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Abstract

We provide a simple (1 − O( 1√
k

))-selectable Online Contention Resolution Scheme for k-uniform

matroids against a fixed-order adversary. If Ai and Gi denote the set of selected elements and the

set of realized active elements among the first i (respectively), our algorithm selects with probability

1− 1√
k

any active element i such that |Ai−1|+1 ≤ (1− 1√
k

) ·E[|Gi|]+
√

k. This implies a (1−O( 1√
k

))

prophet inequality against fixed-order adversaries for k-uniform matroids that is considerably simpler

than previous algorithms [2, 4, 18].

We also prove that no OCRS can be (1 − Ω(

√

log k

k
))-selectable for k-uniform matroids against

an almighty adversary. This guarantee is matched by the (known) simple greedy algorithm that

selects every active element with probability 1 − Θ(

√

log k

k
) [17].
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1 Introduction

Background: OCRSs

Online contention resolution schemes (OCRS), introduced by Feldman et al., are a broadly

applicable rounding technique for online selection problems [14]. These are problems in which

an algorithm makes irrevocable decisions for whether to select elements arriving online, often

subject to combinatorial constraints. Offline, the algorithm knows a distribution over which

elements will be “active.” Online, elements are revealed to be active or inactive one at a time,

and the algorithm must immediately and irrevocably decide whether to accept an active

element (inactive elements must be rejected). There are feasibility constraints F on which

elements can be simultaneously accepted. An OCRS for a class of instances is c-selectable if

it guarantees that every element is selected with probability at least c, conditioned on being

active. See Definition 1 for a formal definition.

Online contention resolution schemes have direct applications to prophet inequalities [14].

In a prophet inequality, a gambler knows the distribution of a sequence of independent

random variables X1, . . . , Xn. Online, each random variable will be sampled one at a time

and revealed to the gambler, who immediately and irrevocably decides whether to accept

the element, subject to feasibility constraints F . The gambler’s goal is to maximize the

expected sum of weights of accepted elements, and a prophet inequality compares the ratio

of the gambler’s expected performance to that of a prophet (who knows all random variables

before making decisions). Seminal work of Krengel, Sucheston, and Garling establishes a
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tight 1/2-approximation for the single-choice prophet inequality, and seminal work of Samuel-

Cahn shows that the same result can be achieved with an especially simple thresholding

algorithm [22, 27].

In their work introducing OCRSs, Feldman, Svensson, and Zenklusen prove that a c-

selectable OCRS implies a c-approximation for the corresponding prophet inequality [14]. In

fact, a c-selectable OCRS provides a c-approximation even to the ex ante relaxation, and

Lee and Singla show that OCRSs are equivalent to ex ante prophet inequalities [23].

k-Uniform Matroids

k-uniform matroids are a canonical set of feasibility constraints: any set of up to k elements

can be selected. Here, a (1 − O(
√

log k
k

))-approximate prophet inequality (whose analysis

implicitly extends to a (1 − O(
√

log k
k

))-selectable OCRS) is first developed in [17]. [2] later

develops a (1 − O( 1√
k

))-approximation (which also implies a (1 − O( 1√
k

))-selectable OCRS),

which is tight . [4] further shows how to achieve the same (1 − O( 1√
k

))-approximation using

a single sample from each distribution (but their work does not imply any OCRS). [18]

tightens the analysis of [2] to nail down exactly the optimal achievable prophet inequality for

all k (and this same analysis applies to the implied OCRS). We overview in Section 1.1 these

results in more detail, and in particular clarify against what kind of adversary (who selects

the order in which the elements are revealed) the guarantees hold.

While the optimal competitive ratio has been known for a decade, and recently tightened

to even nail down the precise constants, these algorithms are significantly more complex than

Samuel-Cahn’s elegant algorithm for the single-choice prophet inequality. For example, [2, 18]

both require to solve and analyze a mathematical program in order to accept elements with

precisely the correct probability. The rehearsal algorithm of [4] is perhaps simpler, but still

requires several lines of pseudocode, and some care with minor details.

Main Result: A Simple, Optimal OCRS

Our main result is a significantly simpler OCRS/prophet inequality for k-uniform matroids

that still achieves the optimal guarantee of 1 − O( 1√
k
). Of course, it is still not nearly as

simple as Samuel-Cahn’s single-choice prophet inequality, but a full description fits in two

sentences, and the complete analysis is just a few pages.1 Our OCRS simply denotes by Ai

the set of elements it has selected amongst the first i and by Gi the set of realized active

elements amongst the first i. Then, when processing element i, we select i with probability

1 − 1√
k

if and only if i is active and |Ai−1| + 1 f (1 − 1√
k
) · E[|Gi|] +

√
k (otherwise, we

discard). Intuitively, our OCRS selects an element if, so far, the number of selected elements

does not exceed the expected number of active elements by too much. To turn our OCRS into

a prophet inequality, simply let T denote the unique value such that
∑

i Pr[Xi > T ] = k.2

Then, declare Xi to be active if and only if Xi > T and plug this into our OCRS. Compared to

prior optimal algorithms for the same setting, our algorithm has the advantage that it is very

simple to implement since it does not require solving a complicated dynamic/linear program.

(See Section 1.1) We state our algorithm precisely, and prove that it is (1 − O( 1√
k

))-selectable

against a fixed-order adversary in Section 4.3

1 The proof does require connecting our algorithm to a random walk, and then analyzing properties of
that random walk. But, the proof requires minimal calculations.

2 If the distributions have point-masses, smooth them out by adding a uniformly random draw from [0, ε]
for arbitrarily small ε.

3 A fixed-order adversary sets the order to reveal the elements offline, and based only on the distributions.
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An Impossibility for OCRS against almighty adversary

While the fixed-order adversary is standard in the prophet inequality literature, it is also

important to explore the extent to which these same guarantees can hold against an almighty

adversary.4 For example, the prophet inequality of [4] holds against an almighty adversary,

but does not imply an OCRS. Our second result shows that this is for good reason: no OCRS

can guarantee a selectability better than 1 − Ω(
√

log k
k

) against an almighty adversary. We

state and prove this in Section 5.

1.1 Detailed Discussion of Related Work

As previously referenced, prior to our work it is already known that the optimal selectability

for OCRS and the optimal prophet inequality against a fixed-order adversary is 1−Θ( 1√
k

) ([17]

proves the impossibility, and [2] designs the first algorithm matching it). [4] designs a prophet

inequality that achieves the same (1 − O( 1√
k

))-approximation against an almighty adversary,

but this does not imply an OCRS. The analysis in [17] implies an extremely simple OCRS

(accept every active element with probability 1−Θ(
√

log k
k

)) that is (1−Θ(
√

log k
k

))-selectable

against an almighty adversary. We show that this is the best possible guarantee (Theorem 27).

Because we view our main result as a simpler algorithm achieving (asymptotically) the same

guarantees as prior work, we now overview these works in greater detail.

The γ-Conservative magician in [2]

As previously mentioned, [2] implies an optimal (1 − O( 1√
k
))-selectable OCRS against a

fixed-order adversary. [2, Definition 2] describes a µ-Conservative Magician, which is an

algorithm that adaptively computes thresholds ¹i and accepts an active element on step i if

and only if the number of selected elements (or broken wands in the terminology of [2]) Wi

in steps 1, . . . , i − 1 is less than ¹i. The cumulative distribution function of Wi is computed

adaptively at every step through a dynamic programming equation. Once the CDF of Wi

has been computed, ¹i is chosen so that the ex-ante probability that Wi f ¹i is at least µ. [2]

shows that one can choose µ = 1 − 1√
k+3

and ¹i f k for all i, which effectively guarantees

an OCRS against a fixed-order adversary that is 1 − 1√
k+3

-selectable [2, Theorem 4]. In

comparison to [2], our main result achieves the same asymptotic guarantee, but is considerably

simpler (in particular, the analysis requires minimal calculations, and there is no dynamic

program).

