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—— Abstract

We provide a simple (1 — O(ﬁ))—selectable Online Contention Resolution Scheme for k-uniform
matroids against a fixed-order adversary. If A; and G; denote the set of selected elements and the
set of realized active elements among the first ¢ (respectively), our algorithm selects with probability
1— ﬁ any active element ¢ such that |4;_1|+1 < (1— ﬁ) -E[|G:]] 4+ V. This implies a (1 — O(ﬁ))
prophet inequality against fixed-order adversaries for k-uniform matroids that is considerably simpler
than previous algorithms [2, 4, 18].

We also prove that no OCRS can be (1 — Q(4/ %))—selectable for k-uniform matroids against
an almighty adversary. This guarantee is matched by the (known) simple greedy algorithm that

selects every active element with probability 1 — ©(4/ lolfk) [17].
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1 Introduction

Background: OCRSs

Online contention resolution schemes (OCRS), introduced by Feldman et al., are a broadly
applicable rounding technique for online selection problems [14]. These are problems in which
an algorithm makes irrevocable decisions for whether to select elements arriving online, often
subject to combinatorial constraints. Offline, the algorithm knows a distribution over which
elements will be “active.” Online, elements are revealed to be active or inactive one at a time,
and the algorithm must immediately and irrevocably decide whether to accept an active
element (inactive elements must be rejected). There are feasibility constraints F on which
elements can be simultaneously accepted. An OCRS for a class of instances is c-selectable if
it guarantees that every element is selected with probability at least ¢, conditioned on being
active. See Definition 1 for a formal definition.

Online contention resolution schemes have direct applications to prophet inequalities [14].
In a prophet inequality, a gambler knows the distribution of a sequence of independent
random variables X7, ..., X,. Online, each random variable will be sampled one at a time
and revealed to the gambler, who immediately and irrevocably decides whether to accept
the element, subject to feasibility constraints F. The gambler’s goal is to maximize the
expected sum of weights of accepted elements, and a prophet inequality compares the ratio
of the gambler’s expected performance to that of a prophet (who knows all random variables
before making decisions). Seminal work of Krengel, Sucheston, and Garling establishes a
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tight 1/2-approximation for the single-choice prophet inequality, and seminal work of Samuel-
Cahn shows that the same result can be achieved with an especially simple thresholding
algorithm [22, 27].

In their work introducing OCRSs, Feldman, Svensson, and Zenklusen prove that a c-
selectable OCRS implies a c-approximation for the corresponding prophet inequality [14]. In
fact, a c-selectable OCRS provides a c-approximation even to the ex ante relaxation, and
Lee and Singla show that OCRSs are equivalent to ex ante prophet inequalities [23].

k-Uniform Matroids

k-uniform matroids are a canonical set of feasibility constraints: any set of up to k elements
can be selected. Here, a (1 — O(\/%))—approximate prophet inequality (whose analysis

implicitly extends to a (1 — O(y/ %))—selectable OCRS) is first developed in [17]. [2] later

develops a (1 — O(ﬁ))-approximation (which also implies a (1 — O(ﬁ))—selectable OCRS),

which is tight . [4] further shows how to achieve the same (1 — O(ik))—approximation using
a single sample from each distribution (but their work does not imply any OCRS). [1§]
tightens the analysis of [2] to nail down exactly the optimal achievable prophet inequality for
all & (and this same analysis applies to the implied OCRS). We overview in Section 1.1 these
results in more detail, and in particular clarify against what kind of adversary (who selects
the order in which the elements are revealed) the guarantees hold.

While the optimal competitive ratio has been known for a decade, and recently tightened
to even nail down the precise constants, these algorithms are significantly more complex than
Samuel-Cahn’s elegant algorithm for the single-choice prophet inequality. For example, [2, 18]
both require to solve and analyze a mathematical program in order to accept elements with
precisely the correct probability. The rehearsal algorithm of [4] is perhaps simpler, but still
requires several lines of pseudocode, and some care with minor details.

Main Result: A Simple, Optimal OCRS

Our main result is a significantly simpler OCRS/prophet inequality for k-uniform matroids
that still achieves the optimal guarantee of 1 — O(ﬁ) Of course, it is still not nearly as
simple as Samuel-Cahn’s single-choice prophet inequality, but a full description fits in two
sentences, and the complete analysis is just a few pages.! Our OCRS simply denotes by A;
the set of elements it has selected amongst the first ¢ and by G; the set of realized active
elements amongst the first ¢. Then, when processing element i, we select ¢ with probability
1-— ﬁ if and only if 7 is active and |4;_1] +1 < (1 — ﬁ) -E[|Gi]] + vk (otherwise, we
discard). Intuitively, our OCRS selects an element if, so far, the number of selected elements
does not exceed the expected number of active elements by too much. To turn our OCRS into
a prophet inequality, simply let T' denote the unique value such that >, Pr[X; > T] = k.2
Then, declare X; to be active if and only if X; > T and plug this into our OCRS. Compared to
prior optimal algorithms for the same setting, our algorithm has the advantage that it is very
simple to implement since it does not require solving a complicated dynamic/linear program.
1

(See Section 1.1) We state our algorithm precisely, and prove that it is (1 — O(W))—selectable

against a fixed-order adversary in Section 4.3

L The proof does require connecting our algorithm to a random walk, and then analyzing properties of
that random walk. But, the proof requires minimal calculations.

2 If the distributions have point-masses, smooth them out by adding a uniformly random draw from [0, €]
for arbitrarily small €.

3 A fixed-order adversary sets the order to reveal the elements offline, and based only on the distributions.
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An Impossibility for OCRS against almighty adversary

While the fixed-order adversary is standard in the prophet inequality literature, it is also
important to explore the extent to which these same guarantees can hold against an almighty
adversary.* For example, the prophet inequality of [4] holds against an almighty adversary,

but does not imply an OCRS. Our second result shows that this is for good reason: no OCRS

can guarantee a selectability better than 1 — Q( lolfk) against an almighty adversary. We

state and prove this in Section 5.

1.1 Detailed Discussion of Related Work

As previously referenced, prior to our work it is already known that the optimal selectability
for OCRS and the optimal prophet inequality against a fixed-order adversary is 1 —@(ﬁ) ([17]
proves the impossibility, and [2] designs the first algorithm matching it). [4] designs a prophet
inequality that achieves the same (1 — O(ik))-approximation against an almighty adversary,

but this does not imply an OCRS. The analysis in [17] implies an extremely simple OCRS
(accept every active element with probability 1 —©0(4/ %)) that is (1—©(4/ %))—selec‘cable

against an almighty adversary. We show that this is the best possible guarantee (Theorem 27).

Because we view our main result as a simpler algorithm achieving (asymptotically) the same
guarantees as prior work, we now overview these works in greater detail.

