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Abstract

We consider the problem of query-efficient global max-cut on a weighted undirected graph in the value

oracle model examined by [31]. Graph algorithms in this cut query model and other query models

have recently been studied for various other problems such as min-cut, connectivity, bipartiteness,

and triangle detection. Max-cut in the cut query model can also be viewed as a natural special case

of submodular function maximization: on query S ⊆ V , the oracle returns the total weight of the

cut between S and V \S.

Our first main technical result is a lower bound stating that a deterministic algorithm achieving

a c-approximation for any c > 1/2 requires Ω(n) queries. This uses an extension of the cut

dimension to rule out approximation (prior work of [20] introducing the cut dimension only rules

out exact solutions). Secondly, we provide a randomized algorithm with Õ(n) queries that finds

a c-approximation for any c < 1. We achieve this using a query-efficient sparsifier for undirected

weighted graphs (prior work of [31] holds only for unweighted graphs).

To complement these results, for most constants c ∈ (0, 1], we nail down the query complexity of

achieving a c-approximation, for both deterministic and randomized algorithms (up to logarithmic

factors). Analogously to general submodular function maximization in the same model, we observe

a phase transition at c = 1/2: we design a deterministic algorithm for global c-approximate max-cut

in O(log n) queries for any c < 1/2, and show that any randomized algorithm requires Ω(n/ log n)

queries to find a c-approximate max-cut for any c > 1/2. Additionally, we show that any deterministic

algorithm requires Ω(n2) queries to find an exact max-cut (enough to learn the entire graph).
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1 Introduction

For the most part, the field of graph algorithms has focused on extensive study in the

“standard” model where the entire graph is given to the algorithm as input e.g. in the form

of an adjacency list or an adjacency matrix. However, another growing body of work focuses

on the case where the algorithm does not know the graph; rather, it has query access to an
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oracle that knows the graph, and aims to make as few queries as possible. Different models

restrict the algorithm to make different types of queries e.g. individual edge queries, linear

measurements [1, 5], matrix-vector products [32], etc.

One model that has attracted particular attention is the cut query model [21, 15, 31,

20, 30, 28, 4, 14]. In this model, the algorithm has query access to the cut function of a

graph G with vertex set [n]: it provides subsets S ¦ [n] as queries and the oracle returns the

total weight of all edges of G with exactly one endpoint in S. An additional reason for the

wide interest in this model is that the graph’s cut function is in particular a submodular

function; [20] and [28] obtained new lower bounds for the query complexity of submodular

function minimization by considering the special case of graph min-cut in the cut query

model.

A range of graph problems has been studied in the cut query model and related models.

Perhaps the most fundamental is that of learning the entire graph [21, 16, 9, 15, 10]; once

the entire graph is known to the algorithm, it has all the standard graph algorithm literature

at its disposal to solve the problem of interest. A more subtle question is whether the given

problem can be solved with fewer queries than one would need to learn the graph. This was

first answered affirmatively for the case of min-cut [31, 30, 4]: an undirected, unweighted

graph requires Ω(n2/ log n) queries to learn [21] but O(n) queries suffice to find its min-cut.

Since then, novel algorithms have been developed in the cut query model and related models

for problems such as connectivity [1, 32, 5, 4, 14], testing bipartiteness [1], and triangle

detection [32].

In this work, we initiate the study of max-cut in the cut-query model. We aim to

understand how many queries are necessary and sufficient for an algorithm to find a c-

approximate global max-cut in an undirected, weighted graph.

1.1 Our Results

Our two main results are stated below. Both are concerned with the setting where c ∈ (1/2, 1)

i.e. one wants to do better than a straightforward greedy algorithm or guessing a random cut,

but does not want an exact max-cut. The first result is a lower bound against deterministic

algorithms, and the second result is a randomized algorithm.

▶ Theorem 1 (See Corollary 7 for a precise statement). For c > 1/2, any deterministic

algorithm achieving a c-approximation requires Ω(n) queries.

▶ Theorem 2 (See Corollary 29 for a precise statement). For c < 1, there exists a randomized

algorithm with query complexity Õ(n) that achieves a c-approximation.

These results naturally beg the question of how the query complexity behaves for other

ranges of c, for both deterministic and randomized algorithms. We also answer this question

in most cases. The content of all of our results is summarized in the following three theorems,

and also tabulated in Figure 1. Soon after, we provide context for these results.

▶ Theorem 3 (See Theorems A.1 and B.1 in the full version for precise statements). For c = 1,

the query complexity for a deterministic algorithm to achieve a c-approximation is Θ(n2) and

the query complexity for a randomized algorithm to do the same is between Ω̃(n) and O(n2).

▶ Theorem 4 (See Corollary 29, Corollary 7, and Theorem B.1 in the full version for precise

statements). For c ∈ (1/2, 1), the query complexity for a deterministic algorithm to achieve

a c-approximation is between Ω(n) and O(n2) and the query complexity for a randomized

algorithm to do the same is Θ̃(n).
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c Deterministic Randomized

1 Θ(n2) (Ω̃(n), O(n2))

(1/2, 1) (Ω(n), O(n2)) Θ̃(n)

(0, 1/2) Θ(log n) Θ(1)

Figure 1 Summary of our results. For each range of c, we state the query complexity (up

to constant and logarithmic factors) that we show for achieving a c-approximation in both the

deterministic and randomized settings. (n, n2) indicates settings where we have a lower bound of

Ω̃(n) and an upper bound of O(n2).

▶ Theorem 5 (See Corollary E.2, Theorem E.4, and Corollary C.3 in the full version for precise

statements). For c ∈ (0, 1/2), the query complexity for a deterministic algorithm to achieve a

c-approximation is Θ(log n) and the query complexity for a randomized algorithm to do the

same is Θ(1).

We now provide context for each of our results, beginning with Theorem 1. Observe

that there is a straightforward non-adaptive O(n2)-query deterministic algorithm to find the

max-cut exactly (observed in [31], as it applies to the min-cut as well). The algorithm can

query all singletons and sets of size 2 and from this learn wi,j = 1
2 (F ({i})+F ({j})−F ({i, j}))

for all i, j and thus the entire graph. The algorithm can then find the max cut exactly using

brute force, since no more queries need to be made. This addresses all of the O(n2) upper

bounds stated in the theorems. Theorem 3 shows that this trivial algorithm is optimal among

deterministic algorithms: up to constant factors, any deterministic algorithm must learn the

entire graph in order to find the global max-cut with cut queries.

