.9.
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An XOS valuation is binary if all its clauses are 0/1 valued,

i.e., for every c ∈ C, ci ∈ {0, 1}. Equivalently, binary XOS
valuations can be defined by a collection of subsets of [m]:

Definition V.3 (Binary XOS valuations). A valuation function

v : 2[m] → R is binary XOS if there exists a collection G ¦
2[m] such that v(S) = maxG∈G{|S ∩ G|} for all S ∈ 2[m].

Denote the family of all binary XOS valuation functions over

m items by BXOS = BXOSm ¢ XOSm.

To prove Theorem V.1, we will consider a special subset

of XOS valuations, which takes sets from a collection that

satisfies the average intersection property:

Definition V.4. A collection G ¦ 2[m] satisfies the b-average

intersection property for some b ∈ (0, 1) if every G ∈ G is of

size bm, and for every G1 ̸= G2 ∈ G, |G1 ∩G2| f 2b2m.

By the probabilistic method, such collections always exist

and can be made exponentially large. Formally:

Lemma V.5. For any b ∈ (0, 1), there exists a collection

G ¦ 2[m] of size exp(b2m/6) that satisfies the b-average

intersection property.

The proof of Lemma V.5 can be found in Section A4. Let

b = m− 1
3 and G be such a collection containing exp(m

1
3 /6)

subsets of [m] that satisfies m− 1
3 -average intersection prop-

erty. We define a special set of binary XOS valuations XOS∗ =
{vH : H ¦ G} ¦ BXOSm where

vH(S) = max
H∈H

|S ∩H| for all S ∈ 2[m].

Meanwhile, we consider the class of single-minded valua-

tions SingleM∗ ¦ SingleMm containing single-minded valu-

ations with constant value ³, i.e., SingleM∗ = {vT ,¶ : T ¦
[m], ¶ ∈ {0, 1}} where

vT ,¶(S) = (³+ ¶) · I[S § T ] for all S ∈ 2[m].

and ³ is a constant that we fix later.

Later, the valuation profiles {(vA, vB) : vA ∈
SingleM∗, vB ∈ XOS∗} will be used to show a lower bound

on the communication complexity.

B. Proof of Theorem V.1 via Taxation Complexity

In this section, we will present a proof of Theorem V.1

based on the Taxation Complexity framework [Dob16b].

Definition V.6 (Taxation complexity). Let A =
(f , p1, . . . , pn) : V1 × · · · × Vn → Σ × R

n be

any deterministic truthful mechanism. The taxation

complexity tax(A) of A is defined as the number of

bits needed to represent the index of a specific menu, i.e.,

tax(A) = maxi∈[n] log |{MenuAi (v−i) : v−i ∈ V−i}|.
Theorem V.7 ([Dob16b]). Let A = (f , p1, . . . , pn) : V1 ×
· · · × Vn → Σ×R

n be any deterministic truthful mechanism,

where all domains V1, . . . ,Vn contain XOSm. Then, cc(A) g
tax(A)

m − 1.

Observe that Theorem V.7 only requires that the domain

of valuations contains XOS, and it remains applicable for

mechanisms that are truthful for a larger domain, e.g., XOS∪
SingleM. Therefore, our first step in the proof Theorem V.1

will be to show a lower bound on the taxation complexity

of every mechanism that gives a “good” approximation. For-

mally:

Proposition V.8. Let V = XOSm ∪ SingleMm and A =
(f , pA, pB) : V × V → Σ × R

2 be any deterministic truthful

mechanism. If A obtains a (
√
5−1
2 +3m− 1

3 )-approximation to

the optimal welfare, then tax(A) g exp(m
1
3 /6).

Proof of Proposition V.8. Suppose that the mechanism A in-

deed obtains an approximation to the welfare of at least

(
√
5−1
2 + 3m− 1

3 ). Consider the case when Alice’s valuation

is vA ∈ SingleM∗ and Bob’s valuation vB ∈ XOS∗. We

want to show that for every distinct pair of valuations of

Bob vB , v
′
B ∈ XOS∗, the menus that are presented to Alice

must be different, i.e., MenuAA(vB) ̸= MenuAA(v
′
B). Then,

|{MenuAA(vB) : vB ∈ XOS∗}| = |XOS∗| = 2|G| and the

proposition follows. For simplicity, from now on we denote

MenuAA(·) with Menu(·).
For any distinct vB , v

′
B ∈ XOS∗, denote with H and with

H′ respectively the combinations that are associated with vB
and with v′B respectively. Since vB ̸= v′B , there exists at least

one subset H such that (without loss of generality) H ∈ H,

whereas H /∈ H′. Suppose Menu(vB) = Menu(v′B) = M by

contradiction. There are two possibilities:

• If M(H) f ³, then given the valuation profile (vA =
vH,1, v

′
B), Alice always gets H . The actual welfare the

mechanism A gets is at most vA(H)+v′B(H) f (³+1)+
2b2m, while the optimal welfare being at least v′B([m]) =
bm.

