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Abstract—We study the communication complexity of truthful
combinatorial auctions, and in particular the case where valua-
tions are either subadditive or single-minded, which we denote
with SubAddUSingleM. We show that for three bidders with valu-
ations in SubAddUSingleM, any deterministic truthful mechanism
that achieves at least a 0.366-approximation requires exp(m)
communication. In contrast, a natural extension of [Fei(9] yields
a non-truthful poly(m)-communication protocol that achieves a
%-approximation, demonstrating a gap between the power of
truthful mechanisms and non-truthful protocols for this problem.

Our approach follows the taxation complexity framework laid
out in [Dobl6b], but applies this framework in a setting not
encompassed by the techniques used in past work. In particular,
the only successful prior application of this framework uses
a reduction to simultaneous protocols which only applies for
two bidders [AKSW20], whereas our three-player lower bounds
are stronger than what can possibly arise from a two-player
construction (since a trivial truthful auction guarantees a %
approximation for two players).

I. INTRODUCTION

1) Background: Combinatorial Auctions: Combinatorial
Auctions are a paradigmatic problem at the intersection of
Economics and Computation; see e.g. [LOS02, LLN06, NS06,
MSV08, DNS10, DSS15, AKS21] and many others. Here,
an auctioneer has m items to allocate among n bidders,
where each bidder ¢ has a combinatorial valuation v; over
subsets of items (that is, v; olml R>), and seeks
to do so in a way that maximizes the welfare. That is,
the auctioneer seeks to partition the items into n subsets,
Ay, ..., Ay, so as to maximize ), v;(A;). The challenge is
that only Bidder ¢ knows her valuation v;(-), and therefore:
(a) the auctioneer must communicate with the bidders to
learn sufficient information about v;(+) to find a high-welfare
allocation, and (b) the bidders may strategically manipulate
the protocol, and therefore the auctioneer must further design
a truthful communication protocol.!

Subject only to constraint (a), the problem is fairly
well understood for several canonical valuation classes. For
example, poly(m)-communication (not necessarily truthful)
protocols are known to achieve: an asymptotically tight
O(1//m)-approximation for arbitrary monotone valuations
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[LS05, NS06], a tight 1/2-approximation for subadditive valua-
tions [Fei09], a tight (1—1/c)-approximation is known for XOS
valuations [Fei09, DNS10], and the tight constant for submod-
ular valuations is known to lie in [1 — 1/e + 1/10%,1 — 1/2¢]
[DV13, FV10, Von07]. Thus, for all of these problems, the
optimal approximation guarantee of poly-communication non-
truthful protocols are well-understood.

Subject only to constraint (b), the problem can be solved
optimally by the classical Vickrey-Clark-Groves (VCG) mech-
anism [Vic61, Cla71, Gro73]; however, this solution re-
quires exponential communication for any of the above-
mentioned valuation classes.> Subject to both constraints (a)
and (b), the problem is still quite poorly understood despite
significant effort over the past two decades. For example,
the state-of-the-art deterministic truthful mechanisms with
poly(m)-communication achieve approximation guarantees
of Q(in(m)/;m) for arbitrary monotone valuations, and just
Q(4/In(m)/m) for each of subadditive/XOS/submodular val-
uations [QW24]. Thus, these canonical settings each have a
©(y/m) gap in approximation guarantees for state-of-the-art
truthful vs. non-truthful protocols. Despite these massive gaps,
corresponding impossibility results remain starkly rare; indeed,
for each of the above examples, no lower bounds for truthful
mechanisms are known beyond those that also hold for non-
truthful protocols. Thus, for each of these canonical settings,
it remains unknown whether there should be any gap at all!

This question has received significant attention since [NS06]
introduced the study of communication complexity for com-
binatorial auctions, and it is generally conjectured that the
more significant missing piece is stronger impossibility results.
Developing such impossibility results necessarily requires
leveraging truthfulness, which imposes significant technical
barriers. For example, a natural first attempt would be to
characterize all truthful auctions in a given setting, perhaps
a la Roberts’ Theorem [Rob79], and then prove impossibility
results for communication-efficient auctions using this clas-
sification. [LMNO3, DN15] push the classification approach

2The VCG mechanism reduces non-truthful protocols to truthful ones, but
only for protocols that exactly optimize welfare. Thus, the VCG mechanism
makes the problem easy in any setting where describing a valuation function
only takes polynomially-many bits. Richer classes, like the four mentioned,
require exponentially-many bits to describe, and require high communication
for exact welfare maximization, thus motivating approximations.
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roughly to its limit, but bizarre deterministic truthful mecha-
nisms exist and it appears that any classification attempt may
be intractable (see the discussion in [Dobl1], for example).

Interest in the question revitalized when [Dob16b] proposed
an alternative framework termed Taxation Complexity. This
framework does not attempt to classify truthful mechanisms,
but merely identifies one key complexity measure that bounds
the communication complexity of a truthful auction: namely,
the logarithm of the maximum number of menus presented
to a player, also called the taxation complexity. The Taxation
Complexity framework further implies the following corollary:
communication lower bounds on two-player simultaneous
(non-truthful) protocols imply communication lower bounds
on two-player interactive truthful mechanisms (whereas simul-
taneous lower bounds certainly do not generally imply inter-
active lower bounds for non-truthful protocols [Yao79]). Even
this corollary proved challenging to leverage, but [AKSW20]
later established an impossibility of 3/4 — 1/240 for two XOS
bidders, which exhibits the first separation of truthful and
non-truthful protocols, since there is a non-truthful protocol
that gives a 3/4-approximation for two XOS bidders [Fei09,
DNS10].

[AKSW20] remains to-date the only known separation
between what is achievable by poly(m)-communication truth-
ful mechanisms and poly(m)-communication (non-truthful)
protocols. Yet, this separation holds only for two bidders.
Indeed, while a poly (m)-communication non-truthful protocol
can guarantee a 3/4-approximation for two XOS bidders,
the best possible guarantee for even three XOS bidders is
18/97 < 3/4 — 1/240.% That is, while we now know that
two-bidder poly(m)-communication protocols achieve strictly
better guarantees than two-bidder poly(m)-communication
truthful mechanisms, it is still plausible that truthful mecha-
nisms are just as powerful as non-truthful protocols for n > 3
XOS bidders. Moreover, the approach of [AKSW20] heavily
leverages the two-bidder corollary of [Dobl6b]: their result
follows from a communication lower bound on simultaneous
protocols, which does not imply anything about interactive
truthful mechanisms for n > 3 bidders.

2) Our Contributions: In our main result, we provide the
first separation of poly(m)-communication truthful vs. non-
truthful protocols for more than 2 bidders. Specifically, we
consider the class of bidders that are either Single-Minded or
Subadditive (and term the class SubAdd U SingleM). We show
that for this class, any deterministic truthful mechanism beat-
ing a (V3-1)/2 &~ (0.366 approximation requires exp(m) com-
munication, whereas a simple extension of [Fei09] achieves a
1/2-approximation with a non-truthful protocol.*

3) Brief Overview of Approach: We leverage the Taxation
Complexity framework of [Dob16b], which hinges around the

3Moreover, [BMW 18] design a simultaneous protocol for two XOS
bidders achieving an approximation guarantee of 23/32 > 18/27, so no lower
bound via two-player simultaneous protocols can possibly achieve a separation
for more than 2 players.

4We also include novel results on related classes of valuations with two
bidders; see Section I-A.
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concept of a menu. The menu for Bidder ¢ of an auction A
is a function M = Menuf(v_i), parameterized by v_;, that
takes as input v; and outputs the set of items (and price paid)
that Bidder ¢ gets on input (v;, v_;). That is, a menu fixes the
valuations of bidders other than ¢, and stores the impact that
Bidder ¢’s valuation v; has on ¢’s own allocation and prices.

Informally speaking, one can think of the results of
[Dobl16b] as showing that, in terms of the communication-
efficiency of truthful auctions (in sufficiently rich settings),
the auction might as well be implemented by fully learning
a bidder’s menu, and then allocating to that bidder according
to their menu and their valuation. Indeed, in these settings,
[Dobl16b] proves that for any truthful auction, the communi-
cation complexity of the auction is at least (some polynomial
function of) the communication complexity of learning one
bidder’s menu.’ To prove our main result, we establish that in
order for a truthful mechanism to beat a 0.366-approximation
for SubAdd U SingleM, the Communication Complexity of
learning a bidder’s menu must be exponential in the number
of items m. The Communication Complexity of all truthful
mechanisms achieving the same approximation ratio then
follows via results from [Dobl6b].

We defer technical details, but now briefly give intuition for
the role of both Subadditive bidders and the Single-Minded
bidder, and how the 0.366-approximation factor arises. A
construction of [EFNT19] establishes that exponential com-
munication is necessary in order for a (not necessarily truthful)
protocol to beat a 1/2-approximation for two subadditive bid-
ders. So intuitively, truthful welfare-maximizing auctions face
the following challenge. Suppose there is one Single-Minded
and two Subadditive bidders. Imagine that the maximum
possible welfare between the two Subadditive bidders is c.
Then if, based on the two Subadditive bidders, the price of
set S for the Single-Minded bidder is set to p(.S), it could be
that:

« Perhaps the Single-Minded bidder has interest set .S, has
value barely exceeding p(S) (and therefore chooses to
purchase set S), and yet the maximum welfare achievable
between the two Subadditive bidders for S is 0.
Therefore, we could have welfare as bad as ~ p(.S) when
the optimum is c.

o Perhaps the Single-Minded bidder has interest set .S,
has value barely below p(S) (and therefore chooses not
to purchase anything), and yet the maximum welfare
achievable between the two Subadditive bidders for .S
is also c. Moreover, even when allocating all items to
the two Subadditive bidders, we don’t expect to achieve
welfare greater than ¢/2 without exp(m)-communication,
based on the results of [EFNT19]. Therefore, we could
have welfare as bad as ¢/2 when the optimum is c+p(5).

~
=~

Therefore, the best ratio we can hope to achieve is
min{ p(f)7 Cféfs)}, which (it turns out) is at most @ ~

0.366 no matter how we set p(S).

3[Dob16b] provides other ways to bound the communication complexity
of truthful auctions, as we discuss below.
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Of course, this is just intuition—we need an actual construc-
tion where the above arguments hold even after the bidders
have engaged in polynomial communication. For example, if
we know the Single-Minded Bidder is interested in a particular
set S, then it is trivial to determine whether the maximum
welfare achievable between the two Subadditive bidders for S
is = 0 or c. Nevertheless, the high-level intuition of our
proof closely follows the outline above. In particular, the role
of the two Subadditive Bidders in the is to: (a) have uncertainty
regarding whether S can generate non-trivial welfare between
them, and (b) require exp(m) communication to beat welfare
¢/2 allocating any set of items to them. The role of the Single-
Minded Bidder is for a clean and direct analysis of what the
price of a single set S might mean for the resulting allocation,
thus allowing us to reason about the menu presented to the
Single-Minded Bidder.

~
~

A. Roadmap and Conclusions

We give preliminaries in Section II. In Section III, we
give a “warmup” to our main result, namely, we give a false
proof attempting to implement the intuitive hardness outline
discussed above, but leaving a gap in one step of the proof.
After explaining this gap and the main ideas used to fix it, in
Section IV, we prove our main result: a welfare approximation
lower bound of 0.366 for poly-communication truthful auc-
tions for three bidders with valuations in SubAdd U SingleM.
We then observe that this gives a separation between truthful
auctions and non-truthful protocols, by showing that non-
truthful protocols can achieve a higher welfare approximation
of £.5

In Section V, we study auctions for two bidders in the
class of valuations XOS U SingleM. Observe that to obtain
a separation for two-bidder mechanisms, it is necessary to
consider a “smaller” class than SubAdd U SingleM.” We show
that for two bidders in the class of valuations XOS U SingleM,
the communication complexity of every truthful mechanism
that has an approximation better than (V5-1)/2 0.618
is exp(m). We show this bound by two different proofs
based on two different approaches from [Dobl6b]. Finally,
in Section V-C we also discuss difficulties for generalizing it
to a stronger lower bound for more than two XOS U SingleM
bidders. Holisticly, our results in Section V illustrate additional
ways to achieve impossibility results, and in fact served as
stepping stones en-route to our main result.