Next, observe that there is a phase transition at c = 1/2. Theorem 5 establishes that

a (1/2− ε)-approximation can be achieved deterministically with O(log n) queries (which

happen to also be necessary). On the other hand, even a randomized algorithm needs Ω̃(n)

queries to guarantee a (1/2 + ε)-approximation.

Finally, observe that we resolve the asymptotic query complexity for most cases. For

randomized algorithms, the only unresolved cases are c = 1/2 and c = 1.1 For deterministic

algorithms, the range [1/2, 1) remains unresolved.

Before continuing, we note several facts about our results. In the positive direction, we

note that all of our algorithms find a set S that is a c-approximation to the global max-cut

(for undirected, weighted graphs with arbitrarily large weights), rather than simply estimating

the value of the max-cut within a factor of c. We refer to these two settings as the cut finding

and value estimation settings respectively. On the other hand, most of our lower bounds

hold even against algorithms in the value estimation setting. The only exception is our Ω̃(n)

lower bound on randomized algorithms for c > 1/2, which we only prove in the cut finding

setting. Similarly, all algorithms we discuss, except for our Õ(n)-query randomized algorithm

for c ∈ (1/2, 1) and the well-known O(n)-query deterministic greedy algorithm for c = 1/2,

are non-adaptive. On the other hand, all of our lower bounds hold even against adaptive

algorithms.

It may appear at first glance that Theorem 1 is subsumed by the randomized lower

bound in Theorem 4. Both results are lower bounds for c > 1/2: the former states that

a deterministic algorithm in this setting requires Ω(n) queries, while the latter says that

1 For the c = 1/2 case, simply outputting a random cut will achieve a (1/2)-approximation in expectation
in O(1) queries. But we are concerned with the algorithm’s ability to achieve a c-approximation with
some probability p > 0. In this setting, there exists a deterministic O(n)-query algorithm (see Section
E.3 of the full version) but we do not have a matching lower bound.

ICALP 2024
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a randomized algorithm requires Ω̃(n) queries. However, the deterministic lower bound is

interesting on its own for two reasons. The first reason is that the randomized lower bound

is only Ω(n/ log n), which is weaker than the Ω(n) we are able to prove in the deterministic

case. Secondly, and more critically, the deterministic lower bound holds even for the value

estimation setting while the randomized lower bound is only for the cut finding setting. Our

argument for the randomized lower bound does not appear adaptable to the value estimation

setting; indeed, the hard distribution used in our proof is actually very easy in the value

estimation setting.2

In the negative direction, we note here that most of our algorithms have exponential time

complexity even though they are query-efficient. For example, the O(n2)-query algorithm we

just described learns the graph in polynomial time, but then uses exponential brute force

search to actually find its max-cut. This illustrates that, by focusing on query complexity, we

are primarily concerned with the information theoretic question of how much the algorithm

must learn about the graph to be able to estimate its max-cut, even with unlimited computa-

tion. Note that the most query-efficient algorithms for submodular function minimization are

exponential time as well [24], so this is not uncommon when prioritizing query complexity.

1.2 Technical Highlights

Our results follow from a wide array of techniques. Some results (e.g. our Ω̃(n) lower

bound on randomized algorithms for c-approximate max-cut and c > 1/2) follow from direct

constructions of hard distributions – we defer further discussion of these constructions to

the corresponding technical sections and appendices. Some of our results follow from novel

techniques that are likely of independent interest for subsequent work – we quickly highlight

these below.3

The key ingredient in our Ω(n2)-lower bound for exact max-cut is the cut dimension

introduced by [20] for min-cuts (which has also been studied in follow-up work [28]). The

lower bound follows immediately after establishing that the complete graph on n vertices has

max-cut dimension Ω(n2). More interestingly, we extend the concept of the cut-dimension to

what is roughly a notion of “c-approximate cut-dimension” using strong LP duality. We show

that this technique provides a lower bound on the number of queries needed by a deterministic

algorithm to find a c-approximate max-cut for c > 1/2, and that for the complete graph on

n vertices this gives a bound of Ω(n). This approach should also be of independent interest,

given recent interest in the exact cut dimension. Completing this analysis also requires a

technical lemma (Lemma 13) stating a simple geometric property of the Boolean hypercube,

which may additionally be of independent interest.

Our Õ(n)-query randomized c-approximation for c ∈ (1/2, 1) follows from a query-efficient

sparsifier for global cuts in undirected, weighted graphs (once we have learned a sparsifier for

the graph, we can just exhaust to find its max-cut, which is a (1 − ε)-approximation). A

query-efficient sparsifier for unweighted graphs appears in [31], based on ideas by [7]. We

first give a natural extension of their sparsifier that accommodates graphs with weights in

[1, poly(n)]. We then go a step further and provide a novel query-efficient sparsifier for all

2 In more detail, the hard distribution is a random complete bipartite graph with edge weights 1. For this
distribution in the value estimation setting, an algorithm could just immediately output n2/4 without
making any queries at all.

3 Additionally, some of our results are reasonably straightforward (e.g. our O(log n) deterministic algorithm
for c-approximate max-cut when c < 1/2) – we include discussion of these results in Appendices B, C,
and E of the full version for completeness.
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weighted graphs, using other ideas from [7] relating edge strengths to maximum spanning

trees. For completeness, we show in Appendix D of the full version that in fact a slight

modification of the [31] sparsifier also suffices for approximate max-cut for all weighted

graphs (however, this modification may not produce a sparsifier). Our stronger sparsifier is

hence not “necessary” to resolve approximate max-cut, but is of independent interest as not

all weighted graph problems can be reduced to one with weights in [1, poly(n)] (e.g. exact

min-cut). In fact, our stronger sparsifier is already used in recent work [30].4

1.3 Related Work

Learning graphs in the cut-query model. The first natural question when an algorithm has

restricted query access to a graph is how many queries it needs to learn the entire graph. For

the case of cut queries, this was first studied by [21], who show that the query complexity of

deterministically learning an unweighted graph is Θ(n2/ log n), and that this can be attained

non-adaptively. A later line of work [16, 9, 15, 10] answered this question for weighted graphs

while also being sensitive to the number m of edges in the graph with nonzero weight, finding

that the query complexity in this case is Θ(m log n/ log m).