• If M(H) > ³, then given the valuation profile (vA =
vH,0, vB), Alice does not get H . The actual welfare the

mechanism A gets is at most vB([m]) = bm, while the

optimal welfare being vA(H) + vB(H) = ³+ bm.

To summarize, whenever Menu(vB) = Menu(v′B) for some

distinct vB , v
′
B ∈ XOS∗, we know that the approximation ratio

of the mechanism to the optimal welfare can be at most

max

{
(³+ 1) + 2b2m

bm
,

bm

³+ bm

}
. (6)

Recall b = m− 1
3 and let ³ =

√
5−1
2 bm =

√
5−1
2 m

2
3 . Then,

the ratio above is always strictly smaller than
√
5−1
2 +3m− 1

3 .

Therefore, to get a (
√
5−1
2 + 3m− 1

3 )-approximation, A must

have different menus for all vB ∈ XOS∗. As a result,

tax(A) g log |XOS∗| = |G| = exp(m
1
3 /6).

Having Proposition V.8, Theorem V.1 follows directly via

the Taxation Complexity framework.

Proof of Theorem V.1. Since XOSm ∪ SingleMm § XOSm,

we have cc(A) g tax(A)
m − 1 by Theorem V.7. Further by

Proposition V.8, we have cc(A) g exp(Ω(m
1
3 )).
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Remark V.9. Theorem V.1 can be also proven via a communi-

cation lower bound for simultaneous protocols combining with

the two-bidder corollary from Taxation Complexity frame-

work [Dob16b], as used in [AKSW20]. The proof follows

a similar structure, and we include it in Section A5 for

completeness.

Remark V.10. Similarly to Remark IV.11, one might think

that the construction implies that our impossibility holds for a

single-minded bidders and a bidder with XOS valuations, i.e.

for the class SingleM×XOS. However, our use of Theorem V.7

implies that our the lower bound applies solely to the valuation

class (SingleM∪XOS)2. In particular, the VCG mechanism can

be implemented with poly(m) communication for SingleM×
XOS.23

C. Difficulties for a Stronger Three-Bidder Lower Bound

Naturally, one might wonder whether the class of valuations

defined in Section V-A can be generalized to a stronger (i.e.,

better than
√
5−1
2 ) lower bound beyond two bidders, since the

Taxation Complexity framework extends beyond two bidders.

We now describe an attempt to generalize our construction and

briefly discuss why it is not likely to work.

Recall that in Section V-B, the subset of valuations

{(vA, vB) : vA ∈ SingleM∗, vB ∈ XOS∗} was used as hard in-

stances for the taxation complexity lower bound, where XOS∗

is defined by some collection G that satisfies the b-average

intersection property. To get a stronger three-bidder lower

bound, we add another bidder named Charlie, and consider the

valuations {(vA, vB , vC) : vA ∈ SingleM∗, vB , vC ∈ XOS∗}.

Our hope is to get a stronger lower bound by the extra

communication hardness from welfare maximization between

these two XOS bidders.

Our plan is to use a similar argument to the one used

in the proof of Proposition V.8. For convenience, let us

assume G consists of exponentially many random sets of

size bm/2 for some constant b ∈ (0, 1). Similar to the

proof of Lemma V.5, the collection G satisfies (b/2)-average

intersection property with high probability and its size is

exp(m). Consider four valuations v(1), v(2), v(3), v(4) sampled

uniformly at random from XOS∗ and associated with the sub-

collections H(1),H(2),H(3),H(4) ¦ G, respectively.

We argue without proof that with high probability, there

exist subsets H1,H2,H3,H4 such that for every i ∈ [4]:

1) Hi ∈ H(i).

2) For every j ̸= i, Hi /∈ H(j).

3) H1 ∩H2 = H3 ∩H4 = ∅.

As a result:

• Given the valuation profile (vB = v(1), vC = v(2)), the

maximum welfare bm is obtained by allocating H1 ∪H2

to them.

• Given the valuation profile (vB = v(3), vC = v(4)),
the welfare obtained from allocating H1 ∪ H2 to Bob

23This is because the optimal allocation can be computed with poly(m)
communication: Alice simply sends her desired set S together with its value,
and Bob replies whether the optimal allocation is (S,S) or (∅,M).

and Charlie is at most 2b2m, due to the (b/2)-average

intersection property. Maximum welfare of bm can be

obtained from allocating H3 ∪H4 to them.

Let vA ∈ SingleM∗ be the single-minded valuation that has

value ³ for the set [m]\(H1∪H2). Assume towards a contra-

diction that Menu(v(1), v(2)) = Menu(v(3), v(4)) and denote

with P the price in both menus for the bundle [m]\(H1∪H2).
Assume that P ̸= ³ (which is without loss of generality, since

we can always slightly perturb the value of ³). Note that it

must be the case that either:

• If P < ³, then Alice with value vA gets the bundle [m]\
(H1 ∪H2): then for (vA, v

(3), v(4)), the mechanism gets

welfare of at most ³+ 2b2m, while the optimal welfare

is v
(3)
B (H3) + v(4)(H4) = bm.