~
~

6 Additionally, we note that our results get a separation for any n =
O(logn) bidders (since our upper bound of a 1/2-approximation extends to
any n = O(logn) bidders, and not only 3; see Lemma I1.3). This is in
contrast to [AKSW20]: while they prove upper and lower bounds yielding a
separation for 2 bidders, there is no known separation with 3 or more bidders
in their setting (since, while their lower bounds trivially also holds for more
bidders, their upper bound degrades as the number of bidders increases).
TThe reason for it is that for SubAddUSingleM, there is provably no gap
between the power of communication efficient truthful mechanisms and non-
truthful protocols for two bidders, as the second-price auction on the grand
bundle is truthful, communication-efficient, and 1/2-approximates the social
welfare, which is optimal even for non-truthful protocols [EENT19]. Thus,
to show a gap for two bidders, it is necessary to consider a “smaller” class.
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We conclude by restating that our main result is the first
separation between the approximation guarantees of poly(m)-
communication truthful and non-truthful combinatorial auc-
tions beyond two bidders for any class of valuations. Still, the
major open problem of whether poly(m)-communication de-
terministic truthful mechanisms can achieve an approximation
guarantee better than Q(y/m) remains open. An obvious direc-
tion for future work is to make further progress, extending our
result either by removing the need for a single-minded bidder,
or by achieving super-constant lower bounds for more bidders.
It is also important to investigate whether our techniques open
doors for similar results with other canonical valuation classes
(e.g., submodular valuations, arbitrary monotone valuations),
or the related setting of multi-unit auctions.

B. Related Work

1) Communication Complexity of Deterministic Truthful
Combinatorial Auctions: The most related work to ours con-
cerns the Communication Complexity of Truthful Combinato-
rial Auctions. Here, the best approximation ratios are guar-
anteed by “VCG-Based” (also called “Maximal-in-Range”)
mechanismsN[HKMT(M, DNS10, DN11, QW24], which are
a factor of ©(y/m) worse than those of the best non-truthful
protocols [LOS02, Fei09, DNS10, FV10] for the canonical
settings of Submodular, XOS, Subadditive, and Monotone. It
is plausibly conjectured that the aforementioned VCG-based
mechanisms are optimal among deterministic truthful mech-
anisms, which would imply that strong separations between
truthful and non-truthful protocols exist.

The lone prior separation is [AKSW20]. This separation
relies on a result of [Dob16b] which reduces the problem to
showing impossibilities for two-bidder simultaneous protocols;
this reduction does not extend beyond two bidders.® In contri-
bution to this line of works, we provide the first separation
for > 2 bidders and directly via the Taxation Complexity
framework [Dobl6b] in a manner that is not restricted to a
particular number of bidders. Finally, we also note that the
particular notion of truthfulness we consider is the standard
“Ex-Post Nash,” meaning that it is always a Nash equilibrium
for Bidders to follow the protocol, no matter their valuations.
A stronger notion of truthfulness asks that it is a “Dominant
Strategy” to follow the protocol, and [RST*21, DRV22]
establish separations between the achievable guarantees of
poly(m)-communication Dominant Strategy Truthful mech-
anisms and non-truthful protocols.’

2) Communication Complexity of Randomized Truthful
Combinatorial Auctions: There is also a significant line of
work developing randomized truthful combinatorial auctions.
Here, the state-of-the-art approximation guarantees are much

8[DNO14, DRV22] also prove lower bounds for simultaneous combina-
torial auctions. However, their results hold only for a large number of bidders.

9The distinction between Ex-Post Nash and Dominant-Strategy Truthful is
that the former need only incentivize each bidder to behave truthfully when the
other bidders are truthful according to some, but possibly arbitrary, valuation,
whereas the latter faces the much stiffer task of incentivizing each bidder to be
truthful even when other bidders are behaving in a bizarre manner inconsistent
with any valuation function.
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better, poly(1/loglog m) for Submodular, XOS, and Subaddi-
tive [AKS21] (building upon [AS19, Dobl16a, Dob07, KV12]),
and O(y/m) for arbitrary monotone valuations [DNS12]. The
latter is asymptotically tight, whereas it remains a major open
problem whether the former can be improved to a constant.
3) Computational Complexity of Truthful Combinatorial
Auctions: A significant body of work also considers the com-
putational complexity of truthful Combinatorial Auctions. This
line of research indeed concludes strong separations between
the constant-factor approximations achievable by poly-time
algorithms [LLNO6, MSV08, Von08] and poly-time truthful
mechanisms ~ for Submodular valuations [Dobll, DV12b,
DV12a, DV16, DVI11]. These results establish an Q(y/m)
lower bound on the approximation guarantees of randomized
poly-time truthful mechanisms. The simple posted-price mech-
anisms of the prior paragraph ‘break’ these bounds because
they use demand queries, and [CTW?20] identifies a relaxed no-
tion of “truthfulness” under which these mechanisms achieve
their guarantees in poly-time. This counterintuitive interaction
between computation and incentives further motivates the
communication model for combinatorial auctions.

II. PRELIMINARIES

1) Combinatorial auctions: Recall that in a combinatorial
auction, there are m heterogeneous items and n bidders. We
denote items by j € [m] = {1,2,...,m}, and bidders by
i € [n]. The set of allocations of items to the n bidders, i.e.,
sets (A1,...,A,) with A; C [m] and A, N A; = 0 for all
i # 7, is denoted by X.. Each bidder ¢ holds a private valuation
function v; : 2™ — R which is drawn from some set V;. The
sets V; differ depending on the auction problem considered;
we discuss different canonical cases below. We assume that
all valuations are monotone non-decreasing (v;(S) < v;(T')
for S C T) and normalized (v;(#)) = 0). The goal is to find
an allocation of items (A41,...,A,) € 3 that (approximately)
maximizes the social welfare >, vi(4;).

An auction rule, equivalently known as a direct-revelation
mechanism, is a function A : V; X --- x V,, — X x R",
that maps a valuation profile (vi,...,v,) to an outcome
((A1,...,A4,),p1,...,pn), where S; is the allocation of
player ¢ and p; is her payment. The auction rule can also be
equivalently be defined as a tuple (f,p1,...,pn), Where the
allocation is determined via the function f : V; X---xV, — X
and the payments are determined via the functions p; : V; X
-+-xV, — R for each player i € [n]. When no confusion can
arise, we do not distinguish between these two representations
of the auction rule. We denote by f;(v1,...,v,) the bundle
that bidder ¢ receives in f(v1, ..., v, ). When bidder i receives
bundle S; and is charged payment p;, bidder ¢’s utility is
v;(S;) — p;. We assume that bidders are rational and strategic,
and thus aim to maximize their utility.

We say that an auction rule is truthful (for the relevant
classes of valuations Vy,...,V),) if it satisfies the following:
for every bidder i, for every two valuations v;,v; € V; for
bidder ¢, and valuations v_; € V_; for other players,

vi(fi(0i,v-4)) = pi(vi,v—i) = vi(fi(vi,v-4)) = pi(vi, v-s).
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Intuitively, this means truthfully-reporting is always 4’s best
strategy.'® An auction rule gives an a-approximation to the
optimal welfare (for the valuation classes Vi,...,V,) if for
every valuation profile (v1,...,v,) € Vi X -+« X Vp:

n

Zvi(fi(vl, .

i=1

avn)) 2 -

2) Communication complexity and protocols: We study
the communication complexity of implementing auction rules
(which, we recall, calculate both the allocation and the pay-
ments charged). Technically, we study the n-player determinis-
tic number-in-hand blackboard communication model, where
the input known to each player ¢ is her valuation function
v; € V; and all the messages sent are visible to all the bidders.
The communication cost of a protocol is the maximum number
of bits that are written to the blackboard in the worst case.
The communication complexity of some problem, denoted
with cc(+), is the minimum communication cost of a protocol
that computes it. For clarity, we phrase our results (e.g.,) as
“for any truthful auction rule A for valuations ) achieving an
a-approximation to the optimal welfare, the communication
complexity of A is at least C”. It is well known and easy
to see that the communication complexity of a protocol is at
least the log of the number of transcripts; see e.g. [KN97].
Our lower bounds will be based on this fact.

In our main results, we discuss three-player protocols for
three-bidder auctions. We refer to these three bidders as Alice,
Bob, and Charlie, and we denote ¢ € {A, B, C} for shorthand
(so that, for example, these bidders’ valuation functions are
VA, VB, V0).

3) Valuation classes: As mentioned above, different com-
binatorial auction problems are defined by different classes of
bidder valuations; typically, one studies valuations with some
canonical property.!! Our main result concerns the following
two classes.

Definition I1.1 (Single-minded valuations). A valuation func-
tion v : 2™ — R is single-minded if there exists a weight

0Note that, following most of the algorithmic mechanism design litera-
ture, we consider a mechanism truthful so long as the underlying auction rule
is truthful, i.e., our definition is independent of the communication protocol
used to implement the mechanism. In technical jargon, this means we we
study implementations of truthful auction rules in ex-post equilibria, i.e., ex-
post incentive-compatible auction rules, as opposed to the stronger notion
of dominant-strategy incentive compatibility (where no bidder would regret
acting according the true value even if other bidders act in a way which is
inconsistent with any valuation function, see e.g. [RSTT21, DRV22]). Note
that working with a weaker notion of truthfulness makes our lower bounds
only stronger.

Eormally, specifying a class of valuation functions for use in a com-
munication protocol requires specifying a number of items, and a range /
precision of possible numerical values. Formally, one can say that a class of
valuations uses precision k if for all v in the class and all bundles S, we
have v(S) € {0} U {xz/2* | = € [22¥]}. Following most of the algorithmic
mechanism design literature, we leave k& implicit in all our communication
complexity bounds. Formally, this means that we always hide factors of
poly (k) in the communication costs of the protocols we construct, and that all
of our lower bounds / impossibility theorems hold for some k = poly(m,n).
For more discussion of the issue of representation of numbers, see [Dobl6b,
Appendix A.4.1] and our Section D.
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w € R>g and a set T C [m] such that v(S) = w-I[S D T
for all S € 20™l, where I[-] denotes the indicator function.
We denote the family of all single-minded valuation functions
over m items by SingleM = SingleM,,,.

Definition II.2 (Subadditive valuations). A valuation function
v : 2l 5 R is subadditive if, for all bundles S, T C [m], we
have v(SUT) < v(S) 4+ v(T). We denote the family of all
subadditive valuation functions over m items by SubAdd =
SubAdd,,.

SingleM is in some sense the most basic class of valuations
with economic complementarities—the bidder gets positive
utility w if and only if she gets her desired bundle 7. On
the other hand, SubAdd is often considered the most general
canonical class of valuations without complementarities—
when two bundles are combined, the bidder’s utility can
never increase beyond the sum of her value on the individual
bundles.

4) Black-box welfare approximation reduction with
O(logm) single minded bidders: In our paper, we focus on
showing a separation between the power of communication-
efficient truthful auctions and their non-truthful counterparts
for the class SubAdd U SingleM. However, the known
non-truthful protocols are defined only for subadditive
bidders. Fortunately, we can easily extend the existent
protocols to take care of single-minded bidders without loss
in the approximation guarantee, via the following black-box
reduction:

Lemma I1.3. Let P be a protocol that achieves an approx-
imation « for n bidders with valuations in the class C with
poly(m) bits. Then, there exists a protocol P’ that achieves
an approximation « for n bidders with valuations in the class
C U SingleM with poly(m,2™) bits.

Briefly, the protocol P’ proceeds by asking each bidder
whether they are single-minded, and running protocol P
separately for each of the < 2" sub-problem assuming that a
given subset of single-minded bidders are allocated. We defer
the full proof of Lemma II.3 to Section A.