Characterization of the optimal OCRS and prophet inequality for k-uniform
matroids in [18]

[18] studies the optimal OCRS for k-uniform matroids (i.e. with optimal selection probability

c). They characterize the optimal OCRS for k-uniform matroids as the solution to a linear

program. Then, using a differential equation, they show that this optimal solution corresponds

to a µ∗
k-Conservative magician, where µ∗

k > 1 − 1√
k+3

. The OCRS guarantees in [18] hold

against an online adversary 5.

4 An almighty adversary sets the order to reveal online, and with full knowledge of all random variables
and all past decisions of the algorithm.

5 An online adversary adaptively decides which elements to reveal next, based on which elements were
active. But the online adversary does not know the status of the unrevealed elements (i.e. it has the
same information as the algorithm)

ITCS 2024
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In comparison to [18], our main result achieves the same 1 − O( 1√
k

) asymptotic guarantee

against a fixed-order adversary, but is, again, considerably simpler and does not require

solving any mathematical program. Although our analysis holds against the weaker fixed-

order adversary, this assumption is sufficient for many popular applications of OCRS and

prophet inequalities in online stochastic optimization.

The Rehearsal algorithm in [4]

As previously discussed, [4] gives an optimal (1 − O( 1√
k

))-approximation prophet inequality

against an almighty adversary, and even when knowing only a single sample from each

distribution, using the rehearsal algorithm. Their rehearsal algorithm takes a sample from

each distribution, and stores the k − 2
√

k highest samples at T1, . . . , T
k−2

√
k
, then repeats

Ti := T
k−2

√
k

for all i ∈ [k − 2
√

k, k]. When processing the online element Xe, e is accepted

if and only if there is an unfilled slot i with Xe > Ti. If Xe is accepted, it fills the highest

such slot (the slot with the highest threshold).

Their analysis does not imply an OCRS (indeed, it is not even clear what it would mean

to set the thresholds Ti in an OCRS). But, their analysis does hold against an almighty

adversary. In comparison, our prophet inequality is simpler, and implies an OCRS. But, our

algorithm requires some knowledge of the distributions, rather than just a single sample.6

Our analyses have similar flavors: both works connect our algorithms’ performance to a

random walk. These random walks are quite different (for example, the random walk in [4]

is correlated, and ours is not. Our random walk has non-integral step sizes, while theirs

does not), and are used to analyze different algorithms. While there are some coincidental

similarities (for example, our Lemma A.2 in the full version [10] is a generalization of their

Lemma 10), the core of our proof is simply connecting our algorithm to a random walk,

whereas the bulk of their proof is coping with the correlation in their random walk and any

associated calculations.

Other Related Work

There is substantial additional work on both prophet inequalities and online contention

resolution schemes, subject to various other constraints [7, 21, 15, 12, 25, 26, 11, 1, 16, 3,

13, 5, 9, 28, 24]. Aside from this, there is not much technical overlap with these works (in

particular, a substantial fraction of these works consider richer feasibility constraints, and

therefore achieve constant-factor approximations rather than approximations approaching 1).

Other works have also considered a special class of static threshold policies for k-unit

prophet inequalities which set a single threshold and accept any element that exceeds it

subject to the feasibility constraint. [17] provides a prophet inequality with a static threshold

which is a 1 − O(
√

log(k)
k

) approximation. [6] proposes a different static threshold prophet

inequality with the same 1 − O(
√

log(k)
k

) asymptotic guarantee improving the approximation

for small k. [19] uses a mathematical programming approach to show that the policy in [6] is

worst-case optimal within all static threshold policies. In contrast to these works, we study

the design and limitations of the richer class of adaptive strategies for the more general

setting of OCRS.

6 Turning our OCRS into a prophet inequality requires a value T such that
∑

i
Pr[Xi > T ] ≈ k, and an

accurate estimate of
∑

j≤i
Pr[Xj > T ] for all i. Estimates up to an additive

√
k with high probability

suffice. This can certainly be achieved with polynomially-many samples, but not a single sample.
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In the context of offline contention resolution schemes (introduced in [8]), [20] shows a

simple optimal contention resolution scheme for k-uniform matroids, which is (1 −
(

n
k

)

(1 −
k
n

)n+1−k( k
n

)k)-selectable. Their method is not extendable to the online case because it

requires knowing the set of active elements A in advance.

1.2 Roadmap

Section 2 follows with preliminaries and definitions. Section 3 is a warm-up that rules

out optimal selectability via extremely simple greedy algorithms. Section 4 presents a

complete proof of our new (1 − O( 1√
k
))-selectable OCRS. Section 5 contains a proof of the

1 − Ω(
√

log(k)
k

) upper bound on the probability of selection of any OCRS against almighty

adversaries. Section 6 concludes.

2 Preliminaries

2.1 Online contention resolution schemes

Online contention resolution schemes were first introduced by [14] as a broadly applicable

online rounding framework. Suppose we are given a finite ground set of elements N =

{e1, . . . , en}. Consider a family of feasible sets F ¢ 2N which is downwards-closed (that is,

if I ∈ F and J ¦ I, then J ∈ F). Let

PF = conv(1I |I ∈ F) ∈ [0, 1]n

be the convex hull of all characteristic vectors in F . We will refer to PF as the polytope

corresponding to the family F .

▶ Definition 1 (Online contention resolution scheme (OCRS)). Consider the following online

selection setting. A point x ∈ PF is given and let R(x) be a random subset of active elements,

where element ei is active with probability xi. The elements e ∈ N reveal one by one whether

they are active, i.e. e ∈ R(x), and the decision of the algorithm whether to select an active

element is taken irrevocably before the next element is revealed. An OCRS for PF is an

online algorithm that selects a subset I ¦ R(x) such that 1I ∈ PF .

Many of the natural OCRS considered in [14] are also greedy.

▶ Definition 2 (Greedy OCRS). A greedy OCRS Ã for PF is an OCRS that for any x ∈ PF ,

defines a downwards-closed subfamily of feasible sets Fx ¦ F and an element e is selected

when it arrives if, together with the already selected elements, the obtained set is in Fx

Our next goal is to define the notion of c-selectability, which is a notion of performance

of the OCRS. Intuitively, an OCRS is c-selectable if for any element e the probability that

the OCRS selects e given that it is active is at least c, where we desire c to be as large as

possible. In order to talk about c-selectability in a rigorous way, we need to specify the power

of the adversary that chooses the order of the elements revealed to the OCRS in an online

fashion (Definition 1). There are three main types of adversaries considered in prior work,

which we define below.

▶ Definition 3 (Strength of adversary). In the setting of Definition 1, there is an underlying

adversary which can choose the order in which the elements are revealed to the OCRS. We

define three different types of adversaries:

ITCS 2024
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Offline/Fixed-Order adversary, which chooses the order of the elements upfront before

any are revealed. Such an adversary knows x and the distribution of R(x), but not the

realized active elements.

Online adversary, which adaptively chooses next element to reveal using the same in-

formation available to the algorithm (x, the distribution of R(x), and which elements

have been revealed, which were active, and which were selected).