• If P > ³, then Alice with valuation vA does not get

the bundle [m] \ (H1 ∪ H2): then for (vA, v
(1), v(2)),

the mechanism gets at most (b − b2/4)m due to the

communication hardness of allocating [m] between Bob

and Charlie24, while the optimal welfare is ³+ bm.

Overall, the approximation ratio to the optimal welfare can be

at most

max

{
³+ 2b2m

bm
,
(b− b2/4)m

³+ bm

}
,

which is quite very similar to Equation 6 in the proof of

Theorem V.7. The only difference is the numerator of the

second term gets smaller (from bm to (b − b2/4)m) which

is a significant difference when b is close to 1). However, the

minimum is still obtained when b → 0 and ³ =
√
5−1
2 bm,

resulting in no improvement at all.

As a result, the additional difficulty of allocating items

among two bidders instead of one does not help, at least for

this specific class of valuations. The reason for it is that for

our original argument that gets
√
5−1
2 for two bidders, we want

b → 0 to ensure the intersection of a random clauses of the

XOS bidder with the complement of the single-minded bidder

to be as small as possible. However, to get a significant gap in

communication hardness for two XOS bidders, we want b → 1
since the intersection of a random clauses of them needs to

be large, so that one cannot get a good welfare between them

easily. Nevertheless, this idea turned out to be useful for the

proof of Theorem IV.1, by using subadditive modified set-

cover valuations.

ACKNOWLEDGEMENTS

The authors thank Shahar Dobzinski for the helpful discus-

sions throughout the duration of this work.

REFERENCES

[AKS21] Sepehr Assadi, Thomas Kesselheim, and Sahil Singla. Im-
proved truthful mechanisms for subadditive combinatorial auc-
tions: Breaking the logarithmic barrier. In Dániel Marx, editor,

24The welfare of (b − b2/4)m is obtained by giving any set S ∈ H(1)

to Bob and the rest of the items to Charlie. The (b/2)-average intersection
property implies that this allocation has welfare of at least (b− b2/4)m. The

approximation ratio
(b−b2/4)m

bm
is smallest when b = 1, which is the most

difficult case for welfare maximization between Bob and Charlie in general.

399

Authorized licensed use limited to: Princeton University. Downloaded on March 11,2025 at 01:26:01 UTC from IEEE Xplore.  Restrictions apply. 



Proceedings of the 2021 ACM-SIAM Symposium on Discrete

Algorithms, SODA 2021, Virtual Conference, January 10 - 13,

2021, pages 653–661. SIAM, 2021. 1, 4
[AKSW20] Sepehr Assadi, Hrishikesh Khandeparkar, Raghuvansh R. Sax-

ena, and S. Matthew Weinberg. Separating the communication
complexity of truthful and non-truthful combinatorial auctions.
In Proceedings of the 52nd Annual ACM SIGACT Symposium on

Theory of Computing, STOC 2020, page 1073–1085, New York,
NY, USA, 2020. Association for Computing Machinery. 1, 2, 3,
5, 12, 14, 19

[AS19] Sepehr Assadi and Sahil Singla. Exponentially improved truthful
combinatorial auctions with submodular bidders. In Proceedings

of the Sixtieth Annual IEEE Foundations of Computer Science

(FOCS), 2019. 4
[BMW18] Mark Braverman, Jieming Mao, and S Matthew Weinberg. On

simultaneous two-player combinatorial auctions. In Proceedings

of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 2256–2273. SIAM, 2018. 2
[Cla71] Edward H. Clarke. Multipart Pricing of Public Goods. Public

Choice, 11(1):17–33, 1971. 1
[CTW20] Linda Cai, Clayton Thomas, and S. Matthew Weinberg. Imple-

mentation in advised strategies: Welfare guarantees from posted-
price mechanisms when demand queries are np-hard. In Thomas
Vidick, editor, 11th Innovations in Theoretical Computer Science

Conference, ITCS 2020, January 12-14, 2020, Seattle, Wash-

ington, USA, volume 151 of LIPIcs, pages 61:1–61:32. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. 4

[DN11] Shahar Dobzinski and Noam Nisan. Limitations of vcg-based
mechanisms. Combinatorica, 31(4):379–396, 2011. 3

[DN15] Shahar Dobzinski and Noam Nisan. Multi-unit auctions: Beyond
roberts. Journal of Economic Theory, 156:14–44, 2015. Com-
puter Science and Economic Theory. 1

[DNO14] Shahar Dobzinski, Noam Nisan, and Sigal Oren. Economic effi-
ciency requires interaction. In the 46th annual ACM symposium

on Theory of computing (STOC), 2014. 3
[DNS10] Shahar Dobzinski, Noam Nisan, and Michael Schapira. Approx-

imation algorithms for combinatorial auctions with complement-
free bidders. Math. Oper. Res., 35(1):1–13, 2010. 1, 2, 3, 12

[DNS12] Shahar Dobzinski, Noam Nisan, and Michael Schapira. Truthful
randomized mechanisms for combinatorial auctions. J. Comput.