5) Menus: Following the seminal work of [Dobl6b], our
approach to studying the communication complexity of truth-
ful auctions centers around the notion of bidders’ menus.
Given a truthful mechanism .4, bidder i’s menu given the
valuations v_; of the other players specifies a price pg for
every subset of items S C [m]. Thus, if player ¢ wins S, then
she pays pg; the fact that such a pg is well-defined follows
immediately from truthfulness, via Proposition I1.5 below. We
use the following notation for menus:

Definition IL.4 (Menus). For any truthful auction rule A =
(f,p1s---,pn), any player ¢, and any valuation profile v_; €
V_,, define the menu of player i as the function Menu:*(v_;) :
2[m] — R such that, for all bundles S C [m] such that there
exists a v; with f;(v;,v_;) = S, we have Menu:*(v_;)(9)
pi(vi, v—;). We often write Menu(v_;) where the mechanism
and the player presented with the menu are clear from context.
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Note that the menu is well-defined only if for every player 1,
and for every valuation profile v_; € V_; of the other players,
the price a bidder is charged can depend only on the bundle
S that player 4 receives, and cannot vary with valuation v; (so
long as player i still receives bundle S). Fortunately, this fact
follows immediately from truthfulness, goes back to at least
[Ham79], and (following [Gue81]) is known as the taxation
principle:

Proposition IL.5S (Taxation Principle). Consider a truthful
auction rule A= (f,p1,...,pn) : V1 X -+ XV, = 3 X R™.
For every bidder i € [n], every valuation profile v_; € V_,,
and every bundle S C [m], if fi(vi,v_;) = fi(vi,v_;) = S
Sfor two valuations v;, v} € V;, then p;(vi,v—;) = p; (v, v_;).

Note also that truthfulness directly implies that for all
(vi, v—_;), the bundle of items ¢ receives is (one of) the bundles
S that maximizes v;(S) — M(S), where M = Menu;(v_;).

A property of menus that will be useful is that we can as-
sume that they are be non-decreasing and normalized without
loss of generality, just like valuation functions.

Proposition IL.6 (Menu monotonicity [Dobl6b]). Let A =
(fyp1s--sDn) VI XXV — B XR™ be any deterministic
truthful auction rule. There exists some other mechanism
A = (f,phs-- -, ph) : Vi X xV, = ZxR™ with the same
allocation function f, such that for every i € [n],v_; € V_;,
the menu Menu;‘\/(v,i) for bidder i is non-decreasing, i.e.,
Menuf/(v_i)(S) < Menuf/(v_i)(T) for S C T, and nor-
malized, i.e., Menu* (v_;)(0) = 0.

6) Lower Bounds through Menus: [Dobl6b] gives several
techniques for lower bounding the communication complexity
of truthful auctions; all of these techniques hinge around
the concept of the menu. To get some intuition as to how
this works, observe that one way to implement a truthful
combinatorial auction is to select a player ¢, run an (n — 1)-
player communication protocol among the bidders other than
i to determine i’s menu M Menu,;(v_;), then query
i to determine 4’s highest-utility bundle according to M.'?
Informally, [Dobl6b] shows that something quite special
happens for truthful auctions (in sufficiently rich domains),
namely, truthful auctions can do essentially no better in terms
of communication-efficiency than this approach of explicitly
learning bidders’ menus.

The above intuition is actually formalized multiple different
ways in [Dobl6b], with a large emphasis on the Taxation
Complexity, which counts (the log of) the number of distinct
menus. We recall this technique (and the reduction to simulta-
neous protocols exploited in [AKSW?20]) when we need them
in Section V. To prove our main result, we use the following
result from [Dobl6b], which gives an even stronger lower
bound technique than Taxation Complexity:

Theorem IL.7 (Follows from [Dobl6b]). Consider any de-
terministic, truthful auction rule A for m items and n > 2

12Note that this intuitive sketch ignores potentially-complex issues of tie-
breaking; these considerations are handled in full detail in [Dobl6b].
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bidders with valuation functions in V. Suppose V 2 SubAdd.
Let cc(A) be the communication complexity of A. Then, for
any player i € [n], there exists an (n — 1)-player protocol P
with poly(cc(.A), m,n) bits of communication that computes
(the index of) the menu MenulA(v_i).

Theorem I1.7 is a direct corollary of [Dobl6b]’s Theorem
3.1, Theorem 2.3, and Proposition F.1. See the proof in
Section A.

III. BUILDING UP TO OUR MAIN RESULT

The main result of this paper is a lower bound on the
communication complexity of getting good welfare in a three-
bidder truthful auctions. In particular, we will show that
for the class of bidder valuations SubAdd U SingleM, any
truthful auction for three bidders which gets @ ~ 0.366
approximation requires exp(m) communication.

In this section, we give exposition into the proof of this
result via a simplified, but ultimately faulty, version of the
proof which conveys much of the ideas (and how our real
proof overcomes the faults of this expository version).

A. Failed Proof Attempt

To give exposition into our proof, we first give a simpler
“failed attempt”. In this “failed attempt”, there will be a gap in
the proof (as we explain when the gap appears); we will also
gloss over techniques from previous works and claim without
proof that a certain constructions exist. In our actual proof, we
will correct the gap, and also provide full details and proofs
for all constructions.

1) (Failed) proof outline: Let A be a truthful auctions
for SubAdd U SingleM with three-bidder and m items. By
Theorem I1.7, the communication complexity of A is at most
(a polynomial function of) the communication complexity of
determining a bidder’s menu. Thus, our goal is to show that if
A gets a good approximation to the optimal welfare, then the
communication complexity of determining a bidder’s menu is
exp(m).

Our approach is inspired by the classical rectangle argument
in communication complexity. This argument proves lower
bounds on communication complexity by constructing a large
set of inputs (the “fooling set”), considering any pair of inputs
in the fooling set, and showing that every protocol computing a
function f must use a different transcript for those two inputs.
However, in order to make our argument work, it turns out
we need to extend this approach to consider 4-tuples of inputs
rather than pairs.

After constructing the valuations used in our hard instance,
we lower bound the communication complexity of Bob and
Charlie calculating Alice’s menu. Our (failed) proof outline
for this proceeds in two steps.

o First, we show that, if a communication-efficient and
truthful auction rule induces the same menu on a 4-tuple
of “sufficiently different” inputs, then the auction cannot
get a good approximation to the optimal welfare. If such
a 4-tuple uses the same menu, we call this a “bad” 4-
tuple; for a precise definition, see below. This step uses

direct arguments about our hard instance, and about the
welfare obtainable under different menus and different
possible valuations of Alice.

« Second, we consider any protocol for calculating Alice’s
menu which avoids all bad 4-tuples, and show that all
such protocols must have high communication. This step
is a direct, simple lemma in communication complexity.

Combining these two steps finishes the (failed) proof.

2) Description of the Class of Valuations: We begin by
defining the class of subadditive valuation functions that our
simplified construction uses. This construction is based on
exponentially many overlapping 4-cell partitions of all of the
items; say these partitions are denoted G; 1 UG; 2UG; 3UG; 4 =
[m] for many different values of i, say ¢ € [K] for some
large K. The key property of the construction is that, for each
way to select one cell of each partition, there is a valuation
in this class who, for each partition ¢ simultaneously, wants
only elements of the selected cell of partition . Intuitively,
[EFNT19] construct valuations like this in order to hide an
allocation with good welfare by reducing it to an equality
problem—high welfare can be achieved among two bidders
with valuations in this class if and only if there is some
partition on which the bidders want different items.

Formally, for some family of partitions
{{gi,l,gi,z,gm,gM}}i_j, we define a class of valuations V
such that there exists a constant ¢ such that for every pair of
i € [K] and j € [4], there exists a valuation v € V such that
v(G; ;) = £—1and v([m]\G; ;) = 1. We use strings b € [4]%
to denote ways to pick a cell of each partition, where bl[i]
denotes the ith character in the string and b[i] = j € [4]
denotes selecting cell §; ; from partition <.

Formally, the class of valuation functions we consider is
given by the following:

Proposition IIL.1. Fix any constant £. For all sufficiently large
m, and for some K = Q(exp(m)), there exists:
1) a family of 4-cell partitions {G;; | i € [K],j € [4]}
of [m] (i.e, for all i, we have \J;ciy Giy = [m] and
Gi,j NG for all j # j'), and
2) a family of subadditive valuation functions vy : 2™ —
R indexed by strings b € [4]%, such that for all b €
[4]% and all i € [K]:
a) vp([m]) = ¢,
b) Ub(gi’bm) ={— 1, and
¢) vp([m]\ Gippy) = L.

We name this class Vy.cen.

For an illustration of the construction, see Figure 1. To
prove this proposition, one can use the main construction of
[EFNT19], along with an argument using the probabilistic
method. We will later specify and formally prove an even
stronger construction; for now, we assert this proposition
without proof.

[EFNT19] use a construction analogous to the valuations
in Proposition III.1 to lower bound the communication com-
plexity of maximizing welfare with two subadditive bidders.
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or each 4-cell partition G;
>parately:

‘here is one cell of the
artition, namely G;pj,
bidder has
very high value, i.e.,

b(Gipp) = € — 1.

‘here  the

‘he bidder gets very low
alue from all other items,

e, vp([m]\ Gipp) = 1.

=l

Fig. 1: Illustration of valuations in Proposition III.1.

Theorem IIL.2 ([ 1. For any communication protocol
‘P that outputs an allocation that gives approximation better
than % for two bidders with valuations in Ve, the commu-
nication cost of P is exp(m) bits.

For deterministic protocols (our focus), one can prove
this result directly by reducing to the equality problem on
the strings b; for details and further results for randomized
protocols (which we do not need), see [ ]. Note that
Theorem II1.2 shows hardness even for non-truthful protocols,
and not just for truthful auction rules.

3) (Failed proof that) getting good welfare implies “no
bad 4-tuple”: We now proceed to argue that “sufficiently
different” elements of the valuation family given by Proposi-
tion III.1 cannot possibly present the same menu in a truthful,
communication-efficient and approximately optimal auction.
Note, however, that this part of the proof has a gap, as we
explain when this gap occurs, and later correct in the full
version of the proof. Recall that, when we discuss three-bidder
auctions, we refer to the three bidders as Alice, Bob, and
Charlie (abbreviated A, B, and C).

We now describe the notion of “bad 4-tuples”. For some
fixed auction rule, we say that a 4-tuple (by,bs,bs, by) of
strings in [4)X is bad if it satisfies the following two properties:

o The strings are all pairwise different on some single
index i, i.e., we have {by[i.], bali.], bs[is], balix]} =
{1,2,3,4}.

e« Bob and Charlie present the same menu to Alice
when their valuations are (vp,,vp,) Or when they are
(Ub3, ’Ub4), i.e., MenuA(Ubl, ’Ub2) = MenuA(Ubg, Ub4).

We will next give a false proof that any communication-

efficient auction rule achieving a good welfare approximation
must avoid all bad 4-tuples. Intuitively, the key will be to show
that a bad 4-tuple implies that the welfare is sometimes bad,
by considering Alice with a single-minded valuation such that
the optimal allocation is very different on (vp, , vp,) versus on
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(Ubs, Vb, ). The gap in the proof will come from the way we
apply Theorem III.2, as we explain below.

(Failed) Proposition IIL.3. Consider an auction rule A
which is truthful for three bidders with valuations in
SubAdd U SingleM, has a poly(m)-bit communication pro-
tocol, and gets a (/3 — 1)/2 + & =~ 0.366 + & approx-
imation to the optimal welfare for some constant & > 0.
Now, suppose bi,ba,bs, by € [4% and i, € [K] are
such that {b1[i.], bali], bs[is], ba[is]} = {1,2,3,4}. Then,
Menu’ (vb, , b, ) # Menu*y (vp,, vb, )-

(Failed) Proof.. Fix a truthful auction rule A, and four
vectors by, by, b3, by € [4}K such that {bl[i*],bg[i*],
bslis],balis]} = {1,2,3,4}. Without loss of generality,
assume that b;[i*] = j for j € [4]. Informally speaking,
what this means is that for the “special” partition G; ; U
Gi,2UGi, 3UG;, 4 = [m], we have that for j = 1,...,4,
valuation vy, “loves” set G;, ; and “hates” the rest of
the items, [m] \ G;. ;. Now, suppose for contradiction that
Menu’ (vp, , Ub,) = Menu’ (vp,, vp, ), and denote this menu
with M for simplicity.