The ~-Conservative magician in [2]

As previously mentioned, [2] implies an optimal (1 — O(ﬁ))—selectable OCRS against a
fixed-order adversary. [2, Definition 2] describes a y-Conservative Magician, which is an
algorithm that adaptively computes thresholds ; and accepts an active element on step i if
and only if the number of selected elements (or broken wands in the terminology of [2]) W;
in steps 1,...,7 — 1 is less than ;. The cumulative distribution function of W; is computed
adaptively at every step through a dynamic programming equation. Once the CDF of W;
has been computed, 6; is chosen so that the ex-ante probability that W; < 6; is at least . [2]

shows that one can choose v =1 — \/klﬁ and 6; < k for all 4, which effectively guarantees

an OCRS against a fixed-order adversary that is 1 — ﬁ—seleetable [2, Theorem 4]. In
comparison to [2], our main result achieves the same asymptotic guarantee, but is considerably
simpler (in particular, the analysis requires minimal calculations, and there is no dynamic
program).

Characterization of the optimal OCRS and prophet inequality for k-uniform
matroids in [18]

[18] studies the optimal OCRS for k-uniform matroids (i.e. with optimal selection probability
¢). They characterize the optimal OCRS for k-uniform matroids as the solution to a linear
program. Then, using a differential equation, they show that this optimal solution corresponds

to a y;-Conservative magician, where v/ > 1 — \/kl? The OCRS guarantees in [18] hold

against an online adversary °.

An almighty adversary sets the order to reveal online, and with full knowledge of all random variables
and all past decisions of the algorithm.

An online adversary adaptively decides which elements to reveal next, based on which elements were
active. But the online adversary does not know the status of the unrevealed elements (i.e. it has the
same information as the algorithm)
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In comparison to [18], our main result achieves the same 1 — O(ﬁ) asymptotic guarantee
against a fixed-order adversary, but is, again, considerably simpler and does not require
solving any mathematical program. Although our analysis holds against the weaker fixed-
order adversary, this assumption is sufficient for many popular applications of OCRS and

prophet inequalities in online stochastic optimization.

The Rehearsal algorithm in [4]

As previously discussed, [4] gives an optimal (1 — O(ﬁ))—approximation prophet inequality
against an almighty adversary, and even when knowing only a single sample from each
distribution, using the rehearsal algorithm. Their rehearsal algorithm takes a sample from
each distribution, and stores the k — 2k highest samples at T1,...,T), _, s, then repeats
T =T, , 5 forallie [k — 2k, k]. When processing the online element X, e is accepted
if and only if there is an unfilled slot ¢ with X, > T;. If X, is accepted, it fills the highest
such slot (the slot with the highest threshold).

Their analysis does not imply an OCRS (indeed, it is not even clear what it would mean
to set the thresholds T; in an OCRS). But, their analysis does hold against an almighty
adversary. In comparison, our prophet inequality is simpler, and implies an OCRS. But, our
algorithm requires some knowledge of the distributions, rather than just a single sample.®

Our analyses have similar flavors: both works connect our algorithms’ performance to a
random walk. These random walks are quite different (for example, the random walk in [4]
is correlated, and ours is not. Our random walk has non-integral step sizes, while theirs
does not), and are used to analyze different algorithms. While there are some coincidental
similarities (for example, our Lemma A.2 in the full version [10] is a generalization of their
Lemma 10), the core of our proof is simply connecting our algorithm to a random walk,
whereas the bulk of their proof is coping with the correlation in their random walk and any
associated calculations.

Other Related Work

There is substantial additional work on both prophet inequalities and online contention
resolution schemes, subject to various other constraints [7, 21, 15, 12, 25, 26, 11, 1, 16, 3,
13, 5, 9, 28, 24]. Aside from this, there is not much technical overlap with these works (in
particular, a substantial fraction of these works consider richer feasibility constraints, and
therefore achieve constant-factor approximations rather than approximations approaching 1).

Other works have also considered a special class of static threshold policies for k-unit
prophet inequalities which set a single threshold and accept any element that exceeds it
subject to the feasibility constraint. [17] provides a prophet inequality with a static threshold

which is a 1 — O( %) approximation. [6] proposes a different static threshold prophet
inequality with the same 1 — O( %) asymptotic guarantee improving the approximation

for small k. [19] uses a mathematical programming approach to show that the policy in [6] is
worst-case optimal within all static threshold policies. In contrast to these works, we study
the design and limitations of the richer class of adaptive strategies for the more general
setting of OCRS.

5 Turning our OCRS into a prophet inequality requires a value T" such that ZZ Pr[X; > T] = k, and an
accurate estimate of Zjﬁ. Pr[X; > T for all i. Estimates up to an additive vk with high probability
suffice. This can certainly be achieved with polynomially-many samples, but not a single sample.
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In the context of offline contention resolution schemes (introduced in [8]), [20] shows a
simple optimal contention resolution scheme for k-uniform matroids, which is (1 — (Z)(l —
Eyn+i=k(E)k) selectable. Their method is not extendable to the online case because it
requires knowing the set of active elements A in advance.

1.2 Roadmap

Section 2 follows with preliminaries and definitions. Section 3 is a warm-up that rules
out optimal selectability via extremely simple greedy algorithms. Section 4 presents a
complete proof of our new (1 — O(ﬁ))-selectable OCRS. Section 5 contains a proof of the

1—9( %) upper bound on the probability of selection of any OCRS against almighty
adversaries. Section 6 concludes.

2 Preliminaries

2.1 Online contention resolution schemes

Online contention resolution schemes were first introduced by [14] as a broadly applicable
online rounding framework. Suppose we are given a finite ground set of elements N =
{e1,...,en}. Consider a family of feasible sets F C 2V which is downwards-closed (that is,
if € Fand J C I, then J € F). Let

Pr =conv(1;|I € F) € [0,1]"

be the convex hull of all characteristic vectors in F. We will refer to Pr as the polytope
corresponding to the family F.

» Definition 1 (Online contention resolution scheme (OCRS)). Consider the following online
selection setting. A point x € Px is given and let R(x) be a random subset of active elements,
where element e; is active with probability x;. The elements e € N reveal one by one whether
they are active, i.e. e € R(x), and the decision of the algorithm whether to select an active
element is taken irrevocably before the next element is revealed. An OCRS for Pr is an
online algorithm that selects a subset I C R(x) such that 11 € Pr.

Many of the natural OCRS considered in [14] are also greedy.

» Definition 2 (Greedy OCRS). A greedy OCRS w for Pr is an OCRS that for any x € Pr,
defines a downwards-closed subfamily of feasible sets F, C F and an element e is selected
when it arrives if, together with the already selected elements, the obtained set is in F,

Our next goal is to define the notion of c-selectability, which is a notion of performance
of the OCRS. Intuitively, an OCRS is c-selectable if for any element e the probability that
the OCRS selects e given that it is active is at least ¢, where we desire ¢ to be as large as
possible. In order to talk about c-selectability in a rigorous way, we need to specify the power
of the adversary that chooses the order of the elements revealed to the OCRS in an online
fashion (Definition 1). There are three main types of adversaries considered in prior work,
which we define below.