Syst. Sci., 78(1):15–25, 2012. 4
[Dob07] Shahar Dobzinski. Two randomized mechanisms for combina-

torial auctions. In Proceedings of the 10th International Work-

shop on Approximation and the 11th International Workshop on

Randomization, and Combinatorial Optimization. Algorithms and

Techniques, pages 89–103, 2007. 4
[Dob11] Shahar Dobzinski. An impossibility result for truthful combi-

natorial auctions with submodular valuations. In Proceedings

of the Forty-Third Annual ACM Symposium on Theory of Com-

puting, STOC ’11, page 139–148, New York, NY, USA, 2011.
Association for Computing Machinery. 2, 4

[Dob16a] Shahar Dobzinski. Breaking the logarithmic barrier for truthful
combinatorial auctions with submodular bidders. In Proceedings

of the 48th Annual ACM SIGACT Symposium on Theory of

Computing, STOC 2016, pages 940–948, New York, NY, USA,
2016. ACM. 4

[Dob16b] Shahar Dobzinski. Computational efficiency requires simple
taxation. In 2016 IEEE 57th Annual Symposium on Foundations

of Computer Science (FOCS), pages 209–218. IEEE, 2016. 1, 2,
3, 4, 5, 6, 8, 13, 14, 16, 17, 19

[Dob23] Shahar Dobzinski. private communication, 2023. 19
[DRV22] Shahar Dobzinski, Shiri Ron, and Jan Vondrák. On the hardness
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APPENDIX

A. Missing Proofs

1) Proof of Lemma II.3: Let P be a protocol that achieves

an ³-approximation to the optimal welfare with bidders whose

valuations are in class C. We first describe the protocol P ′ for

C ∪ SingleM, and then prove that its approximation guarantee

is also ³.

a) Description of Protocol.: Briefly, the protocol oper-

ates by simply running P independently once for each possible

method of allocating the single-minded bidders their preferred

bundle.

In more detail, first, each bidder i sends a bit that specifies

whether vi is single-minded or belongs in C (if vi ∈ C ∩
SingleM, it is considered single-minded). Let SM ¦ [n] be the

set of bidders such that vi is single-minded, and with Other

the rest of the bidders. Then, we ask all the bidders in SM to

send their (minimal) desired set and their value for it. We say

that a subset of single-minded bidders K ¦ SM is feasible if

for every i, j ∈ K, Si ∩ Sj = ∅. Note that at this point in

the protocol, we can identify all the feasible subsets of single-

minded bidders.

Next, for every feasible subset of single-minded bidders

K ¦ SM, we consider the following allocation. First, we

allocate to the bidders in K their desired sets. The rest of

the single-minded bidders are allocated with the empty bundle.

Then, we allocate the remaining items to the bidders in Other,

using the protocol P . Afterwards, all bidders send their value

for the bundle given this allocation, so its social welfare is

known. We conclude by outputting the allocation with the

maximum welfare. It is easy to see that the protocol P ′

requires at most poly(cc(P),m, 2n) bits.

b) The Approximation Ratio: Informally, the approxima-

tion ratio ³ still holds for P ′ because we exactly optimize

welfare for all single-minded bidders, and on the remaining

bidders, we can still only be off by a factor of at most ³.

In more detail, denote with A = (A1, . . . ,An) the allocation

that the protocol outputs and with O = (O1, . . . ,On) an

optimal allocation. Assume without loss of generality that

(O1, . . . ,On) and (A1, . . . ,An) satisfy that no bidder is

allocated any item that does not strictly increase her value.

Denote with K∗ the subset of single-minded bidders that get

a valuable bundle in the optimal allocation, i.e. K∗ = {i :
vi(Oi) > 0, i ∈ SM}. Denote with X = (X1, . . . ,Xn) the

allocation at the iteration where the feasible set of single-

minded bidders is K. Note that by definition for every single-

minded bidder i, Xi = Oi. Therefore,

∑

i∈SM

vi(Xi) =
∑

i∈SM

vi(Oi) (7)

Also, note that
⋃

i∈SM Xi =
⋃

i∈SM Oi, and we denote this

subset of items with JSM. Observe that since O is a welfare-

maximizing allocation, it is in particular an optimal allocation

of the items in [m] \ JSM to the bidders in Other. We remind

that the allocation of the bidders in Other is determined by

the protocol P . Due to the approximation guarantee, we get

that: ∑

i∈Other

vi(Xi) g ³ ·
( ∑

i∈Other

vi(Oi)
)

(8)

Therefore, we can deduce that:

∑

i∈[n]

vi(Ai) g
∑

i∈[n]

vi(Xi) (by construction)

=
∑

i∈SM

vi(Xi) +
∑

i∈Other

vi(Xi)

g
∑

i∈SM

vi(Oi) + ³ ·
∑

i∈Other

vi(Oi) (by (7) and (8))

g ³ ·
∑

i∈[n]

vi(Oi)

which completes the proof.