Consider the case when Alice has a single-minded valuation
v such that she values the set S = G; | UG;, » with some
value x (and thus Alice values all sets containing S at z as
well, and all sets not containing S at 0). We will tune the
precise value of x later; for now, suppose only that = < ¢, and
that M (S) # = (which is without loss of generality, since we
can always slightly perturb the value of x after fixing A and
b; forj=1,...,4).

Now, we examine two cases based on whether the mecha-
nism A allocates S to Alice or not.

o Suppose M(S) < z. In this case, Alice must receive (a
bundle containing) S = G;, 1 UG;, » whenever the menu
is M. Suppose that Bob’s and Charlie’s valuations are
(Ubwvbz)'

By the definition of vy, and the fact that by[i*], ba[i*] €
{1, 2}, we have that vy, ([m]\S), vb, ([m]\S) < 1. Thus,
A gets welfare at most z + 2.

On the other hand, consider the allocation that gives
nothing to Alice, gives G;_ 1 to Bob, and gives G;_ o to
Charlie. The welfare of this allocation is 2(¢ — 1). Thus,
the welfare approximation ratio of A in this case is at
most (z 4+ 2)/(2(¢ — 1)).

Suppose M (S) > x. In this case, Alice cannot receive
a bundle containing S = G;, 1 U ;. o when the menu
is M. Suppose that Bob’s and Charlie’s valuations are
(Ub37vb4)'

False Argument: Now, one may intuitively think that
since Alice gets no items in this case, we are just
solving the allocation problem of awarding items between
Bob and Charlie, who are two bidders with valuations
drawn from the class of valuations specified in Proposi-
tion III.1. On these instances, giving G, 3 to Bob and
Gi..4 to Charlie gets welfare 2(¢/ — 1). However, infu-
itively, by Theorem III.2, any communication-efficient
auction rule should sometimes get welfare at most ¢,
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reflecting the (1/2)-approximation hardness result of
[EFNT19]. This argument is not actually correct, because
the communication-efficient protocol for A can actually
use information from Alice’s valuation to focus on the
specific partition G;_.'> However, to illustrate the idea,
let us pretend that this is true for the remainder of the
proof, and that A gets welfare at most ¢ in this case.
On the other hand, consider the allocation that gives S
to Alice, gives G; 3 to Bob, and gives G; 4 to Charlie.
The welfare of this allocation is = 4+ 2(¢ — 1), and thus
the optimal welfare on this instance is at least this large.
Thus, the welfare approximation ratio in this case is at
most £/ (z +2(£ — 1)).

Therefore, under our assumption that the menus for Alice with

respect to (vp,, Ub,) and (vb,,vp,) are identical, the welfare

approximation ratio of .4 can be at most

ma r+2 y4
X .
206—-1)" z+2(£—-1)
Taking © = (\/§ — 1), the ratio above converges to \/32_1 ~

14

.366 as { — oo. O

4) “No bad 4-tuple” implies high communication: (Failed)
Proposition II1.3 implies in particular that if the auction rule
has any bad 4-tuples, then the auction cannot get a good
approximation to the optimal welfare. We will show next
that for any protocol which avoids all bad 4-tuples, the
communication cost of the protocol must be high. For clarity
and generality, we state this part of the argument for general
communication problems.

Lemma III.4 (4-tuple rectangle argument). For a function
[T xT =R, letS={vp}pepjx €T be a set of distinct
inputs to f parameterized by a K-length string b € [4]%.
Suppose that for every 4-tuple (by, by, bz, by) € S* that dif-
fers on some index i € [K] (i.e., {b1[i], ba[i], bs[i], ba[i]} =
{1,2,3,4}), we have f(vb,,Vb,) # f(Ubs,Vb,). Then, the
communication complexity of f is at least

log, (4% /3%) = Q(K).

Proof. Consider any communication protocol for f, and for
any inputs vg,vc € T, let 7(vg,vc) be the transcript
of the protocol on inputs vp,vc. Recall that, as in stan-
dard rectangle arguments, if f(vp,vc) # f(vp,vp) then
T(vg,ve) # T(V,v5). Also, if T(vp,ve) = 7(vg, v) then
T(vg,v0) = 7(vB,ve) = T(vE,v0).

13put another way, Theorem II1.2 directly implies the following: if a poly-
communication auction rule never allocates any items to Alice, then there must
exist some inputs where the auction rule gets welfare ¢, while the optimal
welfare Bob and Charlie could get amongst themselves is at least 2(¢ —
1). Completing this proof would require a stronger property: for any poly-
communication auction rule, there exists some case where the auction rule
gets welfare £, but the optimal total welfare is in fact z + 2(¢ — 1).

4This specific value of x arises from assuming & = p€ for some p €
(0,1), then making the two terms in the above maximum equal to each other
while ignoring lower-order factors. In more detail, assuming that p¢/(2¢) =
£/ (pt+2¢) for p > 0 implies that p>+2p—2 = 0, and thus that p = /3 —1.
Then, the above maximum goes to p/2 as £ — co.

393

To show our lower bound, we focus on the transcripts used
when both players have the same input in S. For any transcript
T of the protocol, let Z(T) C S denote the (possibly empty)
set of all vp € S such that the transcript given the input
(vb,vp) is T.

We will now show that for all transcripts 7', we have
|Z(T)| < 3%. For that, we claim that for every transcript 7" and
for every i € [K]|, we have {b[i] | b e I(T)} # {1,2,3,4}.
To see this, assume for contradiction that there is such a
transcript 7' and an index ¢ such that T(vbj,vbj) = T for
each j = 1,...,4. Then, by a standard rectangle argument, we
have T' = 7(Vb,, Vb, ) = T(Ubs, Ub, ) as well. However, by the
assumption of the lemma, we have f(vp,,Vb,) Z f(Vbss Vb, )s
which is a contradiction. Thus, since the string corresponding
to elements in Z(7) can take at most 3 values on each index
i, we know that |Z(T)| < 3%.

Now, this implies that any protocol correctly computing f
requires at least |S|/3% = 4% /3% distinct transcripts in total.
Thus, the communication complexity of the protocol has to be
Q(K).

O

If the failed Proposition III.3 had actually been true, then
combining it with Lemma IIL.4 would immediately imply
that the communication complexity of the two-player function
f = Menua(+,-) is Q(K) = exp(m). Furthermore, by the
techniques of [Dob16b] recalled in our Theorem I1.7, we could
then conclude that the auction rule itself has communication
complexity at least exp(m).

B. Correcting the gap in this proof

We now briefly discuss the main idea we use below to
correct the gap in the failed proof of Proposition III.3. For
an argument like the above to work, we need to have a
construction such that it will not only be hard (communication-
wise) to decide whether we want to allocate to Alice or
not, but even conditional on our decision regarding Alice, it
will be communication-hard for us to find a “good enough”
partition of the items of Bob and Charlie. For that, we create
a two-layered construction, which we describe in detail in
Section IV.!"5 This two-layered construction is more involved
that the one discussed in Section III-A2 and Theorem II1.2,
but its proof is a straightforward extension of the techniques
used, i.e., those of [EFNT19].

After making this adjustment, the (false) Proposition III.3
remains nearly identical in how we argue about the welfare
achieved by the auction with a “bad 4-tuple”. However, the
definition of a “bad 4-tuple” becomes considerably more
involved. For instance, a “bad 4-tuple” is defined by a con-
dition both about protocols for calculating the menu, and
about protocols for calculating the auction rule. This technical
fact precludes using a clean and self-contained “generalized

15Note that we do not overrule that it is possible to prove Theorem IV.1
using the construction specified in this failed attempt, i.e., we do not know
whether the exists a poly(m)-communication truthful auction for the classes
of valuations considered above.
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rectangle argument” such as Lemma I11.4; still, our transcript-
counting arguments follow much of the intuition provided by
Lemma II1.4. For the full argument, see Section IV.

IV. MAIN RESULT: A SEPARATION FOR THREE BIDDERS

‘We now state and prove the main results of our paper: a sep-
aration for three-bidder truthful auction vs. non-truthful proto-
cols. First, we state the lower bound for poly-communication
truthful auctions with bidders in SubAdd U SingleM:

Theorem IV.1. Every deterministic truthful mechanism A for
three bidders with valuations in SubAdd,, U SingleM,, that

guarantees a (‘/5’2_1 + 1ngm)-appr(vcimattion to the optimal

social welfare requires exp (Q(

£/ M
logm

) bits of communication.

We prove this lower bound below. To establish a sepa-
ration, we must also give an upper bound for non-truthful
protocols. We prove this next, i.e., we construct a poly(m)-
communication protocol getting a good welfare approxima-
tion. This protocol is a simple extension of a result of [Fei09]:

Theorem IV.2 ([Fei09]). For any number of bidders n and
items m, there is a deterministic, poly(m,n)-communication
(non-truthful) protocol that guarantees a %—appmximation to
the optimal social welfare for bidders with valuations in
SubAdd,,.

Applying the reduction in Lemma II.3 to the communication
efficient protocol in Theorem IV.2 gives the following:

Corollary IV.3. For any number of bidders n = O(logm),
there is a deterministic poly (m)-communication (non-truthful)
protocol that guarantees a %—appmximation to the optimal
social welfare for bidders with valuations in SubAdd,, U
SingleM, ..

Together, Theorem IV.1 and Corollary IV.3 give the main
result of our paper: truthful mechanisms are provably less pow-
erful than non-truthful protocols for bidders with valuations in
SubAddUSingleM. Observe that the upper bound, and thus the
separation, holds for every constant n > 3, and indeed even
for every number of bidders that is logarithmic in the number
of items.'®

We are now ready to prove Theorem IV.1; this proof
occupies the remainder of Section IV.

A. Proof Outline

As discussed in Section III, our proof proceeds as follows.
To begin, we construct a class of subadditive valuations, gen-
eralizing [EFN'19] and our construction in Proposition III.1.
Then, the proof of our communication lower bound proceeds
in two major steps. First, we show that getting a good welfare

160bserve that a trivial second-price auction on the grand bundle among
the three bidders in SubAdd U SingleM that gives at least % of the optimal
welfare, is truthful and communication-efficient, whilst by Theorem IV.1, no
truthful and communication efficient has approximation better than ~ 0.366.
Hence, there remains a small gap in understanding the achievable approxima-
tion ratio for truthful mechanisms in this class.
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approximation implies that the auction must always avoid
situations we term “bad 4-tuples” (see below for a definition).
Second, we show that any protocol which always avoids bad
4-tuples requires high communication.

B. Description of the class of valuations

Our construction is a significant generalization the construc-
tion of [EFNT19]. Our goal is to have a set of subadditive
valuations of two bidders, whom we name Bob and Charlie,
and a collection of subsets G = {G1,...,Gy} C 2" for a
large enough k such that for each i € [k]:

(1) For every i € [k], we can find valuations of Bob and
Charlie that jointly have high value for G; and low value
for G;. Alternatively, we can find valuations of Bob and
Charlie that have low value for G; and high value for G;.

(2) For every i € [k] and S € {G;,G;}, even if we
know that Bob and Charlie have high joint value for
S, dividing the items in S among Bob and Charlie in
an approximately optimal way takes exponentially-many
bits of communication.

The construction in Proposition III.1 meets condition (1).!”
For condition (2) to hold, we build the following two-layered
collection of subsets:

Definition Iv4. A k-width-family
(g, {Hgt)}te{o,l}ﬂie[k]) of [m] consists
collections G, ’Hg()), e ,7-{,(0), ’Hgl), e ,H,(Cl) c 2 of
size k each, where we denote G {G1,...,Gi} and
Hl(f) = {Hl(tl), ceey Hl(tk)} for each ¢t € {0,1},4 € [k] such that
for all i,j € [k], H) C G; and H{}) C G;.