Almighty adversary, which knows upfront the outcomes of all random events, which

includes the realization of R(x) and the outcome of the random bits that the OCRS might

query.

We are now ready to define the notion of c-selectability.

▶ Definition 4 (c-selectability). Let c ∈ [0, 1]. An OCRS for P is c-selectable against an

adversary A if for any x ∈ P and e ∈ N , we have

Pr[e is selected by the OCRS against A|e is active] g c

It is often true that a larger probability of selection c can be achieved when x is supposed to

be in a down-scaled version of P .

▶ Definition 5 ((b, c)-selectability). Let b, c ∈ [0, 1]. An OCRS for P is (b, c)-selectable

against an adversary A if for any x ∈ b · P and e ∈ N , we have

Pr[e is selected by the OCRS against A|e is active] g c

An important observation is that a (b, c)-selectable OCRS for P against A implies a

bc-selectable OCRS for P against A.

▶ Observation 6 ([14]). A (b, c)-selectable OCRS for P implies a bc-selectable OCRS for P .

The reduction in Observation 6 is as follows: The bc-selectable OCRS essentially runs the

given (b, c)-selectable OCRS while scaling down by b each of the probabilities xi online (i.e.

consider selecting an active element independently with probability b). For more details

see [14].

▶ Remark 7. It is important to emphasize that a bc-selectable ORCS for P gives selection

guarantees on all x ∈ P , while a (b, c)-selectable OCRS for P gives guarantees only when

x ∈ b · P (i.e. a scaled-down version of P ).

2.2 OCRS and Prophet inequalities

As previously discussed, one of the many applications of OCRS is to the prophet inequality

problem. Here we define the general setting of the prophet inequality problem. We begin

with a setup for the environment.

General setting and prophet. We are given a group set N = {e1, . . . , en} and a downwards-

closed family F ¦ 2N of feasible subsets. Each of the elements ei is associated with a value vi.

A prophet is an offline algorithm, which sees the vector (v1, . . . , vn) and outputs the feasible

set MAX(v) = argmaxI∈F

∑

i∈I vi. We denote by OPT(v) =
∑

i∈MAX(v) vi the weight of the

maximum set.

▶ Definition 8 (Prophet inequality). Suppose we are given a downwards-closed feasibility

constraint F ¦ 2N . Suppose each element ei ∈ N takes value vi ∈ Rg0 independently from

some known distribution Di. These values are presented one-by-one to an online algorithm Ã
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in an adversarial order (again specified as offline, online, or almighty). On seeing a value

the algorithm needs to immediately and irrevocably decide whether to select the next element

ei, while always maintaining that the set of selected elements so far is in F . Let’s denote

the set of selected elements by Ã as A∗(v). We say that Ã induces a prophet inequality with

competitive ratio c for F if

Ev∼D[
∑

i∈A∗(v)

vi] g c · Ev∼D[OPT(v)]

where D = D1 × . . . × Dn is the product of the independent distributions Di

As with OCRS, in order to talk about ³-approximation, we need to specify the power of

the adversary which specifies the order of the elements revealed. Completely analogously to

Definition 3, we could have offline, online, and almighty adversaries.

[14] showed that a c-selectable OCRS against a particular adversary A implies a c-

approximation prophet inequality against an adversary of the same strength.

▶ Theorem 9 ([14]). A c-selectable OCRS against (offline/online/almighty) adversary implies

the existence of a c-approximation prophet inequality algorithm.

In the classical prophet inequality formulation [22], the value of the online algorithm Ã is

compared directly to the offline optimum. [23] consider an ex-ante prophet inequality, where

the value of Ã is compared to the optimal value of a convex relaxation, which upper bounds

the offline optimum. [23] show that this stronger notion of an ex-ante prophet inequality is

equivalent to an OCRS.

2.3 k-uniform matroids

In this section, we give a definition for k-uniform matroids, which is the feasibility constraint

that we will use throughout the paper. Given a ground set N = {e1, . . . , en}, the k-uniform

matroid is the matroid consisting of all subsets of N of size at most k.

▶ Definition 10 (k-uniform matroid). The k-uniform matroid for N is Mk = (N, Fk) , where

Fk = {S ¦ N ||S| f k}

and the corresponding polytope of Fk is given by

Pk = {x ∈ R
n
g0|

n
∑

i=1

xi f k}

We remind the reader of prior work on OCRSs and prophet inequalities for k-uniform

matroids below.

▶ Theorem 11 ([17, 2, 4, 18]). The following is known, prior to our work, on OCRSs and

prophet inequalities for k-uniform matroids:

Against a fixed-order/online adversary, the best prophet inequalities and OCRSs for Fk

achieve a guarantee of 1 − Θ( 1√
k

) (lower bound: [17], algorithm: [2, 18]).

Against an almighty adversary, the best prophet inequalities for Fk achieve a guarantee

of 1 − Θ( 1√
k

) (lower bound: [17], algorithm: [4]).

Against an almighty adversary, the best-known OCRS achieves a guarantee of 1−Θ(
√

log k
k

)

(implicit in [17]).

ITCS 2024
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3 Warmup: Naive approaches towards an OCRS

The goal of this section is to explore a few exceptionally simple algorithms that one might try

to use to construct an optimal OCRS for k-uniform matroids. We will present results about

whether optimal factors are possible against adversaries of variable strengths. In particular,

we will show that one cannot achieve a (1 − O( 1√
k

))-selectable OCRS by using a very simple

greedy algorithm or a tweaked variant of it utilizing a partition matroid.

We first consider a naive greedy OCRS, which greedily selects active elements until

it has selected k elements. Formally in the language of Definition 2, for this OCRS we

have F = {S ¦ N ||S| = k} and Fx = F for all x. We quickly establish that the naive

greedy OCRS is not (b, c)-selectable even against an offline/fixed-order adversary for any b, c

satisfying bc = 1 − O( 1√
k

). This would rule out constructing exceptionally simple OCRS via

Observation 6.

▶ Theorem 12. There are no b, c, satisfying bc = 1 − O( 1√
k
), such that the naive greedy

OCRS is (b, c)-selectable against the offline adversary.

Proof. See Appendix A.1 in full version [10] for a proof. ◀

Our second result is that even if we complicate the naive greedy OCRS slightly it does

not imply an optimal factor. Suppose instead of using the k-uniform matroid, we use a

partition matroid and the algorithm is to greedily select active elements as long as the set of

selected elements lies in the partition matroid. Formally in the language of Definition 2, the

feasibility family Fx is given by a partition matroid (which could depend on x). For a given

x, the partition matroid is of the form {(ni, ki, Si)}s
i=1, where

∑s

i=1 ki = k,
∑s

i=1 ni = n

and the sets Si are pairwise disjoint and satisfy ∪s
i=1Si = N and |Si| = ni. Here we can

select at most ki elements from Si. We next prove that such scheme is not (b, c)-selectable

even against the offline adversary for any b, c satisfying bc = 1 − O( 1√
k

).

▶ Theorem 13. There are no b, c, satisfying bc = 1 − O( 1√
k
), such that the naive greedy

OCRS with a partition matroid is (b, c)-selectable against the offline adversary.

Proof. See Appendix A.1 in full version [10] for a proof. ◀

▶ Remark 14. Theorems 12 and 13 say that one cannot use the transformation in Observation

6 on a naive greedy OCRS to obtain a (1 − O( 1√
k
))-selectable OCRS. Thus ruling out

some exceptionally simple ways to construct a (1 − O( 1√
k

))-selectable OCRS for k-uniform

matroids.