2) Proof of Theorem II.7: We begin by redefining price(A)
and tax(A). The definitions are identical to the ones in

[Dob16b], and we write them for the sake of completeness.

price(A) is the communication complexity of the (n − 1)-
bidder problem of computing the price for a specific bundle

S ¦ M in the menu presented to player i in the mechanism A
given the valuation profile v−i. For the definition of tax(A),
see Definition V.6.

Now, recall that by the menu reconstruction theorem

[Dob16b, Theorem 3.1], the communication complexity of

computing the menu presented to a player i given the valu-

ations v−i of the other players and the truthful mechanism

A is poly(tax(A), price(A),m,n). This is true for every

domain. In addition, by [Dob16b, Proposition F.1], it holds

that price(A) f cc(A) for every truthful mechanism for a

class of valuations that includes additive valuations. Similarly,

[Dob16b, Proposition 2.3] implies that tax(A) f cc(A) for

every truthful mechanism A that is truthful for a class of

valuations that contains subadditive valuations.25 The proof

is obtained by combining these assertions.

25In fact, the statement in [Dob16b] is specifically for the class of
subadditive valuations. However, the proof holds as-written for every class
of valuations that contains subadditive valuations.
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3) Missing Proofs of Section IV:

Proof of Lemma IV.7. We will show that for sufficiently large

m, there exists an ℓ-independent k-width-family, where ℓ =
1
4 logm and k = e

2
√

m

log m .

To obtain a ℓ-independent k-width-family

F = (G, {H(t)
i }t∈{0,1},i∈[k]), consider the following

two-layered randomized construction:

1) First Layer: For every i ∈ [k], let Gi be the random

set that contains each item e ∈ [m] independently with

probability 1
2 .

2) Second Layer: For every i, j ∈ [k], let H
(0)
i,j be the

random set that contains each e ∈ Gi independently with

probability 1
2 . Similarly, let H

(1)
i,j be the random set that

contains each item e ∈ Gi independently with probability
1
2 . Note that for every i and for every t ∈ {0, 1}, the

distribution of the items in H
(t)
i,j is identical for all values

of j.

Thus, by construction F is a k-width-family. Thus, it remains

to prove that with a non-zero probability, F is ℓ-independent.

Recall that F [b,C] = {Si,j}i,j∈[k] is a collection of k2

subsets. We can fix an index set I ¢ [k]× [k] of size ℓ, which

specifies a sub-collection F [b,C; I] = {Si,j}(i,j)∈I of size ℓ
accordingly. Our plan is to show that for every choice of b,C
and I , it is very unlikely that the sub-collection F [b,C; I]
covers [m], and then the existence of a valid F follows from

union bound.

Observe that for every item e and Si,j , we have that e ∈
Si,j with probability 3/4. In particular, it holds for all the

subsets Si,j in F [b,C; I]. Also, note that the events {e ∈
∪F [b,C; I]}e∈[m] are mutually independent. Therefore, we

have that:

Pr
[⋃

F [b,C; I] = [m]
]

=
∏

e∈[m]

(
1− Pr

[
e /∈

⋃
F [b,C; I]

])

= (1− 1

4ℓ
)m f (1− 2−2ℓ)m.

Finally by union bound:

Pr
[
∃b,C, I such that

⋃
F [b,C; I] = [m]

]

f
∑

I¢[k]×[k],|I|=ℓ

Pr
[⋃

F [b,C; I] = [m]
]

f
(
k2

ℓ

)
22ℓ(1− 2−2ℓ)m

< k2ℓ exp(−2−2ℓm) = exp(2ℓ ln k − 2−2ℓm) = 1.

Therefore, with non-zero probability, F [b,C] is ℓ-sparse for

all b,C.

4) Missing Proofs of Section V:

Proof of Lemma V.5. The proof is based on the probabilistic

method. We construct the collection G by sampling uniformly

at random exp(b2m/6) subsets of [m], where the size of

each subset is bm. For any two subsets Gi,Gj of size bm
sampled uniformly at random, note that the expected size of

their intersection E [|Gi ∩Gj |] = b2m. By Chernoff bound,

we have Pr[|Gi∩Gj | > 2b2m] f exp(−b2m/3). By applying

the union bound, we conclude that:

Pr[∃i ̸= j, |Gi ∩Gj | > 2b2m]

f
∑

i ̸=j

Pr[|Gi ∩Gj | > 2b2m]

< |G|2 · exp(−b2m/3) f 1.