For every k-width-family F, a vector b € {0,1}*, and a
k x k binary matrix C € {0, 1}***, denote with F[b, C] the
collection of k? subsets {.S; ;}; je(x], Where for each i, j € [k],

GiuHY bli] = 0, Cli][j] = 0,
¢ _)GU@N\EY) bl =0.Clil] =1,
Y GuRY bli] = 1,C[i][5] = 0,

GiU(G:\ HY) bli]=1,Cl[j] =1

Recall the following property for a collection (as defined
in [EFN*19]):

Definition IV.5. A collection S of subsets in [m] is called
C-sparse if for all Ty, Ty, ..., Ty—y € S, Us—; Tj # [m].

In words, an /-sparse collection requires at least £ elements
to cover all of [m]. We will now use ¢-sparseness to define an-
other property (mildly generalizing the corresponding property
in [EFNT19]):

7In more detail, Proposition III.1 constructs a large set of 4-cell partitions
{{Gi,1,Gi,2,Gi3,Gi,a} | 4 € [k]}, and a set of valuations of Bob and
Charlie, such that the set family {G; 1 UG; 2 | ¢ € [k]} meets condition (1)
above. Our construction extends the one in Proposition III.1 by replacing the
index j € [4] with another family of sets {H; | j € [k]} in order to meet
condition (2).
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Definition IV.6. A k-width-family is ¢-independent if for all
b€ {0,1}*,C € {0,1}*** the collection F[b, C] is {-sparse.

For exposition, we write an example of a 2-independent 2-
width-family in Section C. By using the probabilistic method,
we show that there exists such a family for large enough values
of k and ¢:

Lemma IV.7. For sufficiently large m, there exists an (-
independent k-width-family, where { = ilogm and k =

o (202

logm

The proof of Lemma IV.7 is in Section A; the proof uses
a (somewhat involved, but standard) application of the proba-
bilistic method. In accordance with [EFNT19], we translate ¢-
sparse collections into modified set-cover valuations, denoted
as vs( ). This translation is exactly as in [EFNT19], but
we include it for completeness. Given an ¢-sparse collection
S ={51,...,84}, for every X C M:

Us(X)
_{mdyquaxcug&}ﬁxcuww

max{{, d}

In words, os(X) is the minimal number of subsets of S that
cover X, if it exists, and otherwise it is a “large” number. We
now use og to define a valuation function v4 5. For every subset
of items X C M, if ¢s(X) < 5, set v5(X) = 05(X) and
v5(X) = {—0s(X). For every subset that remains undefined,
let v5(X) = £. In principle, it is possible that v} is not well
defined. However [EFNT19] shows that:

otherwise.

Lemma IV.8 ([EFNT19]). For any {-sparse collection S and
o5 ():

1) v5(+) is well defined.

2) vs(-) is monotone, normalized and subadditive.

3) For every S C [m], v5(S) +v5(S) = £

4) For every S € S, v5(S) =1 and v5(S) = ¢ — 1.

We note one counter-intuitive aspect of the valuations
defined by S: the valuation vg has “low” value for the bundles
S that are in the collection S.

We are now ready to define the class of valuations for which
we show hardness. Given an /-independent k-width-family

= (g,{HEt)}te{O,l},ie[kg) and denote G = {G1,..., Gy}
and Hgt) = {Hz‘(.tl)v . .7Hi<7tk} for each ¢t € {0,1},4 € [k], we

define the following sub-class of subadditive valuations:

SubAdd” = {”fbc ) 1 be{0,1}%,C € {0,1}"*}
C SubAdd,,

The following claim lists several properties of the valuation
functions in SubAdd™*, which we will use in Section IV-C:

Claim IV.9. Fix a vector b € {0,1}* and a matrix C €
{0,1}***, and let v(-) be the valuation parameterized by the
collection F|b, C|. Then, for every pair of indices i,j € [k]:

1) If bfi] = 0, then v(G;) = 1.
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2) If bli] = 0 and Cl[i][j] = 0, then v(G; \ Hfg)) =(-1
3) If bli] = 0 and CIi][j] = 1, then v(H,L-(ﬁo)) =(-1
4) If bli] = 1 and C[i][j] = 0, then v(G; \ H.) = £ - 1.
5) If bli] = 1 and Cli][j] = 1, then v(H") = ¢ - 1.

We skip the proof of Claim IV.9, as it directly follows from
the construction and Lemma IV.8.

The class of single-minded valuations SingleM™ C
SingleM,,, satisfies that each valuation is parameterized by an
index i € [k] and 6 € {0, 1} such that:

{(\/§1)€+6 G C X,

0
C. Getting good welfare implies “no bad 4-tuple”

VX C M, v;4s(X) €]

otherwise.

Now, fix a truthful communication-efficient three-player
mechanism A that gives an approximation strictly better than
*[2 1 + when all the bidders’ valuation classes are equal to
SubAddm U SingleM, ,, where £ = 1 7 log m. For convenience,
we name the bidders Ahce Bob and Charlie.

The auction rule A defines two other communication prob-
lems which we reason about and use to define a notion of “bad
4-tuples”. These two communication problems are to calculate
the social welfare of A and to calculate the menu in A. Let
SW(va,vp,vc) be the communication problem between all
three bidders that computes the social welfare that A gets with
valuations (v4,vp,vc), and denote the transcript function
of its most efficient protocol by 7sw(va,vp,ve). Note that
cc(SW) < cc(A) + poly(m).'® Also, let P(vp,vc) be the
communication problem between Bob and Charlie that finds
the menu Menu 4 (vp, ve) for Alice defined by the auction A,
and denote the transcript function of its most efficient protocol
by 7p(vg,vo).

We now define 4-bad tuples and show that they cannot exist
when A gets a good approximation to the optimal welfare.

Proposition IV.10. Ler vV 0@ 0B ov@ pe valuations in
SubAdd*, parameterized by the vectors b(l), b(2)7 b(g), b
{0,1}* and the matrices c.c?® c® cW e {0, 1}Fxk
respectively. We say that {(b"), C(j))}je[4] is a bad 4-tuple
if there exist i*,j5,j3 € |k| such that the five following
conditions hold simultaneously:
1) b<1>[ *] = b@[i*] = 0 and bP[i*] = b(4>[z | =
2) Vi ][h]*OandCz)[ i) =
3) €W[i*[j3] = 0 and CV[i*][j3] = 1.
4) 7p(vM,0D) = 7@ @) = Tp(v(3),v(3)) —
7p(v™®, @), ie. the transcript of the protocol that
computes the menu is identical for all these pairs.
5) Tsw(vi*70,1}(3),$(3)) = Tsw(vi*70,v(4),m(4)), i.e. the
transcript of the protocol that computes the social welfare
of A is identical for both of these valuation profiles."”

18This follows because one can always calculate SW by simply calcu-
lating A, then having each bidder send their value for the set of items they
receive (and we assume that bidders’ valuations use precision poly(m), as
discussed in Section II).

19We remind that v;« o is the single-minded valuation defined in Equa-
tion 1.

Authorized licensed use limited to: Princeton University. Downloaded on March 11,2025 at 01:26:01 UTC from IEEE Xplore. Restrictions apply.



Then, there cannot exist any bad 4-tuples (i.e., for all such
{(BY, C(J))}jem, there cannot exist i*, j5, j3 € [k| such that
all five above conditions hold).

Informally, this means that for every “sufficiently different”
elements of the valuation family SubAdd*, their transcript
either in the protocol of menu computation of A or the
protocol that computes the welfare of A should differ.

Proof of Proposition 1V.10. We will show that if all conditions
hold simultaneously for some indices *, j7, j5, then the ap-
proximation ratio must be strictly smaller than % + %,
which leads to a contradiction. We do that by showing
that in particular, the mechanism outputs a bad approxi-
mation for one of the valuation profiles (v;-1,v™), v(?)
or (v 9,0, v®). Note that by condition 4 and by the
rectangle argument, 7p(v(M),v?) = 7p(w® @), so in
particular the menus presented to Alice given the valuations
(M, v@) and (v®,v™) are identical. Denote this menu
with My Menu? (0™, v@) = Menuy (v®),v®) and
recall that M4 (S) is the price in the menu for any bundle
S C [m]. Note that by Proposition I1.6, we can assume that
all prices are non-negative. We complete the proof by case
analysis.

Note that if M4 (G+) < (\/3— 1)¢, then given the valuation
profile (vi« 1,0, v(2)), Alice wins G;- because all prices
are non-negative, so this is the only valuable bundle for her.
However, since both valuations 'u(l),v(z) are parameterized
by b, b such that bV [i*] = b@[i*], by Property 1 in
Claim IV.9, we have that v()(Gjx) = v (Gy) = 1. As
a result, the total welfare of the allocation of A is at most
((v/3=1)£+ 1) + 2. However, the optimal welfare is at least

2(¢ — 1), obtained by giving G- \H(O) - to Bob and H; O)j
to Charlie (according to Property 2 and 3 of Claim IV.9). '

However, if Ma(Gix) > (V3 — 1)¢, we claim it still
implies a failure on another valuation profile (vi o, v, v*)).
For that, we analyze the output of the mechanism .4 on
(v 0,03, 03)).

Since the price of G;« that Bob and Charlie present to
Alice is is M4 (G;-) given (v®,v(3)), she does not win G-,
resulting a welfare of zero. In addition, since Bob and Charlie’s
valuations are identical, the total welfare from them is at most
£ by Condition 3 of Lemma IV.8. Therefore, the social welfare
that A obtains on (v;« o, v®,v(®) is at most £. Recall that
by assumption, (v g,v v3) and (vi- o, v™®,v®)) have
the same transcript in the protocol that computes the social
welfare. By the rectangle argument, (v;~ o, @), v(4)) must also
have the same transcript, and thus the welfare of the allocation
from A in this case is also at most /. However, the optimal
welfare from (v o, v, ™)) is at least (v/3—1)¢+2(¢—1),
obtained by giving G« to Alice, G- \Hzl)j2 to Bob, and
A, to Charlie.

Thus, the best possible approximation ratio of the mecha-
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nism A is at most:

max{((\/ﬁ—1)é+1)+2 ¢

5}

20-1) "(V3-1)+2(¢
3—1 3
< V3 + —. (for £ > 3)
2 L
By that, we get a contradiction, which completes the proof.
O

D. “No bad 4-tuple” implies high communication

We are now ready to finalize the proof of Theorem IV.I.
Note that by Proposition IV.10, a communication-efficient
truthful mechanism with approximation ratio no worse than
‘[ Ly Z cannot have a “bad 4-tuple”. We will now show

(l<fm) bits of communication is necessary for the mecha-
nism A to avoid such “bad 4-tuples”.

For any fixed transcript 7" for P, let C(T) be the set of pairs
(b,C) € {0,1}* x {0,1}*** such that P uses transcript T
on (’Ub,c,vb,c), i.e., C(T) = {(b, C) : TP('Ub,vab,C) = T}
For any index ¢ € [k] and bit z € {0, 1}, we further define for
each transcript the following subsets of length-k bit-vectors:

C;..(T) = {Cl[i] : (b,C) € C(T),bli] = 2} C {0,1}*.

In other words, for every transcript 7' of the the menu
computation protocol P, the subset C; ,(T) contains for every
(b,C) € C(T), the i’th rows of C only for cases in which
bli] = z. Note that C; ,(T") may be empty.

We now claim that for every transcript 7' of the menu
computation protocol, and for every index %, it holds that
|Cio(T)| < 1 or |C;1(T)] < 2°¢(SW), The reason for it is
that if the converse holds, i.e. there exists an index ¢* such
that both |C- o(T)| > 1 and |Cj- 1 (T)| > 2°°(SW) then there
is a bad 4-tuple.?”