» Definition 3 (Strength of adversary). In the setting of Definition 1, there is an underlying
adversary which can choose the order in which the elements are revealed to the OCRS. We
define three different types of adversaries:

39:5
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Offline/Fized-Order adversary, which chooses the order of the elements upfront before
any are revealed. Such an adversary knows x and the distribution of R(x), but not the
realized active elements.
Online adversary, which adaptively chooses next element to reveal using the same in-
formation available to the algorithm (x, the distribution of R(x), and which elements
have been revealed, which were active, and which were selected).
Almighty adversary, which knows upfront the outcomes of all random events, which
includes the realization of R(xz) and the outcome of the random bits that the OCRS might
query.

We are now ready to define the notion of c-selectability.

» Definition 4 (c-selectability). Let ¢ € [0,1]. An OCRS for P is c-selectable against an
adversary A if for any x € P and e € N, we have

Prle is selected by the OCRS against Ale is active] > ¢

It is often true that a larger probability of selection ¢ can be achieved when z is supposed to
be in a down-scaled version of P.

» Definition 5 ((b, ¢)-selectability). Let b,c € [0,1]. An OCRS for P is (b,c)-selectable
against an adversary A if for any x € b- P and e € N, we have

Prle is selected by the OCRS against Ale is active] > ¢

An important observation is that a (b, c)-selectable OCRS for P against .4 implies a
be-selectable OCRS for P against A.

» Observation 6 ([14]). A (b, ¢)-selectable OCRS for P implies a be-selectable OCRS for P.

The reduction in Observation 6 is as follows: The bc-selectable OCRS essentially runs the
given (b, c)-selectable OCRS while scaling down by b each of the probabilities z; online (i.e.
consider selecting an active element independently with probability b). For more details
see [14].

» Remark 7. It is important to emphasize that a be-selectable ORCS for P gives selection
guarantees on all z € P, while a (b, ¢)-selectable OCRS for P gives guarantees only when
x € b- P (i.e. a scaled-down version of P).

2.2 OCRS and Prophet inequalities

As previously discussed, one of the many applications of OCRS is to the prophet inequality
problem. Here we define the general setting of the prophet inequality problem. We begin
with a setup for the environment.

General setting and prophet. We are given a group set N = {ey,...,e,} and a downwards-
closed family F C 2V of feasible subsets. Each of the elements e; is associated with a value v;.
A prophet is an offline algorithm, which sees the vector (v1,...,v,) and outputs the feasible

set MAX(v) = argmax e 3, vi- We denote by OPT(v) = 3, c\ax (o) vi the weight of the
maximum set.

» Definition 8 (Prophet inequality). Suppose we are given a downwards-closed feasibility
constraint F C 2N . Suppose each element e; € N takes value v; € R>q independently from
some known distribution D;. These values are presented one-by-one to an online algorithm w
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in an adversarial order (again specified as offline, online, or almighty). On seeing a value
the algorithm needs to immediately and irrevocably decide whether to select the next element
e;, while always maintaining that the set of selected elements so far is in F. Let’s denote
the set of selected elements by m as A*(v). We say that w induces a prophet inequality with
competitive ratio ¢ for F if

Evepl Y vi] > c-Eyup[OPT(v)]
1€A*(v)

where D =Dy X ... x D, is the product of the independent distributions D;

As with OCRS, in order to talk about a-approximation, we need to specify the power of
the adversary which specifies the order of the elements revealed. Completely analogously to
Definition 3, we could have offline, online, and almighty adversaries.

[14] showed that a c-selectable OCRS against a particular adversary A implies a c-
approximation prophet inequality against an adversary of the same strength.

» Theorem 9 ([14]). A c-selectable OCRS against (offline/online/almighty) adversary implies
the existence of a c-approximation prophet inequality algorithm.

In the classical prophet inequality formulation [22], the value of the online algorithm 7 is
compared directly to the offline optimum. [23] consider an ex-ante prophet inequality, where
the value of 7 is compared to the optimal value of a convex relaxation, which upper bounds
the offline optimum. [23] show that this stronger notion of an ex-ante prophet inequality is
equivalent to an OCRS.

2.3  k-uniform matroids

In this section, we give a definition for k-uniform matroids, which is the feasibility constraint
that we will use throughout the paper. Given a ground set N = {ey,...,e,}, the k-uniform
matroid is the matroid consisting of all subsets of N of size at most k.

» Definition 10 (k-uniform matroid). The k-uniform matroid for N is My, = (N, Fy) , where
Fr={S C N||S| <k}

and the corresponding polytope of Fy is given by
n
P, = {33 S Rgdle < k‘}
i=1

We remind the reader of prior work on OCRSs and prophet inequalities for k-uniform
matroids below.

» Theorem 11 ([17, 2, 4, 18]). The following is known, prior to our work, on OCRSs and
prophet inequalities for k-uniform matroids:
Against a fized-order/online adversary, the best prophet inequalities and OCRSs for Fy,
achieve a guarantee of 1 — G(ﬁ) (lower bound: [17], algorithm: [2, 18]).
Against an almighty adversary, the best prophet inequalities for Fj, achieve a guarantee
of 1 — @(ﬁ) (lower bound: [17], algorithm: [{]).

Against an almighty adversary, the best-known OCRS achieves a guarantee of 1—O( logk)

(implicit in [17]).
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3  Warmup: Naive approaches towards an OCRS

The goal of this section is to explore a few exceptionally simple algorithms that one might try
to use to construct an optimal OCRS for k-uniform matroids. We will present results about
whether optimal factors are possible against adversaries of variable strengths. In particular,
we will show that one cannot achieve a (1 — O(ﬁ))—selectable OCRS by using a very simple
greedy algorithm or a tweaked variant of it utilizing a partition matroid.

We first consider a naive greedy OCRS, which greedily selects active elements until
it has selected k elements. Formally in the language of Definition 2, for this OCRS we
have F = {S C N||S| = k} and F, = F for all z. We quickly establish that the naive
greedy OCRS is not (b, ¢)-selectable even against an offline/fixed-order adversary for any b, ¢
satisfying bc = 1 — O(%) This would rule out constructing exceptionally simple OCRS via
Observation 6.

» Theorem 12. There are no b, c, satisfying bc = 1 — O(-L), such that the naive greedy

i
OCRS is (b, c)-selectable against the offline adversary.