▶ Remark 15. Intuitively, the above variations of the naive greedy schemes fail to be optimal

because they tend to select too many elements early in the process in comparison to the

expected number of active elements so far. Thus, they are likely to run out of space when

they reach the last element. Our main algorithm in Section 4 attempts to counter this.

We conclude by reminding the reader that the naive greedy OCRS is (b, c)-selectable

against the almighty adversary for some b, c satisfying bc = 1 − O(
√

log(k)
k

). The proof is

implicit in the analysis of the (1 − O(
√

log(k)
k

))-approximate prophet inequality of [17].

▶ Theorem 16 (Implicit in [17]). The naive greedy OCRS is (1 −
√

2 log(k)
k

, 1 − 1
k

)-selectable

against the almighty adversary. By the transformation in Observation 6 this implies a

(1 − O(
√

log(k)
k

))-selectable OCRS for k-uniform matroids.

Proof. We remind the reader of the simple proof in Appendix A.1 in our full version [10]. ◀
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4 A simple optimal OCRS for k-uniform matroids

The goal of this section is to give a new (1 − O( 1√
k

))-selectable OCRS against offline/fixed-

order adversaries. Because the adversary must commit to an ordering using just knowledge

of x, and the distribution of R(x), we let e1, e2 . . . , en refer to the elements that are revealed,

in order. Note that the events ei ∈ R(x) are independent. We will show that the following

algorithm is a (1 − O( 1√
k

))-selectable OCRS for k-uniform matroids.

OCRS(x):

1. Initialize the set of selected elements A0 = ∅.

2. For i = 1, . . . , n do:

2.a If ei is active and |Ai−1|+1 f (1− 1√
k

)(
∑

jfi xj)+
√

k, then select ei with probability

(1 − 1√
k

) (i.e. Ai = Ai−1 ∪ ei) and otherwise discard it (i.e. Ai = Ai−1).

2.b If |Ai−1| + 1 > (1 − 1√
k
)(

∑

jfi xj) +
√

k or ei is inactive, then discard ei (i.e.

Ai = Ai−1).

Observe that OCRS is derived from an even simpler (1 − 1√
k

, 1 − O( 1√
k
))-selectable

OCRS, by using the reduction of Observation 6. We clearly state this simpler algorithm

below (we also state it parameterized by d, as our entire analysis follows for general d, and

then is optimized for d :=
√

k at the very end).

Algorithm(d, x):

1. Initialize the set of selected elements B0 = ∅.

2. For i = 1, . . . , n do:

2.a If ei is active and |Bi−1| + 1 f ∑

jfi xj + d, then select ei, and otherwise discard it.

2.b If |Bi−1| + 1 >
∑

jfi xj + d or ei is inactive, then discard ei.

▶ Observation 17. If Algorithm(
√

k, x) is a (1 − 1√
k

, 1 − O( 1√
k

))-selectable OCRS for Pk,

then OCRS(x) is a (1 − O( 1√
k

))-selectable OCRS for Pk.

Proof. OCRS(x) is exactly the result of applying the [14] reduction of Observation 6 to Al-

gorithm(
√

k, x), with b = 1− 1√
k

and c = 1−O( 1√
k

). Therefore, by Observation 6, OCRS(x)

is (1 − 1√
k

) · (1 − O( 1√
k

))-selectable (i.e. (1 − O( 1√
k

))-selectable) whenever Algorithm(
√

k, x)

is (1 − 1√
k

, 1 − O( 1√
k

))-selectable. ◀

In line with Remark 7, we emphasize that Algorithm(
√

k, x) operates in a universe

where the probabilities xi are scaled down by b = 1 − 1√
k

, while OCRS(x) operates with the

original probabilities xi.

Our key proposition is that Algorithm(d,x) is indeed sufficiently selectable.

▶ Proposition 18. Algorithm(d,x) is (1 − d
k

, 1 − 2
d−1 )-selectable over Pk. That is, for all

x ∈ (1 − d
k

) · Pk, Algorithm(d,x) is (1 − 2
d−1 )-selectable.

The proof of Proposition 18 proceeds in two steps. The first (shorter) step is to guarantee

that Algorithm(d, x) always selects at most k elements. The second is to show that every

element is accepted with sufficient probability.

▶ Observation 19. For all x ∈ (1 − d
k

) · Pk, Algorithm(d, x) accepts at most k elements.

Proof. Observe that, at all times, |Bi| f ∑

jfi xj + d. As
∑

j xj f k · (1 − d
k

) = k − d, this

implies that |Bn| f k, and the algorithm accepts at most k total elements. ◀
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We now proceed to prove that the algorithm is sufficiently selectable. For this part of the

analysis, it will be convenient to consider the process Si := |Bi| − ∑

jfi xj . Observe that Si

has the following dynamics. First, S0 = 0. Further if Si−1 + 1 − xi f d (i.e. have “space” to

accept ei), then

Si :=

{

Si−1 + 1 − xi if ei is active (with probability xi)

Si−1 − xi if ei is inactive (with probability 1 − xi)

and if Si−1 + 1 − xi > d (i.e. don’t have “space” to accept ei), then Si = Si−1 − xi regardless

of whether ei is active (with probability 1). Additionally, consider the process Wi =
∑i

j=1 Xj ,

where

Xi =

{

1 − xi if ei is active (with probability xi)

−xi if ei is inactive (with probability 1 − xi)

Intuitively, Wi tracks the number of active elements above expectation (among the first i),

and Si tracks the number of selected elements above the expected number of active elements

(among the first i).

▶ Lemma 20. Wi − Si is exactly equal to the number of active elements that are discarded

amongst the first i.

Proof. Let Gi be the set of active elements in the first i revealed elements. Then, by

definition Wi = |Gi| − ∑

jfi xj . Thus, Wi − Si = |Gi| − |Bi| and the conclusion follows

because |Bi| is the number of active and selected elements in the first i revealed ones. ◀

By Lemma 20 it follows that the difference Wi − Si increases by one if and only if ei is

active and discarded, and stays the same otherwise. The rest of the proof requires just two

more natural steps. First, we characterize which elements are active and discarded, just as a

property of the random process W . Second, we bound the probability of this occurring.

▶ Lemma 21. Element ei is active and discarded by Algorithm(d, x) if and only if +Wi, > d

and +Wi, > +Wj, for all j < i. That is, ei is active and discarded by Algorithm(d, x) if

and only if the random process W reaches a new integral height for the first time.

Proof. By Lemma 20 the difference Wi − Si increases by 1 when ei is active and discarded

and stays the same otherwise. Therefore, the n-th active and discarded elements is ei, where

i is the smallest index such that Wi − Si = n. Let’s now fix an arbitrary n g 1. To prove

the lemma, it is enough to show that i is the smallest index such that Wi − Si = n if and

only if i is the smallest index such that +Wi, = d + n.

We begin with the “only if” direction. Suppose in is the smallest index such that

Win
−Sin

= n. By Lemma 20, element ein
is active and discarded. Therefore, by the selection

rule of Algorithm(d, x) we get that Sin−1 + 1 − xin
> d and therefore Sin

= Sin−1 − xin
.

This implies that Sin
> d − 1. We also know that Sin

f d (because Si stores the difference

between |Bi| and
∑

jfi xi, which is hard-coded to be at most d). Using these two inequalities

along with our hypothesis that Win
− Sin

= n we obtain:

Win
= Sin

+ n ∈ (d + n − 1, d + n], and therefore: +Win
, = d + n.