Note that |C;o(T)| < 1 or |C;1(T)| < 2°¢(5™) implies
that:

|Cio(T)| + |Ci 1 (T)] < 2% 4 2095, )

The explanation for it is by a simple case analysis. If

|Ci0(T)] <1, then:
|Ci0(T)| 4 |Cia (T)] < 14 2F < 2¢¢(SW) 4 9k,
If |C;1(T)| < 2°¢(), then similarly:

|Ci0(T)] + |Cia (T)] < 28 4 265,

By definition and by plugging in Equation 2, we have that:

T)| < T (1Cio(T)|+]Cia(T)]) < (2542 (3)
i€[k]

20To see why, observe that by the pigeonhole principle, if both
|Cix o(T)| and [Cy« 1(T)| are greater than 1, then there exist
®W,cM)y, @, c®), @, c®), (b<4> C™) that satisfy Property
1, 2, 3, and 4 of Proposition IV.10 for this 7* and for some 57, j3, since they
all share transcript T". Furthermore, the fact that |C;« 1 (T')] is greater than the
number of transcripts for the protocol that computes the social welfare, implies
that there are two vectors in C;« 1 (7T') that also share the same transcript for
the protocol SW.
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Denote with 7 the subset of transcripts in the menu protocol,
ie. T ={r(vp,vc) : (vB,vc) € SubAdd™)}. Observe that:

2 = N o(T)

TeT 2
(the total number of pairs (b, C) is 28+F")

<|T|max C(T)
TeT

< 2¢¢(P) . (9k 4 gec(SW)k, (by Equation 3)

Therefore, we have:

2cc(79) S 2k+;€2
- (2k+2cc(SW))k

21+k k k
= (g zemm) = )@

To conclude the proof, it suffices to show that {—s=cswi=r >
B for some constant B > 1. We can show this as follows.

Consider we use an {-independent and k-width family with
2 /m
k = elsm [ = ilog m, which is guaranteed to exist by

Lemma IV.7. Let d = cc(SW) — cc(A). We remind that d is
at most polynomial in m. Observe that if cc(A) > k—d — 1,
then cc(A) exp(Q(f%—‘,ﬁ’Z)), and we are done. Thus, we

can assume that cc(A) < k — d — 1, which implies that
cc(SW) < k — 1. Therefore, a simple computation gives that:

2
1+ 9cc(SW)—k

2 4
1+ 9cc(SW)—k = g (5)
Combining Equation 4 and Equation 5 gives that

cc(P)
that poly(cc(A),m) > klog 3, so cc(A) > B This
completes the proof that cc(.A) is exponentially high.

> klog%. Thus, applying Theorem II.7 gives

Remark IV.11. A discerning reader might have observed that
in the construction utilized in the proof of Theorem IV.1, Al-
ice’s valuation set comprises solely single-minded valuations,
whereas Bob’s and Charlie’s valuation sets consist exclusively
of subadditive valuations. Consequently, one might be inclined
to argue that we demonstrate an impossibility for the scenario
featuring one single-minded bidder and two subadditive bid-
ders, i.e., for the valuation class SingleM x SubAdd x SubAdd.
However, this assertion is not accurate, and the lower bound
and gap that we show are for the class (SingleM U SubAdd)3.
The rationale behind this lies in the taxation framework
which, as we restate in Theorem I1.7, necessitates all bidders’
valuation classes to be “sufficiently rich” (in this case, the
classes must include subadditive valuations).

V. SUPPLEMENTAL RESULTS: LOWER BOUNDS ON
Two-BIDDER MECHANISMS

In this section, we give an additional impossibility result
for two bidders which holds when bidders might be single-
minded. In fact, the results of this section served as stepping
stones towards our approach in Sections III and IV.

In contrast to the three-bidder hardness in Sections III
and IV that requires showing hardness of computing the
menu which was more involved, here we use the taxation
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framework in a more direct way. We do not need to show
that computing the menu is hard.?! We prove our impossibility
result by showing that the number of menus in every truthful
auction has to be high. Interestingly, our bound can also
be achieved by arguing about the hardness of simultaneous
protocols. We believe that due to the relative simplicity of
the construction, this section serves as a way to learn about
the structure of mechanisms for bidders both with and without
complementarities. We opted to defer this discussion until this
section to keep Sections III and IV self-contained.

We show that for two bidders with valuations in XOS U
SingleM, any deterministic truthful mechanism that gives
an approximation asymptotically better than @ requires
exponential communication.Formally:

Theorem V.1. Every deterministic truthful mechanism A for
two bidders with valuations in XOS,, U SingleM,, that
V51 Sm_%)—a roximation to the optimal
2 °)-app P
social welfare requires exp(2(m3)) bits of communication.

guarantees a (

Note that the deterministic protocol that %—approximates the
optimal welfare for XOS [Fei09, DNS10] can be generalized
to work for XOS U SingleM by using Lemma II.3. Therefore,
Theorem V.7 indeed implies a separation.

The proof of Theorem V.7 is based on a direct taxation
argument, i.e. we show that the number of menus of every
truthful mechanism that gives a “good” approximation has to
be doubly exponential in m. To the best of our knowledge,
this is not easy to do with the lower bound construction of
[AKSW20].22 We begin by describing the class of valuations
that we use to show the separation (Section V-A). We then
prove Theorem V.7 in Section V-B. In Section V-C, we
explore the challenges associated with directly generalizing
Theorem V.7 to a scenario involving three bidders. By that,
we illustrate the challenges encountered when proving Theo-
rem IV.1.

En route, we explore the structure of payments of approxi-
mately optimal and truthful mechanisms, showing that as the
approximation guarantee of a mechanism goes to 1, then its
payments approach VCG payments. We state this formally in
Section B.

A. Description of the Class of Valuations
Recall the definition of XOS valuations:

Definition V.2 (XOS valuations). A valuation function v :
2[m] 5 R is XOS if there exists a collection of additive clauses
C C R™ such that for all S € 2["], v(S) = maxcee Y ;e Cin
We denote the family of all XOS valuation functions over m
items by XOS = XOS,,,.

21 Actually, there are only two players, so computing the menu is a one
player problem which cannot possibly be hard.

2Theorem V.7 can also be proven by showing a lower bound on
simultaneous protocols, which is the same argument used in [AKSW20]. See
Remark V.9.
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An X OS valuation is binary if all its clauses are 0/1 valued,
i.e., for every ¢ € C, ¢; € {0,1}. Equivalently, binary XOS
valuations can be defined by a collection of subsets of [m]:

Definition V.3 (Binary XOS valuations). A valuation function
v : 2 — R is binary XOS if there exists a collection G C
201 such that v(S) = maxgeg{|S N G|} for all S € 2™,
Denote the family of all binary XOS valuation functions over
m items by BXOS = BXOS,,, ¢ X0S,,.

To prove Theorem V.1, we will consider a special subset
of XOS valuations, which takes sets from a collection that
satisfies the average intersection property:

Definition V.4. A collection G C 2[™! satisfies the b-average
intersection property for some b € (0,1) if every G € G is of
size bm, and for every Gy # G2 € G, |G1 N Go| < 2b°m.

By the probabilistic method, such collections always exist
and can be made exponentially large. Formally:

Lemma V.5. For any b € (0,1), there exists a collection
G C 2™ of size exp(b*m/6) that satisfies the b-average
intersection property.

The proof of Lemma V.5 can be found in Section A4. Let
b=m~3 and G be such a collection containing exp(m3 /6)
subsets of [m] that satisfies m_%—average intersection prop-
erty. We define a special set of binary XOS valuations XOS™ =
{vy : H C G} C BXOS,,, where

v3(S) = max [SN H| forall S e 20",
HeH
Meanwhile, we consider the class of single-minded valua-
tions SingleM™ C SingleM,,, containing single-minded valu-
ations with constant value «, i.e., SingleM* = {vps : T C
[m],8 € {0,1}} where

vrs(S) = (a+6)-1[SDT] forall Se 2™,

and « is a constant that we fix later.

Later, the valuation profiles {(va,vp) vg €
SingleM™, v € XOS™} will be used to show a lower bound
on the communication complexity.

B. Proof of Theorem V.1 via Taxation Complexity

In this section, we will present a proof of Theorem V.1
based on the Taxation Complexity framework [Dobl16b].

Definition V.6 (Taxation complexity). Let A =
(f,p1,-- - pn) Vi x o+ xV, — ¥ x R" be
any deterministic truthful mechanism. The raxation

complexity tax(A) of A is defined as the number of
bits needed to represent the index of a specific menu, i.e.,
tax(A) = max;ep, log {Menut(v_;) s v_; € V_;}.

Theorem V.7 ([Dobl6b]). Let A = (f,p1,...,pn) : V1 X
<XV = X X R"™ be any deterministic truthful mechanism,

where all domains V1, ..., V, contain XOS,,. Then, cc(A) >
tax(A) 1
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Observe that Theorem V.7 only requires that the domain
of valuations contains XOS, and it remains applicable for
mechanisms that are truthful for a larger domain, e.g., XOS U
SingleM. Therefore, our first step in the proof Theorem V.1
will be to show a lower bound on the taxation complexity
of every mechanism that gives a “good” approximation. For-
mally:

Proposition V.8. Ler V = XOS,, U SingleM,, and A =
(f,pa,pB) : V xV — X x R? be any deterministic truthful
mechanism. If A obtains a (@ +3m™ 3 )-approximation to
the optimal welfare, then tax(A) > exp(m3 /6).

Proof of Proposition V.8. Suppose that the mechanism A in-
deed obtains an approximation to the welfare of at least
(@ + 3m_%). Consider the case when Alice’s valuation
is v4 € SingleM* and Bob’s valuation vg € XOS*. We
want to show that for every distinct pair of valuations of
Bob vp,v; € XOS*, the menus that are presented to Alice
must be different, i.e., Menu4(vg) # Menu% (v};). Then,
[{Menu% (vB) : vp € XOS*} = [XOS*| = 2!91 and the
proposition follows. For simplicity, from now on we denote
Menu (-) with Menu(-).

For any distinct vp, vy € XOS™, denote with H and with
H’ respectively the combinations that are associated with vg
and with v'; respectively. Since vp # v, there exists at least
one subset H such that (without loss of generality) H € H,
whereas H ¢ H'. Suppose Menu(vg) = Menu(vlz) = M by
contradiction. There are two possibilities:

o If M(H) < «, then given the valuation profile (v4 =
Vg1, V), Alice always gets H. The actual welfare the
mechanism A gets is at most va (H)+v/z (H) < (a+1)+
2b?m, while the optimal welfare being at least v/ ([m]) =
bm.

o If M(H) > «, then given the valuation profile (v4 =
UF 00V B), Alice does not get ‘H. The actual welfare the
mechanism A gets is at most vp([m]) = bm, while the
optimal welfare being v4(H) + vg(H) = o + bm.

To summarize, whenever Menu(vg) = Menu(v}) for some
distinct vp, v); € XOS™, we know that the approximation ratio
of the mechanism to the optimal welfare can be at most

(a+1)+20°m  bm
. 6
e { bm "o+ bm ©
Recall b = m~% and let a = @bm = @’lm%. Then,
the ratio above is always strictly smaller than ‘/52’1 +3m™3.

Therefore, to get a (@ + 3m*%)-approximation, A must
have different menus for all vg € XOS*. As a result,
tax(A) > log |XOS™| = |G| = exp(m3/6). O

Having Proposition V.8, Theorem V.1 follows directly via
the Taxation Complexity framework.

Proof of Theorem V.1. Since XOS,, U SingleM,, O XOS,,,

we have cc(A) > L’;SA) — 1 by Theorem V.7. Further by
Proposition V.8, we have cc(A) > exp(Q(m%)). O
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Remark V.9. Theorem V.1 can be also proven via a communi-
cation lower bound for simultaneous protocols combining with
the two-bidder corollary from Taxation Complexity frame-
work [Dobl6b], as used in [AKSW20]. The proof follows
a similar structure, and we include it in Section A5 for
completeness.

Remark V.10. Similarly to Remark IV.11, one might think
that the construction implies that our impossibility holds for a
single-minded bidders and a bidder with XOS valuations, i.e.
for the class SingleM x XOS. However, our use of Theorem V.7
implies that our the lower bound applies solely to the valuation
class (SingleMUXQOS)?. In particular, the VCG mechanism can
be implemented with poly(m) communication for SingleM x
X0S.%

C. Difficulties for a Stronger Three-Bidder Lower Bound

Naturally, one might wonder whether the class of valuations
defined in Section V-A can be generalized to a stronger (i.e.,
better than @) lower bound beyond two bidders, since the
Taxation Complexity framework extends beyond two bidders.
We now describe an attempt to generalize our construction and
briefly discuss why it is not likely to work.