Proof. See Appendix A.1 in full version [10] for a proof. <

Our second result is that even if we complicate the naive greedy OCRS slightly it does
not imply an optimal factor. Suppose instead of using the k-uniform matroid, we use a
partition matroid and the algorithm is to greedily select active elements as long as the set of
selected elements lies in the partition matroid. Formally in the language of Definition 2, the
feasibility family F, is given by a partition matroid (which could depend on ). For a given
z, the partition matroid is of the form {(n;, k;, S;)};_;, where >0 _ ki =k, >0 n;=n
and the sets S; are pairwise disjoint and satisfy US_;S; = N and |S;| = n,;. Here we can
select at most k; elements from S;. We next prove that such scheme is not (b, ¢)-selectable

1

even against the offline adversary for any b, ¢ satisfying bc = 1 — O(W)

» Theorem 13. There are no b, c, satisfying bc =1 — O(ﬁ), such that the naive greedy
OCRS with a partition matroid is (b, ¢)-selectable against the offline adversary.

Proof. See Appendix A.1 in full version [10] for a proof. |

» Remark 14. Theorems 12 and 13 say that one cannot use the transformation in Observation
6 on a naive greedy OCRS to obtain a (1 — O(ﬁ))—selectable OCRS. Thus ruling out
some exceptionally simple ways to construct a (1 — O(ﬁ))—selectable OCRS for k-uniform

matroids.

» Remark 15. Intuitively, the above variations of the naive greedy schemes fail to be optimal
because they tend to select too many elements early in the process in comparison to the
expected number of active elements so far. Thus, they are likely to run out of space when
they reach the last element. Our main algorithm in Section 4 attempts to counter this.

We conclude by reminding the reader that the naive greedy OCRS is (b, ¢)-selectable
against the almighty adversary for some b, ¢ satisfying bc = 1 — O(4/ %)

implicit in the analysis of the (1 — O( %))—approximate prophet inequality of [17].

. The proof is

» Theorem 16 (Implicit in [17]). The naive greedy OCRS is (1 — 4/ QIOTg(k), 1 — ¢)-selectable

against the almighty adversary. By the transformation in Observation 6 this implies a

(1-0(y/ %))—selecmble OCRS for k-uniform matroids.

Proof. We remind the reader of the simple proof in Appendix A.1 in our full version [10]. <«
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4 A simple optimal OCRS for k-uniform matroids

The goal of this section is to give a new (1 — O(—=))-selectable OCRS against offline/fixed-

NG
order adversaries. Because the adversary must commit to an ordering using just knowledge
of z, and the distribution of R(z), we let e1,es ..., e, refer to the elements that are revealed,

in order. Note that the events e; € R(x) are independent. We will show that the following
algorithm is a (1 — O(-%))-selectable OCRS for k-uniform matroids.

NG
OCRS(x):
1. Initialize the set of selected elements Ay = 0.
2. Fori=1,...,n do:
2.a If e; is active and |4;_1|+1 < (1— ﬁ)(zﬁz ;) +k, then select e; with probability
(1- ﬁ) (i.e. A; = A,_1 Ue;) and otherwise discard it (i.e. A; = A;—1).
2.b If |44 +1 > (1 — ﬁ)(zg‘gi z;) + Vk or e; is inactive, then discard e; (i.e.
Ai = Ai—l)-

Observe that OCRS is derived from an even simpler (1 — ﬁ, 1- O(ﬁ))—selectable
OCRS, by using the reduction of Observation 6. We clearly state this simpler algorithm
below (we also state it parameterized by d, as our entire analysis follows for general d, and
then is optimized for d := v/k at the very end).

Algorithm(d, x):

1. Initialize the set of selected elements By = 0.

2. Fori=1,...,n do:
2.a If e; is active and |B;—1| +1 < ngi xj + d, then select e;, and otherwise discard it.
2.b If |Bi—4|+1 > ngixj + d or e; is inactive, then discard e;.

» Observation 17. If Algorithm(Vk,z) is a (1 — ﬁ, 1- O(ﬁ))-sel@ctable OCRS for Py,
then OCRS(z) is a (1 — O(ﬁ))—selecmble OCRS for P.

Proof. OCRS(z) is exactly the result of applying the [14] reduction of Observation 6 to Al-

gorithm (v, z), with b = 1— ﬁ and c = 1—O(ﬁ). Therefore, by Observation 6, OCRS(x)

is (1— =) (1 —0(-L))-selectable (i.e. (1 — O(—=))-selectable) whenever Algorithm(v/k, )

VE VE VE
is (1— ﬁ, 1- O(ﬁ))—selectable. <

In line with Remark 7, we emphasize that Algorithm(\/E, x) operates in a universe
where the probabilities z; are scaled down by b =1 — ﬁ, while OCRS(z) operates with the
original probabilities x;.

Our key proposition is that Algorithm(d,z) is indeed sufficiently selectable.

» Proposition 18. Algorithm(d,x) is (1 — %, 1- ﬁ)—selectable over Py. That is, for all

z € (1- %) P, Algorithm(d,z) is (1 — ;27)-selectable.

The proof of Proposition 18 proceeds in two steps. The first (shorter) step is to guarantee
that Algorithm(d, x) always selects at most k elements. The second is to show that every
element is accepted with sufficient probability.

» Observation 19. For all z € (1 — £) - P, Algorithm(d,z) accepts at most k elements.

Proof. Observe that, at all times, |B;| <> .,z +d. As )} z; <k-(1— 4y =k — d, this
implies that |B,| < k, and the algorithm accepts at most k total elements. <
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We now proceed to prove that the algorithm is sufficiently selectable. For this part of the
analysis, it will be convenient to consider the process S; := |B;| —>_,; x;. Observe that S5;
has the following dynamics. First, Sop = 0. Further if S;_1 +1 —z; < d (i.e. have “space” to
accept e;), then

g Si—1+1—x; if e; is active (with probability x;)
v Si_1—x; if e; is inactive (with probability 1 — z;)

and if S;_1 +1—x; > d (i.e. don’t have “space” to accept e;), then S; = S;_1 — x; regardless
of whether e; is active (with probability 1). Additionally, consider the process W; = 23‘21 X,
where

X — {1 —x; if e; is active (with probability z;)

—z; if e; is inactive (with probability 1 — z;)

Intuitively, W; tracks the number of active elements above expectation (among the first ),
and S; tracks the number of selected elements above the expected number of active elements
(among the first 7).

» Lemma 20. W; — S; is exactly equal to the number of active elements that are discarded
amongst the first i.

Proof. Let G; be the set of active elements in the first ¢ revealed elements. Then, by
definition W; = [G;| — 3 ,., #;. Thus, W; — S; = |G,| — |B;| and the conclusion follows
because | B;| is the number of active and selected elements in the first 7 revealed ones. <

By Lemma 20 it follows that the difference W; — S; increases by one if and only if e; is
active and discarded, and stays the same otherwise. The rest of the proof requires just two
more natural steps. First, we characterize which elements are active and discarded, just as a
property of the random process W. Second, we bound the probability of this occurring.

» Lemma 21. Element e; is active and discarded by Algorithm(d, x) if and only if [W;] > d
and [W;] > [W;] for all j < i. That is, e; is active and discarded by Algorithm(d,z) if
and only if the random process W reaches a new integral height for the first time.