Further, by definition of in as the first index such that Wi − Si = n, we know that for all

j < in: Wj f Sj + n − 1. Moreover, we also know that Sj f d for all j (again, because Sj

stores the difference between |Bj | and
∑

ℓfj xℓ, which is at most d). Therefore, Wj f d+n−1,
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and we conclude that +Wj, f d + n − 1 < +Win
, for all j < in. Therefore, in is the smallest

index such that +Win
, = d + n. This establishes that if in is the smallest index such that

Win
− Sin

= n, then in is the smallest index such that +Win
, = d + n.

Now we show the “if” direction. Suppose that in is the smallest index such that +Win
, =

d + n. Since Win
− Sin

is an integer, and because Sin
f d, it must be the case that

Win
− Sin

g n . Let i∗ f in be the smallest index such that Wi∗ − Si∗ = n (such i∗ exists

because Wi −Si always increases by 1 or stays the same, and because we have just shown that

Win
−Sin

= n). By the “only if” proof above, i∗ is the smallest index such that +Wi∗, = d+n,

implying that in fact i∗ = in, as desired. This establishes that if in is the smallest index such

that +Win
, = d + n, then in is also the smallest index such that Win

− Sin
= n.

This completes the proof: the nth active element discarded by the algorithm is the smallest

index such that Wi − Si = n. By the work above, this is exactly the smallest index such that

+Wi, = n + d. Therefore, discarded elements are exactly those that reach a new integral

height for the first time. ◀

Our remaining task is simply to upper bound the probability that Wi reaches a new

integral height, for all i.

▶ Lemma 22. For each m ∈ {1, . . . , n}

Pr(+Wm, > d and +Wm, > +Wi, for i < m) f 2xm

d − 1

Proof. Fix m ∈ {1, . . . , n}. Consider the process Qi := Wm−i−1−Wm−1 for i = 0, 1, . . . , m−
1. Intuitively, {Qi}m−1

i=0 is the “reversed” process W starting at time-step m − 1. Note that

Q0 = 0 and Qm−1 = −Wm−1. Observe also that

Qi − Qi−1 = Wm−i−1 − Wm−1 − (Wm−i − Wm−1) = Wm−i−1 − Wm−i = −Xm−i

Note that since the adversary does not see which elements are active and has to commit to

their order a priori, we know that X1, . . . , Xn are independent. We also note that

E[Xi] = xi(1 − xi) − xi(1 − xi) = 0

By combining the previous two facts, we obtain that {Qi}m−1
i=0 is a discrete martingale. Let’s

denote its maximum by Mm−1 = max1fifm−1 Qi. We will next show that if +Wm, > d and

+Wm, > +Wi, for i < m, then the following two events have to hold:

em is active.

Mm−1 < 1 and Qm−1 f −(d − 1). That is, the martingale Q can never reach a height of

1, and it must finish below −(d − 1).

Indeed, since +Wm, > +Wm−1,, then em is active. Also since +Wm, > +Wi, for i < m, we

know that Wm > Wm−i−1 for all i. Combining this with the inequality Wm f Wm−1 + 1,

we obtain

Qi = Wm−i−1 − Wm−1 f Wm−i−1 − Wm + 1 < 1

Thus, Qi < 1 for all i ∈ [1, m − 1] or equivalently Mm−1 < 1. The condition +Wm, > d

implies that Wm > d. Using the last inequality we obtain

Qm−1 = −Wm−1 f −Wm + 1 f −(d − 1)

Therefore, we obtained that em is active, Mm−1 < 1 and Qm−1 f −(d − 1) as desired.
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Using the above property combined with the fact that the event whether em is active is

independent of the events Mm−1 < 1 and Qm−1 f −(d − 1) (because Mm−1 and Qm−1 are

determined entirely by the previous m − 1 elements) we obtain that:

Pr(+Wm, > d and +Wm, > +Wi, for i < m)

f Pr({em is active} ∩ {Mm−1 < 1 and Qm−1 f −(d − 1)})

= Pr(em is active) · Pr(Mm−1 < 1 and Qm−1 f −(d − 1))

= xm · Pr(Mm−1 < 1 and Qm−1 f −(d − 1))

So, the final step is to upper bound Pr(Mm−1 < 1 and Qm−1 f −(d − 1)), which is

just a claim about martingales that change by at most 1 in each step. Lemma A.2 in [10]

(full version), which is a short application of the Optional Stopping Theorem, applied for

a = 1, b = −(d − 1) < 0, and K = 1 implies that:

Pr(Mm−1 < 1 and Qm−1 f −(d − 1)) f 2

d − 1
.

Therefore,

Pr(+Wm, > +Wi, for i < m and +Wm, > d) f 2xm

d − 1
,

which concludes the proof of the lemma. ◀

This suffices to wrap up the proof of Proposition 18.

Proof of Proposition 18. We have that

Pr(em is selected|em is active) = 1 − Pr(em is discarded|em is active)

= 1 − Pr(em is active and discarded )

Pr(em is active)

g 1 −
2xm

d−1

xm

= 1 − 2

d − 1
(by Lemma 22). ◀

Setting d =
√

k in Proposition 18 we get

▶ Corollary 23. Algorithm(
√

k, x) is (1− 1√
k

, 1− 2√
k−1

)-selectable, and therefore OCRS(x)

is (1 − O( 1√
k

))-selectable.

▶ Remark 24. An intuitive comparison with the extremely simple OCRS implied in [17] is the

following. The OCRS from [17] needs to “scale” probabilities down with (1 − Θ(
√

log(k)
k

)) in

order to have a (1 − Θ(
√

log(k)
k

)) chance of not running out of space. Our result shows that

if we adaptively select active elements whenever the number of selected ones does not exceed

the expected number by d, then we only need to “scale” down probabilities by (1 − Θ( 1√
k

))

to have a (1 − Θ( 1√
k

)) chance of not running out of space.

▶ Remark 25. In terms of exact constants, Corollary 23, gives that OCRS(x) is (1 − 4√
k
)-

selectable for k g 25.

▶ Remark 26. Intuitively, an online adversary can potentially manipulate the algorithm by

revealing an element ej with a large (resp. small) xj when the algorithm has selected many

(resp. few) elements above the expectation. In this scenario, the proof of Lemma 22 will not

go through since the “reversed” process Qi could have correlated steps and will (in general)

fail to be a martingale.
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5 Upper bound against almighty adversaries

Recall that [17] implies that the naive greedy OCRS can be used to obtain a (1−O(
√

log(k)
k

))-

selectable OCRS against the almighty adversary. (Theorem 16) We recall that the almighty

adversary knows which elements are active a priori and also knows everything about the

OCRS (Definition 3). In this section we show that, against the almighty adversary, the

probability of selection of any OCRS cannot be greater than (1 − Ω(
√

log(k)
k

)). This implies

that, against almighty adversaries the factor of (1 − O(
√

log(k)
k

)), achieved by the naive

greedy OCRS, is asymptotically optimal. In particular, our main goal in this section is to

prove the following theorem.

▶ Theorem 27. Suppose that a c-selectable OCRS for the k-uniform matroid against the

almighty adversary exists. Then c f 1 − Ω(
√

log(k)
k

)

In our proof of Theorem 27 we will only consider the instance n = 2k and vector of

probabilities xi = 1
2 for all i ∈ [1, 2k] (i.e. each element is active with probability 1

2 ). To

execute the proof, we will use the following strategy.