5) Proof of Theorem V.1 by Hardness of Simultaneous

Protocols: Recall the following two-bidder corollary from the

Taxation Complexity framework:

Theorem A.1 ([Dob16b]). Let A = (f , p1, p2) : V1 × V2 →
Σ × R

n be any deterministic truthful mechanism that guar-

antees an ³-approximation to the optimal welfare, and both

domains V1,V2 contain XOSm. Then, there exists a simulta-

neous protocol f ′ : V1 × V2 → Σ that also guarantees an ³-

approximation with simultaneous communication complexity

cc(f ′) f poly(cc(A),m).

Based on this result, it suffices to give a lower bound of

the communication complexity for simultaneous algorithms to

prove Theorem V.1.

Proposition A.2. Let f : SingleM× XOS → Σ be any deter-

ministic simultaneous protocol. If f obtains a (
√
5−1
2 +3m− 1

3 )-
approximation to the optimal welfare, then its simultaneous

communication complexity cc(f) g exp(m
1
3 /6).

Proof. Let Alice be the single-minded bidder and Bob be the

XOS bidder. Since f is a simultaneous algorithm, if Bob sends

an identical message upon different valuations v′B ̸= vB , then

the resulting allocation will also be identical, i.e., f(vA, vB) =
f(vA, v

′
B) for all vA ∈ SingleM. We will show that it further

leads to a contradiction with the approximation ratio.

For any distinct vB , v
′
B ∈ XOS∗, denote with H and with

H′ respectively the combinations that are associated with vB
and with v′B respectively. Since vB ̸= v′B , there exists at

least one subset H such that (without loss of generality)

H ∈ H, whereas H /∈ H′. Consider the case when Alice

(with valuation vA) gives a value of ³ < bm to the bundle

H = [m] \ H (and zero otherwise). If by contradiction,

f(vA, vB) = f(vA, v
′
B), then Alice must be given a same

bundle A ¦ [m] for both instances (vA, vB) and (vA, v
′
B).

There are two possibilities:

• If H ¦ A (i.e., Alice gets H): for the instance (vA, v
′
B),

the actual welfare f gets is at most vA(H) + v′B(H) f
³ + 2b2m, while the optimal welfare being at least

v′B([m]) = bm.

• If H ̸¦ A (i.e., Alice gets nothing valuable): for the

instance (vA, vB), the actual welfare f gets is at most

vB([m]) = bm, while the optimal welfare being vA(H)+
vB(H) = ³+ bm.
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Overall, we know that the approximation ratio of f can be

at most

max

{
³+ 2b2m

bm
,

bm

³+ bm

}
.

Recall b = m− 1
3 and let ³ =

√
5−1
2 bm =

√
5−1
2 m

2
3 . Then,

the ratio above is always strictly smaller than
√
5−1
2 +3m− 1

3 .

Therefore, to get a (
√
5−1
2 +3m− 1

3 )-approximation, Bob must

send different messages for all vB ∈ XOS∗. As a result,

cc(f) g log |XOS∗| = |C| = exp(m
1
3 /6).

Proof of Theorem V.1. By Theorem A.1, there is some simul-

taneous protocol f ′ : V × V → Σ that (
√
5−1
2 + 3m− 1

3 )-
approximates the optimal welfare with simultaneous commu-

nication complexity cc(f ′) f poly(cc(A),m). However, by

Proposition A.2, we know cc(f ′) g exp(m
1
3 /6). Therefore,

we conclude that cc(A) g exp(Ω(m
1
3 )).

Remark A.3. We now show that simultaneous protocols for

two bidders can achieve
√
5−1
2 of the welfare for the class

SingleM × XOS, meaning that Proposition A.2 is asymptoti-

cally tight. Denote the bundle that Alice (the single-minded

bidder) wants by S. Consider some f∗ : SingleM×XOS → Σ
that gives the bundle S to Alice and the bundle [m] \ S to

Bob when v1(S) g
√
5−1
2 v2([m]), and otherwise allocates

all items to Bob. f∗ can be implemented by simultaneous

communication and always gives a
√
5−1
2 -approximation to

welfare.

B. The Structure of Payments of Truthful Mechanisms

In this section, we show a formula for an upper bound

and lower bound on the payments of approximately optimal

and truthful mechanisms whose class of valuations includes

single-minded bidders. An asymptotic interpretation of Propo-

sition A.5, which might be of independent interest is that

as the approximation guarantee ³ of a truthful mechanism

goes to 1, then the payments of the mechanism are approach

VCG payments. Moreover, Proposition A.5 in its current

form applies to two-bidder mechanisms, but it can readily be

extended to settings with an arbitrary number of bidders, as

well as to the related setting of multi-unit auctions.

We start by defining a class of SingleM valuations which

allow us to bound the prices that any two-player good-

approximation mechanism must charge:

Definition A.4. Fix a valuation v, a nonempty subset of

items S ¦ [m] and two constants ³ ∈ [0, 1] and ϵ > 0.

We define a valuation upperv,³,ϵ,S as follows: ∀X ¦ [m],
upperv,³,ϵ,S(X) equals to

{
1
³ · v([m])− v([m] \ S) + ϵ X § S,

0 otherwise.