Min-cut in the cut-query model. A very active line of work is that of understanding what

properties an algorithm can learn about a graph that it only has query access to, without

using up enough queries to learn the entire graph. The particular case of most relevance to

this work is that of min-cut in the cut-query model. The first progress on this problem was

the algorithm by [31] for unweighted graphs using Õ(n) queries. This was later improved to

O(n) queries by [4]. For weighted graphs, an algorithm using Õ(n) cut queries was presented

by [30] (as previously noted, their result leverages a query-efficient sparsifier for weighted

graphs, which our paper is the first to provide).

On the lower bound side, [20] show using a linear algebraic argument that Ω(n) queries are

necessary for weighted graphs (the constant-factors have since been improved by [28]), thus

resolving the query complexity of exact min-cut in weighted graphs up to logarithmic factors.

As mentioned earlier, our deterministic lower bounds arise from adapting and extending the

concept of the cut dimension to approximation.

The cut dimension was introduced by [20], and further studied in [28]. [28] further nail

down that undirected graphs have a min-cut dimension of no more than 2n− 3 (and there

exist graphs realizing this bound). They also introduce the ℓ1-approximate cut dimension.

The ℓ1-approximate cut dimension is motivated by a similar thought experiment as our

“c-approximate cut dimension” technique – both consider an adversary changing the original

graph in a way that respects all queries made, and both consider the magnitude of the changes

made to the max/min-cut (rather than just whether or not the cut is changed). However,

their ℓ1-approximate cut dimension does not imply lower bounds on the query complexity

of finding approximately-optimal cuts. Finally, they further consider “the dimension of

approximate min-cuts”, and prove a linear upper bound on this. This concept does not

have any relation to our approximate cut dimension technique (and in particular, only our

technique implies lower bounds on the deterministic query complexity). In summary, the cut

dimension is an active concept of study in related work, but our work is the first to use this

concept to lower bound the query complexity of approximately-optimal cuts.

4 [30, Theorem 5.2] seems to credit [31] for handling weighted graphs (whereas their query-efficient

sparsifier only accommodates unweighted graphs). They use this result as part of their Õ(n) query
algorithm for weighted min-cut.

ICALP 2024
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Other graph algorithms in other query models. Many works have considered other graph

problems in other query models as well. These query models include cut queries [14],

linear measurements [1, 5], matrix-vector products [32], OR queries [5, 8], XOR queries [8],

and AND queries [8]. Some of these models e.g. linear measurements and matrix-vector

products generalize the cut query model, while the others do not appear directly related.

These works also consider a variety of graph problems, including connectivity [1, 32, 5, 4,

14], bipartiteness [1], triangle detection [32], minimum spanning tree [1], and maximum

matching [1, 8].

Graph sparsification. [31] also provide an algorithm for graph sparsification in Õ(n) queries

for unweighted graphs, based on the idea of edge strength-based sampling used by [7] to

construct sparsifiers in the classical computational model. There are also other lines of work

that adapt the ideas from [7] to construct sparsifiers in other limited-access computational

models, particularly (semi-)streaming [1, 2, 3, 25, 32]. Some of these algorithms are adaptable

to the cut-query model. However, these algorithms either only support unweighted graphs

or incur a performance cost for weighted graphs. For example, the natural extension of

the algorithm in [31] to weighted graphs requires Õ(n log W ) queries, where W is the ratio

between the largest and smallest nonzero edge weight in the graph. Our novel sparsifier

avoids this pitfall by using results from [7] connecting edge strengths to maximum spanning

trees to remove the log W factor.

While these results and ours all use randomization to construct a sparsifier, there are

also classical algorithms for constructing sparsifiers deterministically [6, 17]. Implementing

such an algorithm directly would require being able to learn the spectrum of the graph’s

Laplacian. It may indeed be possible to do this (exactly or approximately) in a query-efficient

way, but doing so would require significantly new ideas. A deterministic query-efficient

implementation of these algorithms would also yield a deterministic query-efficient algorithm

for a (1− ϵ)-approximation to max cut.

Max-cut in the classical computational model. Max-cut is extremely well-studied in the

computational model, but algorithms in the cut-query model differ significantly. For ex-

ample, [19] present a randomized polynomial-time algorithm using semidefinite programming

that achieves a ≈ 0.878 approximation in expectation. However, this algorithm does not

imply anything in our model; even formulating the necessary SDP requires access to the

entire graph.

It has since been shown by [23] that it is NP-hard to beat a 16/17 ≈ 0.941 approximation.

Moreover, [27] show that it is NP-hard to beat the constant achieved by Goemans and

Williamson assuming the unique games conjecture [26]. These lower bounds do not imply

anything in our model either. In fact, many of our algorithms (and those in prior work)

involve exponential computation even if they use an efficient number of queries. Once we have

either learned the entire graph (c = 1) or constructed a sparsifier of the graph (c ∈ (1/2, 1)),

we use brute force search to find the exact max cut on the graph we have learned.

Submodular function maximization. Our problem can be viewed as a special case of

symmetric submodular function maximization, by taking f(·) to be the cut function of a

graph. However, the additional structure imposed by the cut function of a graph opens

up possibilities for new algorithms and requires new lower bound arguments. For example,

when c > 1/2, [18] show that achieving a c-approximation to symmetric submodular function

maximization requires exp(Ω(n)) queries to the oracle. For global max-cut, the situation
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is significantly different: O(n2) queries suffice to trivially learn the entire function (and

therefore, there seems to be little hope of embedding hard SFM instances as graphs). Still,

we show that this trivial algorithm is optimal among deterministic algorithms when c = 1,

and show that Ω̃(n) queries are necessary for even a randomized algorithm to achieve a

c-approximation for c > 1/2.