We will consider the following subclass of almighty adversaries. The adversary knows

which elements are active and everything about the OCRS. However, it needs to:

commit to the order in which the elements will be revealed a priori

reveal all active elements before all inactive ones

This type of restriction will be convenient for the analysis. We will refer to the class of

such adversaries as H.

Assuming the existence of a c-selectable OCRS Ã against adversaries of class H, we show

that there exists c-selectable OCRS Ãs against adversaries of class H, which selects the

i-th revealed active element with probability independent of the identities of the first i

revealed elements. In other words, the probability that Ãs selects the i-th revealed active

element is a function g(i) (which depends on Ã but not on the identities of the first i

revealed elements). (Section 5.1)

By using the probability values {g(i)}2k
i=1, we construct an adversary in H. Based on this

adversary, we upper bound the probability of selection c by using the solution to a linear

programming relaxation. (Section 5.2)

Before we proceed with the proof we will fully describe a general model for how an OCRS

works. An arbitrary OCRS Ã operates in the following way:

1. Before any elements are revealed Ã can flip some random coins coins1.

2. Once the first element a1 is revealed (and whether it is active or not), Ã can flip more

random coins coins′
1 and it makes a decision to select / discard a1 with some probability

based on coins1, coins′
1 and the identity of the element a1. Let b1 be the indicator

random variable of the event that a1 is selected.

3. Based on the history so far, i.e. coins1, a1, coins′
1, b1, it flips more random coins coins2

before the second element is revealed.

4. After the identity of the second element a2 (and its activity) is revealed Ã flips more coins

coins′
2 (based on the history so far), and makes a decision to select a2 or not, which is

recorded in an indicator variable b2.

5. Let Bi = (coinsi, ai, coins′
i, bi) where coinsi is the random coins Ã flips right before seeing

the i-the revealed element ai, coins′
i is the random coins Ã flips after seeing ai, and bi is

the indicator of the event that Ã selects ai.
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6. In general, as a function of the history Bi = {B1, . . . , Bi}, Ã flips random coins coinsi+1.

Then the (i + 1)-th element ai+1 is revealed. Based on the history Bi ∪ coinsi+1 ∪ ai+1,

Ã flips more random coins coins′
i+1. Finally, based on the history Bi ∪ coinsi+1 ∪ ai+1 ∪

coins′
i+1, Ã decides to select / discard ai+1, which generates the indicator bi+1.

7. The procedure described in 6. is repeated until the n-th element is selected / discarded.

5.1 Defining a symmetric OCRS

Suppose we have a c-selectable OCRS Ã. Our goal in this section will first be to define what

it means to “apply a permutation” to Ã. Then we will define the “symmetric” OCRS Ãs in

the following way:

1. Sample uniformly random permutation Ã of N .

2. Apply Ã to Ã.

We will then show that the probability that Ãs selects the i-th active revealed element is

independent on the identities of the first i revealed elements.

We will first introduce some definitions. Given an OCRS Ã, and a permutation Ã of the

ground set N , we define ÃÃ as the OCRS which “treats” each element ai exactly like Ã would

“treat” Ã−1(ai). Formally we use the following definition.

▶ Definition 28. Let Ã be an OCRS and Ã a permutation of N . Define ÃÃ as an OCRS

which uses Ã as a black-box in the following way:

1. Before any elements are revealed ÃÃ queries Ã to flip some random coins coins1.

2. Once the first element a1 is revealed (and whether it is active or not), ÃÃ queries Ã on

(coins1, Ã−1(a1)) to flip more random coins coins′
1. Based on (coins1, Ã−1(a1), coins′

1),

Ã will make some decision to select / discard Ã−1(a1) with some probability. Then ÃÃ

selects a1 if and only if Ã selects Ã−1(a1). Let b1 be the indicator random variable of the

event that a1 is selected by ÃÃ.

3. ÃÃ queries Ã on history coins1, Ã−1(a1), coins′
1, b1 to generate random coins coins2 before

the second element is revealed.

4. After the identity of the second element a2 (and its activity) is revealed ÃÃ queries Ã

on coins1, Ã−1, (a1), coins′
1, b1, coins2, Ã−1(a2) to flip more random coins coins′

2. Then

it queries Ã on coins1, Ã−1(a1), coins′
1, b1, coins2, Ã−1(a2), coins′

2 whether to select /

discard Ã−1(a2), and ÃÃ selects a2 if and only if Ã selects Ã−1(a2).

5. Let Bi = (coinsi, ai, coins′
i, bi) where coinsi is the random coins ÃÃ flips by querying Ã

right before seeing the i-the revealed element ai, coins′
i is the random coins ÃÃ flips by

querying Ã after seeing ai, and bi is the indicator of the event that ÃÃ selects ai.

6. In general, as a function of the history Bi = {B1, . . . , Bi}, ÃÃ will query Ã on B′
i =

{B′
1, . . . , B′

i}, where B′
i = (coinsi, Ã−1(ai), coins′

i+1, bi) to flips random coins coinsi+1

before the (i + 1)-th active element ai+1 is revealed. Then it queries Ã on B′
i ∪ coinsi+1 ∪

Ã−1(ai+1), to generate more random coins coins′
i+1, and then it queries it again on

B′
i ∪ coinsi+1 ∪ Ã−1(ai+1) ∪ coins′

i+1 whether to select ai+1 if and only if Ã selects

Ã−1(ai+1). This generates an indicator bi+1.

7. The procedure described in 6. is repeated until the n-th element is selected / discarded.

Similarly to applying a permutation to an OCRS Ã, we can apply a permutation to an

adversary A, resulting in an adversary AÃ. Intuitively, AÃ “treats” element a like A would

treat Ã−1(a). We give the following formal definition. Recall that H is the class of adversaries

defined in the beginning of this section.
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▶ Definition 29. Let A ∈ H be an adversary and Ã a permutation of the ground set N . We

define the adversary AÃ as operating against an OCRS Ã in the following way:

1. Given a set of active elements A, AÃ queries A on a set of active elements Ã−1(A) against

the OCRS ÃÃ−1 . Upon this query A returns an order in which to reveal the elements from

N .

2. Given this order, if A chose to reveal element a in the i-th position, AÃ reveals Ã(a) in

the i-th position.

▶ Remark 30. It is easy to see that if A ∈ H, then AÃ ∈ H.

We next show that the operation of applying a permutation to an OCRS or adversary is

invertible.

▶ Proposition 31. For a given permutation Ã, the maps Ã → ÃÃ and A → AÃ are bijections,

with inverses Ã → ÃÃ−1 and A → AÃ−1 respectively.

Proof. See Appendix A.3 in full version [10] for a proof. ◀

We will now need the following helpful lemma.

▶ Lemma 32. Let a ∈ N be an element and A ¦ N a subset of elements. Let Ã be a

permutation of N , Ã an OCRS, and A ∈ H an adversary. Then

Pr(Ã selects a against A|A are active) = Pr(ÃÃ selects Ã(a) against AÃ|Ã(A) are active)

Proof. Consider the interaction between ÃÃ and AÃ on set of active elements Ã(A). By

Definition 29 before the process begins AÃ queries A on Ã−1(Ã(A)) = A against OCRS

(ÃÃ)Ã−1 = Ã (Proposition 31). Based on this if A chooses to first reveal the active elements

A to Ã in some order, A will reveal Ã(A) to ÃÃ in the same order (Definition 29). Thus, if

we now pair Ã and ÃÃ as in Definition 28, we know that in the interaction when Ã is given

history B and ÃÃ will be given history B′, obtained from B by replacing each element b by

Ã(b). Thus, by Definition 28 it follows that ÃÃ will select element Ã(a) if and only if Ã selects

element a. This finishes the proof. ◀

We are now ready to show if Ã is c-selectable against adversaries in H, then ÃÃ is also

c-selectable against adversaries in H.