Recall that in Section V-B, the subset of valuations
{(va,vB) : va € SingleM™ v € XOS*} was used as hard in-
stances for the taxation complexity lower bound, where XOS*
is defined by some collection G that satisfies the b-average
intersection property. To get a stronger three-bidder lower
bound, we add another bidder named Charlie, and consider the
valuations {(va,vp,vc) : va € SingleM*, vp,ve € XOS*}.
Our hope is to get a stronger lower bound by the extra
communication hardness from welfare maximization between
these two XOS bidders.

Our plan is to use a similar argument to the one used
in the proof of Proposition V.8. For convenience, let us
assume G consists of exponentially many random sets of
size bm/2 for some constant b € (0,1). Similar to the
proof of Lemma V.5, the collection G satisfies (b/2)-average
intersection property with high probability and its size is
exp(m). Consider four valuations v(, v v(®) 4 sampled
uniformly at random from XOS™ and associated with the sub-
collections HW), H@ HB) 1@ C G, respectively.

We argue without proof that with high probability, there
exist subsets Hy, Hy, Hs, Hy such that for every i € [4]:

1) Hye HD.

2) For every j # i, H; ¢ HU).

3) HHNHy = H;NHy = 0.

As a result:

« Given the valuation profile (vp = vV ve = v(?), the
maximum welfare bm is obtained by allocating H; U Hy
to them.

o Given the valuation profile (vp = v® ve = v¥),
the welfare obtained from allocating H; U Hs to Bob

23This is because the optimal allocation can be computed with poly (1)
communication: Alice simply sends her desired set S together with its value,
and Bob replies whether the optimal allocation is (5, .S) or (0, M).
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and Charlie is at most 2b?>m, due to the (b/2)-average
intersection property. Maximum welfare of bm can be
obtained from allocating H3 U H,4 to them.

Let v4 € SingleM™ be the single-minded valuation that has
value « for the set [m]\ (H1 U Hs). Assume towards a contra-
diction that Menu(v(, v(?)) = Menu(v®,v*) and denote
with P the price in both menus for the bundle [m]\ (H;UH>).
Assume that P # « (which is without loss of generality, since
we can always slightly perturb the value of «). Note that it
must be the case that either:

o If P < q, then Alice with value v4 gets the bundle [m]\
(H, U Hy): then for (va,v®,v®)), the mechanism gets
welfare of at most o + 2b%m, while the optimal welfare
is ’Ug)(Hg) + 0@ (Hy) = bm.

o If P > «, then Alice with valuation v4 does not get
the bundle [m] \ (H; U Hy): then for (v4,v™) v®),
the mechanism gets at most (b — b?/4)m due to the
communication hardness of allocating [m] between Bob
and Charlie**, while the optimal welfare is o + bm.

Overall, the approximation ratio to the optimal welfare can be

at most
max { } ,

which is quite very similar to Equation 6 in the proof of
Theorem V.7. The only difference is the numerator of the
second term gets smaller (from bm to (b — b%/4)m) which
is a significant difference when b is close to 1). However, the
minimum is still obtained when b — 0 and o = Y5=Lpm,
resulting in no improvement at all.

As a result, the additional difficulty of allocating items
among two bidders instead of one does not help, at least for
this specific class of valuations. The reason for it is that for
our original argument that gets \/52’1 for two bidders, we want
b — 0 to ensure the intersection of a random clauses of the
XOS bidder with the complement of the single-minded bidder
to be as small as possible. However, to get a significant gap in
communication hardness for two XOS bidders, we want b — 1
since the intersection of a random clauses of them needs to
be large, so that one cannot get a good welfare between them
easily. Nevertheless, this idea turned out to be useful for the
proof of Theorem IV.1, by using subadditive modified set-
cover valuations.

a+2b2m (b—b?/4)m
" a+bm

bm
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APPENDIX
A. Missing Proofs

1) Proof of Lemma II.3: Let P be a protocol that achieves
an a-approximation to the optimal welfare with bidders whose
valuations are in class C. We first describe the protocol P’ for
C USingleM, and then prove that its approximation guarantee
is also a.

a) Description of Protocol.: Briefly, the protocol oper-
ates by simply running P independently once for each possible
method of allocating the single-minded bidders their preferred
bundle.

In more detail, first, each bidder ¢ sends a bit that specifies
whether v; is single-minded or belongs in C (if v; € C N
SingleM, it is considered single-minded). Let SM C [n] be the
set of bidders such that v; is single-minded, and with Other
the rest of the bidders. Then, we ask all the bidders in SM to
send their (minimal) desired set and their value for it. We say
that a subset of single-minded bidders K C SM is feasible if
for every i,j € K, S; NS; = (). Note that at this point in
the protocol, we can identify all the feasible subsets of single-
minded bidders.

Next, for every feasible subset of single-minded bidders
K C SM, we consider the following allocation. First, we
allocate to the bidders in K their desired sets. The rest of
the single-minded bidders are allocated with the empty bundle.
Then, we allocate the remaining items to the bidders in Other,
using the protocol P. Afterwards, all bidders send their value
for the bundle given this allocation, so its social welfare is
known. We conclude by outputting the allocation with the
maximum welfare. It is easy to see that the protocol P’
requires at most poly(cc(P), m,2") bits.

b) The Approximation Ratio: Informally, the approxima-
tion ratio « still holds for P’ because we exactly optimize
welfare for all single-minded bidders, and on the remaining
bidders, we can still only be off by a factor of at most a.

In more detail, denote with A = (A4, ..., A,) the allocation
that the protocol outputs and with O = (O4,...,0,) an
optimal allocation. Assume without loss of generality that
(O1,...,0,) and (Ay,...,A,) satisfy that no bidder is
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allocated any item that does not strictly increase her value.
Denote with K™ the subset of single-minded bidders that get
a valuable bundle in the optimal allocation, i.e. K* = {i :
v;(0;) > 0,7 € SM}. Denote with X = (Xq,...,X,,) the
allocation at the iteration where the feasible set of single-
minded bidders is K. Note that by definition for every single-
minded bidder i, X; = O;. Therefore,

Z Ui(Xi) = Z Ui(Oi)

i€SM i€SM

@)

Also, note that UieSM X; = UieSM O;, and we denote this
subset of items with Jsy. Observe that since O is a welfare-
maximizing allocation, it is in particular an optimal allocation
of the items in [m] \ Jsm to the bidders in Other. We remind
that the allocation of the bidders in Other is determined by
the protocol P. Due to the approximation guarantee, we get

that:
Z v(Xi) > - ( Z v;(0;)) (3)
1€O0ther 1€0ther
Therefore, we can deduce that:
Z v;(A;) > Z 0;(X5) (by construction)
i€[n] i€[n]
= Z v (X;) + Z v; (X5)
1ESM 1€0ther
> > 0i(0)+a- Y vi(0:)  (by (7) and (8))
1€SM 1€0ther
> - Z v;(Oy)
i€[n]

which completes the proof.

2) Proof of Theorem I1.7: We begin by redefining price(.A)
and tax(A). The definitions are identical to the ones in
[Dobl6b], and we write them for the sake of completeness.
price(A) is the communication complexity of the (n — 1)-
bidder problem of computing the price for a specific bundle
S C M in the menu presented to player ¢ in the mechanism .4
given the valuation profile v_;. For the definition of tax(A),
see Definition V.6.

Now, recall that by the menu reconstruction theorem
[Dobl6b, Theorem 3.1], the communication complexity of
computing the menu presented to a player ¢ given the valu-
ations v_; of the other players and the truthful mechanism
A is poly(tax(.A), price(A), m,n). This is true for every
domain. In addition, by [Dobl6b, Proposition F.1], it holds
that price(A) < cc(A) for every truthful mechanism for a
class of valuations that includes additive valuations. Similarly,
[Dob16b, Proposition 2.3] implies that tax(A) < cc(A) for
every truthful mechanism A that is truthful for a class of
valuations that contains subadditive valuations.”> The proof
is obtained by combining these assertions.

25In fact, the statement in [Dobl6b] is specifically for the class of
subadditive valuations. However, the proof holds as-written for every class
of valuations that contains subadditive valuations.
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3) Missing Proofs of Section IV:

Proof of Lemma IV.7. We will show that for sufficiently large
m, there exists an {-independent k-width-family, where ¢ =
1logm and k = et

To obtain a {-independent k-width-family
F (G, {Hgt)}te{oﬁl},ie[k]), consider the following
two-layered randomized construction:

1) First Layer: For every ¢ € [k], let G; be the random

set that contains each item e € [m] independently with
probability 3.
Second Layer: For every i,j € [k], let Hi(g) be the
random set that contains each e € G; independently with
probability % Similarly, let H, 2(1]) be the random set that
contains each item e € GG; independently with probability
%. Note that for every i and for every ¢ € {0,1}, the
distribution of the items in H, l(tj)
of j. 7

2)

is identical for all values

Thus, by construction F is a k-width-family. Thus, it remains
to prove that with a non-zero probability, F is ¢-independent.

Recall that F[b,C] = {Si;}ijep is a collection of k?
subsets. We can fix an index set I C [k] x [k] of size ¢, which
specifies a sub-collection F[b, C;I] = {S; ;} ¢ jyer of size £
accordingly. Our plan is to show that for every choice of b, C
and I, it is very unlikely that the sub-collection F[b,C;I]
covers [m], and then the existence of a valid F follows from
union bound.

Observe that for every item e and S; ;, we have that e €
S;,; with probability 3/4. In particular, it holds for all the
subsets S; ; in F[b, C;I]. Also, note that the events {e €
UFI[b,C; ]} ecim are mutually independent. Therefore, we
have that:

Pr [U Flb,C; 1) = [m]]
II (1 —Pr [e ¢ U}'[b,C;I]D
e€[m]
ot
Finally by union bound:

)™ < (1 —272)m,

Pr [Elb, C. T such that | J F[b,C; 1] = [m]}

< 3 P [U Fb,C; 1] = [m]}
IC[k] % [K],|T|=¢
< (kZ)QQZ(l _ 2—24)111

< k* exp(—27%m) = exp(20Ink — 27%m) = 1.

Therefore, with non-zero probability, F[b, C] is ¢-sparse for
all b, C. O

4) Missing Proofs of Section V:

Proof of Lemma V.5. The proof is based on the probabilistic
method. We construct the collection G by sampling uniformly
at random exp(b*m/6) subsets of [m], where the size of
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each subset is bm. For any two subsets G;,G; of size bm
sampled uniformly at random, note that the expected size of
their intersection I [|G; N G,|] = b*m. By Chernoff bound,
we have Pr[|G;NG;| > 2b°m] < exp(—b®m/3). By applying
the union bound, we conclude that:

Pr[3i # j,|Gi N G;| > 2b*m]

< > Pr(|Gin Gy > 2v°m]
i#j

< |G|? - exp(—b*m/3) < 1. O
5) Proof of Theorem V.I by Hardness of Simultaneous

Protocols: Recall the following two-bidder corollary from the

Taxation Complexity framework:

Theorem A.1 ([Dobl6b]). Let A = (f,p1,p2) : V1 X Va2 —
> X R™ be any deterministic truthful mechanism that guar-
antees an a-approximation to the optimal welfare, and both
domains V1, Vs contain XOS,,,. Then, there exists a simulta-
neous protocol ' : V1 x Vo — ¥ that also guarantees an -
approximation with simultaneous communication complexity

ce(f’) < poly(cc(A), m).

Based on this result, it suffices to give a lower bound of
the communication complexity for simultaneous algorithms to
prove Theorem V.1.

Proposition A.2. Ler f : SingleM x XOS — X be any deter-
ministic simultaneous protocol. If f obtains a (@Jri%m*% )-
approximation to the optimal welfare, then its simultaneous
communication complexity cc(f) > exp(m? /6).