For c f 1/2, randomized [12] and deterministic [11] algorithms are known that achieve

a 1/2-approximation with O(n) and O(n2) queries respectively, even when the submodular

function is not symmetric. [18] show in the symmetric case that picking a random set (O(1)

queries) achieves a 1/2-approximation in expectation. They also provide a deterministic

algorithm based on local search that achieves a c-approximation for any c < 1/2 in Õ(n3)

queries. When restricting to max-cut, [18] immediately implies a randomized algorithm for

all c f 1/2 with O(1) queries (which is optimal). For deterministic algorithms, however, our

bound of Θ(log n) is again an exponential improvement over the general case of submodular

function maximization.

In summary, global max-cut demonstrates a similar phase transition at c = 1/2 as general

submodular function maximization: the query complexity for c < 1/2 is exponentially smaller

than the query complexity for c > 1/2. However, the distinction for max-cut is between

logarithmic and polynomial queries, whereas the distinction for general submodular functions

is between polynomial and exponential.

Submodular function minimization. Just as submodular function maximization generalizes

max-cut in the cut query model, submodular function minimization generalizes min-cut.

Unlike the maximization case which requires exponentially many queries, general submodular

function minimization can be solved exactly with polynomially many queries; state-of-the-art

algorithms use Õ(n2) queries [24, 29].

However, until relatively recently, most query lower bounds for submodular function min-

imization were only Ω(n) [22, 20, 28]. The last two results proceed using the aforementioned

cut dimension technique. This was recently improved to Ω(n log n) by [13], using different

ideas unrelated to graph cuts.

2 Preliminaries

G is an undirected, weighted graph with weights wi,j on the edge (i, j). G induces a cut

function F . We denote the cut function by F (·), so F (S) :=
∑

i∈S,j /∈S wi,j . Additionally, for

any cut S ¦ [n], we define the indicator vector vS ∈ R(n

2) by (vS)i,j = 1 if (i, j) crosses the

cut defined by S and 0 otherwise.

We consider algorithms that have black-box access to F (·), and aim to find

arg maxS¦[n]{F (S)} (exact maximization) or a set T such that F (T ) g c ·maxS¦[n]{F (S)}
(c-approximation). We refer to the query complexity as the number of queries to F (·) that the

algorithm makes (the algorithm has no other access to G or F , and may perform unlimited

computation).

3 Lower Bound for Deterministic (1/2 + ϵ)-approximation

In this section, we extend the cut dimension technique by [20] using linear programming and

the strong duality theorem to show the deterministic hardness part of Theorem 4. (We refer

the reader to Appendix A of the full version for a discussion of this technique and its direct

application to show the deterministic lower bound in Theorem 3.) Our exact result is as

follows:

ICALP 2024
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▶ Theorem 6. Suppose we have c ∈ (1/2, 1), ϵ ∈ (0, 1), ³ > 0 such that c > 1
1+ϵ2 and

³ < (1−ϵ)3

108(1+ϵ) . Then for n sufficiently large, ³n queries do not suffice for a deterministic

algorithm to estimate the max cut value within a factor of c.

Before proving this theorem, we state a cleaner lower bound as a corollary:

▶ Corollary 7. For c ∈ (1/2, 1), a deterministic algorithm that estimates the max cut value

within a factor of c requires at least n( (
√

c−
√

1−c)4

108c(2c−1) − o(1)) queries.

This implies that the query complexity for a deterministic algorithm to achieve a c-

approximation for global max-cut on a weighted undirected graph in the value estimation

setting is Ω(n).

Proof. See Appendix F.1 of the full version. ◀

The first step is conceptually similar to the cut dimension argument from Theorem A.1

in the full version. We consider an adversary that answers all queries as if the graph were

Kn (there is an edge of weight 1 between all pairs of vertices). Then we would like to find a

perturbation z to the weight vector of Kn such that w, w + z agree on all queries but have

differing max cut values. The difference here is that we would like to show that the algorithm

cannot even achieve a c-approximation, so we require the perturbation to be so large that

the max cut value of w + z is a multiplicative factor greater than the max cut of w. To

do this, we will have to go beyond linear algebraic tools and consider linear programming

instead. Our argument comprises the following steps:

1. Write the conditions we require of the perturbation z as linear constraints and thus

formulate a linear program LP1, which we would like to show has high value.

2. LP1 works with vectors in R(n

2) that represent cuts, which are unwieldy and unnatural.

Rewrite this in terms of indicator vectors in Rn.

3. Define another linear program LP2 and show that a high value for LP2 implies that LP1

must also have high value.

4. Show that LP2 has high value by taking its dual, and showing that the dual has high value.

This comes down to showing a key technical lemma, which essentially states that the

n-dimensional hypercube cannot be covered by an ℓ1 neighborhood of an ³n-dimensional

subspace of Rn. We show this using an ℓ1 ϵ-net argument.

We now work through each step in detail. We retain all notation used in Appendix A

of the full version for the cut dimension argument, and introduce additional notation as

necessary.

3.1 Step 1: Formulating LP1

Throughout these proofs, we use 1 to denote a vector with all entries equal to 1 in either

Rn or R(n

2). It will be clear from context which of these we are referring to at any given

time, but for now we are taking 1 ∈ R(n

2) to denote the weight vector of Kn. Let q = ³n

and Q1, Q2, . . . , Qq ¦ [n] be the q queried cuts. As in Appendix A of the full version, they

have the corresponding 0/1 indicator vectors vQ1
, vQ2

, . . . , vQq
∈ R(n

2). We are interested

in finding a perturbation z such that 1, 1 + z are both weighted, undirected graphs (with

non-negative edge weights) and agree on all queries but have max cut values differing by a

multiplicative factor.
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First, we require 1 + z to define a valid graph i.e. its entries should all be non-negative

since these correspond to edge weights:

1 + z g 0ô z g −1. (1)

Next, we need 1, 1 + z to agree on all queries. This guarantees that the algorithm cannot

tell the difference between 1 and 1 + z based only on the queries made so far.

1
T vQi

= (1 + z)T vQi
, ∀iô zT vQi

= 0, ∀i. (2)

Finally, we would like the graph corresponding to 1 + z to have a much larger max cut value

than the graph corresponding to 1. We capture this in the following definition and lemma:

▶ Definition 8. Define a near-max cut to be any cut C ¦ [n] such that n/2−√n log n f
|C| f n/2 +

√
n log n.