Proof. By Lemma 20 the difference W; — S; increases by 1 when e; is active and discarded
and stays the same otherwise. Therefore, the n-th active and discarded elements is e;, where
i is the smallest index such that W; — S; = n. Let’s now fix an arbitrary n > 1. To prove
the lemma, it is enough to show that 7 is the smallest index such that W; — S; = n if and
only if ¢ is the smallest index such that [W;] =d + n.

We begin with the “only if” direction. Suppose i, is the smallest index such that
W;, —Si, = n. By Lemma 20, element e; is active and discarded. Therefore, by the selection
rule of Algorithm(d,z) we get that S; _1 +1 — x;, > d and therefore S;, = S;, _1 — ;.
This implies that S;, > d — 1. We also know that S; < d (because S; stores the difference
between [B;| and ), ., x;, which is hard-coded to be at most d). Using these two inequalities
along with our hypothesis that W; —.5; = n we obtain:

W;, =8;, +n € (d+n—1,d+n], and therefore: [W; | =d+n.

Further, by definition of i,, as the first index such that W; — S; = n, we know that for all
J <in: W; < S; +n— 1. Moreover, we also know that S; < d for all j (again, because S;
stores the difference between |B;| and }_, ; z¢, which is at most d). Therefore, W; < d+n—1,
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and we conclude that [W;] <d+n—1<[W;, ] forall j < i,. Therefore, i, is the smallest
index such that [W; ] = d 4+ n. This establishes that if i,, is the smallest index such that
W, —S;, =n, then i, is the smallest index such that [W; ] =d+n.

Now we show the “if” direction. Suppose that 4, is the smallest index such that [W; | =
d +n. Since W;, —S;, is an integer, and because §;, < d, it must be the case that
Wi, —S;, >n . Let i* <i, be the smallest index such that W;» — S;« = n (such i* exists
because W; — .S; always increases by 1 or stays the same, and because we have just shown that
W;, —S;, =n). By the “only if” proof above, i* is the smallest index such that [W;«] = d+n,
implying that in fact i* = i,,, as desired. This establishes that if 4,, is the smallest index such
that [W; ] = d+n, then i, is also the smallest index such that W; — S, =n.

This completes the proof: the n'” active element discarded by the algorithm is the smallest
index such that W; —.S; = n. By the work above, this is exactly the smallest index such that
[W;] = n + d. Therefore, discarded elements are exactly those that reach a new integral
height for the first time. |

Our remaining task is simply to upper bound the probability that W, reaches a new
integral height, for all 4.

» Lemma 22. For each m € {1,...,n}

2%

Pr([W,,] > d and [W,,] > [W;] fori<m) < 71

Proof. Fixm € {1,...,n}. Consider the process Q; := Wy,—;—1—W,,—1 fori=0,1,...,m—
1. Intuitively, {Q; ;’;61 is the “reversed” process W starting at time-step m — 1. Note that
Qo=0and Q,,_1 = —W,,_1. Observe also that

Qi—Qic1 =Wih—ic1t =Wt — Wi = W) = Wi—im1 = Wiy = =X

Note that since the adversary does not see which elements are active and has to commit to
their order a priori, we know that Xi,..., X, are independent. We also note that

E[XZ] = aci(l — .%‘Z) - xi(l — JJZ) =0

By combining the previous two facts, we obtain that {Q; 7;61 is a discrete martingale. Let’s
denote its maximum by M,,_1 = maxi<;<m-1 Q;. We will next show that if [W,,,] > d and
[Wp,] > [W;] for i < m, then the following two events have to hold:

em 1s active.

M,,—1 < 1and Q-1 < —(d—1). That is, the martingale () can never reach a height of

1, and it must finish below —(d — 1).
Indeed, since [W,,] > [W,—1], then e,, is active. Also since [W,,,] > [W;] for i < m, we
know that W, > W,,_;_1 for all .. Combining this with the inequality W,, < W,,_1 + 1,
we obtain

Qi = Wmfifl - Wmfl < Wmfifl - Wm +1<1

Thus, Q; < 1 for all i € [1,m — 1] or equivalently M,,_1 < 1. The condition [W,,] > d
implies that W,,, > d. Using the last inequality we obtain

Qm-1=Wp1 <-W,,+1<—(d-1)

Therefore, we obtained that e, is active, M,,—1 < 1 and Q,,—1 < —(d — 1) as desired.
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Using the above property combined with the fact that the event whether e,, is active is
independent of the events M, 1 < 1 and Q,,—1 < —(d — 1) (because M,,_1 and @Q,,_; are
determined entirely by the previous m — 1 elements) we obtain that:

Pr([Wy,,] > d and [W,,] > [W;] for i < m)

< Pr({en is active} N {M,—1 <1 and Q-1 < —(d—1)})

= Pr(e,, is active) - Pr(M;,—1 <1 and Q1 < —(d — 1))

=opy - Pr(My,—1 <1land Q-1 < —(d—1))

So, the final step is to upper bound Pr(M,,—1 < 1 and Q,,—1 < —(d — 1)), which is
just a claim about martingales that change by at most 1 in each step. Lemma A.2 in [10]

(full version), which is a short application of the Optional Stopping Theorem, applied for
a=1b=—-(d—1)<0,and K =1 implies that:

Pr(Mp—1 <land Qpm-1 < —(d—1)) < %
Therefore,
Pr([Wy,] > [W;] for i <m and [W,,] > d) < ;iml,
which concludes the proof of the lemma. <

This suffices to wrap up the proof of Proposition 18.
Proof of Proposition 18. We have that

Pr(e, is selected|e,, is active) = 1 — Pr(e,, is discarded|e,, is active)

Pr(e,, is active and discarded )

= 1 —
Pr(e,, is active)
2% 2
Sq_dt _q__Z .
>1 - 1 71 (by Lemma 22) <

Setting d = vk in Proposition 18 we get

» Corollary 23. Algorithm(Vk,z) is (1— -+, 1— —2—)-selectable, and therefore OCRS(x)

vk’ V-1
is (1 — O(ﬁ))—selectable.

» Remark 24. An intuitive comparison with the extremely simple OCRS implied in [17] is the

following. The OCRS from [17] needs to “scale” probabilities down with (1 — ©( %)) in

order to have a (1 — O( %)) chance of not running out of space. Our result shows that
if we adaptively select active elements whenever the number of selected ones does not exceed

the expected number by d, then we only need to “scale” down probabilities by (1 — ©(—=))

vk
to have a (1 — @(ﬁ)) chance of not running out of space.
» Remark 25. In terms of exact constants, Corollary 23, gives that OCRS(z) is (1 — %)—
selectable for k > 25.