We define lowerv,³,ϵ,S similarly: ∀X ¦ [m], lowerv,³,ϵ,S(X)
equals to

{
max{³ · v([m])− v([m] \ S)− ϵ, 0} X § S,

0 otherwise.

Now, we give the bound on prices enabled by Defini-

tion A.4:

Proposition A.5. Let A = (f , p1, p2) : V1 × V2 → Σ ×
R

2 be any deterministic truthful mechanism that gives an ³-

approximation to the optimal welfare. For some ϵ > 0, if both

upperv2,³,ϵ,S and lowerv2,³,ϵ,S belong to V1, then for every

valuation v2 ∈ V2 and every bundle S ¦ [m],

1

³
· v2([m])− v2([m] \ S) + ϵ

g MenuA1 (v2)(S)−MenuA1 (v2)(∅)
g ³ · v2([m])− v2([m] \ S)− ϵ

Proof. Denote with vup1 and vlow1 the valuations upperv2,³,ϵ,S

and lowerv2,³,ϵ,S respectively. Consider the possible alloca-

tions that achieve an ³ approximation given the valuation

profile (vup1 , v2).
Consider a bundle T that contains the desired bundle S.

Using the fact that vup1 is single-minded, we have that

vup1 (T )+v2([m]\T ) g vup1 (S)+v2([m]\S) = 1

³
v2([m])+ϵ.

On the other hand, if a bundle T does not contain S, then:

vup1 (T ) + v2([m] \ T ) f v2([m]) < ³ ·
(
1

³
v2([m]) + ϵ

)
.

Thus, to get an ³-approximation to the optimal welfare, we

must allocate a bundle containing S to bidder 1 given the

valuation profile (vup1 , v2).
Analogously, consider the possible allocations that achieve

an ³ approximation given (vlow1 , v2). We have vlow1 (S) +
v2([m] \ S) = ³ · v2([m]) − ϵ < ³ · v2([m]), which implies

that in this case any allocation awarding S to bidder 1 cannot

possibly be an ³-approximation to the optimal welfare.

We now achieve the desired bounds on payments by using

the fact that the mechanism is truthful, so given vup1 , bidder

1 will not want to misreport the valuation vlow1 and vice-

versa. Let Xup be the bundle that bidder 1 wins given

(vup1 , v2). Using truthfulness and the monotonicity of the menu

(Proposition II.6), we have that:

vup1 (S)−MenuA1 (v2)(S) g vup1 (Xup)−MenuA1 (v2)(X
up)

g vup1 (∅)−MenuA1 (v2)(∅).

Rearranging this inequality and applying the definition of vup1 :

MenuA1 (v2)(S)−MenuA1 (v2)(∅) f vup1 (S)− vup1 (∅)

=
1

³
· v2([m])− v2([m] \ S) + ϵ.

Thus, we obtain the first part of the lemma.

For the second part, let X low be the bundle that bidder

1 wins given (vlow1 , v2). Since vlow1 (X low) = 0 = vlow1 (∅),
applying truthfulness and menu monotonicity gives:

vlow1 (∅)−MenuA1 (v2)(∅) g vlow1 (X low)−MenuA1 (v2)(X
low)

g vlow1 (S)−MenuA1 (v2)(S),
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and again rearranging, we have

MenuA1 (v2)(S)−MenuA1 (v2)(∅) g vlow1 (S)− vlow1 (∅)
= ³ · v2([m])− v2([m] \ S)− ϵ,

which finishes the proof.

C. An Example of a 2-Width-Family

In this section, we give an example of a 2-width-family, to

demystify our construction in Section IV. Consider the case

where there are 6 items, which we denote with {1, 2, 3, 4, 5, 6}.

Consider the set family defined as follows:

G =
{
G1 = {1, 2},G2 = {3, 5, 6}

}

H(0)
1 =

{
H

(0)
1,1 = {3, 4},H(0)

1,2 = {5, 6}
}

H(1)
1 =

{
H

(1)
1,1 = {1, 2},H(1)

1,2 = {1}
}

H(0)
2 =

{
H

(0)
2,1 = {2, 4},H(0)

2,2 = {1}
}

H(1)
2 =

{
H

(1)
2,1 = {3, 5},H(1)

2,2 = {5}
}

Now, we define:

b = (0, 1), C =

(
0 1
0 1

)

Thus, the collection F [b,C] is composed of the subsets

S1,1,S1,2,S2,1,S2,2 that are defined as follows:

b[1] = 0,C[1][1] = 0 =⇒ S1,1 = G1 ∪H
(0)
1,1

= {1, 2, 3, 4}
b[1] = 0,C[1][2] = 1 =⇒ S1,2 = G1 ∪ (G1 \H(0)

1,2 )

= {1, 2, 3, 4}
b[2] = 1,C[2][1] = 0 =⇒ S2,1 = G2 ∪H

(1)
2,1

= {1, 2, 3, 4, 5}
b[2] = 1,C[2][2] = 1 =⇒ S2,2 = G2 ∪ (G2 \H(1)

2,2 )

= {1, 2, 3, 4, 6}
Observe that by definition F [b,C] is 2-sparse, because there

is no one subset among S1,1,S1,2,S2,1,S2,2 that covers

{1, 2, 3, 4, 5, 6}. However, it is not 3-sparse, because S2,1 ∪
S2,2 = {1, 2, 3, 4, 5, 6}, which implies that the family F is

not 3-independent.