Note that a near-max cut is nearly a max-cut in Kn. As hinted at earlier, we will show

that we can find a near-max cut C and a perturbation z to the graph that will preserve

the value of all queries while blowing up the value of C by a factor of c. In this case, the

algorithm cannot distinguish between Kn and the perturbed graph and thus cannot achieve

a c-approximation.

▶ Lemma 9. To prove Theorem 6, it suffices to show that there exists a near-max cut C such

that the following linear program has value at least ϵ2n2/4. We call this linear program LP1.

Maximize zT vC

subject to zT vQj
= 0 for all j ∈ [q], and

z g −1.

Proof. We have already explained how the constraints arise. To justify that the objective

corresponds to a bound on the approximation ratio, see Appendix F.2 of the full version. ◀

3.2 Step 2: Rewriting LP1

As already mentioned, the vectors vS ∈ R(n

2) are unnatural and difficult to work with.

Intuitively, the reason for this is that a cut only has n degrees of freedom (each vertex can

be included or not included in S), but we are representing it with a vector with
(

n
2

)
entries,

thereby creating unwanted dependencies between entries of these vectors.

We would thus like to find a more natural parametrization of these cuts that can still be

connected naturally to the vectors vS . To construct such a parametrization, we assign to

each cut S a ±1 indicator vector uS ∈ Rn. Entries are indexed by vertices in [n], and for

each i ∈ [n] we have (uS)i = 1 if i ∈ S and −1 otherwise.

Now we connect these new indicator vectors to vS as follows. Define the matrix MS ∈
Rn×n by MS =

11
T −uSuT

S

2 . (Note that from here onwards, 1 now refers to the vector in

Rn with all entries equal to 1.) MS ’s entries are indexed by ordered pairs of vertices. Now

observe that:
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(MS)i,j =
1i1j − (uS)i(uS)j

2

=
1− (uS)i(uS)j

2

=

{
0, i, j ∈ S or i, j /∈ S,

1, otherwise

=

{
(vS)i,j , i ̸= j,

0, i = j.

Thus if we flatten MS into a vector, it consists of two copies of vS (each unordered vertex

pair (i, j) in vS appears twice in MS since the vertex pairs indexing MS are ordered) and n

0’s (corresponding to vertex pairs (i, i) for i ∈ [n]). This allows us to rewrite LP1 in terms

of the uS ’s as stated in the following lemma. For matrices A, B of the same shape, we use

ïA, Bð to denote the matrix inner product tr(AT B) =
∑

i,j Ai,jBi,j .

▶ Lemma 10. For any C, LP1 has value g ϵ2n2/4 if and only if the following LP has value

at least ϵ2n2/2. We call this the “matrix LP”. Here, Z ∈ Rn×n.

Maximize ïZ, MCð
subject to ïZ, MQj

ð = 0 for all j ∈ [q], and

Z g −1.

Proof. See Appendix F.3 of the full version. ◀

3.3 Step 3: Defining LP2 and Connecting LP2 to LP1

For a near-max cut C, define a new linear program which we call LP2 as follows. Here

y ∈ Rn.

Maximize yT uC

subject to yT uQj
= 0 for all j ∈ [q],

yT
1 = 0, and

− 1 f y f 1.

We claim that it suffices to show that LP2 has value at least ϵn:

▶ Lemma 11. If there exists a near-max cut C such that LP2 has value at least ϵn then the

matrix LP for C has value at least ϵ2n2/2, which would imply Theorem 6.

Proof Sketch. Take such a near-max cut C and y ∈ Rn such that y is in the feasible region of

LP2 and yT uC g ϵn. Then we claim that Z = −yyT is feasible for the matrix LP and attains

a value g ϵ2n2/2. Intuitively, y can be thought of as a vector representing a “pseudo-cut” in

the same way that uS represents S. LP2 having high value means that y aligns non-trivially

with C, and what we are claiming is that perturbing towards the “pseudo-cut” corresponding

to y will align the graph’s weights with the cut corresponding to C. We provide details in

Appendix F.4 of the full version. ◀
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3.4 Step 4: Showing that LP2 has High Value

Finally, we show that we can find a near-max cut C such that LP2 has value at least ϵn,

which by Lemma 11 will complete the proof of Theorem 6. We do this by taking the dual of

LP2, which has a simple characterization captured by the following lemma:

▶ Lemma 12. Consider vectors w, w1, w2, . . . , wk ∈ Rd, and the following LP:

Maximize zT w

subject to zT wi = 0 for all i ∈ [k], and

− 1 f z f 1.

Let W = span(w1, w2, . . . , wk). Then the value of this LP is minv∈W ||v − w||1. (If there is

no such v then by this minimum we mean ∞.)

Proof. See Appendix F.5 of the full version. ◀

To use this lemma, let V = span(uQ1
, . . . , uQq

, 1). Then Lemma 12 tells us that LP2 has

value equal to minu∈V ||u− uC ||1.

Now note that V depends only on the set of queries and not at all on C. Thus we would

like to show that there exists a near-max cut C such that minu∈V ||u− uC ||1 g ϵn. We will

show the strict version of this inequality i.e. that minu∈V ||u− uC ||1 > ϵn. Denote by Br

the ℓ1 ball of radius r in Rn. Then what we want to show is that there exists a near-max cut

C such that uC /∈ V + Bϵn. This brings us to our key technical lemma, which has little to

do with graphs and may be of independent interest:

▶ Lemma 13. Let ϵ ∈ (0, 1) and d f ³′n for ³′ < (1−ϵ)3

108(1+ϵ) . Suppose D is a d-dimensional

subspace of Rn. Denote by Br the ℓ1 ball of radius r in Rn. Then there exists p ∈ {−1, 1}n

such that p /∈ D + Bϵn and |1T p| f 2
√

n log n.

Proof. We show this by a volume argument. Specifically, we estimate the size of (D + Bϵn)∩
{−1, 1}n

using an ℓ1 ϵ-net argument and show that this must be much less than 2n. We

provide details in Appendix F.6 of the full version. ◀

With this lemma, we can complete this step and thus the proof of Theorem 6:

▶ Corollary 14. For n sufficiently large, there exists a near-max cut C such that uC /∈ V +Bϵn.