» Remark 26. Intuitively, an online adversary can potentially manipulate the algorithm by
revealing an element e; with a large (resp. small) z; when the algorithm has selected many
(resp. few) elements above the expectation. In this scenario, the proof of Lemma 22 will not
go through since the “reversed” process @; could have correlated steps and will (in general)
fail to be a martingale.
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5 Upper bound against almighty adversaries

Recall that [17] implies that the naive greedy OCRS can be used to obtain a (1—O(y/ %))—
selectable OCRS against the almighty adversary. (Theorem 16) We recall that the almighty
adversary knows which elements are active a priori and also knows everything about the
OCRS (Definition 3). In this section we show that, against the almighty adversary, the

probability of selection of any OCRS cannot be greater than (1 — Q( %)) This implies
that, against almighty adversaries the factor of (1 — O( %))7 achieved by the naive

greedy OCRS, is asymptotically optimal. In particular, our main goal in this section is to
prove the following theorem.

» Theorem 27. Suppose that a c-selectable OCRS for the k-uniform matroid against the
almighty adversary exists. Then ¢ <1 — Q(4/ %)

In our proof of Theorem 27 we will only consider the instance n = 2k and vector of
probabilities #; = 1 for all i € [1,2k] (i.e. each element is active with probability 3). To
execute the proof, we will use the following strategy.

We will consider the following subclass of almighty adversaries. The adversary knows

which elements are active and everything about the OCRS. However, it needs to:

commit to the order in which the elements will be revealed a priori
reveal all active elements before all inactive ones

This type of restriction will be convenient for the analysis. We will refer to the class of

such adversaries as H.

Assuming the existence of a c-selectable OCRS 7 against adversaries of class H, we show

that there exists c-selectable OCRS 7° against adversaries of class H, which selects the

i-th revealed active element with probability independent of the identities of the first 4

revealed elements. In other words, the probability that 7° selects the i-th revealed active

element is a function g(i) (which depends on 7 but not on the identities of the first ¢

revealed elements). (Section 5.1)

By using the probability values {g(i)}2%,, we construct an adversary in H. Based on this

adversary, we upper bound the probability of selection ¢ by using the solution to a linear

programming relaxation. (Section 5.2)

Before we proceed with the proof we will fully describe a general model for how an OCRS
works. An arbitrary OCRS 7 operates in the following way:

1. Before any elements are revealed 7 can flip some random coins coinsi.

2. Once the first element a; is revealed (and whether it is active or not), 7 can flip more
random coins coins] and it makes a decision to select / discard a; with some probability
based on coinsy, coins] and the identity of the element a;. Let b; be the indicator
random variable of the event that a; is selected.

3. Based on the history so far, i.e. coinsi,aq,coinsy, by, it flips more random coins coinss
before the second element is revealed.

4. After the identity of the second element as (and its activity) is revealed 7 flips more coins
coins’, (based on the history so far), and makes a decision to select ay or not, which is
recorded in an indicator variable bs.

5. Let B; = (coins;, a;, coins,, b;) where coins; is the random coins 7 flips right before seeing
the i-the revealed element a;, coins is the random coins 7 flips after seeing a;, and b; is
the indicator of the event that 7 selects a;.
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6. In general, as a function of the history B; = {B, ..., B;}, 7 flips random coins coins; .
Then the (i + 1)-th element a;;; is revealed. Based on the history B, U coinsiy1 U a;t1,
7 flips more random coins coins; 41 Finally, based on the history B; Ucoinsi;1 Ua;1 U
coins 11, ™ decides to select / discard a; 1, which generates the indicator b;1.

7. The procedure described in 6. is repeated until the n-th element is selected / discarded.

5.1 Defining a symmetric OCRS

Suppose we have a c-selectable OCRS 7. Our goal in this section will first be to define what
it means to “apply a permutation” to w. Then we will define the “symmetric” OCRS 7° in
the following way:
1. Sample uniformly random permutation o of N.
2. Apply o to .
We will then show that the probability that 7° selects the i-th active revealed element is
independent on the identities of the first ¢ revealed elements.

We will first introduce some definitions. Given an OCRS 7, and a permutation ¢ of the
ground set IV, we define 7, as the OCRS which “treats” each element a; exactly like m would
“treat” o~ 1(a;). Formally we use the following definition.

» Definition 28. Let m be an OCRS and o a permutation of N. Define n, as an OCRS

which uses ™ as a black-box in the following way:

1. Before any elements are revealed m, queries w to flip some random coins coins.

2. Once the first element ay is revealed (and whether it is active or not), m, queries ™ on
(coins1, 0~ (a1)) to flip more random coins coins’. Based on (coinsy,o~1(a1), coins}),
7 will make some decision to select / discard o= (ay) with some probability. Then 7,
selects ay if and only if w selects o= (ay). Let by be the indicator random variable of the
event that ay is selected by m,.

3. 7w, queries ™ on history coinsy, o '(ay), coinsy, by to generate random coins coinsy before
the second element is revealed.

4. After the identity of the second element as (and its activity) is revealed 7w, queries m
on coinsy, 0=, (ay), coinsy, by, coinsa, 0~ (az) to flip more random coins coinsy. Then
it queries ™ on coinsy, o~ '(ay), coinsy, by, coinsy, o (az), coinsy whether to select /
discard o~ (as), and 7, selects ag if and only if © selects o~ (az).

5. Let B; = (coins;, a;, coinst, b;) where coins; is the random coins w, flips by querying
right before seeing the i-the revealed element a;, coins, is the random coins w, flips by
querying m after seeing a;, and b; is the indicator of the event that m, selects a;.

6. In general, as a function of the history B; = {By,...,B;}, 7, will query © on B'; =
{B{,...,B}}, where B} = (coins;,oc~"(a;), coins; ,,b;) to flips random coins coins;
before the (i + 1)-th active element a;41 is revealed. Then it queries ™ on B’; U coins;;q1 U
o~ Yaiy1), to generate more random coins coinsy, ,, and then it queries it again on
B'; U coinsiy1 U o Hajy) U coins;, whether to select a;y1 if and only if © selects
o Ya;y1). This generates an indicator b; .

7. The procedure described in 6. is repeated until the n-th element is selected / discarded.

Similarly to applying a permutation to an OCRS 7, we can apply a permutation to an
adversary A, resulting in an adversary A,. Intuitively, A, “treats” element a like A would
treat o~ !(a). We give the following formal definition. Recall that 7 is the class of adversaries
defined in the beginning of this section.
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» Definition 29. Let A € H be an adversary and o a permutation of the ground set N. We

define the adversary A, as operating against an OCRS 7 in the following way:

1. Given a set of active elements A, A, queries A on a set of active elements o~1(A) against
the OCRS 7,-1. Upon this query A returns an order in which to reveal the elements from
N.

2. Given this order, if A chose to reveal element a in the i-th position, A, reveals o(a) in
the i-th position.

» Remark 30. It is easy to see that if A € H, then A, € H.
We next show that the operation of applying a permutation to an OCRS or adversary is

invertible.

» Proposition 31. For a given permutation o, the maps m — 7w, and A — A, are bijections,
with inverses m — wy-1 and A — A,-1 respectively.