▶ Lemma 33. If Ã is c-selectable against adversaries in H, then ÃÃ is also c-selectable

against adversaries in H.

Proof. Let A ∈ H be an adversary and a ∈ N an arbitrary element. We have that

Pr(ÃÃ selects a against A) =

=
∑

A¦N

Pr(ÃÃ selects a against A|A are active) Pr(A are active)

=
∑

A¦N

Pr(ÃÃ selects a against A|A are active)
1

22k

=
∑

A¦N

Pr(Ã selects Ã−1(a) against AÃ−1 |Ã−1(A) are active)
1

22k
(Lemma 32, Prop. 31)

=
∑

A¦N

Pr(Ã selects Ã−1(a) against AÃ−1 |Ã−1(A) are active) Pr(Ã−1(A) are active)

= Pr(Ã selects Ã−1(a) against AÃ−1) g c

2
(by c-selectability of Ã)
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where in the last equality we used that xi = 1
2 for all i. Thus,

Pr(ÃÃ selects a against A| a is active) =
Pr(ÃÃ selects a against A)

Pr(a is active)
g c

since Pr(a is active) = 1
2 . ◀

▶ Remark 34. Notice that in the proof of Lemma 33 it was crucial that xi = 1
2 for all i,

which we used to claim Pr(A are active) = Pr(Ã−1(A) are active) = 1
22k .

Suppose we have a c-selectable OCRS Ã against adversaries in H. We define the “symmetric”

OCRS Ãs in the following way:

1. Sample a uniformly random permutation Ã of the ground set N .

2. Operate like ÃÃ

We will next show that Ãs is c-selectable against adversaries in H and that it does not

differentiate between identities of different elements.

▶ Lemma 35. The OCRS Ãs is c-selectable against adversaries in H.

Proof. Let A ∈ H be an adversary. Since A needs to decide on the order in which to reveal

the elements before seeing what permutation Ã is drawn in step 1., we know that the order

of elements revealed does not depend on Ã. Thus, for an arbitrary element a we have that

Pr(Ãs selects a against A) =
∑

Ã

Pr(ÃÃ selects a against A)
1

n!
g (by Lemma 33)

g
∑

Ã

c

2

1

n!
=

c

2

as desired. ◀

We will now state the key lemma for this section. Namely, that Ãs selects the i-th revealed

active element with probability independent of the identities of the first i revealed elements.

▶ Lemma 36. Against adversaries in H, the probability that Ãs selects the i-th revealed

element, conditioned on it being active, is given by a function g(i) that is independent of the

identities of the first i revealed elements and their order.

Proof. Consider any adversary A ∈ H. By definition A decides on the order in which to

reveals the elements apriori, and reveals all active elements before all inactive ones. Suppose

that the first i elements that A reveals are a1, . . . , ai in that order. To prove the lemma it is

enough to show that

Pr(Ãs selects ai|a1, . . . , ai are revealed) = g(i)

where g is allowed to depend only on Ã. Note that the permutation Ã drawn is independent

of the order of the elements a1, . . . , ai by definition of H. Thus, we have
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Pr(Ãs selects ai|a1, . . . , ai are revealed) =

=
∑

Ã

Pr(ÃÃ selects ai|a1, . . . , ai are revealed) Pr(Ã is drawn|a1, . . . , ai are revealed)

=
∑

Ã

Pr(ÃÃ selects ai|a1, . . . , ai are revealed)
1

n!

=
1

n!

∑

Ã

Pr(ÃÃ selects ai|a1, . . . , ai are revealed)

=
1

n!

∑

Ã

∑

B¦{a1,...,ai−1}
Pr(ÃÃ selects ai and ÃÃ selected B|a1, . . . , ai are revealed)

=
1

n!

∑

Ã

∑

B¦{a1,...,ai−1}
Pr(Ã sel. Ã−1(ai) and Ã sel. Ã−1(B)|Ã−1({a1, . . . , ai}) revealed)

In the second inequality we used the fact that the event that Ã is drawn is independent of

the decision of the adversary for which a1, . . . , ai to reveal. In the last equality we used

Definition 28. Let’s denote by (∆) the last term above.

The key observation is that expression (∆) does not depend on the elements a1, . . . , ai

but only on i. Notice that for fixed A′, B′, a′, such that |A′| = i, B′ ¢ A′ and a′ ∈ A′ \ B′,
there are exactly

(

i − 1

|B′|

)

(|B′|)!(i − 1 − |B′|)!(n − i)!

terms in the sum (∆) of the form

Pr(Ã selects a′ and Ã selected B′|A′ revealed)

To see this consider the number of (Ã, B) which are solutions to

Ã−1(ai) = a′, Ã−1(B) = B′, Ã−1(A) = A′

where A = {a1, . . . , ai}. There are
(

i−1
|B′|

)

ways to choose B. Given B there are (|B′|)!(i − 1 −
|B′|)!(n − i)! ways to choose Ã in order to send a′ to ai, B′ to B, and A′ to A. Therefore,

(∆) is equal to

∑

|A′|=i,B′¢A′,a′∈A′\B′

Pr(Ã sel. a′ and Ã sel. B′|A′ revealed)

(

i − 1

|B′|

)

(|B′|)!(i−1−|B′|)!(n−i)!

which only depends on i. Therefore, the probability that Ãs selects the i-th revealed element

given that it is active only depends on i we will denote it by g(i). ◀

5.2 Upper bound on the probability of selection

In this section we will present an adversary in the class H and show how this adversary

implies the upper bound of 1 − Ω(
√

log(k)
k

) on c. By Lemma 36 it follows that, against

adversaries in H, the probability that Ãs selects the i-th revealed active element is given by

a function g(i).

We now describe the adversary. We will only specify what the adversary does when e1 is

active.
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Adversary A∗:

1. If there are m active elements except for e1, the adversary computes g(1), . . . , g(m + 1).

2. Before the process starts, the adversary finds j = arg mini∈[1,m+1] g(i) and reveals element

e1 at position j and all other m active elements on positions j′ ∈ [1, j − 1] ∪ [j + 1, m + 1]

in arbitrary order.

It is not hard to see that the adversary A∗ is in the class H because it commits to

the order apriori and reveals all active elements before all inactive. We will next show the

following lemma for the probability that Ãs selects e1 against the above adversary.

▶ Lemma 37. Let h(m + 1) = mini∈[1,m+1] g(i) for m ∈ [0, 2k − 1]. Then

Pr(Ãs selects e1 against A∗|e1 is active) =

2k
∑

i=1

h(i)

(

2k−1
i−1

)

22k−1

Proof. Suppose e1 is active. Notice that the number of active elements is equal to N + 1,

where N ∼ Bin(2k − 1, 1
2 ). By definition of A∗, when there are m active elements (except

for e1), the probability that Ãs selects e1 is equal to h(m + 1). Therefore, by the law of total

probability, Ãs selects e1 with probability

Pr(Ãs selects e1 against A∗|e1 is active) =

2k
∑

i=1

h(i) Pr[N + 1 = i]

=

2k
∑

i=1

h(i) Pr[Bin(2k − 1,
1

2
) = i − 1]

=

2k
∑

i=1

h(i)

(

2k−1
i−1

)

22k−1

as desired. ◀

We will next show a property on the values {g(i)}2k
i=1 that will be useful later.