Proof. See Appendix F.7 of the full version. ◀

4 Sparsifier-based Randomized Algorithms for (1 − ϵ)-approximation

Here we address the randomized upper bound part of Theorem 4, namely that a (1 − ϵ)-

approximation can be achieved in the cut finding setting with Õ(n) queries. Our algorithms

are adaptive. The key notion is that of a sparsifier :

▶ Definition 15. Given weighted graphs G, H on the same set of n vertices with non-negative

weights, we say H is an ϵ-sparsifier of G if all of the following conditions hold:

1. H has Õϵ(n) edges with nonzero weight.

2. For any cut S ¦ [n], we have (1− ϵ)F (S; G) f F (S; H) f (1 + ϵ)F (S; G).

Here F (S; G) denotes the value of the cut defined by S on the graph G, and similarly for

F (S; H).
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▶ Lemma 16. If an algorithm can compute an ϵ-sparsifier of G in Õ(n/ϵ2) queries with high

probability, then it can also find a (1− 2ϵ)-approximate max cut with no additional queries.

Proof. Once the algorithm has a sparsifier H, it can just try all possible cuts and output

the cut U maximizing F (U ; H). Indeed, for any other cut S, we would have F (U ; G) g
F (U ;H)

1+ϵ g F (S;H)
1+ϵ g (1−ϵ)F (S;G)

1+ϵ g (1− 2ϵ)F (S; G), so U is indeed a (1− ϵ)-approximate max

cut. ◀

Throughout this section, let d > 5 be constant, and let ¶ ∈ (1/2, 1) be a constant

sufficiently close to 1. Then let c0 and c1 be sufficiently large positive constants. Also, let

Wtot be the total weight of all edges in the graph, and W the ratio between the largest

and smallest nonzero edge weights. Finally, for a vertex set S ¦ V (G), let G[S] denote the

vertex-induced subgraph of G on S. Note that we do not require that G be connected. We

organize the remainder of this section as follows:

1. In Section 4.1, we set up and analyze the algorithmic tools necessary to adapt [31]’s

algorithm to weighted graphs.

2. In Section 4.2, we present the direct adaptation of [31]’s algorithm to weighted graphs

and show that it constructs a sparsifier in Õ(n log W ) queries.

3. In Section 4.3, we use ideas introduced by [7] relating edge strengths to maximum

spanning trees in order to construct a sparsifier for weighted graphs in Õ(n) queries, thus

eliminating the dependence of the query complexity on W .

4. Additionally, in Appendix D of the full version, we show that we can achieve a (1− ϵ)-

approximation for max-cut in Õ(n) queries without needing the optimizations in Section

4.3. This is achieved by essentially stopping our adaptation of [31]’s algorithm early. This

will not construct a sparsifier, but it will construct something “close enough” to suffice

for max-cut. Intuitively, we do this by discarding edges of weight < Wtot/poly(n) since

these will not have much effect on the max cut, thereby reducing the problem to one

where W = poly(n).

Given this result, our sparsifier for weighted graphs in Section 4.3 is not necessary for

max-cut specifically, but it makes for a conceptually cleaner algorithm for max-cut and

may be applicable to other problems.

4.1 Setup and Algorithmic Tools

The key idea is the notion of edge strength introduced by [7].

▶ Definition 17 (([7], as stated in [31]). The strong connectivity of G, denoted K(G), is the

value of G’s min cut.

▶ Definition 18 ([7], as stated in [31]). Given an edge e in G, the strong connectivity or edge

strength ke of e is the maximum min cut over all vertex-induced subgraphs of G containing e:

ke = max
S¦V :u,v∈S

K(G[S]).

The idea introduced by [7] and used by [31] is that subsampling edges of G with probabil-

ities inversely proportional to their strength will give a sparsifier. We cannot do exactly this

in the cut query model, but we can subsample in a way that is “close enough” to independent.

We need some basic primitives to support our algorithm, and we capture all of them in the

following lemma:
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▶ Lemma 19. There exists a data structure supporting the following operations.

1. InitializeDS(H): Initialize the structure’s state and carry out any preprocessing needed

with the starting graph H.

2. Contract(S): Contract a given supernode set S.

3. GetEdge(): Find and return an edge from H (that has not been contracted) with weight

at least 2W (H)
n2 . Here W (H) is the total weight of not-yet-contracted edges.

4. GetTotalWeight(S): Return the total weight of all edges with both endpoints in S (that

have not yet been contracted). S must once again be a set of supernodes.

5. Sample(S): Sample a random edge with both endpoints in S (that has not yet been

contracted), with probability proportional to its weight. S must be a set of supernodes here

as well.

It takes O(n) queries for each call to InitializeDS, O(1) queries for each call to Contract,

O(log n) queries for each call to GetEdge, O(1) queries for each call to GetTotalWeight, and

O(log n) queries for each call to Sample.

Proof. The pre-processing and queries when contracting are due to having to keep track of

(super)node degrees. GetEdge and Sample can be handled using recursive bisection procedures

similar to that used to prove Corollary 2.2 in [31]. We provide details in Appendix G.1 of

the full version. ◀

Before we go any further, we make an important comment about how we regard contraction

in our algorithms (including Lemma 19). When we contract a set of vertices, we regard that

set of vertices as one supernode as usual, but we do not merge any edges that have now

become parallel. So the set of edges will always be a subset of the edges from the original

graph.

It will be convenient to regard our algorithms as having two separate stages, although the

two stages share some ingredients. In the first stage, the algorithm iteratively subsamples

and contracts the graph to estimate the strengths of all edges within a constant factor. In

the second stage, the algorithm uses these edge strength estimates to construct the sparsifier,

following the ideas of [7]. We address these two stages in the next two subsections respectively.

We note that these algorithms are very similar to those presented by [31]; the key

difference is that whenever the sparsification algorithm in [31] subsamples the graph, it does

so independently for each edge. This works because [31] focuses on unweighted graphs. With

weighted graphs, we would like to sample edges proportionately to their weight, and this

cannot be done independently without knowledge of the graph. We modify their subsampling

procedures to obtain algorithms that do not sample completely independently, but still have

the concentration properties that we need.