Proof. See Appendix A.3 in full version [10] for a proof. <
We will now need the following helpful lemma.

» Lemma 32. Let a € N be an element and A C N a subset of elements. Let o be a
permutation of N, m an OCRS, and A € H an adversary. Then

Pr(w selects a against A|A are active) = Pr(n, selects o(a) against A,|o(A) are active)

Proof. Consider the interaction between 7, and A, on set of active elements o(A4). By
Definition 29 before the process begins A, queries A on 07 1(c(A)) = A against OCRS
(7o)y—1 = m (Proposition 31). Based on this if A chooses to first reveal the active elements
A to 7 in some order, A will reveal 0(A) to 7, in the same order (Definition 29). Thus, if
we now pair 7 and 7, as in Definition 28, we know that in the interaction when = is given
history B and 7, will be given history B’, obtained from B by replacing each element b by
o(b). Thus, by Definition 28 it follows that 7, will select element o(a) if and only if 7 selects
element a. This finishes the proof. <

We are now ready to show if 7 is c-selectable against adversaries in H, then 7, is also
c-selectable against adversaries in H.

» Lemma 33. If 7 is c-selectable against adversaries in H, then m, is also c-selectable
against adversaries in H.

Proof. Let A € H be an adversary and a € N an arbitrary element. We have that

Pr(m, selects a against A) =

= Z Pr(m, selects a against A|A are active) Pr(A are active)
ACN

1
= Z Pr(m, selects a against A|A are active)ﬁ
ACN
1
= Z Pr(r selects 0~ *(a) against A, 1|0~ (A) are active)ﬁ (Lemma 32, Prop. 31)
ACN

= Z Pr(7 selects 0~ *(a) against A, 1|0~ (A) are active) Pr(c—'(A) are active)
ACN

= Pr(7 selects 0~ *(a) against A,-1) > = (by c-selectability of )

o
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where in the last equality we used that x; = % for all . Thus,

P lect inst A
Pr(m, selects a against A| a is active) = r(w,,;e(ec's . ?'gal)ns ) >c
r(a is active

since Pr(a is active) = 1. <

» Remark 34. Notice that in the proof of Lemma 33 it was crucial that x; = % for all i,

which we used to claim Pr(A are active) = Pr(c~!(A) are active) = 5.

Suppose we have a c-selectable OCRS 7 against adversaries in H. We define the “symmetric”

OCRS 7° in the following way:
1. Sample a uniformly random permutation o of the ground set N.

2. Operate like m,

We will next show that 7% is c-selectable against adversaries in ‘H and that it does not
differentiate between identities of different elements.

» Lemma 35. The OCRS 7° is c-selectable against adversaries in H.

Proof. Let A € H be an adversary. Since A needs to decide on the order in which to reveal
the elements before seeing what permutation ¢ is drawn in step 1., we know that the order
of elements revealed does not depend on ¢. Thus, for an arbitrary element a we have that

1
Pr(7® selects a against A) = Z Pr(r, selects a against A)— > (by Lemma 33)
n!

c1 c
> 5w =3

o

as desired. <

We will now state the key lemma for this section. Namely, that 7° selects the i-th revealed
active element with probability independent of the identities of the first ¢ revealed elements.

» Lemma 36. Against adversaries in H, the probability that 7° selects the i-th revealed
element, conditioned on it being active, is given by a function g(i) that is independent of the
identities of the first © revealed elements and their order.

Proof. Consider any adversary A € H. By definition .4 decides on the order in which to
reveals the elements apriori, and reveals all active elements before all inactive ones. Suppose
that the first ¢ elements that A reveals are aq, ..., a; in that order. To prove the lemma it is
enough to show that

Pr(n® selects a;lay, ..., a; are revealed) = g(4)

where g is allowed to depend only on 7. Note that the permutation ¢ drawn is independent
of the order of the elements aq, ..., a; by definition of H. Thus, we have



A. Dinev and S. M. Weinberg

Pr(n® selects a;|ay, ..., a; are revealed) =
= E Pr(m, selects a;lay,...,a; are revealed) Pr(o is drawnlay, ..., a; are revealed)
g
1
= g Pr(7, selects aslay, . .., a; are revealed) —
~ n!
1
= E Pr(rw, selects a;lay, ..., a; are revealed)
' o

1
=— Z Z Pr(w, selects a; and 7, selected Blay,...,a; are revealed)
n!

o BC{ai,..,ai—1}

= i' Z Z Pr(m sel. 07 (a;) and 7 sel. o1 (B)|o " ({a1,...,a;}) revealed)
n!

o BC{ai,...,ai—1}

In the second inequality we used the fact that the event that o is drawn is independent of

the decision of the adversary for which aq,...,a; to reveal. In the last equality we used
Definition 28. Let’s denote by (A) the last term above.
The key observation is that expression (A) does not depend on the elements aq,...,a;

but only on i. Notice that for fixed A, B’,a’, such that |A'| =4, B C A’ and o’ € A’ \ B/,
there are exactly

(13 0BG = 1= 18Dt iy

terms in the sum (A) of the form
Pr(7 selects a’ and 7 selected B’|A” revealed)

To see this consider the number of (o, B) which are solutions to
o Ya;))=d, 07 (B) =B 07 (A) = A

where A = {a1,...,a;}. There are (r];,l‘) ways to choose B. Given B there are (|B/|)I(i —1 —
|B|)!(n — 4)! ways to choose o in order to send a’ to a;, B’ to B, and A’ to A. Therefore,

(A) is equal to

1

Z Pr(m sel. o’ and 7 sel. B'|A revealed) (Z;/|

|A’|=i,B'CA’,a’ €A\ B’

)<|B’|>!<z'—1—|B'|>!<n—z‘>!

which only depends on ¢. Therefore, the probability that 7% selects the i-th revealed element
given that it is active only depends on i we will denote it by g(4). |

5.2 Upper bound on the probability of selection

In this section we will present an adversary in the class H and show how this adversary

implies the upper bound of 1 — Q(4/ %) on c. By Lemma 36 it follows that, against

adversaries in #H, the probability that 7* selects the i-th revealed active element is given by
a function ¢(7).

We now describe the adversary. We will only specify what the adversary does when e; is
active.
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Adversary A*:
1. If there are m active elements except for ey, the adversary computes g(1),...,g(m + 1).
2. Before the process starts, the adversary finds j = argmin; ¢y, 41 g(7) and reveals element
e1 at position j and all other m active elements on positions j' € [1,7 —1JU[j +1,m + 1]
in arbitrary order.

It is not hard to see that the adversary A* is in the class H because it commits to
the order apriori and reveals all active elements before all inactive. We will next show the
following lemma for the probability that 7 selects e; against the above adversary.