Proof. Let Alice be the single-minded bidder and Bob be the
XOS bidder. Since f is a simultaneous algorithm, if Bob sends
an identical message upon different valuations vz # vp, then
the resulting allocation will also be identical, i.e., f(va,vp) =
f(va,vy) for all vy € SingleM. We will show that it further
leads to a contradiction with the approximation ratio.

For any distinct vg, vz € XOS*, denote with H and with
‘H' respectively the combinations that are associated with vp
and with vz respectively. Since vp # v, there exists at
least one subset H such that (without loss of generality)
H € H, whereas H ¢ H’'. Consider the case when Alice
(with valuation v4) gives a value of @ < bm to the bundle
H = [m]\ H (and zero otherwise). If by contradiction,
f(va,vg) = f(va,vl), then Alice must be given a same
bundle A C [m] for both instances (v4,vp) and (va,vf).
There are two possibilities:

o If H C A (ie., Alice gets H): for the instance (v4,v’),

the actual welfare f gets is at most v4(H) + v/g(H) <
a + 2b%m, while the optimal welfare being at least
opy(fm]) = bm.
If H ¢ A (ie., Alice gets nothing valuable): for the
instance (v4,vp), the actual welfare f gets is at most
v ([m]) = bm, while the optimal welfare being v4 (H )+
vp(H) = a+ bm.
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Overall, we know that the approximation ratio of f can be
at most

a+20°m  bm
ax , .
bm a+bm
Recall b = m~3 and let o = @bm = \/Z’Im%. Then,
the ratio above is always strictly smaller than % +3m™3.

V5-1

Therefore, to get a (- +3m_%)-approximation, Bob must
send different messages for all vp € XOS*. As a result,
cc(f) > log|XOS*| = |C] = exp(m3/6). O

Proof of Theorem V.1. By Theorem A.1, there is some simul-
taneous protocol f/ : V x V — X that (@ + 3m™3)-
approximates the optimal welfare with simultaneous commu-
nication complexity cc(f’) < poly(cc(A), m). However, by
Proposition A.2, we know cc(f’) > exp(m3 /6). Therefore,
we conclude that cc(A) > exp(Q(m3)). O

Remark A.3. We now show that simultaneous protocols for
two bidders can achieve \/52_1 of the welfare for the class
SingleM x XOS, meaning that Proposition A.2 is asymptoti-
cally tight. Denote the bundle that Alice (the single-minded
bidder) wants by S. Consider some f* : SingleM x XOS — %
that gives the bundle S to Alice and the bundle [m] \ S to

Bob when v(S) > @vg([m]), and otherwise allocates

2
all items to Bob. f* can be implemented by simultaneous
communication and always gives a ﬁ’l-approximation to

2
welfare.

B. The Structure of Payments of Truthful Mechanisms

In this section, we show a formula for an upper bound
and lower bound on the payments of approximately optimal
and truthful mechanisms whose class of valuations includes
single-minded bidders. An asymptotic interpretation of Propo-
sition A.5, which might be of independent interest is that
as the approximation guarantee « of a truthful mechanism
goes to 1, then the payments of the mechanism are approach
VCG payments. Moreover, Proposition A.5 in its current
form applies to two-bidder mechanisms, but it can readily be
extended to settings with an arbitrary number of bidders, as
well as to the related setting of multi-unit auctions.

We start by defining a class of SingleM valuations which
allow us to bound the prices that any two-player good-
approximation mechanism must charge:

Definition A.4. Fix a valuation v, a nonempty subset of
items S C [m] and two constants o € [0,1] and € > 0.
We define a valuation upper, , . g as follows: VX C [m],
upper, , . s(X) equals to
& v(m]) —v([m]\ S) +e X 28,
0 otherwise.

We define lower, o s similarly: VX C [m], lower, o,¢,5(X)
equals to

{

max{a - v([m]) —v([m]\ S) —€,0} X DS,

0 otherwise.
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Now, we give the bound on prices enabled by Defini-
tion A.4:

Proposition A.5. Letr A = (f,p1,p2) : V1 X V2 — ¥ X
R? be any deterministic truthful mechanism that gives an o-
approximation to the optimal welfare. For some € > 0, if both
UpPEr,, 4.8 and lower,, s belong to V., then for every
valuation va € Vo and every bundle S C [m),

= us(fm]) — va(m] \ §) + ¢

> Menui!(v2)(S) — Menui*(v2)(0)
> a-va([m]) —wva([m]\ ) — ¢

Proof. Denote with v;'® and v}°™ the valuations UpPEr,,, 4 .5

and lower,, o s respectively. Consider the possible alloca-
tions that achieve an « approximation given the valuation
profile (vy?, va).

Consider a bundle 7" that contains the desired bundle S.
Using the fact that v is single-minded, we have that

(1) +v2(Im\T) = 07 () +v2([m]\S) = évz([m])Jre

On the other hand, if a bundle 7" does not contain S, then:

WP(T) + 5[] \ T) < va((m]) < a- (évg([m]) + e> .

Thus, to get an a-approximation to the optimal welfare, we
must allocate a bundle containing S to bidder 1 given the
valuation profile (v}'?,vs).

Analogously, consider the possible allocations that achieve
an « approximation given (vi°V,v;). We have vi°%(S) +
va([m]\ S) = a - va([m]) — € < a - va([m]), which implies
that in this case any allocation awarding S to bidder 1 cannot
possibly be an a-approximation to the optimal welfare.

We now achieve the desired bounds on payments by using
the fact that the mechanism is truthful, so given v]*, bidder
1 will not want to misreport the valuation v}°V and vice-
versa. Let X"P be the bundle that bidder 1 wins given
(v7'®, v2). Using truthfulness and the monotonicity of the menu
(Proposition I1.6), we have that:

UP(S) — Menuft (u2) (S) = v (XP) — Menuf! (1) (X"P)
> () — Menuit (vs) (0).
Rearranging this inequality and applying the definition of v;'":
Menu?!(12)(S) — Menu?* (v2)(9) < v}P(S) — viP ()
=~ un(lm) — wal(m] \ $) +e.

Thus, we obtain the first part of the lemma.
For the second part, let X low be the bundle that bidder
1 wins given (v, v5). Since vI°%(X°%) = 0 = vlov (),

applying truthfulness and menu monotonicity gives:

o(0) — Menui (u)(0) > ol (X'2%) = Menui!(u2) (X**)
> 017" (S) — Menuf(12)(S),
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and again rearranging, we have

Menu?(v2)(S) — Menu?t(va)(0) > vioV(S) —
= a-vy([m])

which finishes the proof.

C. An Example of a 2-Width-Family

In this section, we give an example of a 2-width-family, to
demystify our construction in Section IV. Consider the case
where there are 6 items, which we denote with {1,2,3,4,5,6}.
Consider the set family defined as follows:

G={G1={1,2},G, ={3,5,6}}
HY = {H) = (3.4}, H{) = {5.6}}
HO = (D) = (1,2}, HY) = (1)}
1Y = {HY) = (2,4}, H) = {1}}
H® = {H) = (3,5}, H) = (5}}

Now, we define:

b—(0,1), C= (8 1)

Thus, the collection F[b,C] is composed of the subsets
S1,1,51,2,52,1, 52,2 that are defined as follows:

b[1] =0,CU[1] =0 = 81, =G UH)
= {1,2,3,4}
0,CU[2] =1 = S12=G1U (G \ H)
=1{1,2,3,4}
LCR|[1) =0 = So1=GaUHY
={1,2,3,4,5}
L,CR)2l =1 = Sap=GaU(Ga\ HY)
= {1,2,3,4,6}

Observe that by definition F[b, C] is 2-sparse, because there
is no one subset among Si1,512,S52,1,522 that covers
{1,2,3,4,5,6}. However, it is not 3-sparse, because Sz U
S0 = {1,2,3,4,5,6}, which implies that the family F is
not 3-independent.

D. On The Precision of Mechanisms and Valuations

In this section, we dive deeper into an assumption of the
taxation framework; in particular, we remark on the preci-
sion of the bidders’ valuations vs. the mechanism’s prices.
Observe that when discussing the communication complexity
of combinatorial auctions, it is necessary to assume that the
valuation functions of each bidder has values that are bounded
in some range. The reason for it is that otherwise, even
the communication complexity of a single item auction is
infinite, regardless of incentives.?® Therefore, when formally

26Consider a single-item auction with two bidders with values in the
infinite range R = {0, ¢, 0203, .. .} for the item, where £ is arbitrarily large.
Applying the fooling set argument for the pairs (z,x),cpr gives that the
communication complexity of every mechanism that gives an approximation
better than ¢ for the optimal welfare requires at least one transcript for every
element of R, so it requires infinite communication.
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considering a class of valuation functions, it is necessary
to specify not only their properties, i.e., whether they are
subadditive or single-minded, but also their precision.

Formally handling the precision of valuations has been
discussed before, e.g. in [Dobl6b, Appendix A.4.1]. As dis-
cussed in our footnote 11, the basic approach is to assume
all valuations can be represented by k-bit numbers for some
implicit parameter k, and to formally define a protocol for
some valuation class as a family of protocols (FPy); for
different precision k£ (with the added assumption that when
k' > k and Py is run on k-bit numbers, the output is the same
as the output of Pg). To our knowledge, all prior upper and
lower bounds in the algorithmic mechanism design literature
hold in this formal model while implicitly hiding factors of
poly (k).

We will now address an additional assumption of the
taxation framework, and show that it is in fact not neces-
sary. Namely, [Dob16b] assumes that mechanisms that are
“precision-aligned”. A mechanism A : V — ¥ x R" is
precision-aligned if the precision of the mechanism is equal
to the precision of V. More concretely, if every valuation in V
has values in a certain range R, then the mechanism outputs
prices that are in range R.

However, one can easily show that, in fact, assuming
precision-aligned mechanisms is without loss of generality.
Thus, the results of [Dob16b] (and hence, other results which
build on these, such as ours and those of [AKSW20]) in fact
hold for all mechanisms, not just for precision-aligned ones.
Formally:

Proposition A.6 (Communicated by [Dob23]). Let A:V —
> X R"™ be a truthful mechanism. Then, there exists a truthful
precision-aligned mechanism A’ such that:

1) For every valuation profile v € V, the mechanisms A and
A’ output the same allocation.

2) The communication complexity of A’ is the same as the
communication complexity of A.

Proof. We assume for simplicity that the range of the valua-
tions in V is integer values in {0, ..., H }, though an analogous
proof works for every fixed decimal precision.

The mechanism of A’ that we propose is equivalent to
the mechanism A, except that the prices in each leaf are
rounded down to the nearest integer. Thus, we get that the
mechanisms A’ and A have the same precision and the same
communication complexity. It remains to show that A’ is
truthful. We remind that by the taxation principle, it suffices
to show that for every player ¢, and every valuation profile
(vi, v—;), the bundle that A" allocates to bidder  remains the
most profitable given the new rounded prices.

Fix such player ¢ and a valuation profile (v;,v_;). Let S be
the most profitable bundle, and let 7" be some other bundle.
Denote their prices given the (old) mechanism .4 with pg and
pr, respectively. Since A is truthful, we have that v;(S)—pg >
v;(T) — pr, and our goal is to show that: v;(S) — |ps| >
vi(T) = pr].
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To prove this, we represent ps as an integer ng and a
fraction fg, where ps = ng + fs, where ng = |ps] and
fs €10,1). We define ny and fr analogously. Therefore, we
have that:

v;(S) —ns — fs > vi(T) —np — fr Q)

Thus, we now have that the integer part of the left side is
v;(S) —ng and the integer part of the right side is v;(T") —ny.
Since both fg, fr € [0,1), then their difference satisfies that
|fr — fs| < 1, so for Equation 9 to hold, it has to be the case
that v;(S) — ng > v;(T) — ny. We remind that ng = |ps]
and np = |pr], so we have that v;(S) — |ps] > v(T) —
|pr|. Moreover, ng and ny are in fact the menu prices in the
new mechanism A’, so this mechanism is in fact truthful, as
needed. O
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