4.1.1 Constant-Factor Edge Strength Estimates

We next describe the main tool of our edge strength estimation, which we call EstimateAnd-

Contract. It takes in the input graph G where some vertex sets Si have already been

contracted and a strength parameter », and further contracts G while also estimating the

strength of any edges that get contracted. For any graph H, let W (H) denote the total edge

weight of H.

We state some key properties of Algorithm 4.1 and defer their proofs to Appendix G.4 of

the full version:

▶ Lemma 20 (Analogous to claim 3.6 from [31]). With probability 1−O(n1−d), for all e such

that ke g » and e is not contracted by any of the sets in C, it will be assigned k′
e = »/2 and

contracted.
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Algorithm 4.1 EstimateAndContract(G, C, κ, X).

Data: Initial graph G with vertex set V (G) ¦ [n], disjoint collection C of contracted

sets, strength parameter », partial list X of strength estimates

Result: Updated collection of contracted sets C, updated list X of strength estimates

Let G′ be G with all sets from C contracted and ¼ = c0 log2 n
» W (G′). (We can find

W (G′) using GetTotalWeight from Lemma 19.)

1. Sample ¼ edges from G′, proportionally to their weights, with replacement.

If an edge e is sampled at least once, assign weight w(e)
p(e) to it, where

p(e) = 1− (1− we

W (G′) )¼. These newly weighted edges form a new graph G′′.

2. While there exists a connected component of G′′ with a cut of size f (1− ¶)»,

delete all edges of that cut from G′′. Let the resulting connected components of

G′′ be C1, C2, . . . , Cr.

3. For each i ∈ [r], append the tuple (Ci, »/2) to X. (Here, what we are saying is

“assign a strength estimate of »/2 to any edge with both endpoints in Ci that

has not already been contracted”, but we phrase it differently to account for the

fact that the algorithm may not actually know these edges.)

4. Add Ci to C (and remove any subsets of Ci to maintain disjointness) for all i ∈ [r].

▶ Lemma 21 (Analogous to claim 3.7 from [31]). Assume that any edge contracted by C has

strength g »/2. Then with probability 1−O(n1−d), no edge e such that ke < »/2 is assigned

a strength estimate or contracted.

4.1.2 Sparsifier Construction

Next, we describe our algorithm that will construct a sparsifier if provided constant-factor

strength estimates for all edges in the graph, which we call ConstructSparsifier.

We capture the desired sparsification properties in the following lemma:

▶ Lemma 22. Fix X = [(C1, ´1), (C2, ´2), . . . , (Cr, ´r)] as in ConstructSparsifier (X might

be random, but we condition on a particular list of values for now). Then for each i, define:

E(Ci) = {e ∈ G : both endpoints of e are in Ci}
Ẽ(Ci) = E(Ci)\

⋃

j:Cj¢Ci

E(Cj)

(Thus Ẽ(Ci) is the set of edges that will be contracted at the time that Ci is contracted.)

Assume each of the following conditions:

1. Each connected component of G is contained in at least one Ci (every edge in G gets

contracted), and

2. For all i and edges e ∈ Ẽ(Ci), we have ´i ∈ [ke/4, ke] (edge strength estimates are correct

within a constant factor).

Then with probability 1 − O(n−d), ConstructSparsifier will output a sparsifier H that

approximates the cuts of G within a factor of 1±2ϵ. (Thus this probability is only considering

the randomness of ConstructSparsifier.)

Proof. This follows using similar ideas to [7], but we need to take some extra care because

the subsampling we use to construct the sparsifier is not independent. We provide details in

Appendix G.2.2 of the full version. ◀
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Algorithm 4.2 ConstructSparsifier(G, X).

Data: Graph G with vertex set [n], list X = [(C1, ´1), (C2, ´2), . . . , (Cr, ´r)] of

strength estimates. We assume that {C1, . . . , Cr} is a laminar family of

vertex sets and that if Ci ¢ Cj then i < j. (This is because we will be

contracting C1, . . . , Cr in that order.) Note that we do not assume here that

X includes a strength estimate for every edge.

Result: Potential sparsifier H

Initialize G′ = G and H to be empty.

InitializeDS(G′). (This is just to reset and ignore any previous contractions we may

have done in EstimateAndContract.)

for i← 1 to r do

1. Let µi = c1 log2 n
ϵ2´i

W (Ci). (Here W () is with respect to G′, and once again can

be found using GetTotalWeight from Lemma 19.)

2. Sample µi edges from Ci proportionally to their weights, with replacement.

If an edge e is sampled at least once, add it to H with weight we

pe
, where

pe = 1− (1− we

W (Ci) )µi is the probability that e is sampled at least once.

(Note that this sampling would be done by calling Sample(Ci) from Lemma 19.)

3. Contract Ci in G′.
end

4.2 Sparsification with Õ(n log W ) Queries

Here we analyze the naive generalization of [31]’s sparsifier to weighted graphs. The procedure

is described in Algorithm 4.3.

Algorithm 4.3 NaiveWeightedSubsample(G, T ).

Data: Graph G on n vertices, positive real parameter T

Result: A potential (2ϵ)-sparsifier H of G.

Initialize C = ∅ and X as an empty list.

InitializeDS(G).

Find Wtot by running GetTotalWeight(G).

Initialize » to be the smallest power of 2 that is at least Wtot.

while GetTotalWeight(G) > 0 and » > Wtot/T do

EstimateAndContract(G, C, », X)

»← »/2

end

H ← ConstructSparsifier(G, X).

▶ Theorem 23. NaiveWeightedSubsample(G,∞) runs in O(n log3 n(log n + log W + 1
ϵ2 ))

queries and outputs a (2ϵ)-sparsifier H with probability 1−O(n1−d(log n + log W )).

Proof. We outline the proof here and provide details in Appendices G.5 (correctness) and

G.8 (efficiency) of the full version. The proof proceeds in two parts.