» Lemma 37. Let h(m + 1) = min;epy 1) 9(4) for m € [0,2k — 1]. Then

()

22k—1

2k
Pr(n® selects e1 against A*|ey is active) = Z h(%)
i=1

Proof. Suppose e; is active. Notice that the number of active elements is equal to N + 1,
where N ~ Bin(2k — 1, %) By definition of A*, when there are m active elements (except
for e1), the probability that 7 selects e; is equal to h(m + 1). Therefore, by the law of total
probability, 7° selects e; with probability

2k
Pr(m® selects e; against A*|e; is active) = Z h(i) Pr[N +1 =1]

i=1
2k 1

= h(i) Pr[Bin(2k — 1, 5 =i—1]
i=1
2k (251

AN

=2 M) S

i=1
as desired. <

We will next show a property on the values {g(i)}?*, that will be useful later.

» Lemma 38.

2k
Z g(i) <k

Proof. Suppose that all 2k elements in N are active. We know that any adversary in H will
choose an order for the elements to be revealed before 7° draws o. In that case we know by
Lemma 36 that 7° will select the i-th revealed element with probability g(¢). Let I; be the
indicator random variable that 7° selects that i-th revealed element. Note that E[I;] = g(4).
Since 7® never selects more than k elements (Definition 1) we have that

2k 2k 2k
E>E[Y L= E[L]=) g(i)
i=1 i=1 i=1
as desired. |

As a last step towards Theorem 27, we consider a linear program relaxation whose
optimal objective upper bounds the probability of selection ¢ (Lemma 39), and characterize
an optimal solution to the program (Lemma 40). Finally, we show that the optimal objective

of the linear program is at most 1 — ( %) (Lemma 41).
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» Lemma 39. Let ¢* denote the optimal value of the following linear program

2k (Qk 1)
mazximize Zf 52k
subject to Zf (1)
f() fla+1) fori=1,...,2k—1
f(2k) >0

Then if w° is c-selectable it holds that
c<c*

Proof. We first claim that {h(i)}2¥, is a feasible assignment to (1). Notice that by definition
we have that h(i) < g(i) for ¢ € [1,2k]. Using this combined with Lemma 38 we obtain

2k 2k
> h(i) <> gli) <k
=1 =1

Further, note that by definition we have that h(i) > h(i + 1) for ¢ € [1,2k — 1] and clearly
h(2k) > 0. Combining the aforementioned observations we get that the vector {h(i)}2*, is a

feasible assignment of (1). Therefore, by Lemma 37 we obtain that

(21
Z h(i 22k 1) Pr(7® selects e; against A*|e; is active)

By Lemma 35 we know that 7° is c-selectable i.e.
Pr(7m® selects ey against A*|e; is active) > ¢
By combining the above two inequalities we obtain that
ct>c
which finishes the proof. |

We will next prove a claim for the optimal solution of the linear program (1).

» Lemma 40. The optimal solution of (1) has the form f(i) = x for i = 1...k + a,
flk+a+1)=y, and f(i) =0 fori>k+a+1 for somex >y >0 and a € [0,k].

Proof. First, note that the constraints of the linear program (1) define a bounded convex
polytope, so there exists a feasible assignment that achieves the optimum of (1). Let

2 1
b; = (2; 1), we know that b; < b; 1 for i < k, by, = bg11, and b; > b;4q for i > k. Let f* be
an optimal solution to (1). Suppose that f*(i) > f*(i + 1) for some ¢ < k. Then consider f**
defined by f**(j) = f*(j) for j & {i,i + 1}, and f**(i) = f=(i + 1) = ZOHEH)  Noge
that f** still has decreasing non-negative entries and the sum of its entries is equal to that
of f* i.e. it is feasible. The difference between the objective values of f** and f* is equal to

fr@) + i +1) (S +1) = f*(@) (bi — biy1)
2 2

since f*(1+1) < f
Therefore, f*(i) = f*(1) for all « < k.

>0

(bi +big1) =i f* (i) = bip1 f*(i+1) =

*(4) and b; < b;r1. Thus, a contradiction with the optimality of f*.

39:19

ITCS 2024



39:20

Simple and Optimal Online Contention Resolution Schemes for k-Uniform Matroids

Let f*(i) =« for i <k. If f*(j) € {x,0} for j > k we are done. Otherwise let j > k be
the smallest index such that z > f*(j) > 0, and let f*(j) = y. This means f*(i) = z for
i < j. Assume that f*(j + 1) > 0. Then, let [ > j be the largest index such that f*(I) > 0,
and let f*(I) = z. Choose € < min(z — y, z) and consider f** defined by f**(j) = f*(j) +e,
() = f*(1) —e, and f**(i) = f*(i) for ¢ € {j,1}. Note that f** is feasible by the choice of
€ since its entries are still decreasing and have the same sum as those of f. The difference
between the objective of f** and f* equals to

(f*(G) + )b + (f (1) = e)br = f(5)bj — f*(Dbr = €(b; —bi) >0

as b; > b; because | > j > k, which contradicts the optimality of f*. Thus, we showed that
f*(j +1) =0, which finishes the proof of the Lemma. <

Note that by Lemma 40 we know that the optimal value of (1) has the following form
1 1
¢ =z Pr(Bin(2k — 1, 5) <k+4+a—-1)+yPr(Bin(2k -1, 5) =k+a) (2)

for some x > y > 0 satisfying (k + a) + y < k, where a > 0. By using these constraints we
easily obtain that y < z < ﬁ By using this inequality in equation (2), we obtain that

¢ < pr(Bin(2k -1, %) <k+a) 3)

+a

We now show the final Lemma of this section, which provides an upper bound for the
RHS of (3). The proof of this lemma is purely technical so we refer the reader to the full
version [10]

» Lemma 41. Let a € [0, k], then

k . 1 log(k)
[ —1,-) < <1-
k+aPr(Bm(2k 1,2)_k+a)_1 Q( . )
Proof. See full version [10] for a proof. <

» Remark 42. The optimal solution to the LP in Lemma 39 turns out not have the same
values f(i) as implied by the asymptotically optimal OCRS from [17] (Theorem 16). This is
because the values implied by this OCRS would have an asymptotically optimal performance
as opposed to exactly instance optimal.

5.3 Proof of Theorem 27

By Lemma 39, we know that
c<cf (4)

Additionally,by combining (3) and Lemma 41 we know that

e <10/ W) (5)
Combining (4) and (5) we obtain
c<1-0 logk(k))

finishing the proof of Theorem 27.
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6 Conclusion

We provide a new, simple, and optimal OCRS for k-uniform matroids against a fixed-order
adversary. In particular, our algorithm has the advantage that it is extremely simple to
implement and it does not require solving a mathematical program. Our analysis connects
its performance to a random walk, and follows by concluding properties of this random walk.
We expect that the tools we develop in analyzing our algorithm to be of independent interest
and to have a broader applicability within online stochastic optimization.

As our second main result, we show that no OCRS for k-uniform matroids can be

(1—-Q(/ logk ))-selectable against an almighty adversary, establishing that the simple greedy
OCRS implied by [17] is optimal.
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