D. On The Precision of Mechanisms and Valuations

In this section, we dive deeper into an assumption of the

taxation framework; in particular, we remark on the preci-

sion of the bidders’ valuations vs. the mechanism’s prices.

Observe that when discussing the communication complexity

of combinatorial auctions, it is necessary to assume that the

valuation functions of each bidder has values that are bounded

in some range. The reason for it is that otherwise, even

the communication complexity of a single item auction is

infinite, regardless of incentives.26 Therefore, when formally

26Consider a single-item auction with two bidders with values in the
infinite range R = {0, ℓ, ℓ2, ℓ3, . . .} for the item, where ℓ is arbitrarily large.
Applying the fooling set argument for the pairs (x,x)x∈R gives that the
communication complexity of every mechanism that gives an approximation
better than ℓ for the optimal welfare requires at least one transcript for every
element of R, so it requires infinite communication.

considering a class of valuation functions, it is necessary

to specify not only their properties, i.e., whether they are

subadditive or single-minded, but also their precision.

Formally handling the precision of valuations has been

discussed before, e.g. in [Dob16b, Appendix A.4.1]. As dis-

cussed in our footnote 11, the basic approach is to assume

all valuations can be represented by k-bit numbers for some

implicit parameter k, and to formally define a protocol for

some valuation class as a family of protocols (Pk)k for

different precision k (with the added assumption that when

k′ > k and Pk′ is run on k-bit numbers, the output is the same

as the output of Pk). To our knowledge, all prior upper and

lower bounds in the algorithmic mechanism design literature

hold in this formal model while implicitly hiding factors of

poly(k).

We will now address an additional assumption of the

taxation framework, and show that it is in fact not neces-

sary. Namely, [Dob16b] assumes that mechanisms that are

“precision-aligned”. A mechanism A : V → Σ × R
n is

precision-aligned if the precision of the mechanism is equal

to the precision of V . More concretely, if every valuation in V
has values in a certain range R, then the mechanism outputs

prices that are in range R.

However, one can easily show that, in fact, assuming

precision-aligned mechanisms is without loss of generality.

Thus, the results of [Dob16b] (and hence, other results which

build on these, such as ours and those of [AKSW20]) in fact

hold for all mechanisms, not just for precision-aligned ones.

Formally:

Proposition A.6 (Communicated by [Dob23]). Let A : V →
Σ×R

n be a truthful mechanism. Then, there exists a truthful

precision-aligned mechanism A′ such that:

1) For every valuation profile v ∈ V , the mechanisms A and

A′ output the same allocation.

2) The communication complexity of A′ is the same as the

communication complexity of A.

Proof. We assume for simplicity that the range of the valua-

tions in V is integer values in {0, . . . ,H}, though an analogous

proof works for every fixed decimal precision.

The mechanism of A′ that we propose is equivalent to

the mechanism A, except that the prices in each leaf are

rounded down to the nearest integer. Thus, we get that the

mechanisms A′ and A have the same precision and the same

communication complexity. It remains to show that A′ is

truthful. We remind that by the taxation principle, it suffices

to show that for every player i, and every valuation profile

(vi, v−i), the bundle that A′ allocates to bidder i remains the

most profitable given the new rounded prices.

Fix such player i and a valuation profile (vi, v−i). Let S be

the most profitable bundle, and let T be some other bundle.

Denote their prices given the (old) mechanism A with pS and

pT , respectively. Since A is truthful, we have that vi(S)−pS g
vi(T ) − pT , and our goal is to show that: vi(S) − +pS, g
vi(T )− +pT ,.
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To prove this, we represent pS as an integer nS and a

fraction fS , where pS = nS + fS , where nS = +pS, and

fS ∈ [0, 1). We define nT and fT analogously. Therefore, we

have that:

vi(S)− nS − fS g vi(T )− nT − fT (9)

Thus, we now have that the integer part of the left side is

vi(S)−nS and the integer part of the right side is vi(T )−nT .

Since both fS , fT ∈ [0, 1), then their difference satisfies that

|fT − fS | < 1, so for Equation 9 to hold, it has to be the case

that vi(S) − nS g vi(T ) − nT . We remind that nS = +pS,
and nT = +pT ,, so we have that vi(S) − +pS, g vi(T ) −
+pT ,. Moreover, nS and nT are in fact the menu prices in the

new mechanism A′, so this mechanism is in fact truthful, as

needed.
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