First, we address the calls to EstimateAndContract. Given Lemmas 4.6 and 4.7, Estim-

ateAndContract can be thought of as estimating the strengths of and then contracting edges

whose strengths are within a window that is a factor of 4 wide. The lemmas tell us that

these strength estimates are accurate within a factor of 4. Then NaiveWeightedSubsample
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essentially “slides” this window across all possible edge strengths so that all edges of G are

assigned a strength estimate. This part has query complexity O(n log3 n(log n + log W )); the

log W term is because the outer loop could run for O(log n + log W ) iterations. This is also

why the success probability depends on W , as this is obtained by taking a union bound over

all iterations.

Secondly, because all edges are assigned an accurate strength estimate (within a constant

factor), Lemma 22 tells us that ConstructSparsifier will output a (2ϵ)-sparsifier with high

probability. This part has query complexity O(n log3 n/ϵ2). ◀

4.3 Sparsification with Õ(n) Queries

We now show how to eliminate the dependence of the query complexity and success probability

on W , thus constructing sparsifiers in Õ(n) queries. We begin by setting up the necessary

ideas.

4.3.1 Crude Edge Strength Estimates

Recall that the key problem with Algorithm 4.3 was that our “sliding window” for edge

strength estimation could potentially repeat O(log n + log W ) times. The key idea is to

mitigate this by finding very crude (within a factor of n4) estimates for the edge strengths

for all edges in G, before refining these estimates using EstimateAndContract. We do this

using the idea of [7] to estimate edge strengths from the maximum spanning forest (MSF) of

G. Fix an MSF T of G. Then for any edge e with endpoints i, j, define de = di,j to be the

minimum weight of an edge on the MSF path between the endpoints of e. We first state a

lemma shown in [7]:

▶ Lemma 24 ([7]). For all edges e, we have de f ke f n2de.

This would immediately give us sufficient edge strength estimates but we do not know of

a way to find the MSF efficiently in the cut query model. In fact, we can adapt the max cut

dimension argument from Lemma A.3 in the full version to a “max tree dimension” argument

to show that deterministically finding the MSF requires Ω(n2) queries; see Appendix A.1 of

the full version for details. So instead, we run what we call “approximate Kruskal” using the

primitives we have available from Lemma 19.

Algorithm 4.4 ApproximateKruskal(G).

Data: Graph G on n vertices

Result: A forest T̃ using the edges of G.

Initialize T̃ to be the empty graph on n vertices.

InitializeDS(G).

while GetTotalWeight(G) > 0 do

e = GetEdge()

Contract(e)

Add e to T̃ .
end

It follows from Lemma 19 that ApproximateKruskal can be run in O(n log n) queries.

Once we run ApproximateKruskal, we will have a spanning forest of G so we will also know

its connected components. Moreover, the following lemma tells us that even this crude

approximation to the MSF suffices to give us edge strength estimates. We defer the proofs of

this lemma and its straightforward corollary to Appendix G.6.1 of the full version.
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▶ Lemma 25. For any distinct i, j, define d̃i,j as follows:

If i, j are connected in G, then let d̃i,j be the minimum weight of an edge on the path in

T̃ connecting i and j.

Otherwise, let d̃i,j = 0.

Then for any i, j that are connected in G, we have 2
n2 di,j f d̃i,j f di,j for all i, j.

Note that we only assume here that T is maximal; any assumptions we make about T̃ are

baked into GetEdge.

▶ Corollary 26. For all distinct i, j, we have ki,j ∈ [d̃i,j , n4

2 d̃i,j ].

4.3.2 Fast Weighted Subsampling

We now describe how to use our crude edge strength estimates to construct a sparsifier

in Õ(n) queries. The idea is that by Lemma 21, any edges with strength < »/2 will be

deleted in Step 2 of Algorithm 4.1. But we can use our crude edge strength estimates

to preemptively identify some edges that will definitely be deleted, and then delete these

edges to disconnect the graph a bit before running EstimateAndContract. We describe this

procedure in Algorithm 4.5.

Algorithm 4.5 FastWeightedSubsample(G).

Data: Graph G on n vertices

Result: A potential (2ϵ)-sparsifier H of G.

Run ApproximateKruskal on a copy of G and calculate d̃i,j for all i, j.

Initialize L to a list of all nonzero values of d̃i,j .

Initialize C = ∅, » =∞, and X as an empty list.

InitializeDS(G).

while L ̸= ∅ do

Let D̃ = max L and C =
{

(i, j) : d̃i,j < D̃/(2n5)
}

.

Let S1, . . . , Sr be the connected components of Kn after we remove all edges from

C.

Let »′ be the smallest power of 2 that is at least n4D̃/2.

»← min(», »′)

while » g D̃/(2n) do

for i← 1 to r do

EstimateAndContract(G[Si], C, », X)

Remove all contracted edges from L.
end

»← »/2

end

end

H ← ConstructSparsifier(G, X).

We make one comment here about FastWeightedSubsample: for the algorithm as presented

to even be well-defined, we need to check that each Si at any stage of the algorithm is the union

of some collection of supernodes. If not, it does not make sense to run EstimateAndContract

on each G[Si]. This condition is also necessary to ensure the applicability of Lemma 19 to

each call to EstimateAndContract; Contract, GetTotalWeight, and Sample all require that

their input S be a union of supernodes. We defer the verification of this and the proof of our

final theorem to Appendices G.7 (correctness) and G.8 (efficiency) of the full version:
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▶ Theorem 27. FastWeightedSubsample runs in O(n log3 n(log n + 1
ϵ2 )) queries and outputs

a (2ϵ)-sparsifier H with probability 1−O(n5−d).

▶ Corollary 28. For any ϵ > 0, the query complexity for a randomized algorithm to construct

an ϵ-sparsifier with 1−o(1) probability for a weighted undirected graph is Õ(n). This algorithm

is adaptive.

By Lemma 16, this yields our desired algorithmic result for max-cut:

▶ Corollary 29. For any c < 1, the query complexity for a randomized algorithm to achieve

a c-approximation with 1− o(1) probability for global max-cut on a weighted undirected graph

in the cut finding setting is Õ(n). This algorithm is adaptive.

We remind the reader that Theorem 27 extends the query-efficient sparsifier of [31] to

weighted graphs (as we saw in Section 4.2, a naive generalization of [31] requires Õ(n log W )

queries).
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