▶ Lemma 38.

2k
∑

i=1

g(i) f k

Proof. Suppose that all 2k elements in N are active. We know that any adversary in H will

choose an order for the elements to be revealed before Ãs draws Ã. In that case we know by

Lemma 36 that Ãs will select the i-th revealed element with probability g(i). Let Ii be the

indicator random variable that Ãs selects that i-th revealed element. Note that E[Ii] = g(i).

Since Ãs never selects more than k elements (Definition 1) we have that

k g E[

2k
∑

i=1

Ii] =

2k
∑

i=1

E[Ii] =

2k
∑

i=1

g(i)

as desired. ◀

As a last step towards Theorem 27, we consider a linear program relaxation whose

optimal objective upper bounds the probability of selection c (Lemma 39), and characterize

an optimal solution to the program (Lemma 40). Finally, we show that the optimal objective

of the linear program is at most 1 − Ω(
√

log(k)
k

) (Lemma 41).



A. Dinev and S. M. Weinberg 39:19

▶ Lemma 39. Let c∗ denote the optimal value of the following linear program

maximize

2k
∑

i=1

f(i)

(

2k−1
i−1

)

22k−1

subject to

2k
∑

i=1

f(i) f k

f(i) g f(i + 1) for i = 1, . . . , 2k − 1

f(2k) g 0

(1)

Then if Ãs is c-selectable it holds that

c f c∗

Proof. We first claim that {h(i)}2k
i=1 is a feasible assignment to (1). Notice that by definition

we have that h(i) f g(i) for i ∈ [1, 2k]. Using this combined with Lemma 38 we obtain

2k
∑

i=1

h(i) f
2k

∑

i=1

g(i) f k

Further, note that by definition we have that h(i) g h(i + 1) for i ∈ [1, 2k − 1] and clearly

h(2k) g 0. Combining the aforementioned observations we get that the vector {h(i)}2k
i=1 is a

feasible assignment of (1). Therefore, by Lemma 37 we obtain that

c∗ g
2k

∑

i=1

h(i)

(

2k−1
i−1

)

22k−1
= Pr(Ãs selects e1 against A∗|e1 is active)

By Lemma 35 we know that Ãs is c-selectable i.e.

Pr(Ãs selects e1 against A∗|e1 is active) g c

By combining the above two inequalities we obtain that

c∗ g c

which finishes the proof. ◀

We will next prove a claim for the optimal solution of the linear program (1).

▶ Lemma 40. The optimal solution of (1) has the form f(i) = x for i = 1 . . . , k + a,

f(k + a + 1) = y, and f(i) = 0 for i > k + a + 1 for some x g y g 0 and a ∈ [0, k].

Proof. First, note that the constraints of the linear program (1) define a bounded convex

polytope, so there exists a feasible assignment that achieves the optimum of (1). Let

bi =
(2k−1

i−1 )
22k−1 , we know that bi < bi+1 for i < k, bk = bk+1, and bi > bi+1 for i > k. Let f∗ be

an optimal solution to (1). Suppose that f∗(i) > f∗(i + 1) for some i < k. Then consider f∗∗

defined by f∗∗(j) = f∗(j) for j ̸∈ {i, i + 1}, and f∗∗(i) = f∗∗(i + 1) = f∗(i)+f∗(i+1)
2 . Note

that f∗∗ still has decreasing non-negative entries and the sum of its entries is equal to that

of f∗ i.e. it is feasible. The difference between the objective values of f∗∗ and f∗ is equal to

f∗(i) + f∗(i + 1)

2
(bi + bi+1) − bif

∗(i) − bi+1f∗(i + 1) =
(f∗(i + 1) − f∗(i))(bi − bi+1)

2
> 0

since f∗(i + 1) < f∗(i) and bi < bi+1. Thus, a contradiction with the optimality of f∗.

Therefore, f∗(i) = f∗(1) for all i f k.
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Let f∗(i) = x for i f k. If f∗(j) ∈ {x, 0} for j > k we are done. Otherwise let j > k be

the smallest index such that x > f∗(j) > 0, and let f∗(j) = y. This means f∗(i) = x for

i < j. Assume that f∗(j + 1) > 0. Then, let l > j be the largest index such that f∗(l) > 0,

and let f∗(l) = z. Choose ϵ < min(x − y, z) and consider f∗∗ defined by f∗∗(j) = f∗(j) + ϵ,

f∗∗(l) = f∗(l) − ϵ, and f∗∗(i) = f∗(i) for i ̸∈ {j, l}. Note that f∗∗ is feasible by the choice of

ϵ since its entries are still decreasing and have the same sum as those of f . The difference

between the objective of f∗∗ and f∗ equals to

(f∗(j) + ϵ)bj + (f∗(l) − ϵ)bl − f∗(j)bj − f∗(l)bl = ϵ(bj − bl) > 0

as bj > bl because l > j > k, which contradicts the optimality of f∗. Thus, we showed that

f∗(j + 1) = 0, which finishes the proof of the Lemma. ◀

Note that by Lemma 40 we know that the optimal value of (1) has the following form

c∗ = x Pr(Bin(2k − 1,
1

2
) f k + a − 1) + y Pr(Bin(2k − 1,

1

2
) = k + a) (2)

for some x g y g 0 satisfying x(k + a) + y f k, where a g 0. By using these constraints we

easily obtain that y f x f k
k+a

. By using this inequality in equation (2), we obtain that

c∗ f k

k + a
Pr(Bin(2k − 1,

1

2
) f k + a) (3)

We now show the final Lemma of this section, which provides an upper bound for the

RHS of (3). The proof of this lemma is purely technical so we refer the reader to the full

version [10]

▶ Lemma 41. Let a ∈ [0, k], then

k

k + a
Pr(Bin(2k − 1,

1

2
) f k + a) f 1 − Ω(

√

log(k)

k
)

Proof. See full version [10] for a proof. ◀

▶ Remark 42. The optimal solution to the LP in Lemma 39 turns out not have the same

values f(i) as implied by the asymptotically optimal OCRS from [17] (Theorem 16). This is

because the values implied by this OCRS would have an asymptotically optimal performance

as opposed to exactly instance optimal.

5.3 Proof of Theorem 27

By Lemma 39, we know that

c f c∗ (4)

Additionally,by combining (3) and Lemma 41 we know that

c∗ f 1 − Ω(

√

log(k)

k
) (5)

Combining (4) and (5) we obtain

c f 1 − Ω(

√

log(k)

k
)

finishing the proof of Theorem 27.



A. Dinev and S. M. Weinberg 39:21

6 Conclusion

We provide a new, simple, and optimal OCRS for k-uniform matroids against a fixed-order

adversary. In particular, our algorithm has the advantage that it is extremely simple to

implement and it does not require solving a mathematical program. Our analysis connects

its performance to a random walk, and follows by concluding properties of this random walk.

We expect that the tools we develop in analyzing our algorithm to be of independent interest

and to have a broader applicability within online stochastic optimization.

As our second main result, we show that no OCRS for k-uniform matroids can be

(1 − Ω(
√

log k
k

))-selectable against an almighty adversary, establishing that the simple greedy

OCRS implied by [17] is optimal.
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